JP4569440B2 - Temperature independent optical multiplexer / demultiplexer - Google Patents

Temperature independent optical multiplexer / demultiplexer Download PDF

Info

Publication number
JP4569440B2
JP4569440B2 JP2005297939A JP2005297939A JP4569440B2 JP 4569440 B2 JP4569440 B2 JP 4569440B2 JP 2005297939 A JP2005297939 A JP 2005297939A JP 2005297939 A JP2005297939 A JP 2005297939A JP 4569440 B2 JP4569440 B2 JP 4569440B2
Authority
JP
Japan
Prior art keywords
waveguide
temperature
core
input
side slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005297939A
Other languages
Japanese (ja)
Other versions
JP2007108339A (en
Inventor
浩一 丸
由起雄 阿部
貴史 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005297939A priority Critical patent/JP4569440B2/en
Publication of JP2007108339A publication Critical patent/JP2007108339A/en
Application granted granted Critical
Publication of JP4569440B2 publication Critical patent/JP4569440B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Description

本発明は、光通信の分野において、波長多重伝送を行う上で用いられるアレイ導波路型の温度無依存化した光合分波器、特にその損失の低減を図った温度無依存光合分波器に関する。   The present invention relates to an arrayed waveguide type optical multiplexer / demultiplexer used for wavelength division multiplexing in the field of optical communications, and more particularly to a temperature-independent optical multiplexer / demultiplexer designed to reduce its loss. .

光通信の分野においては、複数の信号を別々の波長の光にのせ、1本の光ファイバで伝送して、情報容量を増加する波長分割多重方式が検討されている。この方法では、異なる波長の光を合分波する光合分波器が重要な役割を果たしている。特に、マッハ・ツェンダ干渉計やアレイ導波路を用いた導波路型光合分波器は、多チャンネルかつ狭分波間隔の合分波を実現するのに有利であり、通信容量の多重数を容易に大きくできる利点がある。   In the field of optical communication, a wavelength division multiplexing system is being studied in which a plurality of signals are placed on light of different wavelengths and transmitted through a single optical fiber to increase the information capacity. In this method, an optical multiplexer / demultiplexer that multiplexes / demultiplexes light of different wavelengths plays an important role. In particular, a waveguide type optical multiplexer / demultiplexer using a Mach-Zehnder interferometer or an arrayed waveguide is advantageous for realizing multiplexing / demultiplexing with multi-channels and narrow demultiplexing intervals, and facilitates multiplexing of communication capacity. There is an advantage that can be greatly increased.

図5に、従来のアレイ導波路型光合分波器12を示す。本構成のアレイ導波路型光合分波器12は、入力用チャネル導波路1と、入力用チャネル導波路1に接続された入力側スラブ導波路2、出力用チャネル導波路6と、出力用チャネル導波路6に接続された出力側スラブ導波路5と、入力側スラブ導波路2及び出力側スラブ導波路5に接続された複数のチャネル導波路からなるアレイ導波路3とを有する。
入力用チャネル導波路1から入力した光波は入力側スラブ導波路2内を伝搬し、アレイ導波路3に入射する。アレイ導波路3の各チャネル導波路を伝搬する際に光波は位相変化を受け、出力側スラブ導波路5に入射する。出力側スラブ導波路5内の光波は干渉し、出力用チャネル導波路6に到達する。ここで、光波の干渉パターンが波長により異なるため、光合分波機能が実現される。
FIG. 5 shows a conventional arrayed waveguide type optical multiplexer / demultiplexer 12. The arrayed waveguide type optical multiplexer / demultiplexer 12 of this configuration includes an input channel waveguide 1, an input side slab waveguide 2 connected to the input channel waveguide 1, an output channel waveguide 6, and an output channel. The output side slab waveguide 5 connected to the waveguide 6 and the arrayed waveguide 3 composed of a plurality of channel waveguides connected to the input side slab waveguide 2 and the output side slab waveguide 5 are provided.
The light wave input from the input channel waveguide 1 propagates through the input side slab waveguide 2 and enters the arrayed waveguide 3. When propagating through each channel waveguide of the arrayed waveguide 3, the light wave undergoes a phase change and enters the output-side slab waveguide 5. The light wave in the output-side slab waveguide 5 interferes and reaches the output channel waveguide 6. Here, since the interference pattern of the light wave varies depending on the wavelength, an optical multiplexing / demultiplexing function is realized.

ここで、通常の材料を用いて光回路を構成した場合、温度が変化すると、熱光学効果によって材料の屈折率が変化し、これによりアレイ導波路3の等価屈折率が変化する。さらに熱膨張によってアレイ導波路3の長さも変化する。このため、温度によってアレイ導波路3で受ける位相変化量が変化してしまう。この変化は波長によって異なるため、結果として出力される分波波長が変化してしまう。ここで、一例として石英系材料で構成した場合を考えると、波長1.55μm付近での温度による分波波長の変化は0.01nm/℃となる。従って、例えば0〜60℃の環境温度で使用する場合には最大0.6nm波長がシフトしてしまう。このため、このままでは実用システムには使用できず、チャネル導波路、スラブ導波路及びアレイ導波路から構成される光回路の温度制御を行う必要が生じる。   Here, when an optical circuit is configured using a normal material, when the temperature changes, the refractive index of the material changes due to the thermo-optic effect, and thereby the equivalent refractive index of the arrayed waveguide 3 changes. Furthermore, the length of the arrayed waveguide 3 also changes due to thermal expansion. For this reason, the amount of phase change received by the arrayed waveguide 3 changes with temperature. Since this change differs depending on the wavelength, the output demultiplexing wavelength changes as a result. Here, considering a case where it is made of a quartz-based material as an example, the change of the demultiplexing wavelength due to the temperature near the wavelength of 1.55 μm is 0.01 nm / ° C. Therefore, for example, when used at an ambient temperature of 0 to 60 ° C., the maximum wavelength of 0.6 nm is shifted. For this reason, it cannot be used in a practical system as it is, and it is necessary to control the temperature of an optical circuit composed of a channel waveguide, a slab waveguide, and an arrayed waveguide.

そこで、温度制御手段を必要としない温度無依存化方法として、光回路の一部に溝を設け、その中に屈折率の温度係数が光回路と異なる材料を充填することにより、温度による位相変化の波長依存性を補償する方法が知られている(例えば、非特許文献1参照)。   Therefore, as a temperature independence method that does not require temperature control means, a phase change due to temperature is achieved by providing a groove in a part of the optical circuit and filling it with a material having a refractive index temperature coefficient different from that of the optical circuit. There is known a method for compensating for the wavelength dependence of (see, for example, Non-Patent Document 1).

一般的に、溝では閉じ込め構造が無いため、大きな回折損失が生じる。そこで、複数の溝を設け、さらに溝同士を最適な溝間隔として溝で集光する作用を生じさせることにより、溝全体としての回折損失を低減する方法がよく採られ(例えば、非特許文献2参照)、この方法をアレイ導波路型光合分波器に取り入れた構造も報告されている(例えば、非特許文献3参照)。   Generally, since there is no confinement structure in the groove, a large diffraction loss occurs. Therefore, a method of reducing the diffraction loss of the entire groove by providing a plurality of grooves and concentrating the grooves with the grooves having an optimum groove interval is often employed (for example, Non-Patent Document 2). (See, for example, Non-Patent Document 3), a structure in which this method is incorporated in an arrayed waveguide optical multiplexer / demultiplexer has also been reported.

チャネル導波路に溝を形成した場合、溝では基板に関して垂直方向と水平方向のいずれにも回折が生じ、チャネル導波路に溝を取り入れたとしても、十分に損失を下げることが出来ない。   When grooves are formed in the channel waveguide, diffraction occurs in both the vertical and horizontal directions with respect to the substrate, and even if the grooves are incorporated in the channel waveguide, the loss cannot be reduced sufficiently.

そこで、入力側スラブ導波路に複数の楔形の溝を設けた構造の報告例がある(例えば、非特許文献4参照)。図6は、この構造を採用した温度無依存光合分波器16で、入力側スラブ導波路2に複数の楔形の溝8a〜8cを設け、波長依存性の補償を実現している。入力側スラブ導波路2では、基板7に関して垂直方向の回折のみが損失に影響を及ぼすため、チャネル導波路に溝を形成した場合に比べて、損失を低減できる。   Therefore, there is a report example of a structure in which a plurality of wedge-shaped grooves are provided in the input-side slab waveguide (see, for example, Non-Patent Document 4). FIG. 6 shows a temperature-independent optical multiplexer / demultiplexer 16 employing this structure, in which a plurality of wedge-shaped grooves 8a to 8c are provided in the input-side slab waveguide 2 to realize wavelength dependence compensation. In the input-side slab waveguide 2, only the diffraction in the vertical direction with respect to the substrate 7 affects the loss, so that the loss can be reduced compared to the case where a groove is formed in the channel waveguide.

一方、コアとクラッドの比屈折率差△を大きくすることにより、一般的に曲がり導波路の曲率半径を小さくし、素子の小型化を実現する方法が知られており、この方法をアレイ導波路型光合分波器に適用した報告がある(例えば、非特許文献5参照)。   On the other hand, by increasing the relative refractive index difference Δ between the core and the clad, a method of reducing the radius of curvature of the bent waveguide and reducing the element in size is generally known. There is a report applied to a type optical multiplexer / demultiplexer (see, for example, Non-Patent Document 5).

比屈折率差△を大きくする場合、スラブ導波路に溝を形成した場合でも、十分に溝での放射損失が抑えられない問題がある。図7(a),(b)に、コアとクラッドの比屈折率差△がそれぞれ0.8%の場合と2.5%の場合における、溝幅をパラメータとしたときの溝配置間隔と損失の関係を示す。いずれの△に関しても、各溝幅において最適な溝配置間隔があることが分かる。しかし、△=0.8%と2.5%で同じ溝幅のときと比較すると、△=2.5%の場合の方が最小損失が増加してしまうことが分かる。これは、スラブ導波路に溝を形成しても、△が増加すると縦方向の回折損失が無視できなくなってくるためである。   When the relative refractive index difference Δ is increased, there is a problem that radiation loss in the groove cannot be sufficiently suppressed even when a groove is formed in the slab waveguide. 7A and 7B show the relationship between the groove arrangement interval and the loss when the groove width is used as a parameter when the relative refractive index difference Δ between the core and the cladding is 0.8% and 2.5%, respectively. . It can be seen that there is an optimum groove arrangement interval for each groove width for any Δ. However, it can be seen that the minimum loss increases when Δ = 2.5% compared to when Δ = 0.8% and 2.5% and the same groove width. This is because, even if a groove is formed in the slab waveguide, the diffraction loss in the vertical direction cannot be ignored as Δ increases.

そこで、縦方向(基板に関して垂直方向)の回折損失を低減するために、縦方向にテーパ構造のコアを形成する方法(例えば、非特許文献6参照)を採用して、この構造をスポットサイズ変換器として使用し、溝周囲のスポットサイズを縦方向に広げることにより、回折損失を低減する方法が考えられる。   Therefore, in order to reduce the diffraction loss in the vertical direction (perpendicular to the substrate), a method of forming a core having a taper structure in the vertical direction (for example, see Non-Patent Document 6) is employed, and this structure is converted into a spot size. A method of reducing the diffraction loss by using the device as a vessel and expanding the spot size around the groove in the vertical direction is conceivable.

また、ビームスポット径を変換するビームスポット変換光導波路として、コアを光ビームの伝搬方向に複数個配置したセグメント型導波路を使用し、光ビームの伝搬方向に沿ってコア/クラッド屈折率差を変化させることによって、ビームスポット径を拡大もしくは縮小させ、光部品間の結合効率の向上を図った光伝送モジュールが知られている(例えば、特許文献1参照)。   In addition, as a beam spot converting optical waveguide for converting the beam spot diameter, a segmented waveguide having a plurality of cores arranged in the propagation direction of the light beam is used, and the core / cladding refractive index difference is determined along the propagation direction of the light beam. An optical transmission module is known in which the beam spot diameter is enlarged or reduced by changing the optical transmission module to improve the coupling efficiency between optical components (see, for example, Patent Document 1).

Y.Inoue, et al.,“Athermal silica-based arrayed-waveguide grating (AWG) multiplexer”, ECOC 97 Technical Digest, pp. 33-36, 1997Y. Inoue, et al., “Athermal silica-based arrayed-waveguide grating (AWG) multiplexer”, ECOC 97 Technical Digest, pp. 33-36, 1997 星野等、“PLC集積アイソレータにおける回折損失の低減化構造”、1999年信学総合大会、 C-3-138、 p.292、1999Hoshino et al., “Diffraction loss reduction structure in PLC integrated isolators”, 1999 IEICE General Conference, C-3-138, p.292, 1999 A.Kaneko, et al., “Athermal silica-based arrayed-waveguide grating (AWG) multiplexers with new low loss groove design,” OFC'99 Technical Digest, TuO1, pp.204-206, 1999A.Kaneko, et al., “Athermal silica-based arrayed-waveguide grating (AWG) multiplexers with new low loss groove design,” OFC'99 Technical Digest, TuO1, pp.204-206, 1999 Maru, et al., “Athermal and center wavelength adjustable arrayed-waveguide grating”, OFC 2000 Technical DigestMaru, et al., “Athermal and center wavelength adjustable arrayed-waveguide grating”, OFC 2000 Technical Digest Hida, et al., “Fabrication of low-loss and polarisation-insensitive 256 channel arrayed-waveguide grating with 25 GHz spacing using 1.5% △ waveguides”, Electron. Lett., vol.36, no.9, pp.820-821、 2000Hida, et al., “Fabrication of low-loss and polarisation-insensitive 256 channel arrayed-waveguide grating with 25 GHz spacing using 1.5% △ waveguides”, Electron. Lett., Vol.36, no.9, pp.820- 821, 2000 井藤等、“1.5%-△導波路を用いた超低損失アレイ導波路回折格子”、信学技報、 OPE2002-16, pp.27-30, 2002Ito et al., “Ultra-Low Loss Arrayed Waveguide Grating Using 1.5%-△ Waveguide”, IEICE Technical Report, OPE2002-16, pp.27-30, 2002 特開2002−169046号公報JP 2002-169046 A

しかしながら、楔形溝での縦方向の回折損失を低減するために、縦方向のテーパ構造のコアを形成する方法を採用した場合、テーパ構造形成のために、エッチングやコア堆積におけるプロセス条件を複雑に制御しなければならない。   However, in order to reduce the longitudinal diffraction loss in the wedge-shaped groove, when the method of forming the core with the longitudinal taper structure is adopted, the process conditions for etching and core deposition are complicated for the formation of the taper structure. Must be controlled.

そこで、本発明の目的は、上記課題を解決し、コアとクラッドの比屈折率差△を大きくした場合にも、温度無依存化を実現するための、光学樹脂を充填した溝での回折損失を小さく抑えることができる温度無依存光合分波器を提供することにある。   Therefore, an object of the present invention is to solve the above-mentioned problems and to realize diffraction in the groove filled with an optical resin in order to realize temperature independence even when the relative refractive index difference Δ between the core and the clad is increased. It is an object of the present invention to provide a temperature-independent optical multiplexer / demultiplexer that can keep the above small.

上記目的を達成するために、第1の発明は、少なくとも1個以上の入力用チャネル導波路と、該入力用チャネル導波路に接続された入力側スラブ導波路と、少なくとも1個以上の出力用チャネル導波路と、該出力用チャネル導波路に接続された出力側スラブ導波路と、前記入力側スラブ導波路と前記出力側スラブ導波路とを接続し、導波路長がそれぞれ異なる複数のチャネル導波路からなるアレイ導波路とを備えた温度無依存光合分波器において、前記入力側スラブ導波路のコアには、複数に分割された分割コアが光の伝搬方向に適宜間隔を隔てて配置された分割コア部が形成され、前記分割コア部を伝搬する光のスポットサイズ径が、前記入力側スラブ導波路の分割されていないコア部を伝搬する光のスポットサイズ径よりも拡大されるように設定され、前記分割コア部の領域に、その屈折率が温度に依存する光学樹脂が充填された複数の楔形の溝が配置され、光の伝搬方向に隣接する前記溝と前記溝との間の領域にも前記分割コアが形成され、前記アレイ導波路を構成する前記チャネル導波路それぞれにおいて温度による屈折率変化により生じる位相変化量を、前記光学樹脂の温度による屈折率変化により生じる位相変化量で相殺し、前記アレイ導波路で発生する温度による位相変化の波長依存性を補償し、中心波長の温度無依存化を行うと共に、前記分割コア部の前記分割コアが光の伝搬方向に周期的に配置され、且つ前記分割コア部の中央部から前記入力側スラブ導波路の分割されていないコア部に近づくにつれて、光の伝搬方向における前記分割コアの長さが徐々に長くなるように設定されている温度無依存光合分波器である。
To achieve the above object, the first invention provides at least one or more input channel waveguides, an input-side slab waveguide connected to the input channel waveguides, and at least one or more output channels. A channel waveguide, an output slab waveguide connected to the output channel waveguide, and the input slab waveguide and the output slab waveguide are connected to each other, and a plurality of channel guides having different waveguide lengths are connected. In a temperature-independent optical multiplexer / demultiplexer including an arrayed waveguide formed of waveguides , a plurality of divided cores are arranged at appropriate intervals in the light propagation direction in the core of the input side slab waveguide. The split core portion is formed, and the spot size diameter of light propagating through the split core portion is larger than the spot size diameter of light propagating through the undivided core portion of the input side slab waveguide. And a plurality of wedge-shaped grooves filled with an optical resin whose refractive index depends on temperature are disposed in the region of the divided core portion, and between the grooves adjacent to each other in the light propagation direction. The divided core is also formed in the region of the channel waveguide, and the phase change amount caused by the refractive index change due to the temperature in each of the channel waveguides constituting the arrayed waveguide is the phase change amount caused by the refractive index change due to the temperature of the optical resin. To compensate for the wavelength dependence of the phase change due to the temperature generated in the arrayed waveguide, making the central wavelength temperature independent, and the divided core of the divided core section periodically in the light propagation direction. And the length of the split core in the light propagation direction is gradually increased from the central portion of the split core portion toward the unsplit core portion of the input slab waveguide. A temperature-independent optical demultiplexer that is configured to so that.

第2の発明は、少なくとも1個以上の入力用チャネル導波路と、該入力用チャネル導波路に接続された入力側スラブ導波路と、少なくとも1個以上の出力用チャネル導波路と、該出力用チャネル導波路に接続された出力側スラブ導波路と、前記入力側スラブ導波路と前記出力側スラブ導波路とを接続し、導波路長がそれぞれ異なる複数のチャネル導波路からなるアレイ導波路とを備えた温度無依存光合分波器において、前記入力側スラブ導波路のコアには、複数に分割された分割コアが光の伝搬方向に適宜間隔を隔てて配置された分割コア部が形成され、前記分割コア部を伝搬する光のスポットサイズ径が、前記入力側スラブ導波路の分割されていないコア部を伝搬する光のスポットサイズ径よりも拡大されるように設定され、前記分割コア部の領域に、その屈折率が温度に依存する光学樹脂が充填された複数の楔形の溝が配置され、光の伝搬方向に隣接する前記溝と前記溝との間の領域にも前記分割コアが形成され、前記アレイ導波路を構成する前記チャネル導波路それぞれにおいて温度による屈折率変化により生じる位相変化量を、前記光学樹脂の温度による屈折率変化により生じる位相変化量で相殺し、前記アレイ導波路で発生する温度による位相変化の波長依存性を補償し、中心波長の温度無依存化を行うと共に、前記分割コア部の、光の伝搬方向における前記分割コアの長さが一定であり、且つ前記分割コア部の中央部から前記入力側スラブ導波路の分割されていないコア部に近づくにつれて、光の伝搬方向に隣接する前記分割コア間の間隔が徐々に短くなるように設定され、又は、光の伝搬方向に隣接する前記分割コア間の間隔が一定であり、且つ前記分割コア部の中央部から前記入力側スラブ導波路の分割されていないコア部に近づくにつれて、光の伝搬方向における前記分割コアの長さが徐々に長くなるように設定されている温度無依存光合分波器である。
According to a second aspect of the present invention, there is provided at least one input channel waveguide, an input side slab waveguide connected to the input channel waveguide, at least one output channel waveguide, and the output An output-side slab waveguide connected to a channel waveguide, an arrayed waveguide composed of a plurality of channel waveguides each connecting the input-side slab waveguide and the output-side slab waveguide, each having a different waveguide length. In the temperature-independent optical multiplexer / demultiplexer provided, the core of the input-side slab waveguide is formed with a split core portion in which split cores that are split into a plurality are arranged at appropriate intervals in the light propagation direction, The spot size diameter of the light propagating through the split core portion is set to be larger than the spot size diameter of the light propagating through the undivided core portion of the input side slab waveguide, and the split core In this region, a plurality of wedge-shaped grooves filled with an optical resin whose refractive index depends on temperature are arranged, and the divided core is also formed in the region between the grooves adjacent to each other in the light propagation direction. The arrayed waveguide is formed by canceling the phase change caused by the refractive index change due to temperature in each of the channel waveguides constituting the arrayed waveguide with the phase change caused by the refractive index change caused by the temperature of the optical resin. Compensating for the wavelength dependence of the phase change due to the temperature generated in the above, making the temperature of the central wavelength independent, and the length of the split core in the light propagation direction of the split core portion is constant, and Set so that the distance between the divided cores adjacent to each other in the light propagation direction is gradually shortened from the central part of the divided core part toward the undivided core part of the input-side slab waveguide. Alternatively, as the distance between the divided cores adjacent to each other in the light propagation direction is constant and approaches the undivided core portion of the input-side slab waveguide from the central portion of the divided core portion, The temperature-independent optical multiplexer / demultiplexer is set so that the length of the divided core in the propagation direction is gradually increased .

3の発明は、1または第2の発明において、前記分割コアが円弧状に形成されていると共に、該円弧状の分割コアの曲率中心は前記入力用チャネル導波路と前記入力側スラブ導波路の接続部乃至その近傍に位置する温度無依存光合分波器である。
According to a third invention, in the first or second invention, the split core is formed in an arc shape, and the center of curvature of the arc-shaped split core is the input channel waveguide and the input side slab guide. This is a temperature-independent optical multiplexer / demultiplexer located at or near the waveguide connection.

4の発明は、1ないしの発明において、前記コアと該コアの周囲を形成するクラッドとは石英系材料で構成され、前記コアと前記クラッドの比屈折率差は1.0%以上である温度無依存光合分波器である。
The fourth invention is the first to third inventions, wherein the core and the cladding that forms the periphery of the core is composed of silica-based material, the relative refractive index difference of the cladding and the core 1.0 It is a temperature-independent optical multiplexer / demultiplexer that is at least%.

本発明の温度無依存光合分波器は、光多重伝送システムに用いられる、光波長合分波器、M×N周波数ルーティング装置、Add/Dropフィルタ等に利用可能である。   The temperature-independent optical multiplexer / demultiplexer of the present invention can be used for an optical wavelength multiplexer / demultiplexer, an M × N frequency routing device, an Add / Drop filter, and the like used in an optical multiplexing transmission system.

本発明によれば、コアとクラッドの比屈折率差△を大きくした場合にも、溝での回折損失を小さく抑えることが可能であり、温度無依存光合分波器の小型化を図れる。また、溝での回折損失を小さく抑える分割コア部の各分割コアは、縦方向にテーパ形状のものなどではなく、縦方向に一定寸法でよく、プロセス工程が複雑化せず作成が容易であり、光合分波器のコストアップを招くことがない。   According to the present invention, even when the relative refractive index difference Δ between the core and the clad is increased, the diffraction loss in the groove can be suppressed, and the temperature-independent optical multiplexer / demultiplexer can be downsized. In addition, each split core of the split core section that suppresses the diffraction loss in the groove is not tapered in the vertical direction, but may have a fixed size in the vertical direction, and it is easy to create without complicating the process steps. The cost of the optical multiplexer / demultiplexer is not increased.

以下に、本発明に係るアレイ導波路型の温度無依存光合分波器11の一実施形態を図面を用いて説明する。
図1に、本発明の一実施形態における温度無依存光合分波器11の光回路上面図を示す。また、図2に、入力側スラブ導波路2の中央部断面図(図1におけるA−A’線の拡大断面図)を示す。この温度無依存光合分波器11は、石英ガラス基板7上に、入力用チャネル導波路1、入力側スラブ導波路2、アレイ導波路3、出力側スラブ導波路5及び出力用チャネル導波路6の導波路がコア10によって形成されており、石英ガラス基板7及びコア10はクラッド15により覆われている。ここで、クラッド15の屈折率は石英ガラス基板7と同じ1.457とし、コア10の屈折率は1.495(比屈折率差△=2.5%)としている。
An embodiment of an arrayed waveguide temperature-independent optical multiplexer / demultiplexer 11 according to the present invention will be described below with reference to the drawings.
FIG. 1 shows a top view of an optical circuit of a temperature-independent optical multiplexer / demultiplexer 11 according to an embodiment of the present invention. 2 is a cross-sectional view of the center of the input-side slab waveguide 2 (enlarged cross-sectional view taken along the line AA ′ in FIG. 1). This temperature-independent optical multiplexer / demultiplexer 11 is formed on a quartz glass substrate 7 on an input channel waveguide 1, an input-side slab waveguide 2, an arrayed waveguide 3, an output-side slab waveguide 5, and an output channel waveguide 6. These waveguides are formed by the core 10, and the quartz glass substrate 7 and the core 10 are covered with the clad 15. Here, the refractive index of the clad 15 is 1.457, the same as that of the quartz glass substrate 7, and the refractive index of the core 10 is 1.495 (relative refractive index difference Δ = 2.5%).

入力側スラブ導波路2と出力側スラブ導波路5との間に接続されたアレイ導波路3を構成する複数のチャネル導波路は、光合分波器の小型化を図るために円弧状に曲げられ、且つ内側から外側のチャネル導波路になるにつれて長さが長くなっている。   A plurality of channel waveguides constituting the arrayed waveguide 3 connected between the input-side slab waveguide 2 and the output-side slab waveguide 5 are bent in an arc shape in order to reduce the size of the optical multiplexer / demultiplexer. The length increases from the inside toward the outside channel waveguide.

入力側スラブ導波路2の中央部には、複数の楔形(ないし湾曲した楔形)の溝8a〜8cが所定の間隔で形成されており、全ての溝8a〜8cには光学樹脂14が充填されている。本実施形態では、光回路を構成する石英ガラス基板7、コア10、クラッド15が石英系材料であり、石英系材料の屈折率の温度依存性は正の値となるので、光学樹脂14としては、屈折率の温度依存性が負の値となるシリコーン樹脂を用いている(なお、光学樹脂14に、同様に負の屈折率温度依存性を有するエポキシ樹脂を用いてもよい)。この構造により、アレイ導波路3の導波路長を異にする各チャネル導波路において温度による屈折率変化により生じる位相変化量を、楔形の光学樹脂14の温度による屈折率変化により生じる位相変化量で相殺でき、アレイ導波路3で発生する温度による位相変化の波長依存性を補償し、中心波長の温度無依存化を実現している。   A plurality of wedge-shaped (or curved wedge-shaped) grooves 8a to 8c are formed at predetermined intervals in the center of the input-side slab waveguide 2, and all the grooves 8a to 8c are filled with the optical resin 14. ing. In this embodiment, the quartz glass substrate 7, the core 10, and the clad 15 constituting the optical circuit are made of a quartz material, and the temperature dependency of the refractive index of the quartz material is a positive value. A silicone resin having a negative refractive index temperature dependency is used (an epoxy resin having a negative refractive index temperature dependency may be used as the optical resin 14 as well). With this structure, the phase change amount caused by the refractive index change due to temperature in each channel waveguide having a different waveguide length of the arrayed waveguide 3 is the phase change amount caused by the refractive index change due to the temperature of the wedge-shaped optical resin 14. The wavelength dependence of the phase change due to the temperature generated in the arrayed waveguide 3 can be compensated, and the temperature dependence of the center wavelength is realized.

入力側スラブ導波路2の溝8a〜8cの周囲のコアは、複数に分割された分割コア22が光の伝搬方向に5μm周期で周期的に配置された分割コア部21となっている。分割コア部21前後のコアは、従来通りコアが連続した状態の分割されていないコア部23a,23bである。各分割コア22の長さ(光の伝搬方向の長さ)は、溝8a〜8c付近の分割コア部21中央部ではほぼ一定であるが、この分割コア部21中央部から分割されていないコア部23a,23bに近づくにつれて、徐々に分割コア22の長さが大きくなるように設定されている。更に、各分割コア22は円弧状になっており、円弧状の分割コア22の曲率中心は、入力用チャネル導波路1と入力側スラブ導波路2の接続部ないしその近傍に位置している。   The core around the grooves 8a to 8c of the input-side slab waveguide 2 is a divided core portion 21 in which a plurality of divided cores 22 are periodically arranged at a period of 5 μm in the light propagation direction. The cores before and after the split core portion 21 are undivided core portions 23a and 23b in a state where the cores are continuous as before. The length of each divided core 22 (length in the light propagation direction) is substantially constant in the central portion of the divided core portion 21 near the grooves 8a to 8c, but the core is not divided from the central portion of the divided core portion 21. The length of the split core 22 is set to gradually increase as the portions 23a and 23b are approached. Further, each divided core 22 has an arc shape, and the center of curvature of the arc-shaped divided core 22 is located at or near the connection portion between the input channel waveguide 1 and the input side slab waveguide 2.

入力用チャネル導波路1から出射した複数波長の光波は、入力側スラブ導波路2で回折により拡大し、アレイ導波路3の各チャネル導波路に入射する。複数に分割して周期的に配置したコアを伝搬する光のスポットサイズは、分割されていないコアを伝搬する光のスポットサイズよりも拡大することが知られている(Z. Weissman et al., “2-D mode tapering via tapered channel waveguide segmentation”, Electron. Lett.,Vol. 28, No.16, pp.1514-1516, 1992 を参照)。従って、溝8a〜8cの周囲にコアを分割した分割コア部21を設けることにより、溝8a〜8c周囲でのスポットサイズを縦方向(石英ガラス基板7に対して垂直な方向)に広げることができる。その結果、溝8a〜8cでの回折損失を低減することが可能となる。   Light waves of a plurality of wavelengths emitted from the input channel waveguide 1 are expanded by diffraction in the input-side slab waveguide 2 and are incident on each channel waveguide of the arrayed waveguide 3. It is known that the spot size of light propagating through a core that is periodically divided and divided is larger than the spot size of light propagating through an undivided core (Z. Weissman et al., (See “2-D mode tapering via tapered channel waveguide segmentation”, Electron. Lett., Vol. 28, No. 16, pp. 1514-1516, 1992). Therefore, by providing the split core portion 21 obtained by dividing the core around the grooves 8a to 8c, the spot size around the grooves 8a to 8c can be expanded in the vertical direction (direction perpendicular to the quartz glass substrate 7). it can. As a result, it is possible to reduce diffraction loss in the grooves 8a to 8c.

また、分割コア22の長さがほぼ一定の分割コア部21中央部から分割されていないコア部23a,23bに近づくにつれて、分割コア22の長さを徐々に大きくすることにより、分割されていないコア部23a,23bと分割コア部21との間で、導波光のスポットサイズを滑らかに変化させることができ、スポットサイズ拡大による遷移損失を低減することができる。   In addition, the length of the split core 22 is not split by gradually increasing the length of the split core 22 as it approaches the core portions 23a and 23b that are not split from the central portion of the split core portion 21 with a substantially constant length. The spot size of the guided light can be smoothly changed between the core portions 23a and 23b and the split core portion 21, and the transition loss due to the spot size expansion can be reduced.

更に、入力側スラブ導波路2内でコア10を分割した場合には、屈折率の変化による光の位相変化による収差の低減が必要となる。そこで、本実施形態では、各分割コア22を円弧状とし、当該円弧状の分割コア22の曲率中心を入力用チャネル導波路1と入力側スラブ導波路2の接続部ないしその近傍に位置するように形成することにより、この接続部から拡大しつつ入力側スラブ導波路2を伝搬する光に収差が生じることを防いでいる。   Further, when the core 10 is divided in the input-side slab waveguide 2, it is necessary to reduce aberration due to a light phase change due to a change in refractive index. Therefore, in the present embodiment, each divided core 22 has an arc shape, and the center of curvature of the arc-shaped divided core 22 is positioned at or near the connection portion between the input channel waveguide 1 and the input-side slab waveguide 2. Accordingly, the light propagating through the input-side slab waveguide 2 while being enlarged from the connecting portion is prevented from generating aberrations.

図3に、上記実施形態の入力側スラブ導波路2の複数の楔形の溝構造に対して、周期的に配置した分割コア22の最小の長さ(溝8a〜8c付近の分割コア20の長さ)をパラメータとしたときの、溝配置間隔と分割コア部21および溝8a〜8cの遷移損失の計算結果を示す。計算は2次元ビーム伝搬法により行った。分割コア部21を形成しない従来構造の場合(分割コア22が5μm周期で配置されているから、分割コア22の長さが5μmの場合、連続した分割されていないコア部23a,23bと同じになるので、従来構造は、分割コア22の長さ=5μmに対応する)に比べ、分割コア部21を形成した構造では、溝間隔を最適にしたときの最小損失を低減できる。また、分割コア22の最小の長さを1μmと小さくした場合に、最小損失を0.7dBと大幅に低減可能であることが分かる。   FIG. 3 shows the minimum length of the split cores 22 arranged periodically with respect to the plurality of wedge-shaped groove structures of the input-side slab waveguide 2 of the above embodiment (the length of the split cores 20 near the grooves 8a to 8c). The calculation result of the groove | channel arrangement | positioning space | interval and the transition loss of the division | segmentation core part 21 and groove | channels 8a-8c when (S) is made into a parameter is shown. The calculation was performed by a two-dimensional beam propagation method. In the case of the conventional structure in which the split core portion 21 is not formed (the split core 22 is arranged with a period of 5 μm, so that when the split core 22 has a length of 5 μm, it is the same as the core portions 23 a and 23 b that are not continuously split. Therefore, the structure in which the divided core portion 21 is formed can reduce the minimum loss when the groove interval is optimized, as compared with the conventional structure corresponding to the length of the divided core 22 = 5 μm. It can also be seen that when the minimum length of the split core 22 is reduced to 1 μm, the minimum loss can be greatly reduced to 0.7 dB.

図4に、本発明の一実施形態におけるアレイ導波路型光合分波器の作製手順を示す。まず、(1)石英ガラス基板7上にコア(コア膜)10を電子ビーム蒸着法等により堆積する。次に、(2)フォトリソグラフィ技術によりコア10表面に光回路パターンのマスク13を形成し、(3)反応性イオンエッチングにより、入・出力用チャネル導波路1,6、入・出力側スラブ導波路2,5、アレイ導波路3及び分割コア部21のコア部分以外のコア10をエッチングし、導波路コアパターンを形成する。次に、(4)マスク13の剥離を行い、(5)化学気相成長法によりクラッド15を堆積する。最後に、(6)溝8a〜8cの形成及び樹脂14の充填を行う。この作製手順では、導波路1,2,3,5,6と分割コア部21とを同時に形成することが可能となるため、従来構造を採用した場合に問題となっていた、溝のスポットサイズ変換構造の形成によるプロセスエ程の増加を抑えることが可能となる。   FIG. 4 shows a manufacturing procedure of the arrayed waveguide type optical multiplexer / demultiplexer according to the embodiment of the present invention. First, (1) a core (core film) 10 is deposited on a quartz glass substrate 7 by an electron beam evaporation method or the like. Next, (2) an optical circuit pattern mask 13 is formed on the surface of the core 10 by photolithography, and (3) input / output channel waveguides 1 and 6 and input / output side slab guides are formed by reactive ion etching. The cores 10 other than the core portions of the waveguides 2 and 5, the arrayed waveguide 3 and the split core portion 21 are etched to form a waveguide core pattern. Next, (4) the mask 13 is peeled off, and (5) the clad 15 is deposited by chemical vapor deposition. Finally, (6) the grooves 8a to 8c are formed and the resin 14 is filled. In this manufacturing procedure, the waveguides 1, 2, 3, 5, 6 and the split core portion 21 can be formed at the same time. Therefore, the spot size of the groove, which has been a problem when the conventional structure is employed. It is possible to suppress an increase in process distance due to the formation of the conversion structure.

なお、上記実施形態においては、複数に分割された分割コア22が周期的に配置された分割コア部21であったが、分割コア部21の分割コア22の長さを一定にし、隣接する分割コア22,22間の間隔を、この分割コア部21の中央部から分割されていないコア部23a,23bに近づくにつれて、徐々に分割コア22,22間の間隔を短くするようにしてもよい。あるいは、隣接する分割コア22,22間の間隔を一定にし、この分割コア部21の中央部から分割されていないコア部23a,23bに近づくにつれて、徐々に分割コア22の長さを長くするようにしてもよい。   In the above-described embodiment, the divided cores 22 divided into a plurality of divided cores 21 are periodically arranged. However, the length of the divided cores 22 of the divided cores 21 is constant, and adjacent divided parts are divided. You may make it the space | interval between the cores 22 and 22 gradually shorten as the core parts 23a and 23b which are not divided | segmented from the center part of this division | segmentation core part 21 approach. Alternatively, the interval between the adjacent divided cores 22 and 22 is made constant, and the length of the divided core 22 is gradually increased as approaching the core portions 23a and 23b that are not divided from the central portion of the divided core portion 21. It may be.

本発明に係る温度無依存光合分波器の一実施形態の光回路を示す上面図である。1 is a top view showing an optical circuit of an embodiment of a temperature-independent optical multiplexer / demultiplexer according to the present invention. 図1の入力側スラブ導波路のA−A’線の拡大断面図である。It is an expanded sectional view of the A-A 'line of the input side slab waveguide of FIG. 本発明の一実施形態において、入力側スラブ導波路における溝配置間隔と分割コア部及び溝の損失との関係を示す図である。In one Embodiment of this invention, it is a figure which shows the relationship between the groove | channel arrangement | positioning space | interval in an input side slab waveguide, and the loss of a division | segmentation core part and a groove | channel. 本発明の一実施形態に係る温度無依存光合分波器の作製手順を示す図である。It is a figure which shows the preparation procedure of the temperature independent optical multiplexer / demultiplexer which concerns on one Embodiment of this invention. 従来のアレイ導波路型光合分波器の光回路を示す図である。It is a figure which shows the optical circuit of the conventional array waveguide type | mold optical multiplexer / demultiplexer. 従来の温度無依存光合分波器の光回路を示す図である。It is a figure which shows the optical circuit of the conventional temperature independent optical multiplexer / demultiplexer. 比屈折率差△=0.8%及び2.5%の導波路における溝配置間隔と損失との関係を示す図である。It is a figure which shows the relationship between the groove | channel arrangement | positioning space | interval and loss in a waveguide with relative refractive index difference (DELTA) = 0.8% and 2.5%.

符号の説明Explanation of symbols

1 入力用チャネル導波路
2 入力側スラブ導波路
3 アレイ導波路
5 出力側スラブ導波路
6 出力用チャネル導波路
7 石英ガラス基板
8a〜8c 溝
10 コア
15 クラッド
21 分割コア部
22 分割コア
23a,23b 分割されていないコア部
DESCRIPTION OF SYMBOLS 1 Input channel waveguide 2 Input side slab waveguide 3 Array waveguide 5 Output side slab waveguide 6 Output channel waveguide 7 Quartz glass substrate 8a-8c Groove 10 Core 15 Cladding 21 Division | segmentation core part 22 Division | segmentation core 23a, 23b Undivided core

Claims (4)

少なくとも1個以上の入力用チャネル導波路と、該入力用チャネル導波路に接続された入力側スラブ導波路と、少なくとも1個以上の出力用チャネル導波路と、該出力用チャネル導波路に接続された出力側スラブ導波路と、前記入力側スラブ導波路と前記出力側スラブ導波路とを接続し、導波路長がそれぞれ異なる複数のチャネル導波路からなるアレイ導波路とを備えた温度無依存光合分波器において、
前記入力側スラブ導波路のコアには、複数に分割された分割コアが光の伝搬方向に適宜間隔を隔てて配置された分割コア部が形成され、前記分割コア部を伝搬する光のスポットサイズ径が、前記入力側スラブ導波路の分割されていないコア部を伝搬する光のスポットサイズ径よりも拡大されるように設定され、
前記分割コア部の領域に、その屈折率が温度に依存する光学樹脂が充填された複数の楔形の溝が配置され、光の伝搬方向に隣接する前記溝と前記溝との間の領域にも前記分割コアが形成され
前記アレイ導波路を構成する前記チャネル導波路それぞれにおいて温度による屈折率変化により生じる位相変化量を、前記光学樹脂の温度による屈折率変化により生じる位相変化量で相殺し、前記アレイ導波路で発生する温度による位相変化の波長依存性を補償し、中心波長の温度無依存化を行うと共に、
前記分割コア部の前記分割コアが光の伝搬方向に周期的に配置され、且つ前記分割コア部の中央部から前記入力側スラブ導波路の分割されていないコア部に近づくにつれて、光の伝搬方向における前記分割コアの長さが徐々に長くなるように設定されていることを特徴とする温度無依存光合分波器。
At least one input channel waveguide, an input side slab waveguide connected to the input channel waveguide, at least one output channel waveguide, and the output channel waveguide A temperature-independent optical waveguide comprising: an output-side slab waveguide; and an arrayed waveguide that connects the input-side slab waveguide and the output-side slab waveguide and has a plurality of channel waveguides each having a different waveguide length. In the duplexer,
The core of the input-side slab waveguide is formed with a split core portion in which a plurality of split cores are arranged at appropriate intervals in the light propagation direction, and the spot size of light propagating through the split core portion The diameter is set to be larger than the spot size diameter of light propagating through the undivided core portion of the input side slab waveguide,
A plurality of wedge-shaped grooves filled with an optical resin whose refractive index depends on temperature are disposed in the region of the divided core portion, and also in the region between the grooves adjacent to each other in the light propagation direction. The split core is formed ;
A phase change amount caused by a refractive index change due to temperature in each of the channel waveguides constituting the array waveguide is canceled by a phase change amount caused by a refractive index change due to the temperature of the optical resin, and is generated in the array waveguide. Compensates the wavelength dependence of the phase change due to temperature, makes the central wavelength temperature independent,
The light propagation direction as the divided cores of the divided core part are periodically arranged in the light propagation direction and approach the undivided core part of the input side slab waveguide from the central part of the divided core part. The temperature-independent optical multiplexer / demultiplexer is set so that the length of the split cores in (2) is gradually increased .
少なくとも1個以上の入力用チャネル導波路と、該入力用チャネル導波路に接続された入力側スラブ導波路と、少なくとも1個以上の出力用チャネル導波路と、該出力用チャネル導波路に接続された出力側スラブ導波路と、前記入力側スラブ導波路と前記出力側スラブ導波路とを接続し、導波路長がそれぞれ異なる複数のチャネル導波路からなるアレイ導波路とを備えた温度無依存光合分波器において、At least one input channel waveguide, an input side slab waveguide connected to the input channel waveguide, at least one output channel waveguide, and the output channel waveguide A temperature-independent optical waveguide comprising: an output-side slab waveguide; and an arrayed waveguide that connects the input-side slab waveguide and the output-side slab waveguide and has a plurality of channel waveguides each having a different waveguide length. In the duplexer,
前記入力側スラブ導波路のコアには、複数に分割された分割コアが光の伝搬方向に適宜間隔を隔てて配置された分割コア部が形成され、前記分割コア部を伝搬する光のスポットサイズ径が、前記入力側スラブ導波路の分割されていないコア部を伝搬する光のスポットサイズ径よりも拡大されるように設定され、The core of the input-side slab waveguide is formed with a split core portion in which a plurality of split cores are arranged at appropriate intervals in the light propagation direction, and the spot size of light propagating through the split core portion The diameter is set to be larger than the spot size diameter of light propagating through the undivided core portion of the input side slab waveguide,
前記分割コア部の領域に、その屈折率が温度に依存する光学樹脂が充填された複数の楔形の溝が配置され、光の伝搬方向に隣接する前記溝と前記溝との間の領域にも前記分割コアが形成され、A plurality of wedge-shaped grooves filled with an optical resin whose refractive index depends on temperature are disposed in the region of the divided core portion, and also in the region between the grooves adjacent to each other in the light propagation direction. The split core is formed;
前記アレイ導波路を構成する前記チャネル導波路それぞれにおいて温度による屈折率変化により生じる位相変化量を、前記光学樹脂の温度による屈折率変化により生じる位相変化量で相殺し、前記アレイ導波路で発生する温度による位相変化の波長依存性を補償し、中心波長の温度無依存化を行うと共に、A phase change amount caused by a refractive index change due to temperature in each of the channel waveguides constituting the array waveguide is canceled by a phase change amount caused by a refractive index change due to the temperature of the optical resin, and is generated in the array waveguide. Compensates the wavelength dependence of the phase change due to temperature, makes the central wavelength temperature independent,
前記分割コア部の、光の伝搬方向における前記分割コアの長さが一定であり、且つ前記分割コア部の中央部から前記入力側スラブ導波路の分割されていないコア部に近づくにつれて、光の伝搬方向に隣接する前記分割コア間の間隔が徐々に短くなるように設定され、又は、光の伝搬方向に隣接する前記分割コア間の間隔が一定であり、且つ前記分割コア部の中央部から前記入力側スラブ導波路の分割されていないコア部に近づくにつれて、光の伝搬方向における前記分割コアの長さが徐々に長くなるように設定されていることを特徴とする温度無依存光合分波器。As the length of the split core in the light propagation direction of the split core portion is constant and approaches the non-split core portion of the input slab waveguide from the central portion of the split core portion, The interval between the divided cores adjacent in the propagation direction is set to be gradually shortened, or the interval between the divided cores adjacent in the light propagation direction is constant, and from the center of the divided core unit The temperature-independent optical multiplexing / demultiplexing is set such that the length of the divided core in the light propagation direction is gradually increased as approaching the undivided core portion of the input-side slab waveguide vessel.
請求項1または2に記載の温度無依存光合分波器において、前記分割コアが円弧状に形成されていると共に、該円弧状の分割コアの曲率中心は前記入力用チャネル導波路と前記入力側スラブ導波路の接続部乃至その近傍に位置することを特徴とする温度無依存光合分波器。 3. The temperature-independent optical multiplexer / demultiplexer according to claim 1, wherein the split core is formed in an arc shape, and the center of curvature of the arc-shaped split core is the input channel waveguide and the input side. A temperature-independent optical multiplexer / demultiplexer, which is located at or near a connection portion of a slab waveguide. 請求項1ないし3いずれかに記載の温度無依存光合分波器において、前記コアと該コアの周囲を形成するクラッドとは石英系材料で構成され、前記コアと前記クラッドの比屈折率差は1.0%以上であることを特徴とする温度無依存光合分波器。 4. The temperature-independent optical multiplexer / demultiplexer according to claim 1, wherein the core and the clad forming the periphery of the core are made of a quartz-based material, and the relative refractive index difference between the core and the clad is A temperature independent optical multiplexer / demultiplexer characterized by being 1.0% or more.
JP2005297939A 2005-10-12 2005-10-12 Temperature independent optical multiplexer / demultiplexer Expired - Fee Related JP4569440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005297939A JP4569440B2 (en) 2005-10-12 2005-10-12 Temperature independent optical multiplexer / demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005297939A JP4569440B2 (en) 2005-10-12 2005-10-12 Temperature independent optical multiplexer / demultiplexer

Publications (2)

Publication Number Publication Date
JP2007108339A JP2007108339A (en) 2007-04-26
JP4569440B2 true JP4569440B2 (en) 2010-10-27

Family

ID=38034256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005297939A Expired - Fee Related JP4569440B2 (en) 2005-10-12 2005-10-12 Temperature independent optical multiplexer / demultiplexer

Country Status (1)

Country Link
JP (1) JP4569440B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116908965A (en) * 2023-06-21 2023-10-20 武汉光迅科技股份有限公司 Array waveguide grating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184990A (en) * 2002-11-19 2004-07-02 Nippon Telegr & Teleph Corp <Ntt> Optical wave guide circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184990A (en) * 2002-11-19 2004-07-02 Nippon Telegr & Teleph Corp <Ntt> Optical wave guide circuit

Also Published As

Publication number Publication date
JP2007108339A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
JP5457661B2 (en) Optical wavelength multiplexing / demultiplexing circuit
Okamoto Wavelength-division-multiplexing devices in thin SOI: Advances and prospects
JP5399693B2 (en) Optical wavelength multiplexing / demultiplexing circuit
US10634846B2 (en) Optical module
JP3818169B2 (en) Waveguide device
WO2003038501A2 (en) Arrayed waveguide grating
JP4569440B2 (en) Temperature independent optical multiplexer / demultiplexer
JP2005301301A (en) Optical coupler
JP5751008B2 (en) Optical multiplexer / demultiplexer and optical multiplexing / demultiplexing method
Kamei Recent progress on athermal AWG wavelength multiplexer
JP2010250238A (en) Optical wavelength multiplexing and demultiplexing circuit and method of adjusting polarized wave dependence of the same
JP4375256B2 (en) Waveguide-type temperature-independent optical multiplexer / demultiplexer
JP2005326468A (en) Optical wavelength multiplexer/demultiplexer
US6134361A (en) Optical multiplexer/demultiplexer
JP4960201B2 (en) Optical wavelength multiplexing / demultiplexing circuit
JP4960202B2 (en) Optical wavelength multiplexing / demultiplexing circuit
JP5086196B2 (en) Optical wavelength multiplexing / demultiplexing circuit
JP2015001626A (en) Optical wavelength multiplexing and demultiplexing circuit
Janz et al. Planar waveguide echelle gratings: an embeddable diffractive element for photonic integrated circuits
JP2005326561A (en) Optical wavelength multiplexer/demultiplexer
KR100433900B1 (en) Polynomial curve tapered waveguide and optical device using thereof
JP2000235123A (en) Optical wavelength multiplexer/demultiplexer
JP2006030860A (en) Optical wavelength multiplexer/demultiplexer
JP2009053636A (en) Optical waveguide circuit and method for manufacturing same
JP2010160351A (en) Optical wavelength multiplexing/demultiplexing circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees