JP4567877B2 - Heavy oil hydrotreating catalyst and method for producing heavy oil base - Google Patents

Heavy oil hydrotreating catalyst and method for producing heavy oil base Download PDF

Info

Publication number
JP4567877B2
JP4567877B2 JP2000382695A JP2000382695A JP4567877B2 JP 4567877 B2 JP4567877 B2 JP 4567877B2 JP 2000382695 A JP2000382695 A JP 2000382695A JP 2000382695 A JP2000382695 A JP 2000382695A JP 4567877 B2 JP4567877 B2 JP 4567877B2
Authority
JP
Japan
Prior art keywords
heavy oil
oil
catalyst
stage
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000382695A
Other languages
Japanese (ja)
Other versions
JP2002177796A (en
Inventor
渉 佐原
孝三 神谷
肇 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
Petroleum Energy Center PEC
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, JX Nippon Oil and Energy Corp filed Critical Petroleum Energy Center PEC
Priority to JP2000382695A priority Critical patent/JP4567877B2/en
Publication of JP2002177796A publication Critical patent/JP2002177796A/en
Application granted granted Critical
Publication of JP4567877B2 publication Critical patent/JP4567877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、重質油のドライスラッジ低減に有効な水素化処理触媒に関し、またこの触媒を用いて硫黄含有量の比較的高い重質油を二段階水素化処理することにより、ドライスラッジ含有量が少なく、硫黄含有量が原料油より低められた重油基材を製造する方法に関し、またこの触媒を用いてドライスラッジ含有量が高い重質油を水素化処理することで、ドライスラッジ含有量が少ない重油基材を製造する方法に関する。
【0002】
【従来の技術】
従来、我国における重油は硫黄含有量の少ない原油を常圧蒸留装置で処理しナフサ、灯油、軽油といった軽質炭化水素を除去することにより得られる硫黄含有量の低い常圧蒸留残査物や、この低硫黄常圧蒸留残査物を更に減圧蒸留装置で処理して減圧軽油を除去することにより得られる低硫黄減圧蒸留残査物を主な基材とし、これにさらに粘度等の調整に灯油、軽油などを混合することで製造されてきた。
【0003】
一方、低硫黄原油の供給不足や硫黄含有量の多い原油から得られる常圧または減圧蒸留残査物の有効利用、更に粘度調整用の灯油、軽油等の中間留分の増産といった観点から、硫黄含有量の多い原油から得られる常圧または減圧蒸留残査物を高温高水素分圧下で水素化触媒と接触させて脱硫、脱窒素、分解反応を進めることで、低硫黄かつ低粘度の重油基材を製造する水素化処理プロセスが開発され、商業運転されている。この水素化処理プロセスの代表的な運転条件は、反応温度350〜450℃、反応塔入口の水素分圧9.8〜19.6MPa、液空間速度0.1〜5.0h-1、反応塔入口の水素/油比250〜1700Nm3/m3である。
【0004】
これらの水素化処理プロセスは上述したとおり、低硫黄原油の供給不足や硫黄含有量の多い原油から得られる常圧または減圧蒸留残査物の有効利用、更に粘度調整用の灯油、軽油等の中間留分の増産といった観点から、非常に有意義なものであるが、反応温度を高くする等の苛酷度の高い運転条件で蒸留残査物を水素化処理すると、生成物中にドライスラッジが析出してしまう。なお、ドライスラッジとは、一般に1.0μm以上の径を持つアスファルテン分子を主体とした粒子である。
ドライスラッジを多く含有する基材を重油の基材として使用すると、他の基材と混合時あるいは貯蔵期間中にそれらがさらに巨大スラッジに成長し、燃料油フィルターや遠心式油清浄機の閉塞、燃料油加熱器のファウリング、および燃焼機関の重油噴射ノズルの閉塞等のトラブルが発生する懸念がある。
したがってこれまでは、水素化処理プロセスの運転において、ドライスラッジが析出しない反応温度を上限とするような運転条件の制約を受けざるを得なかった。
【0005】
また、蒸留残査物の水素化処理に用いられる水素化触媒は通常運転時間と共に脱硫、脱窒素、分解反応の活性が低下するため、運転中の触媒活性の低下を補償するための反応温度の昇温を考慮して運転初期の反応温度を決めるが、運転期間中の原油タイプに代表される原料油種の変更や生成油硫黄含有量の目標値の変更等により触媒活性の低下が予想以上に進み、運転の途中で運転末期の設計反応温度に到達してしまうことがある。したがってたとえ運転初期の反応温度をドライスラッジが析出しない温度以下に設定しても、運転途中に運転末期の設計反応温度に到達するとドライスラッジが発生するため、それ以降は脱硫、脱窒素、分解反応の転化率を下げる、厳しい反応条件が要求される減圧蒸留残査物の処理比率を下げる、または反応条件の緩やかな常圧蒸留残査物のみを処理する、あるいはその処理量を下げるといった制限を受けていた。
【0006】
【発明が解決しようとする課題】
本発明は、重質油のドライスラッジ低減用水素化処理触媒及びその触媒を用いて重質油を水素化処理することによりドライスラッジ含有量の低い重油基材を製造する方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは硫黄含有量の比較的多い重質油である原料油を苛酷水素化処理して低硫黄含有量の重油基材を得る際に起こる上記問題点を解決すべく研究を重ねた結果、細孔分布のピークが2種類あるバイモーダル型触媒を用いることによってドライスラッジ含有量の低い重油基材が得られることを見い出し、本発明を完成するに至った。
【0008】
すなわち本発明の第1発明は、細孔径100〜300Åの細孔の細孔容積が0.3〜0.7cc/g、細孔径1000〜10000Åの細孔の細孔容積が0.1〜0.4cc/gであり、全細孔容積が0.4〜1.1cc/g、表面積が150〜250m2/gの物性を有する多孔性無機酸化物担体に周期律表第VI族と第VIII族の触媒活性を有する金属をそれぞれ2〜6質量%および5〜15質量%担持し、第VI族と第VIII族金属のモル比が0.2〜0.6であることを特徴とする重質油のドライスラッジ低減用水素化処理触媒を提供する。
【0009】
また、本発明の第2発明は硫黄化合物を含有する重質油を二段階水素化処理することでドライスラッジ含有量が0.05質量%以下で硫黄含有量が原料油より低められた重油基材を製造する方法であって、第1段階で水素化脱硫処理触媒を用い、第2段階で細孔径100〜300Åの細孔の細孔容積が0.3〜0.7cc/g、細孔径1000〜10000Åの細孔の細孔容積が0.1〜0.4cc/gであり、全細孔容積が0.4〜1.1cc/g、表面積が150〜250m2/gの物性を有する多孔性無機酸化物担体に周期律表第VI族と第VIII族の触媒活性を有する金属をそれぞれ2〜6質量%および5〜15質量%担持し、第VI族と第VIII族金属のモル比が0.2〜0.6であるバイモーダル型水素化処理触媒を用いることを特徴とする重油基材の製造方法を提供する。
【0010】
また、本発明の第3発明は、ドライスラッジ含有量が0.05質量%を超える重質油を水素化処理触媒を用い水素化処理することでドライスラッジ含有量が0.05質量%以下の重油基材を製造する方法であって、該水素化処理触媒として、細孔径100〜300Åの細孔の細孔容積が0.3〜0.7cc/g、細孔径1000〜10000Åの細孔の細孔容積が0.1〜0.4cc/gであり、全細孔容積が0.4〜1.1cc/g、表面積が150〜250m2/gの物性を有する多孔性無機酸化物担体に周期律表第VI族と第VIII族の触媒活性を有する金属をそれぞれ2〜6質量%および5〜15質量%担持し、第VI族と第VIII族金属のモル比が0.2〜0.6であるバイモーダル型水素化処理触媒を用いることを特徴とする重油基材の製造方法を提供する。
【0011】
【発明の実施の形態】
以下、本発明の内容について詳細に説明する。
本発明の第1発明の触媒に用いる担体は、多孔性無機酸化物である。該担体は、細孔径100〜300Åと細孔径1000〜10000Åの2個所にピークを有するバイモーダル型担体で、該担体の細孔径100〜300Åの細孔の細孔容積が0.3〜0.7cc/g、好ましくは0.4〜0.6cc/g、細孔径1000〜10000Åの細孔の細孔容積が0.1〜0.4cc/g、好ましくは0.2〜0.3cc/gであり、全細孔容積が0.4〜1.1cc/g、好ましくは0.5〜1.0cc/gであり、表面積が150〜250m2/g、好ましくは160〜240m2/gの物性を有するものである。
該担体の細孔径100〜300Åの細孔の細孔容積が0.3〜0.7cc/g、細孔径1000〜10000Åの細孔の細孔容積が0.1〜0.4cc/g及び表面積が150〜250m2/gのいずれかが外れるとドライスラッジ低減率が低下し、ドライスラッジ含有量が0.05質量%以下の重質油を製造することができない。なお、該担体の物理性状は水銀圧法で測定した。
【0012】
前記多孔性無機酸化物としては、例えばアルミナ、シリカ、チタニア、ジルコニア、マグネシア、アルミナ−シリカ、アルミナ−ボリア、アルミナ−チタニア、アルミナ−ジルコニア、アルミナ−マグネシア、アルミナ−シリカ−ジルコニア、アルミナ−シリカ−チタニア、各種ゼオライト、セピオライト、モンモリロナイト等の各種粘土鉱物などが挙げられる。
本発明の担体は、細孔径100〜300Åの細孔の細孔容積が0.3〜0.7cc/g、細孔径1000〜10000Åの細孔の細孔容積が0.1〜0.4cc/gであり、全細孔容積が0.4〜1.1cc/g、表面積が150〜250m2/gの物性を有するバイモ−ダル型担体であれば特に制限なく使用することができる。担体の製造方法も特に限定されない。
【0013】
該担体に担持する水素化活性金属成分は、周期律表第VI族金属および第VIII族金属から選ばれる触媒活性を有する金属成分である。周期律表第VI族金属としてはクロム、モリブデン、タングステンが挙げられる。好ましく用いられる金属としてはモリブデンが挙げられる。第VIII族金属としては鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、白金が挙げられる。好ましい金属としてはコバルト、ニッケルが挙げられる。周期律表第VI族金属および第VIII族金属の組合わせは自由であるが、好ましくは該金属成分の担持量は周期律表第VI族金属は2〜6質量%、好ましくは3〜5質量%、第VIII族金属は5〜15質量%、好ましくは6〜14質量%の範囲である。金属成分の担持量がこの範囲を外れるとドライスラッジ低減率が低下し、ドライスラッジ含有量が0.05質量%以下の重油基材を製造することができない。該第VI族金属と第VIII族金属の混合割合は、第VI族と第VIII族金属のモル比が0.2〜0.6、好ましくは0.3〜0.5になるように混合する。第VI族と第VIII族金属のモル比がこの範囲を外れるとドライスラッジ低減率が低下し、ドライスラッジ含有量が0.05質量%以下の重油基材を製造することができない。
【0014】
本発明の原料油として用いられる重質油としては、例えば、石油蒸留残査物が挙げられる。該石油蒸留残査物としては、具体的には、常圧蒸留装置より得られる、通常、蒸留温度300℃以上の留分を70質量%以上、好ましくは90質量%以上、より好ましくは95質量%以上含む残査物;減圧蒸留装置より得られる、通常、蒸留温度400℃以上の留分を70質量%以上、好ましくは90質量%以上、より好ましくは95質量%以上含む残査物;これら常圧蒸留残査物と減圧蒸留残査物を任意の割合で混合した残査油;これら常圧蒸留残査物、減圧蒸留残査物またはそれらの混合物を水素化処理して得られる硫黄分や窒素分等が減少した生成油;またはこれらの混合物などが挙げられる。
なお、本発明でいう蒸留温度とは、JIS K 2254に規定する「石油製品−蒸留試験方法」の「6.減圧法蒸留試験方法」に準拠して測定される温度を意味する。以降、本発明における石油留分の蒸留温度とは、すべて上記方法により測定される値を意味する。
【0015】
また本発明の原料油として用いられる重質油としては、これら石油蒸留残査物100重量部に対して、接触分解装置(FCC)から得られる分解重質軽油(ヘビーサイクル油)やスラリー油を40重量部以下、好ましくは20重量部以下配合したような混合油なども好ましく用いることができる。
さらに本発明の原料油として用いられる重質油としては、後述する二段階の水素化処理工程における出口油の一部をリサイクルして、上記の石油蒸留残査物や混合油100重量部に対してこのリサイクル油を50重量部以下、好ましくは30重量部以下配合した混合油なども、また好ましく用いることができる。
【0016】
また本発明の第2発明で原料油として用いられる重質油の硫黄含有量の下限値は1.0質量%、好ましくは2.0質量%であり、一方、その上限値は10質量%、好ましくは6.0質量%である。硫黄含有量が1.0質量%未満の場合は本発明の第2発明のような二段階の工程での水素化処理を要さずとも重油基材を製造することが可能であり、エネルギーコスト的に不利である。また硫黄含有量が10質量%を超える場合は、得られる重油基材の硫黄含有量が高くなり、ボイラー燃料として用いた場合に燃焼排ガス中の硫黄酸化物量の増大をもたらしてしまう。また得られる重油基材の硫黄含有量をより低下させるためには、反応塔や周辺機器等の建設費が急激に上昇したり、多量のカッター材を必要とするため、それぞれ好ましくない。
なお、本発明における硫黄含有量とは、JIS K 2541−1992に規定する「原油及び石油製品−硫黄分試験方法」の「6.放射線式励起法」に準拠して測定される硫黄含有量を意味する。以降、本発明における硫黄含有量とは、すべて上記方法により測定される値を意味する。
【0017】
本発明の第2発明で原料油として用いられる重質油のドライスラッジ含有量の下限値は0質量%であり、一方、その上限値は5.0質量%、好ましくは1.0質量%である。ドライスラッジ含有量の上限値が5.0質量%を超える場合は、水素化処理工程における原料油供給系統でのストレーナーやバルブの閉塞、熱交換器や加熱炉のファウリングによる伝熱効率の低下等の問題を生じる恐れがあるため好ましくない。
なお本発明におけるドライスラッジ含有量とは、ASTM D 4870−92に規定する”Standard Test Method for Determination of Total Sediment in Residual Fuels”に準拠して測定される全沈降物量を意味する。以降、本発明におけるドライスラッジ含有量とは、すべてこの方法により測定される値を意味する。
【0018】
本発明の第3発明における原料油はドライスッラッジ含有量が0.05質量%を超える重質油であり、硫黄含有量は第2発明より少ない重質油である。
【0019】
本発明の第2発明においては、これら原料油である重質油に対してまず第1段階の水素化脱硫処理を実行する。
この第1段階の水素化脱硫処理温度の下限値は340℃、好ましくは370℃であり、一方、その上限値は450℃、好ましくは430℃である。第1段階での水素化脱硫処理温度が340℃未満の場合は触媒活性が十分に発揮されないため脱硫、脱窒素および分解反応が実用の領域まで進まず、一方、その水素化処理温度が450℃を超える場合はコーキング反応が激しくなり、触媒上にコークが堆積して触媒活性が急速に低下し、触媒寿命が短くなるため、それぞれ好ましくない。
また第1段階の水素化脱硫処理工程における温度以外の他の条件は任意である。
しかし、第1段階の入口の水素分圧は、通常、下限値が8.0MPa、好ましくは9.8MPaであり、一方、上限値が25.0MPa、好ましくは19.6MPaの範囲で行うことができる。入口の水素分圧が8.0MPa未満の場合は触媒上のコーク生成が激しくなり触媒寿命が極端に短くなる懸念があり、一方、その水素分圧が25.0MPaを越える場合は反応塔や周辺機器等の建設費が急激に上昇し、経済的に実用性が失われる懸念がある。
【0020】
また、第1段階での原料油である重質油の液空間速度(LHSV)は、通常、下限値が0.05h-1、好ましくは0.1h-1であり、一方、上限値が5.0h-1、好ましくは2.0h-1の範囲で行うことができる。液空間速度(LHSV)が0.05h-1未満の場合は、反応塔の建設費が莫大になり経済的に実用性が失われる懸念があり、一方、液空間速度(LHSV)が5.0h-1を越える場合は触媒活性が十分に発揮されず、脱硫、脱窒素および分解反応が実用の領域まで進まない懸念がある。
【0021】
また、第1段階の入口の水素/油比は、通常、下限値が250Nm3/m3、好ましくは600Nm3/m3であり、一方、上限値が1700Nm3/m3、好ましくは1500Nm3/m3の範囲で行うことができる。水素/油比が250Nm3/m3未満の場合は触媒上のコーク生成が激しくなり触媒寿命が極端に短くなる懸念があり、一方、水素/油比が1700Nm3/m3を超える場合は、反応塔や周辺機器等の建設費が急激に上昇し、経済的に実用性が失われる懸念がある。
【0022】
また第1段階での水素化脱硫処理工程の操作は、油とガスを並行で下降流または上昇流で行うことができ、また、油とガスを向流で行うこともできる。また、第1段階の水素化脱硫処理工程として触媒を充填して使用される反応塔は、単独の反応塔または連続した複数の反応塔のどちらで構成されていてもよい。更に反応塔内は、単独の触媒床、または複数の触媒床のどちらで構成されていてもよい。
またさらに、第1段階の水素化脱硫処理工程における各反応塔の間や各触媒床の間に、後続の反応塔や触媒床の入口の反応温度を調節する目的で、気体、液体または液体と気体の混合物を注入することも可能である。
ここでいう気体は、通常、水素;メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等の炭素数1〜6のパラフィン系炭化水素およびこれらの混合物など、注入する温度、圧力で気体として存在できる炭化水素;または水素とこれら炭化水素との混合物;が好ましく用いられるが、例えば硫化水素、アンモニア、窒素など、注入する温度、圧力で気体として存在できる他の物質を含んでいてもよい。また、ここでいう液体は、通常、例えば、灯油、直留軽油、減圧軽油などの石油蒸留物;石油蒸留残査物;石油蒸留物や石油蒸留残査物などの水素化処理油;石油蒸留物や石油蒸留残査物などの熱分解油;石油蒸留物や石油蒸留残査物などの接触分解油;またはこれらの混合物;など、注入する温度、圧力で液体として存在できる炭化水素が好ましく用いられるが、後述する第2段階の水素化処理工程における出口油の一部をリサイクルして使用するのが更に好ましい。
【0023】
第1段階において各反応塔の間や各触媒床の間に気体や液体を注入する場合、それらの注入量は任意であるが、通常、気体を注入する場合は注入量が気体/油比で1700Nm3/m3以下の範囲で行うことができ、液体を注入する場合は注入量が液体/油比で1m3/m3以下の範囲で行うことができる。
なお、第1段階の水素化脱硫処理工程において複数の反応塔または触媒床を使用する場合、本発明における第1段階の水素化脱硫処理温度は、各反応塔の間や各触媒床の間への気体、液体または液体と気体の混合物の注入の有無にかかわらず、またさらに反応塔の数に関係なく、第1段階のすべての触媒床を対象にして、各触媒床の入口温度と出口温度を平均した温度に各触媒床の触媒充填重量比率を乗じて加えた触媒重量平均温度(WABT)で定義される。
【0024】
また、第1段階の水素化脱硫処理工程における水素化処理触媒としては、従来公知の任意の水素化処理触媒が使用可能である。具体的には例えば、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、アルミナ−シリカ、アルミナ−ボリア、アルミナ−チタニア、アルミナ−ジルコニア、アルミナ−マグネシア、アルミナ−シリカ−ジルコニア、アルミナ−シリカ−チタニア、各種ゼオライト、セピオライト、モンモリロナイト等の各種粘土鉱物などの多孔性無機酸化物を担体とし、これに水素化活性金属を担持した物を好ましく用いることができる。該担持金属としては、通常、周期律表第VIA、VA、VB、およびVIII族の金属から選ばれる少なくとも1種の水素化活性金属種が好ましく用いられ、特にコバルト、モリブデン、ニッケルをそれぞれ単独で、または、コバルト、モリブデン、ニッケルを2種あるいは3種組み合わせて多孔性無機酸化物に担持した触媒がより好ましく用いられる。なお、本発明の第1段階の水素化脱硫処理工程で用いる水素化処理触媒は、通常市販されている水素化処理触媒でも十分目的が達成可能であり、本発明は触媒の種類によって何ら制限されるものではない。
【0025】
上述した第1段階の水素化脱硫処理工程で得られる水素化処理油のドライスラッジ含有量は、通常、原料油のドライスラッジ含有量より増加するか、少なくとも0.05重量%を越える値、より一般的には、通常、0.2質量%以上の値となる。
またこの第1段階の水素化脱硫処理工程により、通常、実質的に原料重質油の脱硫反応、脱窒素反応および分解反応の大部分が達成される。
第1段階の水素化脱硫処理工程で得られる水素化処理油の硫黄含有量は何ら規定されるものではないが、通常、その下限値は0.01質量%、好ましくは0.1質量%であり、一方、その上限値は2.0質量%、好ましくは1.0質量%が一般的である。
また第1段階の水素化脱硫処理工程で得られる水素化処理油の窒素含有量も何ら規定されるものではないが、通常、その下限値は0.01質量%、好ましくは0.1質量%であり、一方、その上限値は1.0質量%、好ましくは0.5質量%が一般的である。
なお、本発明における窒素含有量とは、JIS K 2609−1990に規定する「原油及び石油製品−窒素分試験方法」の「7.化学発光法」に準拠して測定される窒素含有量を意味する。以降、本発明における窒素含有量とは、すべて上記方法により測定される値を意味する。
【0026】
本発明では上述の第1段階の水素化脱硫処理を行った水素化処理油に対して、次いで第2段階の水素化処理を実行する。
この第2段階の水素化処理温度の下限値は200℃、好ましくは250℃であり、一方、その上限値は440℃、好ましくは400℃である。第2段階での水素化処理温度が200℃未満の場合は触媒活性が十分に発揮されないためスラッジ分の水素化反応が実用の領域まで進まず、一方、その水素化処理温度が440℃を超える場合はスラッジ分の水素化が進まずに、逆にスラッジ分が生成してしまうため、それぞれ好ましくない。
さらに本発明では第2段階の水素化工程において、その水素化処理温度を第1段階の水素化処理温度より低い値に設定して水素化処理を実施することが重要である。第2段階の水素化処理工程における水素化処理温度は、第1段階での水素化処理温度より低い温度であれば、上記の温度範囲内で任意の温度に設定することが可能であるが、両段階での水素化処理温度の差が好ましくは10℃以上、より好ましくは20℃以上あることが望ましい。本発明において、第2段階の水素化処理温度が第1段階の水素化処理温度と同一または第1段階の水素化処理温度より高い場合は、スラッジ分の水素化が進まずに、逆にスラッジ分が生成してしまうため好ましくない。
【0027】
また第2段階の水素化処理工程における温度以外の他の条件は任意である。
しかし、第2段階の入口の水素分圧は、通常、下限値が1.0MPaであり、一方、上限値が25.0MPa、好ましくは19.6MPaの範囲で行うことができる。入口の水素分圧が1.0MPa未満の場合は触媒活性が十分に発揮されず、スラッジ分の水素化反応が実用の領域まで進まない懸念があり、一方、その水素分圧が25.0MPaを越える場合は反応塔や周辺機器等の建設費が急激に上昇し、経済的に実用性が失われる懸念がある。
また、第2段階での原料油(第1段階の水素化脱硫処理を経た水素化処理油)の液空間速度(LHSV)は、通常、下限値が0.1h-1、好ましくは0.2h-1であり、一方、上限値が10h-1、好ましくは4.0h-1の範囲で行うことができる。液空間速度(LHSV)が0.1h-1未満の場合は、反応塔の建設費が莫大になり経済的に実用性が失われる懸念があり、一方、液空間速度(LHSV)が10h-1を越える場合は触媒活性が十分に発揮されず、スラッジ分の水素化反応が実用の領域まで進まない懸念がある。
また、第2段階の入口の水素/油比は、通常、下限値が250Nm3/m3、好ましくは600Nm3/m3であり、一方、上限値が1700Nm3/m3、好ましくは1500Nm3/m3の範囲で行うことができる。水素/油比が250Nm3/m3未満の場合は触媒上のコーク生成が激しくなり触媒寿命が極端に短くなる懸念があり、一方、水素/油比が1700Nm3/m3を超える場合は、反応塔や周辺機器等の建設費が急激に上昇し、経済的に実用性が失われる懸念がある。
【0028】
また第2段階での水素化処理工程の操作は、油とガスを並行で下降流または上昇流で行うことができ、また、油とガスを向流で行うこともできる。また、第2段階の水素化処理工程として触媒を充填して使用される反応塔は、単独の反応塔または連続した複数の反応塔のどちらで構成されていてもよい。更に反応塔内は、単独の触媒床または複数の触媒床のどちらで構成されていてもよい。
またさらに、第2段階の水素化処理工程における各反応塔の間や各触媒床の間に、後続の反応塔や触媒床の入口の反応温度を調節する目的で、気体、液体または液体と気体の混合物を注入することも可能である。
ここでいう気体は、通常、水素;メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等の炭素数1〜6のパラフィン系炭化水素およびこれらの混合物など、注入する温度、圧力で気体として存在できる炭化水素;または水素とこれら炭化水素との混合物;が好ましく用いられるが、例えば硫化水素、アンモニア、窒素など、注入する温度、圧力で気体として存在できる他の物質を含んでいてもよい。また、ここでいう液体は、通常、例えば、灯油、直留軽油、減圧軽油などの石油蒸留物;石油蒸留残査物;石油蒸留物や石油蒸留残査物などの水素化処理油;石油蒸留物や石油蒸留残査物などの熱分解油;石油蒸留物や石油蒸留残査物などの接触分解油;またはこれらの混合物;など、注入する温度、圧力で液体として存在できる炭化水素が好ましく用いられるが、第2段階の水素化処理工程における出口油の一部をリサイクルして使用するのが更に好ましい。
【0029】
第2段階において各反応塔の間や各触媒床の間に気体や液体を注入する場合、それらの注入量は任意であるが、通常、気体を注入する場合は注入量が気体/油比で1700Nm3/m3以下の範囲で行うことができ、液体を注入する場合は注入量が液体/油比で1m3/m3以下の範囲で行うことができる。
【0030】
なお、第2段階の水素化処理工程において複数の反応塔または触媒床を使用する場合、本発明における第2段階の水素化処理温度は、各反応塔の間や各触媒床の間への気体、液体または液体と気体の混合物の注入の有無にかかわらず、またさらに反応塔の数に関係なく、第2段階のすべての触媒床を対象にして、各触媒床の入口温度と出口温度を平均した温度に各触媒床の触媒充填重量比率を乗じて加えた触媒重量平均温度(WABT)で定義される。また、第2段階の水素化処理工程における水素化処理触媒としては、細孔径100〜300Åの細孔の細孔容積が0.3〜0.7cc/g、細孔径1000〜10000Åの細孔の細孔容積が0.1〜0.4cc/gであり、全細孔容積が0.4〜1.1cc/g、表面積が150〜250m2/gの物性を有し、無機酸化物担体に周期律表第VI族および第VIII族の触媒活性を有する金属をそれぞれ2〜6質量%および5〜15質量%担持し、第VI族と第VIII族金属のモル比が0.2〜0.6であることを特徴とするものを用いる。なお、本発明においては、第1段階の水素化脱硫処理と第2段階の水素化処理を、一つの反応塔の中で行ってもよく、あるいは分離した2基以上の反応塔を用いて行ってもよい。また反応塔の中は複数個の触媒床に分かれていても良い。
【0031】
また本発明の第2発明において、第2段階の水素化処理温度を第1段階の水素化処理温度より下げる方法は特に限定されるものでなく、任意の方法を採用することができる。具体的には従来公知の方法、例えば、低温の気体、液体、あるいは気体と液体の両方を注入する方法、または熱交換器による低温流体との熱交換の方法などを用いることができる。
なおここでいう気体は、通常、水素;メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等の炭素数1〜6のパラフィン系炭化水素およびこれらの混合物など、注入する温度、圧力で気体として存在できる炭化水素;または水素とこれら炭化水素との混合物;が好ましく用いられるが、例えば硫化水素、アンモニア、窒素など、注入する温度、圧力で気体として存在できる他の物質を含んでいてもよい。また、ここでいう液体は、通常、例えば、灯油、直留軽油、減圧軽油などの石油蒸留物;石油蒸留残査物;石油蒸留物や石油蒸留残査物などの水素化処理油;石油蒸留物や石油蒸留残査物などの熱分解油;石油蒸留物や石油蒸留残査物などの接触分解油;またはこれらの混合物;など、注入する温度、圧力で液体として存在できる炭化水素が好ましく用いられるが、第2段階の水素化処理工程における出口油の一部をリサイクルして使用するのが更に好ましい。
【0032】
また、本発明の第2発明における第1段階の水素化脱硫処理と第2段階の水素化処理は連続的操作に限定されるわけではなく、第1段階の操作と第2段階の操作を個別に実施してもよい。なお両段階の操作を個別に実施する場合、第1段階と第2段階の間の条件は特に限定されるものではない。
本発明の第2発明においては、以上の二段階の水素化処理により、最終的にドライスラッジ含有量が0.05質量%以下、好ましくは0.04質量%以下であり、かつ硫黄含有量が原料重質油より低められた重油基材が得られる。得られる重油基材の硫黄含有量は、原料油の重質油の硫黄含有量より低められてさえいれば任意の値でよいが、通常、原料油の重質油に対する脱硫反応の達成率が好ましくは80%以上、より好ましくは90%以上であるのが望ましい。
なお、本発明における脱硫反応の達成率は、[(原料重質油中の硫黄分(質量%)―得られる重油基材中の硫黄分(質量%))/原料重質油中の硫黄分(質量%)] ×100(%)で示される値を意味する。以降、本発明における脱硫反応の達成率とは、すべてこの式により計算される値を意味する。
【0033】
また得られる重油基材の窒素含有量も何ら規定されるものではないが、通常、原料油に対する脱窒素反応の達成率が10%以上、好ましくは30%以上であるのが一般的である。
なお、本発明における脱窒素反応の達成率は、[(原料重質油中の窒素分(質量%)―得られる重油基材中の窒素分(質量%))/原料重質油中の窒素分(質量%)] ×100(%)で示される値を意味する。以降、本発明における脱窒素反応の達成率とは、すべてこの式により計算される値を意味する。
【0034】
また本発明における二段階の水素化処理による全体での分解反応達成率は任意であるが、通常20%以上、好ましくは40%以上であるのが一般的である。
なお、本発明における分解反応の達成率は、[(原料重質油中の蒸留温度565℃以上の留分(質量%)―得られる重油基材中の蒸留温度565℃以上の留分(質量%))/原料重質油中の蒸留温度565℃以上の留分(質量%)] ×100(%)で示される値を意味する。以降、本発明における分解反応の達成率とは、すべてこの式により計算される値を意味する。
【0035】
また本発明の第2発明においては、通常、第1段階の水素化脱硫処理での脱硫反応達成率が、第2段階の水素化処理工程も含めた全体の水素化処理での脱硫反応達成率の80%以上、好ましくは90%以上、より好ましくは95%以上を占めることが望ましい。
また本発明の第2発明においては、通常、第1段階の水素化脱硫処理での脱窒素反応達成率が、第2段階の水素化処理工程も含めた全体の水素化処理での脱窒素反応達成率の50%以上、好ましくは80%以上、より好ましくは90%以上を占めることが望ましい。
さらに本発明の第2発明においては、通常、第1段階の水素化脱硫処理工程での分解反応達成率が、第2段階の水素化処理工程も含めた全体の水素化処理での分解反応達成率の75%以上、好ましくは85%以上、より好ましくは90%以上を占めることが望ましい。
【0036】
本発明の第3発明は ドライスラッジ含有量が0.05質量%を超える重質油を水素化処理触媒を用いて水素化処理することでドライスラッジ含有量が0.05質量%以下の重油基材を製造する方法であって、該水素化処理触媒として、細孔径100〜300Åの細孔の細孔容積が0.3〜0.7cc/g、細孔径1000〜10000Åの細孔の細孔容積が0.1〜0.4cc/gであり、全細孔容積が0.4〜1.1cc/g、表面積が150〜250m2/gの物性を有する多孔性無機酸化物担体に周期律表第VI族および第VIII族の触媒活性を有する金属をそれぞれ2〜6質量%および5〜15質量%担持し、第VI族と第VIII族金属のモル比が0.2〜0.6である水素化処理触媒を用いることを特徴とする重油基材の製造方法である。
【0037】
水素化処理温度の下限値は200℃、好ましくは250℃であり、一方、その上限値は440℃、好ましくは400℃である。水素化処理温度が200℃未満の場合は触媒活性が十分に発揮されないためスラッジ分の水素化反応が実用の領域まで進まず、一方、その水素化処理温度が440℃を超える場合はスラッジ分の水素化が進まずに、逆にスラッジ分が生成してしまうため、それぞれ好ましくない。
【0038】
入口の水素分圧は、通常、下限値が1.0MPaであり、一方、上限値が25.0MPa、好ましくは19.6MPaの範囲で行うことができる。入口の水素分圧が1.0MPa未満の場合は触媒活性が十分に発揮されず、スラッジ分の水素化反応が実用の領域まで進まない懸念があり、一方、その水素分圧が25.0MPaを越える場合は反応塔や周辺機器等の建設費が急激に上昇し、経済的に実用性が失われる懸念がある。
また、原料油の液空間速度(LHSV)は、通常、下限値が0.1h-1、好ましくは0.2h-1であり、一方、上限値が10h-1、好ましくは4.0h-1の範囲で行うことができる。液空間速度(LHSV)が0.1h-1未満の場合は、反応塔の建設費が莫大になり経済的に実用性が失われる懸念があり、一方、液空間速度(LHSV)が10h-1を越える場合は触媒活性が十分に発揮されず、スラッジ分の水素化反応が実用の領域まで進まない懸念がある。
また、入口の水素/油比は、通常、下限値が250Nm3/m3、好ましくは600Nm3/m3であり、一方、上限値が1700Nm3/m3、好ましくは1500Nm3/m3の範囲で行うことができる。水素/油比が250Nm3/m3未満の場合は、触媒上のコーク生成が激しくなり触媒寿命が極端に短くなる懸念があり、一方、水素/油比が1700Nm3/m3を超える場合は、反応塔や周辺機器等の建設費が急激に上昇し、経済的に実用性が失われる懸念がある。
【0039】
また水素化処理工程の操作は、油とガスを並行で下降流または上昇流で行うことができ、また、油とガスを向流で行うこともできる。また、水素化処理工程として触媒を充填して使用される反応塔は、単独の反応塔または連続した複数の反応塔のどちらで構成されていてもよい。更に反応塔内は、単独の触媒床または複数の触媒床のどちらで構成されていてもよい。
またさらに、水素化処理工程における各反応塔の間や各触媒床の間に、後続の反応塔や触媒床の入口の反応温度を調節する目的で、気体、液体または液体と気体の混合物を注入することも可能である。
ここでいう気体は、通常、水素;メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等の炭素数1〜6のパラフィン系炭化水素およびこれらの混合物など、注入する温度、圧力で気体として存在できる炭化水素;または水素とこれら炭化水素との混合物;が好ましく用いられるが、例えば硫化水素、アンモニア、窒素など、注入する温度、圧力で気体として存在できる他の物質を含んでいてもよい。また、ここでいう液体は、通常、例えば、灯油、直留軽油、減圧軽油などの石油蒸留物;石油蒸留残査物;石油蒸留物や石油蒸留残査物などの水素化処理油;石油蒸留物や石油蒸留残査物などの熱分解油;石油蒸留物や石油蒸留残査物などの接触分解油;またはこれらの混合物;など、注入する温度、圧力で液体として存在できる炭化水素が好ましく用いられる。
【0040】
各反応塔の間や各触媒床の間に気体や液体を注入する場合、それらの注入量は任意であるが、通常、気体を注入する場合は注入量が気体/油比で1700Nm3/m3以下の範囲で行うことができ、液体を注入する場合は注入量が液体/油比で1m3/m3以下の範囲で行うことができる。なお、水素化処理工程において複数の反応塔または触媒床を使用する場合、水素化処理温度は、各反応塔の間や各触媒床の間への気体、液体または液体と気体の混合物の注入の有無にかかわらず、またさらに反応塔の数に関係なく、すべての触媒床を対象にして、各触媒床の入口温度と出口温度を平均した温度に各触媒床の触媒充填重量比率を乗じて加えた触媒重量平均温度(WABT)で定義される。また、水素化処理工程における水素化処理触媒としては、細孔径100〜300Åの細孔の細孔容積が0.3〜0.7cc/g、細孔径1000〜10000Åの細孔の細孔容積が0.1〜0.4cc/gであり、全細孔容積が0.4〜1.1cc/g、表面積が150〜250m2/gの物性を有する多孔性無機酸化物担体に周期律表第VI族および第VIII族の触媒活性を有する金属をそれぞれ2〜6質量%および5〜15質量%担持し、第VI族と第VIII族金属のモル比が0.2〜0.6である水素化処理触媒を用いる。
【0041】
本発明により得られる重油基材は、単独でも製品重油として使用可能である。
また、具体的には例えば、石油蒸留残査物;灯油;直留軽油;減圧軽油;石油蒸留残査物を熱分解して得られる軽油や残油およびこれらの水素化処理油;接触分解装置より得られる軽質軽油(ライトサイクル油)、重質軽油(ヘビーサイクル油)、スラリー油等の他の重質油を適宜配合して、製品重油とすることもできる。
【0042】
【実施例】
次に実施例および比較例により本発明をさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
【0043】
実施例1
アルミナ担体にNiO 3質量%とMoO3 11質量%を含有する市販水素化脱硫触媒を第1段階の水素化処理用ステンレス製反応塔に、細孔径100〜300Åの細孔の細孔容積が0.6cc/g、細孔径1000〜10000Åの細孔の細孔容積が0.1cc/g、全細孔容積が0.7cc/g、表面積が160m2/gの物性を有するアルミナ担体にNiO 2質量%とMoO3 8質量%を担持した水素化処理触媒を第2段階の水素化処理用ステンレス製反応塔に、それぞれ充填後、触媒を予備硫化した。次いで表1の性状を有する減圧蒸留残査油を原料油とし、この反応塔で表2に示す反応条件で連続的に水素化処理を行った。
反応塔出口より得られた水素化処理油の性状も表2に併記した。
【0044】
実施例2
原料油を表3に示すように、ドライスラッジ含有量0.1質量%以上のものとし、第1段階をバイパスしたこと以外は実施例1と同一の反応条件で水素化処理を行い、その結果を表4に記した。
【0045】
比較例1
本発明の細孔分布のピークが2種類あるバイモーダル型触媒の効果を明確化するため、水素化処理触媒としては、実施例1で第2段階に用いた触媒と、担体の材質および金属種、量は同じであるが、担体の細孔径が100Å、表面積が160m2/gである触媒を用いた以外は実施例1と同様の条件で水素化処理を行い、その結果も表2に併記した。
【0046】
比較例2
ドライスラッジ0.1質量%以上含有する原料油を直接第2段階で処理したときの、本発明のバイモーダル型触媒の効果を明確化するため、水素化処理触媒としては、実施例2で第2段階に用いた触媒と、担体の材質および金属種、量は同じであるが、担体の細孔径が100Å、表面積が160m2/gである触媒を用いた以外は実施例2と同様の条件で水素化処理を行い、その結果も表4に併記した。
【0047】
【表1】

Figure 0004567877
【0048】
【表2】
Figure 0004567877
【0049】
【表3】
Figure 0004567877
【0050】
【表4】
Figure 0004567877
【0051】
表2および表4の結果から明らかなとおり、本発明の方法によれば、比較的低温で細孔径100〜300Åの細孔の細孔容積が0.6cc/g、細孔径1000〜10000Åの細孔の細孔容積が0.1cc/gの水素化処理触媒と接触させることにより、ドライスラッジ含有量が0.05質量%以下の重油基材を得ることが可能である。
それに対して細孔径100Å、表面積160m2/gとした比較例1および比較例2では、ドライスラッジ含有量は0.20質量%と実施例1および実施例2と比較して非常に高く、重油基材として不適当なものである。
【0052】
【発明の効果】
以上のように、本発明の水素化処理触媒をドライスラッジ含有量が0.05質量%より多い原料油に接触させることにより、ドライスラッジ含有量が0.05質量%以下の重油基材を得ることができる。このため、重油基材として不適当であるドライスラッジ含有量が0.05質量%を超える重質油、例えばドライスラッジ含有量が0.05質量%を超える石油蒸留残査油などを重油基材の原料として有効に利用できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrotreating catalyst effective for reducing dry sludge of heavy oil, and by using this catalyst, a heavy oil having a relatively high sulfur content is subjected to two-stage hydrotreating, thereby providing a dry sludge content. And a method for producing a heavy oil base having a lower sulfur content than that of the raw material oil, and by hydrotreating heavy oil having a high dry sludge content using this catalyst, the dry sludge content is reduced. The present invention relates to a method for producing a small amount of heavy oil base.
[0002]
[Prior art]
Conventionally, heavy oil in Japan is treated with atmospheric distillation residue from crude oil with low sulfur content to remove light hydrocarbons such as naphtha, kerosene, light oil, etc. The low-sulfur vacuum distillation residue obtained by further treating the low-sulfur atmospheric distillation residue with a vacuum distillation apparatus and removing the vacuum gas oil is used as a main base material, and kerosene for further adjustment of viscosity, etc. It has been manufactured by mixing light oil and the like.
[0003]
On the other hand, from the viewpoint of insufficient supply of low-sulfur crude oil, effective use of atmospheric or vacuum distillation residue obtained from crude oil with a high sulfur content, and increased production of middle distillates such as kerosene and light oil for viscosity adjustment, A low-sulfur and low-viscosity heavy oil base is obtained by contacting dehydration, denitrogenation, and cracking reactions by contacting atmospheric or vacuum distillation residue obtained from crude oil with a high content with a hydrogenation catalyst under high temperature and high hydrogen partial pressure. Hydroprocessing processes for producing materials have been developed and are in commercial operation. Typical operating conditions of this hydrotreating process are as follows: reaction temperature 350 to 450 ° C., hydrogen partial pressure at the reaction tower inlet 9.8 to 19.6 MPa, liquid space velocity 0.1 to 5.0 h.-1, Hydrogen / oil ratio 250-1700 Nm at reaction tower inletThree/ MThreeIt is.
[0004]
As mentioned above, these hydrotreating processes are short of supply of low-sulfur crude oil, effective utilization of atmospheric or vacuum distillation residue obtained from crude oil with a high sulfur content, and intermediates such as kerosene and light oil for viscosity adjustment. From the standpoint of increasing the production of fractions, it is very meaningful, but when the distillation residue is hydrotreated under severe operating conditions such as increasing the reaction temperature, dry sludge is precipitated in the product. End up. The dry sludge is particles mainly composed of asphaltene molecules having a diameter of 1.0 μm or more.
When a base material containing a large amount of dry sludge is used as a base material for heavy oil, when it is mixed with other base materials or during storage, they further grow into a huge sludge, which can clog fuel oil filters and centrifugal oil cleaners, There are concerns that troubles such as fouling of the fuel oil heater and blockage of the heavy oil injection nozzle of the combustion engine may occur.
Therefore, until now, in the operation of the hydrotreating process, there has been no choice but to restrict operating conditions such that the reaction temperature at which dry sludge does not precipitate is the upper limit.
[0005]
In addition, the hydrogenation catalyst used in the hydrotreating of the distillation residue is reduced in the activity of desulfurization, denitrogenation, and decomposition reaction with the normal operation time. Therefore, the reaction temperature for compensating the decrease in the catalyst activity during operation is reduced. The reaction temperature at the initial stage of operation is determined in consideration of the temperature rise, but the catalyst activity decreases more than expected due to changes in the feedstock type represented by the crude oil type during the operation period and changes in the target value of the sulfur content of the produced oil. The design reaction temperature at the end of operation may be reached during operation. Therefore, even if the reaction temperature at the initial stage of operation is set below the temperature at which dry sludge does not precipitate, dry sludge is generated when the reaction temperature at the end of the operation is reached during operation, and thereafter desulfurization, denitrogenation, and decomposition reactions occur. Limitation such as reducing the conversion rate, reducing the processing rate of vacuum distillation residue requiring severe reaction conditions, or processing only atmospheric distillation residue with mild reaction conditions, or reducing its throughput I was receiving.
[0006]
[Problems to be solved by the invention]
The present invention provides a hydroprocessing catalyst for reducing heavy oil dry sludge and a method for producing a heavy oil base material having a low dry sludge content by hydrotreating heavy oil using the catalyst. Objective.
[0007]
[Means for Solving the Problems]
The present inventors have repeated research to solve the above problems that occur when a heavy oil base material having a relatively low sulfur content is obtained by severely hydrotreating a raw material oil that is a heavy oil having a relatively high sulfur content. As a result, it was found that a heavy oil base material having a low dry sludge content can be obtained by using a bimodal catalyst having two types of pore distribution peaks, and the present invention has been completed.
[0008]
  That is, in the first invention of the present invention, the pore volume of pores having a pore diameter of 100 to 300 mm is 0.3 to 0.7 cc / g, and the pore volume of pores having a pore diameter of 1000 to 10,000 mm is 0.1 to 0. .4 cc / g, total pore volume 0.4-1.1 cc / g, surface area 150-250 m2/ G of porous inorganic oxide support having physical properties of periodic table VIAA metal having 2 to 6% by weight and 5 to 15% by weight of a metal having catalytic activity of Group VIII and Group VIII, respectively,AProvided is a hydroprocessing catalyst for reducing heavy oil dry sludge, wherein the molar ratio of Group VIII metal to Group VIII metal is 0.2 to 0.6.
[0009]
  The second invention of the present invention is,A method of producing a heavy oil base material having a dry sludge content of 0.05% by mass or less and a sulfur content lower than that of a raw material oil by subjecting a heavy oil containing a sulfur compound to a two-stage hydrotreatment, The hydrodesulfurization treatment catalyst is used in the first stage, the pore volume of the pores having a pore diameter of 100 to 300 mm in the second stage is 0.3 to 0.7 cc / g, and the pores having a pore diameter of 1000 to 10,000 mm The volume is 0.1 to 0.4 cc / g, the total pore volume is 0.4 to 1.1 cc / g, and the surface area is 150 to 250 m.2/ G of porous inorganic oxide support having physical properties of periodic table VIAA metal having 2 to 6% by weight and 5 to 15% by weight of a metal having catalytic activity of Group VIII and Group VIII, respectively,AGroup to Group VIII molar ratio is 0.2 to 0.6Bimodal typeProvided is a method for producing a heavy oil base material using a hydrotreating catalyst.
[0010]
  The third invention of the present invention is such that a heavy oil having a dry sludge content exceeding 0.05% by mass is hydrotreated using a hydrotreating catalyst so that the dry sludge content is 0.05% by mass or less. A method for producing a heavy oil base material, wherein the hydrotreating catalyst has a pore volume of pores having a pore diameter of 100 to 300 mm and a pore volume of 0.3 to 0.7 cc / g and a pore diameter of 1000 to 10,000 mm. The pore volume is 0.1 to 0.4 cc / g, the total pore volume is 0.4 to 1.1 cc / g, and the surface area is 150 to 250 m.2/ G of porous inorganic oxide support having physical properties of periodic table VIAA metal having 2 to 6% by weight and 5 to 15% by weight of a metal having catalytic activity of Group VIII and Group VIII, respectively,AGroup to Group VIII molar ratio is 0.2 to 0.6Bimodal typeProvided is a method for producing a heavy oil base material using a hydrotreating catalyst.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the contents of the present invention will be described in detail.
The support used for the catalyst of the first invention of the present invention is a porous inorganic oxide. The carrier is a bimodal type carrier having peaks at two positions of a pore diameter of 100 to 300 mm and a pore diameter of 1000 to 10,000 mm, and the pore volume of the pore having a pore diameter of 100 to 300 mm is 0.3 to 0.00. 7 cc / g, preferably 0.4 to 0.6 cc / g, pore volume of pores having a pore diameter of 1000 to 10000 mm is 0.1 to 0.4 cc / g, preferably 0.2 to 0.3 cc / g The total pore volume is 0.4 to 1.1 cc / g, preferably 0.5 to 1.0 cc / g, and the surface area is 150 to 250 m.2/ G, preferably 160-240 m2/ G have physical properties.
The pore volume of the pores having a pore diameter of 100 to 300 mm is 0.3 to 0.7 cc / g, the pore volume of the pores having a pore diameter of 1000 to 10,000 mm is 0.1 to 0.4 cc / g, and the surface area. 150-250m2When either / g is removed, the dry sludge reduction rate decreases, and it is impossible to produce heavy oil having a dry sludge content of 0.05% by mass or less. The physical properties of the carrier were measured by the mercury pressure method.
[0012]
Examples of the porous inorganic oxide include alumina, silica, titania, zirconia, magnesia, alumina-silica, alumina-boria, alumina-titania, alumina-zirconia, alumina-magnesia, alumina-silica-zirconia, alumina-silica- Examples include various clay minerals such as titania, various zeolites, sepiolite, and montmorillonite.
In the carrier of the present invention, the pore volume of pores having a pore diameter of 100 to 300 mm is 0.3 to 0.7 cc / g, and the pore volume of pores having a pore diameter of 1000 to 10,000 mm is 0.1 to 0.4 cc / g. g, the total pore volume is 0.4 to 1.1 cc / g, and the surface area is 150 to 250 m.2As long as it is a bimodal carrier having physical properties of / g, it can be used without particular limitation. The method for producing the carrier is not particularly limited.
[0013]
  The hydrogenation active metal component supported on the carrier is a periodic table VI.AA metal component having catalytic activity selected from Group metals and Group VIII metals. Periodic Table VIAGroup metals include chromium, molybdenum, and tungsten. Molybdenum is mentioned as a metal preferably used. Group VIII metals include iron, cobalt, nickel, ruthenium, rhodium, palladium and platinum. Preferred metals include cobalt and nickel. Periodic Table VIAThe combination of group metals and group VIII metals is free, but preferably the supported amount of the metal component is periodic table VI.AThe group metal is in the range of 2-6% by mass, preferably 3-5% by mass, and the group VIII metal is in the range of 5-15% by mass, preferably 6-14% by mass. If the loading amount of the metal component is out of this range, the dry sludge reduction rate decreases, and a heavy oil base material having a dry sludge content of 0.05% by mass or less cannot be produced. The VIAGroup VI and Group VIII mixing ratio is VIAMixing is performed so that the molar ratio of the Group VIII metal to the Group VIII metal is 0.2 to 0.6, preferably 0.3 to 0.5. VIAIf the molar ratio of the Group VIII metal to the Group VIII metal is out of this range, the dry sludge reduction rate decreases, and a heavy oil base material having a dry sludge content of 0.05% by mass or less cannot be produced.
[0014]
Examples of the heavy oil used as the raw material oil of the present invention include petroleum distillation residue. As the petroleum distillation residue, specifically, a fraction usually obtained from an atmospheric distillation apparatus having a distillation temperature of 300 ° C. or higher is 70% by mass or more, preferably 90% by mass or more, more preferably 95% by mass. Residue containing at least 70% by mass, preferably 90% by mass or more, more preferably 95% by mass or more of a fraction having a distillation temperature of 400 ° C. or higher, obtained from a vacuum distillation apparatus; Residue oil in which atmospheric distillation residue and vacuum distillation residue are mixed at an arbitrary ratio; sulfur content obtained by hydrotreating these atmospheric distillation residue, vacuum distillation residue or mixture thereof And a product oil with reduced nitrogen content, or a mixture thereof.
In addition, the distillation temperature as used in the field of this invention means the temperature measured based on "6. Vacuum distillation test method" of "Petroleum product-Distillation test method" prescribed | regulated to JISK2254. Hereinafter, the distillation temperature of the petroleum fraction in the present invention means a value measured by the above method.
[0015]
Moreover, as heavy oil used as the raw material oil of the present invention, cracked heavy light oil (heavy cycle oil) or slurry oil obtained from a catalytic cracker (FCC) is used for 100 parts by weight of these petroleum distillation residues. A mixed oil blended with 40 parts by weight or less, preferably 20 parts by weight or less can also be preferably used.
Furthermore, as the heavy oil used as the raw material oil of the present invention, a part of the outlet oil in the two-stage hydrotreating process to be described later is recycled to 100 parts by weight of the petroleum distillation residue and the mixed oil. A mixed oil containing 50 parts by weight or less, preferably 30 parts by weight or less of this recycled oil can also be preferably used.
[0016]
Moreover, the lower limit of the sulfur content of the heavy oil used as the raw material oil in the second invention of the present invention is 1.0% by mass, preferably 2.0% by mass, while the upper limit is 10% by mass, Preferably it is 6.0 mass%. When the sulfur content is less than 1.0% by mass, it is possible to produce a heavy oil base material without requiring a hydrogenation process in a two-stage process as in the second invention of the present invention, and the energy cost Disadvantageous. Moreover, when sulfur content exceeds 10 mass%, the sulfur content of the obtained heavy oil base material will become high, and when used as boiler fuel, it will cause the increase in the amount of sulfur oxides in combustion exhaust gas. Further, in order to further reduce the sulfur content of the obtained heavy oil base material, the construction costs of the reaction tower, peripheral equipment and the like increase rapidly, and a large amount of cutter material is required, which is not preferable.
In addition, the sulfur content in this invention is the sulfur content measured based on "6. Radiation type excitation method" of "Crude oil and petroleum products-sulfur content test method" prescribed | regulated to JISK2541-1992. means. Hereinafter, the sulfur content in the present invention means a value measured by the above method.
[0017]
In the second invention of the present invention, the lower limit of the dry sludge content of the heavy oil used as the raw material oil is 0% by mass, while the upper limit is 5.0% by mass, preferably 1.0% by mass. is there. When the upper limit of dry sludge content exceeds 5.0% by mass, the strainer and valves are blocked in the feedstock supply system in the hydrotreating process, the heat transfer efficiency is reduced by fouling of the heat exchanger and heating furnace, etc. This is not preferable because it may cause the problem.
The dry sludge content in the present invention means the total amount of sediment measured in accordance with “Standard Test Method for Determination of Total Sediment in Residual Fuels” prescribed in ASTM D 4870-92. Hereinafter, the dry sludge content in the present invention means a value measured by this method.
[0018]
The raw material oil in the third invention of the present invention is a heavy oil having a dry sludge content of more than 0.05% by mass, and a sulfur content that is less than that of the second invention.
[0019]
In the second invention of the present invention, the first stage hydrodesulfurization treatment is first performed on the heavy oil which is the raw material oil.
The lower limit of the first stage hydrodesulfurization temperature is 340 ° C., preferably 370 ° C., while the upper limit is 450 ° C., preferably 430 ° C. When the hydrodesulfurization treatment temperature in the first stage is less than 340 ° C., the catalyst activity is not sufficiently exhibited, so that the desulfurization, denitrogenation and decomposition reactions do not proceed to the practical range, while the hydrotreatment temperature is 450 ° C. When the ratio exceeds 1, the coking reaction becomes violent, coke is deposited on the catalyst, the catalytic activity rapidly decreases, and the catalyst life is shortened.
Moreover, conditions other than the temperature in the first stage hydrodesulfurization treatment process are arbitrary.
However, the hydrogen partial pressure at the inlet of the first stage is usually a lower limit of 8.0 MPa, preferably 9.8 MPa, while an upper limit is 25.0 MPa, preferably 19.6 MPa. it can. When the hydrogen partial pressure at the inlet is less than 8.0 MPa, coke formation on the catalyst becomes intense and there is a concern that the catalyst life will be extremely short. On the other hand, when the hydrogen partial pressure exceeds 25.0 MPa, the reaction tower There is a concern that construction costs for equipment, etc. will rise sharply and the utility will be lost economically.
[0020]
Further, the liquid hourly space velocity (LHSV) of the heavy oil, which is the raw material oil in the first stage, is usually 0.05 h.-1, Preferably 0.1h-1On the other hand, the upper limit is 5.0 h-1, Preferably 2.0h-1Can be done in the range of Liquid space velocity (LHSV) is 0.05h-1If it is less than 1, the construction cost of the reaction tower becomes enormous and there is a concern that the practical utility is lost. On the other hand, the liquid space velocity (LHSV) is 5.0 h.-1If it exceeds 1, the catalytic activity is not sufficiently exhibited, and there is a concern that desulfurization, denitrogenation and decomposition reactions will not proceed to the practical range.
[0021]
Further, the hydrogen / oil ratio at the first stage usually has a lower limit of 250 Nm.Three/ MThree, Preferably 600NmThree/ MThreeOn the other hand, the upper limit is 1700 NmThree/ MThree, Preferably 1500 NmThree/ MThreeCan be done in the range of Hydrogen / oil ratio is 250NmThree/ MThreeIf the ratio is less than 1, the coke formation on the catalyst becomes violent and the catalyst life may become extremely short. On the other hand, the hydrogen / oil ratio is 1700 Nm.Three/ MThreeIf it exceeds 1, the construction cost of the reaction tower, peripheral equipment, etc. will rise rapidly, and there is a concern that the practical utility will be lost economically.
[0022]
Further, the operation of the hydrodesulfurization treatment process in the first stage can be performed in a downward flow or an upward flow of oil and gas in parallel, and can be performed in a countercurrent flow of oil and gas. Further, the reaction tower used by filling the catalyst as the first-stage hydrodesulfurization treatment process may be composed of either a single reaction tower or a plurality of continuous reaction towers. Furthermore, the inside of the reaction tower may be composed of either a single catalyst bed or a plurality of catalyst beds.
Furthermore, in order to adjust the reaction temperature at the inlet of the subsequent reaction tower or catalyst bed between the reaction towers or between the catalyst beds in the hydrodesulfurization treatment process of the first stage, gas, liquid or liquid and gas It is also possible to inject the mixture.
The gas here is usually hydrogen; carbon dioxide having 1 to 6 carbon atoms such as methane, ethane, propane, butane, pentane, and hexane, and mixtures thereof, which can be present as a gas at the temperature and pressure of injection. Hydrogen; or a mixture of hydrogen and these hydrocarbons is preferably used, but may contain other substances that can exist as a gas at the temperature and pressure of injection, such as hydrogen sulfide, ammonia, nitrogen, and the like. In addition, the liquid here is usually, for example, petroleum distillates such as kerosene, straight-run gas oil, and vacuum gas oil; petroleum distillation residues; hydrotreated oils such as petroleum distillates and petroleum distillation residues; Hydrocarbons that can exist as liquids at the injection temperature and pressure are preferably used, such as pyrolysis oils such as petroleum products and petroleum distillation residues; catalytic cracking oils such as petroleum distillates and petroleum distillation residues; or mixtures thereof. However, it is more preferable to recycle and use a part of the outlet oil in the second-stage hydrotreating process described later.
[0023]
In the first stage, when gas or liquid is injected between the reaction towers or between the catalyst beds, the injection amount thereof is arbitrary, but usually when the gas is injected, the injection amount is 1700 Nm in gas / oil ratio.Three/ MThreeIt can be performed within the following range. When liquid is injected, the injection amount is 1 m in liquid / oil ratio.Three/ MThreeIt can be performed within the following range.
When a plurality of reaction towers or catalyst beds are used in the first stage hydrodesulfurization treatment step, the first stage hydrodesulfurization treatment temperature in the present invention is the gas between the reaction towers or between the catalyst beds. Average the inlet and outlet temperatures of each catalyst bed for all catalyst beds in the first stage, with or without injection of a liquid or a mixture of liquid and gas, and regardless of the number of reaction towers The catalyst weight average temperature (WABT) is obtained by multiplying the obtained temperature by the catalyst charge weight ratio of each catalyst bed.
[0024]
Any conventionally known hydrotreating catalyst can be used as the hydrotreating catalyst in the first stage hydrodesulfurization treatment step. Specifically, for example, alumina, silica, titania, zirconia, magnesia, alumina-silica, alumina-boria, alumina-titania, alumina-zirconia, alumina-magnesia, alumina-silica-zirconia, alumina-silica-titania, various zeolites Further, a porous inorganic oxide such as various clay minerals such as sepiolite and montmorillonite as a carrier and a hydrogenation active metal supported thereon can be preferably used. As the supported metal, usually, at least one hydrogenation active metal species selected from metals of Group VIA, VA, VB and Group VIII of the periodic table is preferably used, and in particular, cobalt, molybdenum and nickel are each independently used. Alternatively, a catalyst in which two or three kinds of cobalt, molybdenum and nickel are combined and supported on a porous inorganic oxide is more preferably used. The hydrotreating catalyst used in the first stage hydrodesulfurization treatment step of the present invention can sufficiently achieve its purpose even with a commercially available hydrotreating catalyst, and the present invention is not limited at all by the type of catalyst. It is not something.
[0025]
The dry sludge content of the hydrotreated oil obtained in the first-stage hydrodesulfurization process described above usually increases from the dry sludge content of the feedstock oil or at least exceeds 0.05% by weight. Generally, the value is usually 0.2% by mass or more.
In addition, this hydrodesulfurization treatment step in the first stage usually achieves substantially most of the desulfurization reaction, denitrogenation reaction and decomposition reaction of the raw material heavy oil.
Although the sulfur content of the hydrotreated oil obtained in the first stage hydrodesulfurization process is not defined at all, the lower limit is usually 0.01% by mass, preferably 0.1% by mass. On the other hand, the upper limit is generally 2.0% by mass, preferably 1.0% by mass.
Further, the nitrogen content of the hydrotreated oil obtained in the first hydrodesulfurization process is not specified at all, but the lower limit is usually 0.01% by mass, preferably 0.1% by mass. On the other hand, the upper limit is generally 1.0% by mass, preferably 0.5% by mass.
In addition, the nitrogen content in this invention means the nitrogen content measured based on "7. Chemiluminescence method" of "Crude oil and petroleum products-nitrogen content test method" prescribed | regulated to JISK2609-1990. To do. Hereinafter, the nitrogen content in the present invention means a value measured by the above method.
[0026]
In the present invention, the second-stage hydrotreatment is then performed on the hydrotreated oil that has been subjected to the first-stage hydrodesulfurization treatment.
The lower limit of this second stage hydrotreatment temperature is 200 ° C., preferably 250 ° C., while the upper limit is 440 ° C., preferably 400 ° C. When the hydrotreating temperature in the second stage is less than 200 ° C., the catalytic activity is not sufficiently exhibited, so the sludge hydrogenation reaction does not proceed to the practical range, while the hydrotreating temperature exceeds 440 ° C. In this case, since the hydrogenation of the sludge does not proceed and the sludge is generated on the contrary, each is not preferable.
Furthermore, in the present invention, in the second stage hydrogenation process, it is important to set the hydrotreatment temperature to a value lower than the first stage hydrotreatment temperature. The hydrotreating temperature in the second stage hydrotreating step can be set to any temperature within the above temperature range as long as it is lower than the hydrotreating temperature in the first stage. It is desirable that the difference between the hydrotreating temperatures in both stages is preferably 10 ° C. or higher, more preferably 20 ° C. or higher. In the present invention, when the second stage hydrotreating temperature is the same as the first stage hydrotreating temperature or higher than the first stage hydrotreating temperature, the sludge is not hydrogenated and the sludge is reversed. This is not preferable because a minute is generated.
[0027]
The conditions other than the temperature in the second stage hydrotreating process are arbitrary.
However, the hydrogen partial pressure at the inlet of the second stage is usually a lower limit value of 1.0 MPa, while an upper limit value of 25.0 MPa, preferably 19.6 MPa. When the hydrogen partial pressure at the inlet is less than 1.0 MPa, the catalytic activity is not sufficiently exhibited, and there is a concern that the hydrogenation reaction of the sludge does not proceed to a practical range, while the hydrogen partial pressure is 25.0 MPa. If it exceeds, the construction cost of the reaction tower and peripheral equipment will rise rapidly, and there is a concern that the utility will be lost economically.
Further, the liquid space velocity (LHSV) of the feed oil in the second stage (hydrotreated oil that has undergone the hydrodesulfurization process in the first stage) is usually lower limit of 0.1 h.-1, Preferably 0.2h-1On the other hand, the upper limit is 10h-1, Preferably 4.0h-1Can be done in the range of Liquid space velocity (LHSV) is 0.1h-1If it is less than 1, the construction cost of the reaction tower becomes enormous and there is a concern that the practical utility is lost. On the other hand, the liquid space velocity (LHSV) is 10 h.-1If it exceeds 1, the catalytic activity is not sufficiently exhibited, and there is a concern that the hydrogenation reaction of the sludge does not proceed to the practical range.
In addition, the hydrogen / oil ratio at the second stage usually has a lower limit of 250 Nm.Three/ MThree, Preferably 600NmThree/ MThreeOn the other hand, the upper limit is 1700 NmThree/ MThree, Preferably 1500 NmThree/ MThreeCan be done in the range of Hydrogen / oil ratio is 250NmThree/ MThreeIf the ratio is less than 1, the coke formation on the catalyst becomes violent and the catalyst life may become extremely short. On the other hand, the hydrogen / oil ratio is 1700 Nm.Three/ MThreeIf it exceeds 1, the construction cost of the reaction tower, peripheral equipment, etc. will rise rapidly, and there is a concern that the practical utility will be lost economically.
[0028]
Further, the operation of the hydrotreating process in the second stage can be performed in the downward flow or the upward flow of oil and gas in parallel, and can be performed in the countercurrent of oil and gas. Further, the reaction tower used by filling the catalyst as the second-stage hydrotreating process may be composed of either a single reaction tower or a plurality of continuous reaction towers. Furthermore, the inside of the reaction tower may be composed of either a single catalyst bed or a plurality of catalyst beds.
Still further, gas, liquid, or a mixture of liquid and gas is used for adjusting the reaction temperature at the inlet of the subsequent reaction tower or catalyst bed between the reaction towers or between the catalyst beds in the second stage hydrotreating process. It is also possible to inject.
The gas here is usually hydrogen; carbon dioxide having 1 to 6 carbon atoms such as methane, ethane, propane, butane, pentane, and hexane, and mixtures thereof, which can be present as a gas at the temperature and pressure of injection. Hydrogen; or a mixture of hydrogen and these hydrocarbons is preferably used, but may contain other substances that can exist as a gas at the temperature and pressure of injection, such as hydrogen sulfide, ammonia, nitrogen, and the like. In addition, the liquid here is usually, for example, petroleum distillates such as kerosene, straight-run gas oil, and vacuum gas oil; petroleum distillation residues; hydrotreated oils such as petroleum distillates and petroleum distillation residues; Hydrocarbons that can exist as liquids at the injection temperature and pressure are preferably used, such as pyrolysis oils such as petroleum products and petroleum distillation residues; catalytic cracking oils such as petroleum distillates and petroleum distillation residues; or mixtures thereof. However, it is more preferable to recycle and use a part of the outlet oil in the second stage hydrotreating process.
[0029]
In the second stage, when gas or liquid is injected between the reaction towers or between the catalyst beds, the injection amount thereof is arbitrary, but usually when the gas is injected, the injection amount is 1700 Nm in a gas / oil ratio.Three/ MThreeIt can be performed within the following range. When liquid is injected, the injection amount is 1 m in liquid / oil ratio.Three/ MThreeIt can be performed within the following range.
[0030]
  When a plurality of reaction towers or catalyst beds are used in the second-stage hydrotreating process, the second-stage hydrotreating temperature in the present invention is the gas or liquid between the reaction towers or between the catalyst beds. Or the average temperature of the inlet and outlet temperatures of each catalyst bed for all catalyst beds in the second stage, regardless of whether or not a liquid and gas mixture is injected, and regardless of the number of reaction towers Is defined by the catalyst weight average temperature (WABT) added by multiplying by the catalyst charge weight ratio of each catalyst bed. The hydrotreating catalyst in the second-stage hydrotreating step has a pore volume of 0.3 to 0.7 cc / g and a pore diameter of 1000 to 10,000 liters. The pore volume is 0.1 to 0.4 cc / g, the total pore volume is 0.4 to 1.1 cc / g, and the surface area is 150 to 250 m.2/ G, and periodic table VI on the inorganic oxide supportAA metal having 2 to 6% by weight and 5 to 15% by weight of a metal having catalytic activity of Group VIII and Group VIII, respectively,AA group characterized in that the molar ratio of the Group VIII metal to the Group VIII metal is 0.2 to 0.6. In the present invention, the first-stage hydrodesulfurization treatment and the second-stage hydrogenation treatment may be performed in one reaction column, or performed using two or more separated reaction columns. May be. The reaction tower may be divided into a plurality of catalyst beds.
[0031]
In the second invention of the present invention, the method for lowering the hydrotreating temperature in the second stage from the hydrotreating temperature in the first stage is not particularly limited, and any method can be adopted. Specifically, a conventionally known method, for example, a method of injecting a low-temperature gas, a liquid, or both a gas and a liquid, or a method of heat exchange with a low-temperature fluid by a heat exchanger can be used.
The gas referred to here is usually hydrogen; paraffinic hydrocarbons having 1 to 6 carbon atoms such as methane, ethane, propane, butane, pentane, and hexane, and mixtures thereof can exist as a gas at the injection temperature and pressure. Hydrocarbons; or mixtures of hydrogen and these hydrocarbons are preferably used, but may contain other substances that can exist as gases at the temperature and pressure of injection, such as hydrogen sulfide, ammonia, nitrogen, and the like. In addition, the liquid here is usually, for example, petroleum distillates such as kerosene, straight-run gas oil, and vacuum gas oil; petroleum distillation residues; hydrotreated oils such as petroleum distillates and petroleum distillation residues; Hydrocarbons that can exist as liquids at the injection temperature and pressure are preferably used, such as pyrolysis oils such as petroleum products and petroleum distillation residues; catalytic cracking oils such as petroleum distillates and petroleum distillation residues; or mixtures thereof. However, it is more preferable to recycle and use a part of the outlet oil in the second stage hydrotreating process.
[0032]
Further, the first stage hydrodesulfurization treatment and the second stage hydrotreatment in the second invention of the present invention are not limited to the continuous operation, and the first stage operation and the second stage operation are individually performed. May be implemented. In addition, when performing operation of both steps separately, the conditions between the first step and the second step are not particularly limited.
In the second invention of the present invention, the dry sludge content is finally 0.05% by mass or less, preferably 0.04% by mass or less by the above two-stage hydrotreatment, and the sulfur content is A heavy oil base material lower than the raw material heavy oil is obtained. The sulfur content of the resulting heavy oil base material may be any value as long as it is lower than the sulfur content of the heavy oil of the feedstock, but usually the achievement rate of the desulfurization reaction of the feedstock oil with respect to the heavy oil is high. Preferably it is 80% or more, more preferably 90% or more.
In addition, the achievement rate of the desulfurization reaction in the present invention is [(sulfur content in raw material heavy oil (mass%) − sulfur content in obtained heavy oil base material (mass%)) / sulfur content in raw material heavy oil] (Mass%)] means a value represented by × 100 (%). Hereinafter, the achievement rate of the desulfurization reaction in the present invention means a value calculated by this formula.
[0033]
Moreover, although the nitrogen content of the obtained heavy oil base material is not specified at all, generally, the achievement rate of the denitrification reaction with respect to the raw material oil is generally 10% or more, preferably 30% or more.
In addition, the achievement rate of the denitrogenation reaction in the present invention is [(nitrogen content in raw material heavy oil (mass%) − nitrogen content in obtained heavy oil base material (mass%)) / nitrogen in raw material heavy oil] Min (mass%)] means a value represented by × 100 (%). Hereinafter, the achievement rate of the denitrification reaction in the present invention means a value calculated by this formula.
[0034]
Further, the overall decomposition reaction achievement rate by the two-stage hydrotreating in the present invention is arbitrary, but it is generally 20% or more, preferably 40% or more.
The achievement rate of the decomposition reaction in the present invention is [(fraction of distillation temperature in raw material heavy oil of 565 ° C. or higher (mass%) − fraction of distillation temperature in the obtained heavy oil base material of 565 ° C. or higher (mass) %)) / Distillation temperature in raw material heavy oil of 565 ° C. or higher (mass%)] means a value represented by 100 (%). Hereinafter, the achievement rate of the decomposition reaction in the present invention means a value calculated by this formula.
[0035]
In the second invention of the present invention, the desulfurization reaction achievement rate in the first-stage hydrodesulfurization treatment is usually the desulfurization reaction achievement rate in the entire hydrotreatment including the second-stage hydrotreatment process. It is desirable to occupy 80% or more, preferably 90% or more, more preferably 95% or more.
Further, in the second invention of the present invention, the denitrification reaction achievement rate in the first stage hydrodesulfurization treatment is usually equal to the denitrification reaction in the entire hydrotreatment including the second stage hydrotreatment process. It is desirable to occupy 50% or more of the achievement rate, preferably 80% or more, more preferably 90% or more.
Furthermore, in the second invention of the present invention, the cracking reaction achievement rate in the first-stage hydrodesulfurization process is usually achieved by the entire hydrotreatment including the second-stage hydrotreating process. It is desirable to occupy 75% or more of the rate, preferably 85% or more, more preferably 90% or more.
[0036]
  The third invention of the present invention is a heavy oil base having a dry sludge content of 0.05% by mass or less by hydrotreating a heavy oil having a dry sludge content exceeding 0.05% by mass using a hydrotreating catalyst. A method for producing a material, wherein the hydrotreating catalyst has a pore volume of pores having a pore diameter of 100 to 300 mm and a pore volume of 0.3 to 0.7 cc / g and a pore diameter of 1000 to 10,000 mm. The volume is 0.1 to 0.4 cc / g, the total pore volume is 0.4 to 1.1 cc / g, and the surface area is 150 to 250 m.2/ G of porous inorganic oxide support having physical properties of periodic table VIAA metal having 2 to 6% by weight and 5 to 15% by weight of a metal having catalytic activity of Group VIII and Group VIII, respectively,AA method for producing a heavy oil base material, characterized in that a hydrotreatment catalyst having a molar ratio of Group VIII to Group VIII metal of 0.2 to 0.6 is used.
[0037]
The lower limit of the hydrotreatment temperature is 200 ° C., preferably 250 ° C., while the upper limit is 440 ° C., preferably 400 ° C. When the hydrotreating temperature is less than 200 ° C, the catalytic activity is not sufficiently exerted, so the sludge hydrotreating reaction does not proceed to the practical range. On the other hand, when the hydrotreating temperature exceeds 440 ° C, the sludge min Since hydrogenation does not proceed and sludge is generated on the contrary, each is not preferable.
[0038]
The inlet hydrogen partial pressure usually has a lower limit of 1.0 MPa, while an upper limit of 25.0 MPa, preferably 19.6 MPa. When the hydrogen partial pressure at the inlet is less than 1.0 MPa, the catalytic activity is not sufficiently exhibited, and there is a concern that the hydrogenation reaction of the sludge does not proceed to a practical range, while the hydrogen partial pressure is 25.0 MPa. If it exceeds, the construction cost of the reaction tower and peripheral equipment will rise rapidly, and there is a concern that the utility will be lost economically.
The lower limit of the liquid space velocity (LHSV) of the feedstock oil is usually 0.1 h.-1, Preferably 0.2h-1On the other hand, the upper limit is 10h-1, Preferably 4.0h-1Can be done in the range of Liquid space velocity (LHSV) is 0.1h-1If it is less than 1, the construction cost of the reaction tower becomes enormous and there is a concern that the practical utility is lost. On the other hand, the liquid space velocity (LHSV) is 10 h.-1If it exceeds 1, the catalytic activity is not sufficiently exhibited, and there is a concern that the hydrogenation reaction of the sludge does not proceed to the practical range.
In addition, the lower limit of the hydrogen / oil ratio at the inlet is usually 250 Nm.Three/ MThree, Preferably 600NmThree/ MThreeOn the other hand, the upper limit is 1700 NmThree/ MThree, Preferably 1500 NmThree/ MThreeCan be done in the range of Hydrogen / oil ratio is 250NmThree/ MThreeIf the ratio is less than 1, the coke formation on the catalyst becomes intense and the catalyst life may become extremely short. On the other hand, the hydrogen / oil ratio is 1700 Nm.Three/ MThreeIf it exceeds 1, the construction cost of the reaction tower, peripheral equipment, etc. will rise rapidly, and there is a concern that the practical utility will be lost economically.
[0039]
In addition, the operation of the hydrotreating process can be performed with oil and gas in parallel in a downward flow or upward flow, and oil and gas can also be performed in countercurrent. In addition, the reaction tower used by filling the catalyst as the hydrotreating step may be composed of either a single reaction tower or a plurality of continuous reaction towers. Furthermore, the inside of the reaction tower may be composed of either a single catalyst bed or a plurality of catalyst beds.
Still further, gas, liquid, or a mixture of liquid and gas is injected between the reaction towers or between the catalyst beds in the hydrotreating process for the purpose of adjusting the reaction temperature at the inlet of the subsequent reaction tower or catalyst bed. Is also possible.
The gas here is usually hydrogen; carbon dioxide having 1 to 6 carbon atoms such as methane, ethane, propane, butane, pentane, and hexane, and mixtures thereof, which can be present as a gas at the temperature and pressure of injection. Hydrogen; or a mixture of hydrogen and these hydrocarbons is preferably used, but may contain other substances that can exist as a gas at the temperature and pressure of injection, such as hydrogen sulfide, ammonia, nitrogen, and the like. In addition, the liquid here is usually, for example, petroleum distillates such as kerosene, straight-run gas oil, and vacuum gas oil; petroleum distillation residues; hydrotreated oils such as petroleum distillates and petroleum distillation residues; Hydrocarbons that can exist as liquids at the injection temperature and pressure are preferably used, such as pyrolysis oils such as petroleum products and petroleum distillation residues; catalytic cracking oils such as petroleum distillates and petroleum distillation residues; or mixtures thereof. It is done.
[0040]
  In the case of injecting gas or liquid between the reaction towers or between the catalyst beds, the injection amount thereof is arbitrary, but in general, when the gas is injected, the injection amount is 1700 Nm in gas / oil ratio.Three/ MThreeIt can be performed within the following range. When liquid is injected, the injection amount is 1 m in liquid / oil ratio.Three/ MThreeIt can be performed within the following range. In the case of using a plurality of reaction towers or catalyst beds in the hydrotreating step, the hydrotreating temperature is determined depending on whether gas, liquid, or a mixture of liquid and gas is injected between the reaction towers or between the catalyst beds. Regardless of the number of reaction towers, regardless of the number of reaction towers, the catalyst is added to all catalyst beds by multiplying the average temperature of the inlet and outlet temperatures of each catalyst bed by the catalyst packing weight ratio of each catalyst bed. Defined by weight average temperature (WABT). Further, as a hydrotreating catalyst in the hydrotreating step, the pore volume of pores having a pore diameter of 100 to 300 Å is 0.3 to 0.7 cc / g, and the pore volume of pores having a pore diameter of 1000 to 10,000 Å is used. 0.1 to 0.4 cc / g, total pore volume is 0.4 to 1.1 cc / g, and surface area is 150 to 250 m.2/ G of porous inorganic oxide support having physical properties of periodic table VIAA metal having 2 to 6% by weight and 5 to 15% by weight of a metal having catalytic activity of group VIII and group VIII,AA hydrotreating catalyst having a molar ratio of Group VIII to Group VIII metal of 0.2 to 0.6 is used.
[0041]
The heavy oil base obtained by the present invention can be used alone as product heavy oil.
Specifically, for example, petroleum distillation residue; kerosene; straight-run gas oil; vacuum gas oil; light oil and residue obtained by pyrolyzing petroleum distillation residue and hydrotreated oils thereof; catalytic cracking device Other heavy oils such as light light oil (light cycle oil), heavy light oil (heavy cycle oil), and slurry oil can be blended as appropriate to obtain product heavy oil.
[0042]
【Example】
EXAMPLES Next, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited at all by these examples.
[0043]
Example 1
NiO 3% by mass and MoO on alumina supportThree A commercially available hydrodesulfurization catalyst containing 11% by mass was added to a stainless steel reaction tower for hydrotreatment in the first stage, the pore volume of pores having a pore diameter of 100 to 300 mm was 0.6 cc / g, and the pore diameter was 1000 to 10,000 kg. Pore volume of 0.1 cc / g, total pore volume of 0.7 cc / g, surface area of 160 m2NiO 2% by mass and MoO on an alumina carrier having physical properties ofThree After the hydrotreating catalyst carrying 8% by mass was loaded into the second stage hydrotreating stainless steel reaction tower, the catalyst was presulfided. Subsequently, the vacuum distillation residue oil having the properties shown in Table 1 was used as a raw material oil, and hydrogenation was continuously performed in the reaction tower under the reaction conditions shown in Table 2.
The properties of the hydrotreated oil obtained from the reaction tower outlet are also shown in Table 2.
[0044]
Example 2
As shown in Table 3, the feed oil had a dry sludge content of 0.1% by mass or more, and the hydrogenation treatment was performed under the same reaction conditions as in Example 1 except that the first stage was bypassed. Is shown in Table 4.
[0045]
Comparative Example 1
In order to clarify the effect of the bimodal catalyst having two types of pore distribution peaks of the present invention, the hydrotreating catalyst includes the catalyst used in the second stage in Example 1, the material of the support, and the metal species. The amount is the same, but the carrier has a pore size of 100 mm and a surface area of 160 m.2The hydrogenation treatment was carried out under the same conditions as in Example 1 except that a catalyst of / g was used, and the results are also shown in Table 2.
[0046]
Comparative Example 2
In order to clarify the effect of the bimodal catalyst of the present invention when the raw oil containing 0.1% by mass or more of dry sludge is directly treated in the second stage, the hydrotreating catalyst is the same as that in Example 2. The catalyst used in the two steps is the same as the carrier material, metal species and amount, but the pore diameter of the carrier is 100 mm and the surface area is 160 m.2The hydrogenation treatment was carried out under the same conditions as in Example 2 except that a catalyst of / g was used, and the results are also shown in Table 4.
[0047]
[Table 1]
Figure 0004567877
[0048]
[Table 2]
Figure 0004567877
[0049]
[Table 3]
Figure 0004567877
[0050]
[Table 4]
Figure 0004567877
[0051]
As apparent from the results of Tables 2 and 4, according to the method of the present invention, the pore volume of pores having a pore diameter of 100 to 300 mm at a relatively low temperature is 0.6 cc / g, and the pore diameter is 1000 to 10,000 mm. By contacting with a hydrotreating catalyst having a pore volume of 0.1 cc / g, it is possible to obtain a heavy oil base material having a dry sludge content of 0.05% by mass or less.
On the other hand, the pore diameter is 100mm and the surface area is 160m2In Comparative Example 1 and Comparative Example 2 in which / g is used, the dry sludge content is 0.20% by mass, which is very high compared to Examples 1 and 2, and is inappropriate as a heavy oil base material.
[0052]
【The invention's effect】
As described above, a heavy oil base material having a dry sludge content of 0.05% by mass or less is obtained by contacting the hydrotreating catalyst of the present invention with a feed oil having a dry sludge content of more than 0.05% by mass. be able to. For this reason, a heavy oil base material containing a heavy oil having a dry sludge content exceeding 0.05% by mass, such as petroleum distillation residue oil having a dry sludge content exceeding 0.05% by mass, which is unsuitable as a heavy oil base material. It can be used effectively as a raw material.

Claims (2)

硫黄化合物を含有する重質油を二段階水素化処理することでドライスラッジ含有量が0.05質量%以下で硫黄含有量が原料油より低められた重油基材を製造する方法であって、第1段階で水素化脱硫処理触媒を用い、第2段階で細孔径100〜300Åの細孔の細孔容積が0.3〜0.7cc/g、細孔径1000〜10000Åの細孔の細孔容積が0.1〜0.4cc/gであり、全細孔容積が0.4〜1.1cc/g、表面積が150〜250m2/gの物性を有する多孔性無機酸化物担体に周期律表第VI族と第VIII族の触媒活性を有する金属をそれぞれ2〜6質量%および5〜15質量%担持し、第VI族と第VIII族金属のモル比が0.2〜0.6であるバイモーダル型水素化処理触媒を用いることを特徴とする重油基材の製造方法。A method of producing a heavy oil base material having a dry sludge content of 0.05% by mass or less and a sulfur content lower than that of a raw material oil by subjecting a heavy oil containing a sulfur compound to a two-stage hydrotreatment, The hydrodesulfurization treatment catalyst is used in the first stage, the pore volume of the pores having a pore diameter of 100 to 300 mm in the second stage is 0.3 to 0.7 cc / g, and the pores having a pore diameter of 1000 to 10,000 mm A porous inorganic oxide support having a volume of 0.1 to 0.4 cc / g, a total pore volume of 0.4 to 1.1 cc / g, and a surface area of 150 to 250 m 2 / g is periodically formed. Table No. VI a group and a metal having a group VIII catalytic activity and 2-6% by weight and 5 to 15 wt% on each molar ratio of the VI a group and group VIII metal is from 0.2 to 0. method for producing a fuel oil base material, which comprises using a a 6 bimodal type hydrotreating catalyst ドライスラッジ含有量が0.05質量%を超える重質油を水素化処理触媒を用い水素化処理することでドライスラッジ含有量が0.05質量%以下の重油基材を製造する方法であって、該水素化処理触媒として、細孔径100〜300Åの細孔の細孔容積が0.3〜0.7cc/g、細孔径1000〜10000Åの細孔の細孔容積が0.1〜0.4cc/gであり、全細孔容積が0.4〜1.1cc/g、表面積が150〜250m2/gの物性を有する多孔性無機酸化物担体に周期律表第VI族と第VIII族の触媒活性を有する金属をそれぞれ2〜6質量%および5〜15質量%担持し、第VI族と第VIII族金属のモル比が0.2〜0.6であるバイモーダル型水素化処理触媒を用いることを特徴とする重油基材の製造方法。A method for producing a heavy oil base material having a dry sludge content of 0.05% by mass or less by hydrotreating heavy oil having a dry sludge content exceeding 0.05% by mass using a hydrotreating catalyst. As the hydrotreating catalyst, the pore volume of pores having a pore diameter of 100 to 300 mm is 0.3 to 0.7 cc / g, and the pore volume of pores having a pore diameter of 1000 to 10,000 mm is 0.1 to 0.00. 4 cc / g, and a total pore volume of 0.4~1.1Cc / g, the VI a periodic table on a porous inorganic oxide support having the physical properties of the surface area of 150 to 250 2 / g and VIII, a metal having a catalytic activity of the group were 2-6% by weight and carrying 5-15% by weight, respectively, bimodal type hydrogenated molar ratio of the VI a group and group VIII metal is 0.2 to 0.6 A method for producing a heavy oil base material, characterized in that a treatment catalyst is used.
JP2000382695A 2000-12-15 2000-12-15 Heavy oil hydrotreating catalyst and method for producing heavy oil base Expired - Fee Related JP4567877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000382695A JP4567877B2 (en) 2000-12-15 2000-12-15 Heavy oil hydrotreating catalyst and method for producing heavy oil base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000382695A JP4567877B2 (en) 2000-12-15 2000-12-15 Heavy oil hydrotreating catalyst and method for producing heavy oil base

Publications (2)

Publication Number Publication Date
JP2002177796A JP2002177796A (en) 2002-06-25
JP4567877B2 true JP4567877B2 (en) 2010-10-20

Family

ID=18850479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000382695A Expired - Fee Related JP4567877B2 (en) 2000-12-15 2000-12-15 Heavy oil hydrotreating catalyst and method for producing heavy oil base

Country Status (1)

Country Link
JP (1) JP4567877B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4822705B2 (en) * 2004-12-24 2011-11-24 日揮触媒化成株式会社 Heavy hydrocarbon oil hydrotreating catalyst composition and method for producing the same
WO2007092367A2 (en) * 2006-02-03 2007-08-16 Saint-Gobain Ceramics & Plastics, Inc. Articles comprising tetragonal zirconia and methods of making the same
EA023427B1 (en) * 2008-09-18 2016-06-30 Шеврон Ю.Эс.Эй. Инк. Process for hydrocracking of a heavy oil feedstock
CN103769147B (en) * 2012-10-24 2016-03-02 中国石油化工股份有限公司 A kind of preparation method of hydrogenation catalyst
CN117046510B (en) * 2023-10-11 2024-01-05 煜安特(山东)环保科技有限公司 Fatlute pyrolysis catalyst and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000210565A (en) * 1999-01-26 2000-08-02 Nippon Kecchen Kk Catalyst for hydrogenation and hydrogenation method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399259A (en) * 1992-04-20 1995-03-21 Texaco Inc. Hydroconversion process employing catalyst with specified pore size distribution
JPH08231965A (en) * 1994-12-27 1996-09-10 Catalysts & Chem Ind Co Ltd Hydrogenation treatment of heavy hydrocarbon oil
JPH0959652A (en) * 1995-08-21 1997-03-04 Nippon Oil Co Ltd Production of fuel oil base
JP3582803B2 (en) * 1995-08-21 2004-10-27 新日本石油株式会社 Manufacturing method of heavy oil base
JPH11128744A (en) * 1997-10-24 1999-05-18 Japan Energy Corp Hydrogenation processing catalyst and preparation thereof
JP2000000470A (en) * 1998-06-15 2000-01-07 Idemitsu Kosan Co Ltd Hydrogenation catalyst and method for hydrogenating heavy oil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000210565A (en) * 1999-01-26 2000-08-02 Nippon Kecchen Kk Catalyst for hydrogenation and hydrogenation method

Also Published As

Publication number Publication date
JP2002177796A (en) 2002-06-25

Similar Documents

Publication Publication Date Title
Kressmann et al. Recent developments in fixed-bed catalytic residue upgrading
US7507325B2 (en) Process for converting heavy petroleum fractions for producing a catalytic cracking feedstock and middle distillates with a low sulfur content
US10144882B2 (en) Hydroprocessing of heavy hydrocarbon feeds in liquid-full reactors
AU2013296947B2 (en) Residue hydrocracking
AU2012350179A1 (en) Method for the hydroconversion of petroleum feedstocks in fixed beds for the production of fuel oils having a low sulphur content
US20150027924A1 (en) Staged solvent assisted hydroprocessing and resid hydroconversion
JP2001207177A (en) Method for reducing content of sulfur compound and polycyclic aromatic hydrocarbon in hydrocarbon feed
US10005971B2 (en) Gas oil hydroprocess
CN108138057B (en) Integrated ebullated bed hydroprocessing, fixed bed hydroprocessing and coking process for conversion of whole crude oil to hydrotreated distillates and petroleum green coke
CN102465023B (en) Hydrogenation modification method for coking gasoline and diesel distillates
CN103773450B (en) A kind of method for hydrogen cracking processing inferior raw material
JPH0959652A (en) Production of fuel oil base
CA2899196C (en) Fixed bed hydrovisbreaking of heavy hydrocarbon oils
CN101942331B (en) Gasoline and diesel oil combined hydrogenation method
JP4567877B2 (en) Heavy oil hydrotreating catalyst and method for producing heavy oil base
CN103119133A (en) Two-stage hydroprocessing apparatus and process with common fractionation
CN103059934A (en) Hydrogenation, modification and pour point depression method by consideration of product quality of diesel oil
JPWO2004078886A1 (en) Hydrotreating process for diesel oil fraction
JP3608095B2 (en) Method for producing heavy oil base
JP5439245B2 (en) Hydrorefining method for diesel oil fraction
JP2002146364A (en) Method for producing heavy oil base
JP3582803B2 (en) Manufacturing method of heavy oil base
CN110776953B (en) Process for treating heavy hydrocarbon feedstock comprising fixed bed hydroprocessing, two deasphalting operations and hydrocracking of bitumen
JP4216624B2 (en) Method for producing deep desulfurized diesel oil
JPH05112785A (en) Treatment of heavy hydrocarbon oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100806

R150 Certificate of patent or registration of utility model

Ref document number: 4567877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees