JP4568003B2 - Optical fiber manufacturing method and manufacturing apparatus - Google Patents

Optical fiber manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP4568003B2
JP4568003B2 JP2004099650A JP2004099650A JP4568003B2 JP 4568003 B2 JP4568003 B2 JP 4568003B2 JP 2004099650 A JP2004099650 A JP 2004099650A JP 2004099650 A JP2004099650 A JP 2004099650A JP 4568003 B2 JP4568003 B2 JP 4568003B2
Authority
JP
Japan
Prior art keywords
optical fiber
annealing
temperature
furnace
cooling gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004099650A
Other languages
Japanese (ja)
Other versions
JP2005281090A (en
Inventor
明 生嶋
和也 斎藤
洋 垣内田
晴彦 関谷 Edson
隆 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Toyota School Foundation
Original Assignee
Hitachi Cable Ltd
Toyota School Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Toyota School Foundation filed Critical Hitachi Cable Ltd
Priority to JP2004099650A priority Critical patent/JP4568003B2/en
Publication of JP2005281090A publication Critical patent/JP2005281090A/en
Application granted granted Critical
Publication of JP4568003B2 publication Critical patent/JP4568003B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • C03B37/02727Annealing or re-heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/55Cooling or annealing the drawn fibre prior to coating using a series of coolers or heaters
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/56Annealing or re-heating the drawn fibre prior to coating

Description

本発明は、伝送損失の低い光ファイバの製造方法及び製造装置に関するものである。   The present invention relates to a method and an apparatus for manufacturing an optical fiber with low transmission loss.

図5及び図6に示すように、光ファイバの製造装置は、光ファイバ52が線引される順に、ファイバ母材54を溶融する線引炉53、線引される光ファイバを加熱処理するアニール炉55、光ファイバ52を引き取るファイバ引取機56が配設される。   As shown in FIGS. 5 and 6, the optical fiber manufacturing apparatus includes a drawing furnace 53 that melts the fiber preform 54 and an annealing process that heats the drawn optical fibers in the order in which the optical fibers 52 are drawn. A furnace 55 and a fiber take-up machine 56 for taking up the optical fiber 52 are provided.

ファイバ引取機56は、線引速度を制御する引取キャプスタン58、線引経路を形成するプーリ59、光ファイバを巻き取るボビン57を備える。   The fiber take-up machine 56 includes a take-up capstan 58 that controls a drawing speed, a pulley 59 that forms a drawing path, and a bobbin 57 that winds up an optical fiber.

光ファイバ母材54を線引炉53のヒータ61で加熱溶融して引き出した光ファイバ52をヒータ62を備えたアニール炉55に通すことでファイバ温度を制御し、ファイバ引取機56で線引速度を制御しながら光ファイバ52を引取している。   The optical fiber 52 is heated and melted by the heater 61 of the drawing furnace 53 and drawn, and the fiber temperature is controlled by passing the optical fiber 52 through the annealing furnace 55 provided with the heater 62, and the drawing speed is drawn by the fiber taker 56. The optical fiber 52 is taken out while controlling the above.

線引直後にアニール炉55内で、ファイバ温度をある温度で一定時間保つような制御をし、光ファイバ52のガラス構造緩和を促進させることにより、光ファイバ52の損失要因の大半を占める光散乱損失を低減することが可能である(例えば、特許文献1,2参照)。   Light scattering that accounts for most of the loss factors of the optical fiber 52 is performed by controlling the fiber temperature to be maintained at a certain temperature for a certain period of time in the annealing furnace 55 immediately after drawing, thereby promoting relaxation of the glass structure of the optical fiber 52. Loss can be reduced (see, for example, Patent Documents 1 and 2).

また、光ファイバ母材を加熱線引して中間光ファイバを作製し、この中間光ファイバを再加熱することで仮想温度を下げて光散乱損失を低減している光ファイバの製造方法がある(例えば、特許文献3参照)。   Also, there is an optical fiber manufacturing method in which an optical fiber preform is heated and drawn to produce an intermediate optical fiber, and the intermediate optical fiber is reheated to lower the fictive temperature and reduce light scattering loss ( For example, see Patent Document 3).

特開2000−335933号公報JP 2000-335933 A 特開2000−335934号公報JP 2000-335934 A 特開平10−25127号公報Japanese Patent Laid-Open No. 10-25127

図7は光ファイバ52がアニール炉55に突入する位置65を0mmとしたときのアニール炉55内の光ファイバ52の長手方向の温度分布である。図7に示すように、光ファイバ52がアニール炉55の内壁64の温度より高い温度、或いは低い温度でアニール炉55に突入した場合、ファイバ温度はアニール炉55の内壁温度と同じになるまで変化し、炉55の内壁温度と同じになると、光ファイバ52がアニール炉55を出るまでその温度で一定に保たれる。   FIG. 7 shows the temperature distribution in the longitudinal direction of the optical fiber 52 in the annealing furnace 55 when the position 65 where the optical fiber 52 enters the annealing furnace 55 is 0 mm. As shown in FIG. 7, when the optical fiber 52 enters the annealing furnace 55 at a temperature higher or lower than the temperature of the inner wall 64 of the annealing furnace 55, the fiber temperature changes until it becomes the same as the inner wall temperature of the annealing furnace 55. When the temperature of the inner wall of the furnace 55 becomes the same, the temperature is kept constant until the optical fiber 52 exits the annealing furnace 55.

しかし、光ファイバ52がアニール炉55に突入する位置65において、ファイバ温度が炉の内壁温度より高すぎたり、或いは低すぎたりすると、ファイバ速度が150m/minのとき(曲線73)、ファイバ温度が炉内で一定に保たれる時間が十分に得られず、光ファイバ52のガラス構造緩和が十分に促進されていない。そのため、仮想温度を下げることができず、結果、製造される光ファイバの光散乱損失が大きくなってしまうという問題点がある。   However, at the position 65 where the optical fiber 52 enters the annealing furnace 55, if the fiber temperature is too high or too low than the inner wall temperature of the furnace, the fiber temperature is 150 m / min (curve 73). There is not enough time to be kept constant in the furnace, and the glass structure relaxation of the optical fiber 52 is not sufficiently promoted. Therefore, there is a problem that the fictive temperature cannot be lowered, and as a result, the light scattering loss of the manufactured optical fiber becomes large.

また、ファイバ速度が20m/min(曲線71)或いは60m/min(曲線72)の場合は、アニール炉55内でガラス構造緩和が十分に促進されているが、光ファイバ52の線引速度が遅いので生産性が悪く、実用的ではない。   When the fiber speed is 20 m / min (curve 71) or 60 m / min (curve 72), the glass structure relaxation is sufficiently promoted in the annealing furnace 55, but the drawing speed of the optical fiber 52 is slow. So productivity is bad and not practical.

そこで、本発明の目的は、上記課題を解決し、ガラスの構造緩和を十分に促進させ、光ファイバの光散乱損失が低減された光ファイバの製造方法及び製造装置を提供することにある。   Accordingly, an object of the present invention is to provide an optical fiber manufacturing method and manufacturing apparatus that solves the above-described problems, sufficiently promotes structural relaxation of glass, and reduces the light scattering loss of the optical fiber.

上記目的を達成するために、請求項1の発明は、光ファイバ母材を線引炉で加熱線引きし、線引された光ファイバを上記線引炉下に設けたアニール炉で上記光ファイバのガラス構造緩和が促進されるアニール温度に保持する光ファイバの製造方法において、光ファイバが通る通路と、該通路内に冷却ガスを流すことによって上記光ファイバに上記冷却ガスを直接吹き付ける冷却ガス供給手段とを有する冷却装置を用いて、アニール炉入口における光ファイバの温度が上記アニール炉のアニール温度と等しい温度になるように温度制御を行い、かつ、上記アニール温度は、下式
T=−40.089×ln(t)+1307.8
(ここで、Tはアニール温度[℃]、tはアニール処理時間[秒]である。)
を満たすことを特徴とする光ファイバの製造方法である。
In order to achieve the above object, the invention of claim 1 is characterized in that an optical fiber preform is heated and drawn in a drawing furnace, and the drawn optical fiber is annealed in the annealing furnace provided under the drawing furnace. In an optical fiber manufacturing method for maintaining an annealing temperature at which glass structure relaxation is promoted, a passage through which the optical fiber passes, and a cooling gas supply means for directly blowing the cooling gas onto the optical fiber by flowing a cooling gas in the passage Is controlled so that the temperature of the optical fiber at the inlet of the annealing furnace becomes equal to the annealing temperature of the annealing furnace, and the annealing temperature is expressed by the following equation: T = −40. 089 × ln (t) +1307.8
(Here, T is the annealing temperature [° C.] and t is the annealing time [seconds] .)
An optical fiber manufacturing method characterized by satisfying the above.

請求項2の発明は、光ファイバ母材を線引炉で加熱線引きし、線引された光ファイバを上記線引炉下に設けたアニール炉で上記光ファイバのガラス構造緩和が促進されるアニール温度に保持する光ファイバの製造方法において、光ファイバが通る通路と、該通路内に冷却ガスを流すことによって上記光ファイバに上記冷却ガスを直接吹き付ける冷却ガス供給手段とを有する冷却装置を用いて、上記アニール炉入口における光ファイバを冷却してファイバ温度を上記アニール炉のアニール温度と等しい温度にするようにし、かつ、上記アニール温度は、下式
T=−40.089×ln(t)+1307.8
(ここで、Tはアニール温度[℃]、tはアニール処理時間[秒]である。)
を満たすことを特徴とする光ファイバの製造方法である。
According to a second aspect of the present invention, an optical fiber preform is heated and drawn in a drawing furnace, and an annealing furnace in which the drawn optical fiber is provided under the drawing furnace is used to accelerate the glass structure relaxation of the optical fiber. In a method of manufacturing an optical fiber that maintains temperature, a cooling device that includes a passage through which the optical fiber passes and a cooling gas supply unit that blows the cooling gas directly onto the optical fiber by flowing a cooling gas in the passage. The optical fiber at the inlet of the annealing furnace is cooled so that the fiber temperature is equal to the annealing temperature of the annealing furnace, and the annealing temperature is expressed by the following equation: T = −40.089 × ln (t) +1307 .8
(Here, T is the annealing temperature [° C.] and t is the annealing time [seconds] .)
An optical fiber manufacturing method characterized by satisfying the above.

請求項3の発明は、光ファイバ母材を線引炉で加熱線引きし、線引された光ファイバを上記線引炉下に設けたアニール炉で上記光ファイバのガラス構造緩和が促進されるアニール温度に保持する光ファイバの製造方法において、上記アニール炉入口における光ファイバの温度を測定し、その測定値がアニール温度と等しくなるようアニール炉の前段で、光ファイバが通る通路と、該通路内に冷却ガスを流すことによって上記光ファイバに上記冷却ガスを直接吹き付ける冷却ガス供給手段とを有する冷却装置を用いて光ファイバの温度を制御するようにし、かつ、上記アニール温度は、下式
T=−40.089×ln(t)+1307.8
(ここで、Tはアニール温度[℃]、tはアニール処理時間[秒]である。)
を満たすことを特徴とする光ファイバの製造方法である。
According to a third aspect of the present invention, an optical fiber preform is heated and drawn in a drawing furnace, and annealing in which the relaxation of the glass structure of the optical fiber is promoted in an annealing furnace provided with the drawn optical fiber under the drawing furnace. In the method of manufacturing an optical fiber kept at a temperature, the temperature of the optical fiber at the inlet of the annealing furnace is measured, and the passage through which the optical fiber passes in the preceding stage of the annealing furnace so that the measured value becomes equal to the annealing temperature. The temperature of the optical fiber is controlled using a cooling device having a cooling gas supply means for directly blowing the cooling gas onto the optical fiber by flowing a cooling gas into the optical fiber, and the annealing temperature is expressed by the following equation T = -40.089 × ln (t) +1307.8
(Here, T is the annealing temperature [° C.] and t is the annealing time [seconds] .)
An optical fiber manufacturing method characterized by satisfying the above.

請求項4の発明は、光ファイバ母材を加熱溶融する線引炉と、線引された光ファイバを上記光ファイバのガラス構造緩和が促進されるアニール温度に保持するアニール炉とを備える光ファイバの製造装置において、上記線引炉とアニール炉との間に、光ファイバが通る通路と、該通路内に冷却ガスを流すことによって上記光ファイバに上記冷却ガスを直接吹き付ける冷却ガス供給手段とを有してアニール炉のアニール温度と等しい温度に光ファイバを冷却する冷却装置を設けてなり、かつ、上記アニール炉の上記アニール温度は、下式
T=−40.089×ln(t)+1307.8
(ここで、Tはアニール温度[℃]、tはアニール処理時間[秒]である。)
を満たすようにされることを特徴とする光ファイバの製造装置である。
A fourth aspect of the present invention, an optical fiber comprising: a drawing furnace for heating and melting an optical fiber preform, and a annealing furnace for holding the drawn optical fiber to an annealing temperature of the glass structural relaxation is promoted of the optical fiber A passage through which the optical fiber passes between the drawing furnace and the annealing furnace, and a cooling gas supply means for directly blowing the cooling gas onto the optical fiber by flowing a cooling gas in the passage. And a cooling device that cools the optical fiber to a temperature equal to the annealing temperature of the annealing furnace, and the annealing temperature of the annealing furnace is expressed by the following formula: T = −40.089 × ln (t) +1307. 8
(Here, T is the annealing temperature [° C.] and t is the annealing time [seconds] .)
An optical fiber manufacturing apparatus characterized by satisfying the above.

請求項5の発明は、光ファイバ母材を加熱溶融する線引炉と、線引された光ファイバを上記光ファイバのガラス構造緩和が促進されるアニール温度に保持するアニール炉とを備える光ファイバの製造装置において、上記線引炉とアニール炉との間に、光ファイバが通る通路と、該通路内に冷却ガスを流すことによって上記光ファイバに上記冷却ガスを直接吹き付ける冷却ガス供給手段とを有してアニール炉のアニール温度と等しい温度に光ファイバを冷却する冷却装置を設け、その冷却装置の出口側に光ファイバの温度を測定する温度測定器を設けてなり、かつ、上記アニール炉の上記アニール温度は、下式
T=−40.089×ln(t)+1307.8
(ここで、Tはアニール温度[℃]、tはアニール処理時間[秒]である。)
を満たすようにされることを特徴とする光ファイバの製造装置である。
The invention of claim 5 is an optical fiber comprising a drawing furnace for heating and melting an optical fiber preform, and an annealing furnace for holding the drawn optical fiber at an annealing temperature at which relaxation of the glass structure of the optical fiber is promoted. A passage through which the optical fiber passes between the drawing furnace and the annealing furnace, and a cooling gas supply means for directly blowing the cooling gas onto the optical fiber by flowing a cooling gas in the passage. A cooling device that cools the optical fiber to a temperature equal to the annealing temperature of the annealing furnace, a temperature measuring device that measures the temperature of the optical fiber is provided on the outlet side of the cooling device, and the annealing furnace The annealing temperature is as follows: T = −40.089 × ln (t) +1307.8
(Here, T is the annealing temperature [° C.] and t is the annealing time [seconds] .)
An optical fiber manufacturing apparatus characterized by satisfying the above.

請求項の発明は、上記冷却ガス供給手段は、ガス流量制御器を備え、上記温度測定器で測定される温度に応じて冷却ガスの流量が調節される光ファイバの製造装置である。 The invention of claim 6 is an optical fiber manufacturing apparatus in which the cooling gas supply means includes a gas flow rate controller, and the flow rate of the cooling gas is adjusted according to the temperature measured by the temperature measuring device.

請求項の発明は、上記冷却装置は、光ファイバが通る通路が形成された冷却本体と、その冷却本体に接続された冷却ガス配管と、冷却本体に形成され、冷却ガス配管からの冷却ガスを上記通路に流すガス流路とからなる光ファイバの製造装置である。 According to a seventh aspect of the present invention, the cooling device includes a cooling main body in which a passage through which an optical fiber passes, a cooling gas pipe connected to the cooling main body, a cooling gas formed in the cooling main body, and the cooling gas from the cooling gas pipe. Is an optical fiber manufacturing apparatus comprising a gas flow path that flows through the passage.

本発明によれば、ガラスの構造緩和を十分に促進させ、光ファイバの光散乱損失を低減させるといった優れた効果を発揮する。   According to the present invention, excellent effects such as sufficiently promoting the structural relaxation of glass and reducing the light scattering loss of the optical fiber are exhibited.

以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明に係る光ファイバの製造装置の好適な実施の形態を示した概略図である。   FIG. 1 is a schematic view showing a preferred embodiment of an optical fiber manufacturing apparatus according to the present invention.

本実施の形態に係る光ファイバの製造装置は、線引炉12、冷却装置13、温度測定器14、アニール炉15を有する。光ファイバ母材16を線引する方向(図1上から下)に線引炉12、アニール炉15の順で配設され、冷却装置13は、線引炉12とアニール炉15との間に、温度測定器14は、アニール炉15の入口にそれぞれ設置される。   The optical fiber manufacturing apparatus according to the present embodiment includes a drawing furnace 12, a cooling device 13, a temperature measuring device 14, and an annealing furnace 15. The drawing furnace 12 and the annealing furnace 15 are arranged in this order in the direction of drawing the optical fiber preform 16 (from the top to the bottom in FIG. 1), and the cooling device 13 is disposed between the drawing furnace 12 and the annealing furnace 15. The temperature measuring device 14 is installed at the entrance of the annealing furnace 15, respectively.

線引炉12は、光ファイバ母材16を加熱溶融するためのヒータ17を備える。   The drawing furnace 12 includes a heater 17 for heating and melting the optical fiber preform 16.

アニール炉15は、光ファイバ11を所定温度で一定に保持する(アニール処理する)ためのヒータ21を備える。   The annealing furnace 15 includes a heater 21 for keeping the optical fiber 11 constant at a predetermined temperature (annealing process).

図2に示すように、冷却装置13は冷却本体23と、冷却本体23に接続された冷却ガス配管19と、冷却ガス配管19に接続された冷却ガス供給手段で構成される。冷却本体23は、アルミニウムや銅で形成された中実体であり、長手方向の長さが250mmである。冷却本体23には光ファイバ11が通る直径30mmの円形の通路24と、通路24に冷却ガスを流すガス流路25が形成される。冷却ガス配管19に接続される冷却ガス供給手段は、冷却ガスを供給し、そのガス流量を制御するガス流量制御器18である。   As shown in FIG. 2, the cooling device 13 includes a cooling main body 23, a cooling gas pipe 19 connected to the cooling main body 23, and a cooling gas supply unit connected to the cooling gas pipe 19. The cooling body 23 is a solid body made of aluminum or copper and has a length in the longitudinal direction of 250 mm. The cooling body 23 is formed with a circular passage 24 having a diameter of 30 mm through which the optical fiber 11 passes and a gas passage 25 through which the cooling gas flows through the passage 24. The cooling gas supply means connected to the cooling gas pipe 19 is a gas flow rate controller 18 that supplies a cooling gas and controls the gas flow rate.

冷却ガス配管19は、冷却本体23に形成された複数のガス流路25に接続されるため、複数の支管27に分岐され、各支管27を介してガス流路25に接続される。ガス流路25は、通路24と冷却本体23の外側とを連通するものである。ガス流路25は、光ファイバ11を均等に徐冷するために、ファイバ断面方向において、対称的に形成されるのが好ましい。また、本実施の形態では、冷却ガスとしてHeガスを使用した。   Since the cooling gas pipe 19 is connected to a plurality of gas flow paths 25 formed in the cooling main body 23, the cooling gas pipe 19 is branched into a plurality of branch pipes 27 and connected to the gas flow paths 25 via the branch pipes 27. The gas flow path 25 communicates the passage 24 and the outside of the cooling body 23. The gas flow paths 25 are preferably formed symmetrically in the fiber cross-sectional direction in order to uniformly cool the optical fiber 11. In the present embodiment, He gas is used as the cooling gas.

温度測定器14として赤外線放射温度計が、アニール炉15上方(光ファイバ入口側)に設けられ、それに接続される監視装置20が光ファイバ製造装置の外部に配置される。   An infrared radiation thermometer is provided as the temperature measuring instrument 14 above the annealing furnace 15 (on the optical fiber inlet side), and a monitoring device 20 connected thereto is disposed outside the optical fiber manufacturing apparatus.

また、図示はしないが、アニール炉15下には、背景技術で説明したようなファイバ引取機が設けられ、さらに、光ファイバを保護するための被覆樹脂を被覆する装置等が設けられてもよい。   Although not shown, a fiber take-up machine as described in the background art is provided under the annealing furnace 15, and a device for coating a coating resin for protecting the optical fiber may be further provided. .

次に、本実施の形態の作用について説明する。   Next, the operation of the present embodiment will be described.

光ファイバの製造方法は、光ファイバ母材16が線引炉12で加熱溶融され、自由落下により細径の光ファイバ11になると共に、ファイバ温度が下がって固化した光ファイバ11がファイバ引取機で線引される。   In the optical fiber manufacturing method, the optical fiber preform 16 is heated and melted in the drawing furnace 12 to become a small-diameter optical fiber 11 by free fall, and the optical fiber 11 solidified as the fiber temperature decreases is a fiber take-up machine. It is drawn.

アニール炉15では、光ファイバを所定温度で一定に保持することで、ガラス構造緩和を促進させ、光散乱損失が低減される構造としている。   The annealing furnace 15 has a structure in which the optical fiber is kept constant at a predetermined temperature, thereby promoting relaxation of the glass structure and reducing light scattering loss.

アニール炉15の前段に配置される冷却装置13では、ガス流量制御器18よりガス流路25を通って通路25に供給される冷却ガスにより、通路25に導入された光ファイバ11が冷却される。   In the cooling device 13 arranged in the front stage of the annealing furnace 15, the optical fiber 11 introduced into the passage 25 is cooled by the cooling gas supplied from the gas flow rate controller 18 through the gas passage 25 to the passage 25. .

冷却本体23は、アルミニウム等の熱伝導率の高い材料で形成されているため、線引直後の光ファイバ11を冷却することにより温度が高くなった冷却ガスの熱を放熱させるとともに、冷却本体23が厚肉に形成されているので、光ファイバ11が外気により急冷されることを防いでいる。   Since the cooling body 23 is made of a material having high thermal conductivity such as aluminum, the cooling body 23 radiates the heat of the cooling gas whose temperature has been increased by cooling the optical fiber 11 immediately after drawing, and the cooling body 23. Is formed thick so that the optical fiber 11 is prevented from being rapidly cooled by outside air.

冷却ガスにはHeガスを用いているので、光ファイバを形成する石英系材料と反応することがない。さらに、外気(空気或いは窒素)より軽い気体であるため、Heガスは通路24を上昇し、冷却装置13下方のアニール炉15の温度に影響を与えることなく、光ファイバ11を冷却することができる。   Since He gas is used as the cooling gas, it does not react with the quartz material forming the optical fiber. Further, since the gas is lighter than the outside air (air or nitrogen), the He gas rises in the passage 24 and can cool the optical fiber 11 without affecting the temperature of the annealing furnace 15 below the cooling device 13. .

また、冷却装置13とアニール炉15との間に、アニール炉15への冷却ガスの流入を防ぐガード部材(図示せず)を設ければ、冷却ガスとして外気より重い気体を用いてもよい。   Further, if a guard member (not shown) that prevents the cooling gas from flowing into the annealing furnace 15 is provided between the cooling device 13 and the annealing furnace 15, a gas heavier than the outside air may be used as the cooling gas.

冷却装置13で線引直後の光ファイバの温度をアニール炉15内の温度と略等しくしてから、光ファイバがアニール炉15内へ導入される。これにより、アニール炉15内で光ファイバ11を所定温度に十分に保持することができ、ガラスの構造緩和を十分に促進させることができる。   The temperature of the optical fiber immediately after drawing is made substantially equal to the temperature in the annealing furnace 15 by the cooling device 13, and then the optical fiber is introduced into the annealing furnace 15. Thereby, the optical fiber 11 can be sufficiently maintained at a predetermined temperature in the annealing furnace 15, and the structural relaxation of the glass can be sufficiently promoted.

ここで、図3に、冷却装置13に光ファイバ11が導入されてから出るまでの間のファイバ上の1点の温度変化量と、冷却装置13に光ファイバ11が導入されてから出るまでの間に通路24に流れる冷却ガスの流量との関係を示す。冷却ガスはHeガスとし、光ファイバ11の線引速度は20m/minとした。   Here, in FIG. 3, the temperature change amount at one point on the fiber from when the optical fiber 11 is introduced to the cooling device 13 to when it is exited, and from when the optical fiber 11 is introduced to the cooling device 13 until it exits. The relationship with the flow volume of the cooling gas which flows into the channel | path 24 between is shown. The cooling gas was He gas, and the drawing speed of the optical fiber 11 was 20 m / min.

温度測定器14で測定されるファイバ温度の変化に応じて、ガス流量制御器18を調整し、通路24に流す冷却ガスの流量を調節することで、光ファイバ11がアニール炉15に突入する位置(アニール炉入口)22におけるファイバ温度を制御することができる。   The position where the optical fiber 11 enters the annealing furnace 15 by adjusting the gas flow rate controller 18 according to the change in the fiber temperature measured by the temperature measuring device 14 and adjusting the flow rate of the cooling gas flowing through the passage 24. The fiber temperature at the (annealing furnace inlet) 22 can be controlled.

ガス流量制御器18の調整は、監視装置20でファイバ温度をモニタしながら行われる。ガス流量制御器18と温度測定器14とをリンクし、ファイバ温度が制御されるようにガス流量制御器18を調整してもよい。   The gas flow controller 18 is adjusted while the fiber temperature is monitored by the monitoring device 20. The gas flow controller 18 and the temperature measuring device 14 may be linked to adjust the gas flow controller 18 so that the fiber temperature is controlled.

具体的には、図3に示すように、単位時間当たりのファイバ温度の変化量とHeガス流量とは略比例関係にある。アニール炉15に突入する位置22におけるファイバ温度がアニール炉15内温度より高い場合、通路24に流れる冷却ガスの流量を多くして光ファイバ11の冷却効果を大きくすることで、ファイバ温度を下げることができる。逆に、アニール炉15に突入する位置22におけるファイバ温度がアニール炉15内温度より低い場合、通路24に流れる冷却ガスの流量を少なくして光ファイバ11の冷却効果を小さくすることで、ファイバ温度の低下を抑制できる。よって、アニール炉15へ突入する光ファイバ11の温度をアニール炉15内の温度と略等しくすることができる。   Specifically, as shown in FIG. 3, the change amount of the fiber temperature per unit time and the He gas flow rate are in a substantially proportional relationship. When the fiber temperature at the position 22 that enters the annealing furnace 15 is higher than the temperature in the annealing furnace 15, the fiber temperature is lowered by increasing the flow rate of the cooling gas flowing through the passage 24 to increase the cooling effect of the optical fiber 11. Can do. Conversely, when the fiber temperature at the position 22 entering the annealing furnace 15 is lower than the temperature in the annealing furnace 15, the cooling effect of the optical fiber 11 is reduced by reducing the flow rate of the cooling gas flowing through the passage 24, thereby reducing the fiber temperature. Can be suppressed. Therefore, the temperature of the optical fiber 11 entering the annealing furnace 15 can be made substantially equal to the temperature in the annealing furnace 15.

また、アニール炉15の内壁に熱電対(図示せず)を設け、アニール炉15の内壁温度を常時測定して、内壁温度の変化に応じてヒータ21の出力を調整することにより、アニール炉の内壁温度を制御することができる。   Further, a thermocouple (not shown) is provided on the inner wall of the annealing furnace 15, the inner wall temperature of the annealing furnace 15 is constantly measured, and the output of the heater 21 is adjusted in accordance with the change in the inner wall temperature. The inner wall temperature can be controlled.

次に、光ファイバ11のガラス構造緩和が最も促進される場合の、アニール炉15内で一定に保たれるファイバ温度と、光ファイバ11の一点がアニール処理される時間との関係を示す。   Next, the relationship between the fiber temperature kept constant in the annealing furnace 15 and the time during which one point of the optical fiber 11 is annealed when the glass structure relaxation of the optical fiber 11 is most promoted will be shown.

図4に示すように、検量線40は、アニール温度(ファイバ温度)T[℃]とアニール処理時間t[秒]との関係を示すものであり、T=−40.089×ln(t)+1307.8で表される。この検量線40は、本発明者らの実験によるもので、Appl.Phys.83,8175(2003)にあるように、ファイバサンプルを用いて一定のアニール温度T[℃]下に保たれた光ファイバの仮想温度をラマン散乱法で評価し、アニール処理時間t[秒]との関係を調べたものである。 As shown in FIG. 4, the calibration curve 40 shows the relationship between the annealing temperature (fiber temperature) T [° C.] and the annealing treatment time t [second] , and T = −40.089 × ln (t) +1307.8. This calibration curve 40 is based on the experiments of the present inventors. As shown in Appl. Phys. 83, 8175 (2003), the light kept at a constant annealing temperature T [° C.] using a fiber sample. The fictive temperature of the fiber was evaluated by the Raman scattering method, and the relationship with the annealing time t [second] was investigated.

光ファイバ11の線引速度とアニール炉15の長さから、光ファイバ11がアニール炉15内を通過する時間(アニール処理時間)tが求められるので、アニール処理時間tに対する温度Tを検量線40から求める。光ファイバ11がアニール炉15に突入してから出るまでファイバ温度をアニール温度Tで十分保時させるため、光ファイバ11がアニール炉15に突入する位置22におけるファイバ温度をアニール温度Tに略等しくしてからアニール炉15に導入させるように冷却ガスの流量を調整する。   The time (annealing time) t for which the optical fiber 11 passes through the annealing furnace 15 is determined from the drawing speed of the optical fiber 11 and the length of the annealing furnace 15. Ask from. The fiber temperature at the position 22 where the optical fiber 11 enters the annealing furnace 15 is made substantially equal to the annealing temperature T in order to maintain the fiber temperature sufficiently at the annealing temperature T until the optical fiber 11 enters the annealing furnace 15 and exits. After that, the flow rate of the cooling gas is adjusted so as to be introduced into the annealing furnace 15.

その際、アニール炉15の内壁温度が、アニール温度Tになるようにアニール炉15のヒータ21出力を調整する。これにより、光ファイバ11のガラス構造緩和が最も促進された、すなわち、光散乱損失が最も低減化された光ファイバを、線引速度を遅くすることなく、製造することができる。   At that time, the output of the heater 21 of the annealing furnace 15 is adjusted so that the inner wall temperature of the annealing furnace 15 becomes the annealing temperature T. Thus, the optical fiber in which the relaxation of the glass structure of the optical fiber 11 is most promoted, that is, the light scattering loss is minimized, can be manufactured without reducing the drawing speed.

次に、本発明の実施の形態について、実施例に基づいて説明するが、本発明の実施の形態はこれらの実施例に限定されるものではない。   Next, embodiments of the present invention will be described based on examples, but the embodiments of the present invention are not limited to these examples.

光ファイバの製造装置(例えば図1の線引炉12)でコアにGeが添加された光ファイバを製造した。図4より、アニール温度Tを1270℃、アニール処理時間tを1.8秒となるようにした。長さ3mのアニール炉を用い、線引速度は100m/minとした。赤外放射温度計で光ファイバの温度をモニタしながら、冷却装置に投入するHeガスの流量を調整し、線引される光ファイバのアニール炉への突入する時の温度が1270℃となるように制御した。   An optical fiber in which Ge was added to the core was manufactured using an optical fiber manufacturing apparatus (for example, the drawing furnace 12 in FIG. 1). As shown in FIG. 4, the annealing temperature T is 1270 ° C. and the annealing time t is 1.8 seconds. An annealing furnace having a length of 3 m was used, and the drawing speed was 100 m / min. While monitoring the temperature of the optical fiber with an infrared radiation thermometer, the flow rate of He gas input to the cooling device is adjusted so that the temperature when the drawn optical fiber enters the annealing furnace becomes 1270 ° C. Controlled.

この実施例で得られた光ファイバの伝送損失は、波長1.55μmで0.168dB/kmと従来の光ファイバに比べて十分低かった。また、得られた光ファイバの仮想温度をラマン散乱法で評価したところ、仮想温度は1280℃まで下がっており、ガラスの構造緩和が十分進んでいることも確かめられた。   The transmission loss of the optical fiber obtained in this example was 0.168 dB / km at a wavelength of 1.55 μm, which was sufficiently lower than the conventional optical fiber. Moreover, when the fictive temperature of the obtained optical fiber was evaluated by the Raman scattering method, the fictive temperature was lowered to 1280 ° C., and it was confirmed that the structural relaxation of the glass was sufficiently advanced.

本実施の形態の光ファイバの製造装置を示す概略図である。It is the schematic which shows the manufacturing apparatus of the optical fiber of this Embodiment. 図1の冷却装置の拡大斜視図である。It is an expansion perspective view of the cooling device of FIG. 冷却ガス流量と温度変化量との関係を示す図である。It is a figure which shows the relationship between a cooling gas flow volume and a temperature variation. アニール処理時間とアニール温度との関係を示す図である。It is a figure which shows the relationship between annealing treatment time and annealing temperature. 従来の光ファイバの製造装置を示す概略図である。It is the schematic which shows the manufacturing apparatus of the conventional optical fiber. 図5の線引炉及びアニール炉の要部拡大図である。It is a principal part enlarged view of the drawing furnace and annealing furnace of FIG. アニール炉内の光ファイバ長手方向の温度分布を示す図である。It is a figure which shows the temperature distribution of the optical fiber longitudinal direction in an annealing furnace.

符号の説明Explanation of symbols

11 光ファイバ
12 線引炉
13 冷却装置
14 温度測定器
15 アニール炉
16 光ファイバ母材
18 ガス流量制御器
19 冷却ガス配管
23 冷却本体
25 ガス流路
DESCRIPTION OF SYMBOLS 11 Optical fiber 12 Drawing furnace 13 Cooling device 14 Temperature measuring device 15 Annealing furnace 16 Optical fiber preform 18 Gas flow controller 19 Cooling gas piping 23 Cooling main body 25 Gas flow path

Claims (7)

光ファイバ母材を線引炉で加熱線引きし、線引された光ファイバを上記線引炉下に設けたアニール炉で上記光ファイバのガラス構造緩和が促進されるアニール温度に保持する光ファイバの製造方法において、
光ファイバが通る通路と、該通路内に冷却ガスを流すことによって上記光ファイバに上記冷却ガスを直接吹き付ける冷却ガス供給手段とを有する冷却装置を用いて、アニール炉入口における光ファイバの温度が上記アニール炉のアニール温度と等しい温度になるように温度制御を行い、かつ、上記アニール温度は、下式
T=−40.089×ln(t)+1307.8
(ここで、Tはアニール温度[℃]、tはアニール処理時間[秒]である。)
を満たすことを特徴とする光ファイバの製造方法。
The optical fiber preform is heated and drawn in a drawing furnace, and the drawn optical fiber is held in an annealing temperature provided under the drawing furnace at an annealing temperature that promotes relaxation of the glass structure of the optical fiber. In the manufacturing method,
Using a cooling device having a passage through which the optical fiber passes and a cooling gas supply means for directly blowing the cooling gas onto the optical fiber by flowing a cooling gas in the passage, the temperature of the optical fiber at the annealing furnace inlet is The temperature is controlled to be equal to the annealing temperature of the annealing furnace, and the annealing temperature is expressed by the following equation: T = −40.089 × ln (t) +1307.8
(Here, T is the annealing temperature [° C.] and t is the annealing time [seconds] .)
The manufacturing method of the optical fiber characterized by satisfy | filling.
光ファイバ母材を線引炉で加熱線引きし、線引された光ファイバを上記線引炉下に設けたアニール炉で上記光ファイバのガラス構造緩和が促進されるアニール温度に保持する光ファイバの製造方法において、
光ファイバが通る通路と、該通路内に冷却ガスを流すことによって上記光ファイバに上記冷却ガスを直接吹き付ける冷却ガス供給手段とを有する冷却装置を用いて、上記アニール炉入口における光ファイバを冷却してファイバ温度を上記アニール炉のアニール温度と等しい温度にするようにし、かつ、上記アニール温度は、下式
T=−40.089×ln(t)+1307.8
(ここで、Tはアニール温度[℃]、tはアニール処理時間[秒]である。)
を満たすことを特徴とする光ファイバの製造方法。
The optical fiber preform is heated and drawn in a drawing furnace, and the drawn optical fiber is held in an annealing temperature provided under the drawing furnace at an annealing temperature that promotes relaxation of the glass structure of the optical fiber. In the manufacturing method,
The optical fiber at the inlet of the annealing furnace is cooled using a cooling device having a passage through which the optical fiber passes and cooling gas supply means for directly blowing the cooling gas onto the optical fiber by flowing a cooling gas in the passage. The fiber temperature is made equal to the annealing temperature of the annealing furnace, and the annealing temperature is expressed by the following equation: T = −40.089 × ln (t) +1307.8
(Here, T is the annealing temperature [° C.] and t is the annealing time [seconds] .)
The manufacturing method of the optical fiber characterized by satisfy | filling.
光ファイバ母材を線引炉で加熱線引きし、線引された光ファイバを上記線引炉下に設けたアニール炉で上記光ファイバのガラス構造緩和が促進されるアニール温度に保持する光ファイバの製造方法において、
上記アニール炉入口における光ファイバの温度を測定し、その測定値がアニール温度と等しくなるようアニール炉の前段で、光ファイバが通る通路と、該通路内に冷却ガスを流すことによって上記光ファイバに上記冷却ガスを直接吹き付ける冷却ガス供給手段とを有する冷却装置を用いて光ファイバの温度を制御するようにし、かつ、上記アニール温度は、下式
T=−40.089×ln(t)+1307.8
(ここで、Tはアニール温度[℃]、tはアニール処理時間[秒]である。)
を満たすことを特徴とする光ファイバの製造方法。
The optical fiber preform is heated and drawn in a drawing furnace, and the drawn optical fiber is held in an annealing temperature provided under the drawing furnace at an annealing temperature that promotes relaxation of the glass structure of the optical fiber. In the manufacturing method,
The temperature of the optical fiber at the inlet of the annealing furnace is measured, and a path through which the optical fiber passes in the front stage of the annealing furnace so that the measured value becomes equal to the annealing temperature, and a cooling gas is allowed to flow in the path to the optical fiber. The temperature of the optical fiber is controlled using a cooling device having cooling gas supply means for directly blowing the cooling gas, and the annealing temperature is expressed by the following equation: T = −40.089 × ln (t) +1307. 8
(Here, T is the annealing temperature [° C.] and t is the annealing time [seconds] .)
The manufacturing method of the optical fiber characterized by satisfy | filling.
光ファイバ母材を加熱溶融する線引炉と、線引された光ファイバを上記光ファイバのガラス構造緩和が促進されるアニール温度に保持するアニール炉とを備える光ファイバの製造装置において、
上記線引炉とアニール炉との間に、光ファイバが通る通路と、該通路内に冷却ガスを流すことによって上記光ファイバに上記冷却ガスを直接吹き付ける冷却ガス供給手段とを有してアニール炉のアニール温度と等しい温度に光ファイバを冷却する冷却装置を設けてなり、かつ、上記アニール炉の上記アニール温度は、下式
T=−40.089×ln(t)+1307.8
(ここで、Tはアニール温度[℃]、tはアニール処理時間[秒]である。)
を満たすようにされることを特徴とする光ファイバの製造装置。
In an optical fiber manufacturing apparatus comprising: a drawing furnace that heats and melts an optical fiber preform; and an annealing furnace that holds the drawn optical fiber at an annealing temperature that promotes relaxation of the glass structure of the optical fiber.
An annealing furnace having a passage through which an optical fiber passes between the drawing furnace and the annealing furnace, and a cooling gas supply means for directly blowing the cooling gas onto the optical fiber by flowing a cooling gas in the passage A cooling device for cooling the optical fiber to a temperature equal to the annealing temperature of the annealing furnace is provided, and the annealing temperature of the annealing furnace is expressed by the following equation: T = −40.089 × ln (t) +1307.8
(Here, T is the annealing temperature [° C.] and t is the annealing time [seconds] .)
An optical fiber manufacturing apparatus, characterized in that:
光ファイバ母材を加熱溶融する線引炉と、線引された光ファイバを上記光ファイバのガラス構造緩和が促進されるアニール温度に保持するアニール炉とを備える光ファイバの製造装置において、
上記線引炉とアニール炉との間に、光ファイバが通る通路と、該通路内に冷却ガスを流すことによって上記光ファイバに上記冷却ガスを直接吹き付ける冷却ガス供給手段とを有してアニール炉のアニール温度と等しい温度に光ファイバを冷却する冷却装置を設け、その冷却装置の出口側に光ファイバの温度を測定する温度測定器を設けてなり、かつ、上記アニール炉の上記アニール温度は、下式
T=−40.089×ln(t)+1307.8
(ここで、Tはアニール温度[℃]、tはアニール処理時間[秒]である。)
を満たすようにされることを特徴とする光ファイバの製造装置。
In an optical fiber manufacturing apparatus comprising: a drawing furnace that heats and melts an optical fiber preform; and an annealing furnace that holds the drawn optical fiber at an annealing temperature that promotes relaxation of the glass structure of the optical fiber.
An annealing furnace having a passage through which an optical fiber passes between the drawing furnace and the annealing furnace, and a cooling gas supply means for directly blowing the cooling gas onto the optical fiber by flowing a cooling gas in the passage A cooling device that cools the optical fiber to a temperature equal to the annealing temperature is provided, a temperature measuring device that measures the temperature of the optical fiber is provided on the outlet side of the cooling device, and the annealing temperature of the annealing furnace is: The following formula T = −40.089 × ln (t) +1307.8
(Here, T is the annealing temperature [° C.] and t is the annealing time [seconds] .)
An optical fiber manufacturing apparatus, characterized in that:
上記冷却ガス供給手段は、ガス流量制御器を備え、上記温度測定器で測定される温度に応じて冷却ガスの流量が調節される請求項5記載の光ファイバの製造装置。   6. The optical fiber manufacturing apparatus according to claim 5, wherein the cooling gas supply means includes a gas flow rate controller, and the flow rate of the cooling gas is adjusted according to the temperature measured by the temperature measuring device. 上記冷却装置は、光ファイバが通る通路が形成された冷却本体と、その冷却本体に接続された冷却ガス配管と、冷却本体に形成され、冷却ガス配管からの冷却ガスを上記通路に流すガス流路とからなる請求項4から6いずれかに記載の光ファイバの製造装置。   The cooling device includes a cooling main body in which a passage through which an optical fiber passes, a cooling gas pipe connected to the cooling main body, a gas flow formed in the cooling main body and flowing the cooling gas from the cooling gas pipe to the passage. The optical fiber manufacturing apparatus according to claim 4, comprising a path.
JP2004099650A 2004-03-30 2004-03-30 Optical fiber manufacturing method and manufacturing apparatus Expired - Lifetime JP4568003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004099650A JP4568003B2 (en) 2004-03-30 2004-03-30 Optical fiber manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004099650A JP4568003B2 (en) 2004-03-30 2004-03-30 Optical fiber manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2005281090A JP2005281090A (en) 2005-10-13
JP4568003B2 true JP4568003B2 (en) 2010-10-27

Family

ID=35179874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004099650A Expired - Lifetime JP4568003B2 (en) 2004-03-30 2004-03-30 Optical fiber manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4568003B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017044543A1 (en) * 2015-09-10 2017-03-16 Corning Incorporated Method and apparatus for producing an optical fiber with low fictive temperature and optical fiber so obtained

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4409504B2 (en) * 2005-11-17 2010-02-03 株式会社フジクラ Optical fiber manufacturing method
US8800324B2 (en) 2009-05-20 2014-08-12 J-Fiber Gmbh Method for producing a glass fiber and device
CN103011581B (en) * 2013-01-05 2015-03-04 中天科技光纤有限公司 Drawing device capable of lowering single mode optical fiber loss and control method of drawing device
US10322963B2 (en) * 2014-12-02 2019-06-18 Corning Incorporated Low attenuation optical fiber
PL3368489T3 (en) 2015-10-30 2023-05-08 Corning Incorporated Methods of making an optical fiber
CN108383375B (en) * 2018-02-12 2023-08-04 浙江富春江光电科技有限公司 Optical fiber drawing annealing device and optical fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192230A (en) * 1999-12-30 2001-07-17 Alcatel Method for cooling optical fiber under drawing
JP2004338972A (en) * 2003-05-13 2004-12-02 Fujikura Ltd Method and apparatus for manufacturing optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192230A (en) * 1999-12-30 2001-07-17 Alcatel Method for cooling optical fiber under drawing
JP2004338972A (en) * 2003-05-13 2004-12-02 Fujikura Ltd Method and apparatus for manufacturing optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017044543A1 (en) * 2015-09-10 2017-03-16 Corning Incorporated Method and apparatus for producing an optical fiber with low fictive temperature and optical fiber so obtained

Also Published As

Publication number Publication date
JP2005281090A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
JP5595925B2 (en) Fiber air turn for low attenuation fiber
JP2005162610A5 (en)
US8588573B2 (en) Method for manufacturing optical fiber and optical fiber
CN111032588B (en) Method for manufacturing optical fiber
JP4568003B2 (en) Optical fiber manufacturing method and manufacturing apparatus
US10427969B2 (en) Method of manufacturing optical fiber
EP1205449A1 (en) Production device and method for optical fiber
JP4482954B2 (en) Optical fiber manufacturing method
JP5251306B2 (en) Optical fiber manufacturing method and manufacturing apparatus
RU2128630C1 (en) Method of drawing optical fiber and device for its embodiment
JP4302367B2 (en) Optical fiber drawing method and drawing apparatus
JP4482955B2 (en) Optical fiber manufacturing method
JP6254628B2 (en) Optical fiber manufacturing method
CN110431117B (en) Method for manufacturing optical fiber
WO2017073204A1 (en) Optical fiber production method
JP2000335935A (en) Apparatus and method for producing optical fiber
JP2010269971A (en) Method for manufacturing optical fiber
JP4252891B2 (en) Optical fiber drawing method
JP4356154B2 (en) Optical fiber manufacturing method and manufacturing apparatus
JP6397109B2 (en) Optical fiber manufacturing method
JP2004338972A (en) Method and apparatus for manufacturing optical fiber
KR100288740B1 (en) Cooler for manufacturing of metal coated optical fiber
JPH05139771A (en) Method for controlling optical fiber drawing furnace
JP2005239522A (en) Method of manufacturing optical fiber
JP2002356343A (en) Optical fiber, method for producing the same and long- period fiber grating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100806

R150 Certificate of patent or registration of utility model

Ref document number: 4568003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350