JP4564247B2 - Fuel cell power generator and pressure adjustment method - Google Patents

Fuel cell power generator and pressure adjustment method Download PDF

Info

Publication number
JP4564247B2
JP4564247B2 JP2003304708A JP2003304708A JP4564247B2 JP 4564247 B2 JP4564247 B2 JP 4564247B2 JP 2003304708 A JP2003304708 A JP 2003304708A JP 2003304708 A JP2003304708 A JP 2003304708A JP 4564247 B2 JP4564247 B2 JP 4564247B2
Authority
JP
Japan
Prior art keywords
gas
cooling water
radiator
pressure
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003304708A
Other languages
Japanese (ja)
Other versions
JP2005078831A (en
Inventor
敏勝 片桐
賢 中村
知久 神山
光晴 今関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003304708A priority Critical patent/JP4564247B2/en
Publication of JP2005078831A publication Critical patent/JP2005078831A/en
Application granted granted Critical
Publication of JP4564247B2 publication Critical patent/JP4564247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、冷却水と、酸素または水素との圧力差を調整するための燃料電池発電装置および圧力調整方法に関するものである。   The present invention relates to a fuel cell power generator and a pressure adjusting method for adjusting a pressure difference between cooling water and oxygen or hydrogen.

一般に、固体高分子電解質膜を挟んでアノード側電極とカソード側電極とを対設したセル(単セル)を、良好な導電性を有する金属やカーボン製のセパレータにより挟持して複数積層することにより構成された燃料電池が知られている。このような積層型の燃料電池においては、燃料電池内部を冷却するための冷却水と、燃料電池に供給する酸素または水素との圧力差が所定の範囲内に収まっていないと、燃料電池を構成する膜に過大な圧力が加わり、その寿命が短くなる可能性があった。   In general, by stacking a plurality of cells (single cells) in which an anode side electrode and a cathode side electrode are opposed to each other with a solid polymer electrolyte membrane sandwiched between separators made of metal or carbon having good conductivity Constructed fuel cells are known. In such a stacked fuel cell, if the pressure difference between the cooling water for cooling the inside of the fuel cell and the oxygen or hydrogen supplied to the fuel cell is not within a predetermined range, the fuel cell is configured. Excessive pressure was applied to the film, which could shorten its life.

このような問題に対し、従来、冷却水が循環する循環ラインにバランサ容器を設け、このバランサ容器内に伸縮自在なベローズを設け、このベローズを燃料電池へ供給する空気の圧力により伸縮させることで、冷却水と空気との圧力を調整する圧力バランサがある(特許文献1参照)。また、これとは違うタイプの圧力バランサとして、図4に示すように、冷却水が供給されるバランサ容器BBの上部に、空気が通るカソードガスラインGL(または水素が通るアノードガスライン)の一部を接続し、バランサ容器BB内の冷却水と空気との界面の位置を調整することで、冷却水と空気との圧力差を所定範囲内に収めるものがある。さらに、別のタイプの圧力バランサとして、前記したバランサ容器BBの上部にカソードガスラインGLを接続する代わりに、容器内部の圧力が所定値を超えたときに開放される弁を設けることで、冷却水の圧力を所定範囲内に収めるものもある(特許文献2参照)。   In order to solve such problems, conventionally, a balancer container is provided in a circulation line through which cooling water circulates, and an expandable / contractible bellows is provided in the balancer container. There is a pressure balancer that adjusts the pressure of cooling water and air (see Patent Document 1). As another type of pressure balancer, as shown in FIG. 4, one of a cathode gas line GL through which air passes (or an anode gas line through which hydrogen passes) is provided above the balancer vessel BB to which cooling water is supplied. By connecting the parts and adjusting the position of the interface between the cooling water and the air in the balancer vessel BB, there is one in which the pressure difference between the cooling water and the air falls within a predetermined range. Furthermore, as another type of pressure balancer, instead of connecting the cathode gas line GL to the upper portion of the balancer vessel BB, a valve that is opened when the pressure inside the vessel exceeds a predetermined value is provided, thereby cooling the vessel. Some have the water pressure within a predetermined range (see Patent Document 2).

また、前記した圧力バランサのうち、後の二つのタイプは、冷却水と空気とが直接触れているため、例えば燃料電池から排出されてくる冷却水内に空気が混ざっていたとしても、この空気をバランサ容器BB内にて冷却水から分離させることができるようになっている。そして、このような気液分離を良好に実現するためには、圧力バランサを冷却システムの最上部に設ける必要がある。   Of the two pressure balancers described above, the latter two types are in direct contact with cooling water and air, so even if air is mixed in the cooling water discharged from the fuel cell, for example. Can be separated from the cooling water in the balancer vessel BB. And in order to implement | achieve such a gas-liquid separation favorably, it is necessary to provide a pressure balancer in the uppermost part of a cooling system.

特開2003−31251号公報(段落0030,0033、図4)Japanese Patent Laying-Open No. 2003-3251 (paragraphs 0030 and 0033, FIG. 4) 特開2002−124269号公報(段落0024,0025、図1)JP 2002-124269 A (paragraphs 0024 and 0025, FIG. 1)

しかしながら、従来の圧力バランサでは、ラジエータや配管で主に構成される冷却システムとは別個にバランサ容器を設けるので、その分コストが高くなっていた。また、空気と冷却水とが直接触れるタイプでは、圧力バランサを冷却システムの最上部にレイアウトすることが煩雑であるとともに、上方に設けた圧力バランサへ配管を繋ぐ必要があるので、冷却システムが大型となる問題があった。   However, in the conventional pressure balancer, the balancer container is provided separately from the cooling system mainly composed of the radiator and the piping, so that the cost is increased accordingly. In addition, in the type in which air and cooling water are in direct contact with each other, it is troublesome to lay out the pressure balancer at the top of the cooling system, and it is necessary to connect piping to the pressure balancer provided above, so the cooling system is large. There was a problem.

さらに、図4に示す圧力バランサでは、カソードガスラインGLから供給される空気が冷却水の出口から冷却水と一緒に出て行かないように、冷却水の水深(水面から冷却水出口までの距離)をある程度確保する必要があるため、バランサ容器BB自体を小型化して冷却システム全体を小型化することも困難であった。   Furthermore, in the pressure balancer shown in FIG. 4, the cooling water depth (the distance from the water surface to the cooling water outlet) is set so that the air supplied from the cathode gas line GL does not go out together with the cooling water from the cooling water outlet. Therefore, it is difficult to downsize the balancer vessel BB itself and downsize the entire cooling system.

そこで、本発明では、冷却システムとは別個にバランサ容器を設けることなく圧力調整できるようにすることで、コストの低減化および冷却システムの小型化に寄与することができる燃料電池発電装置および圧力調整方法を提供することを目的とする。   Therefore, in the present invention, by enabling pressure adjustment without providing a balancer container separately from the cooling system, a fuel cell power generator and pressure adjustment that can contribute to cost reduction and downsizing of the cooling system. It aims to provide a method.

前記課題を解決した本発明のうち請求項1に記載の発明は、水素ガス供給配管と酸素ガス供給配管からそれぞれ水素ガスと酸素ガスが供給されることで、前記水素ガスと前記酸素ガスとの電気化学反応により発電する燃料電池と、前記燃料電池とラジエータとの間で冷却水を循環させる冷却水循環流路と、を備えた燃料電池発電装置において、前記ラジエータ内を流通する冷却水内に混在するガスを分離するための気相室を有する気液分離部を、前記ラジエータの上部に前記ラジエータの内部が上方に向かって突出するように形成し、前記水素ガス供給配管または前記酸素ガス供給配管から分岐した信号圧配管と、前記気液分離部の気相室とを連通することで、前記冷却水の圧力と前記水素ガスまたは前記酸素ガスの圧力とを前記ラジエータ内で均衡させることを特徴とする。 The invention according to claim 1 of the present invention that has solved the above problem is that hydrogen gas and oxygen gas are supplied from a hydrogen gas supply pipe and an oxygen gas supply pipe, respectively. In a fuel cell power generation apparatus comprising a fuel cell that generates electricity by an electrochemical reaction and a cooling water circulation passage that circulates cooling water between the fuel cell and the radiator, the fuel cell power generation device is mixed in the cooling water that circulates in the radiator. A gas-liquid separation part having a gas phase chamber for separating the gas to be formed is formed on the upper part of the radiator so that the inside of the radiator protrudes upward, and the hydrogen gas supply pipe or the oxygen gas supply pipe The pressure of the cooling water and the pressure of the hydrogen gas or the oxygen gas are communicated between the signal pressure pipe branched from the gas phase and the gas phase chamber of the gas-liquid separation unit. Characterized in that in balancing.

請求項1に記載の発明によれば、ラジエータの上部に設けた気液分離部内において、ラジエータ内の冷却水の圧力と水素ガスまたは酸素ガスの圧力とが調整される。すなわち、従来のバランサ容器の機能をラジエータに持たせることとなり、バランサ容器を別個に設ける必要がなくなる。また、ラジエータの上部を冷却システムの最上部に位置させるだけで、気液分離部を冷却システムの最上部に位置させることができるので、そのレイアウトが容易となる。さらに、ラジエータが従来の気液分離機能を備えたバランサ容器の役目を果たすので、従来のように別個に設けたバランサ容器まで冷却水用の配管を伸ばす必要がなくなる。   According to the first aspect of the present invention, the pressure of the cooling water in the radiator and the pressure of the hydrogen gas or oxygen gas are adjusted in the gas-liquid separator provided in the upper portion of the radiator. That is, the function of the conventional balancer container is given to the radiator, and it is not necessary to provide the balancer container separately. In addition, the gas-liquid separation unit can be positioned at the top of the cooling system simply by positioning the upper portion of the radiator at the top of the cooling system, which facilitates the layout. Further, since the radiator serves as a conventional balancer container having a gas-liquid separation function, it is not necessary to extend the cooling water pipe to the separately provided balancer container.

請求項2に記載の発明は、水素ガス供給配管と酸素ガス供給配管からそれぞれ水素ガスと酸素ガスが供給されることで、前記水素ガスと前記酸素ガスとの電気化学反応により発電する燃料電池と、前記燃料電池とラジエータとの間で冷却水を循環させる冷却水循環流路と、を備えた燃料電池発電装置において、前記水素ガスまたは前記酸素ガスの圧力と、前記冷却水の圧力とを調整する圧力調整方法であって、前記水素ガスまたは前記酸素ガスの一部を前記ラジエータの上部に前記ラジエータの内部が上方に向って突出するように形成した気液分離部内の前記冷却水内に混在するガスを分離するための気相室に導入させることで、前記水素ガスまたは前記酸素ガスの圧力と、前記冷却水の圧力とを前記ラジエータ内で均衡させることを特徴とする。 According to a second aspect of the present invention, there is provided a fuel cell that generates power by an electrochemical reaction between the hydrogen gas and the oxygen gas by supplying hydrogen gas and oxygen gas from a hydrogen gas supply pipe and an oxygen gas supply pipe, respectively. And a cooling water circulation passage that circulates cooling water between the fuel cell and the radiator, and adjusts the pressure of the hydrogen gas or the oxygen gas and the pressure of the cooling water. In the pressure adjusting method, a part of the hydrogen gas or the oxygen gas is mixed in the cooling water in the gas-liquid separation part formed so that the inside of the radiator protrudes upward at the upper part of the radiator. It is to introduce the gas phase chamber for separating gas, the pressure of the hydrogen gas or the oxygen gas, and wherein the pressure of the cooling water to balance within the radiator That.

請求項2に記載の発明によれば、ラジエータ内において、水素ガスまたは酸素ガスの圧力と、冷却水の圧力とが調整される。すなわち、この方法によれば、水素ガスまたは酸素ガスの一部をラジエータの上部から導入するだけで、従来のように別個にバランサ容器を設けることなく、圧力調整を行うことができる。また、水素ガスまたは酸素ガスの一部をラジエータの上部から導入することで、この導入部にラジエータ内の冷却水から分離したガスを溜めることもできるので、気液分離の機能をも持たせることができる。   According to the second aspect of the present invention, the pressure of the hydrogen gas or oxygen gas and the pressure of the cooling water are adjusted in the radiator. That is, according to this method, it is possible to adjust the pressure only by introducing a part of hydrogen gas or oxygen gas from the upper portion of the radiator without providing a separate balancer container as in the prior art. In addition, by introducing a part of hydrogen gas or oxygen gas from the top of the radiator, the gas separated from the cooling water in the radiator can be stored in this introduction part, so that it also has a function of gas-liquid separation Can do.

請求項1に記載の発明によれば、従来のバランサ容器の機能をラジエータに持たせることとなるので、バランサ容器を別個に設ける必要がなくなり、その分コストを低減することができるとともに、冷却システムを小型化することができる。また、ラジエータの上部を冷却システムの最上部に位置させるだけで、気液分離部を冷却システムの最上部に位置させることができるので、そのレイアウトが容易となる。さらに、ラジエータがバランサ容器の役目を果たすので、従来において設けていたバランサ容器までの配管を省くことができ、その分コストを低減し、かつ冷却システムを小型化することができる。   According to the first aspect of the present invention, since the radiator has the function of the conventional balancer container, it is not necessary to separately provide the balancer container, and the cost can be reduced correspondingly, and the cooling system Can be miniaturized. In addition, the gas-liquid separation unit can be positioned at the top of the cooling system simply by positioning the upper portion of the radiator at the top of the cooling system, which facilitates the layout. Furthermore, since the radiator serves as a balancer vessel, the piping to the balancer vessel provided in the past can be omitted, and the cost can be reduced correspondingly, and the cooling system can be downsized.

請求項2に記載の発明によれば、水素ガスまたは酸素ガスの一部をラジエータの上部から導入するだけで、従来のように別個にバランサ容器を設けることなく、圧力調整を行うことができるので、その分コストを低減することができる。   According to the second aspect of the present invention, it is possible to adjust the pressure only by introducing a part of hydrogen gas or oxygen gas from the upper part of the radiator without providing a separate balancer vessel as in the prior art. The cost can be reduced accordingly.

次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。参照する図面において、図1は本実施形態に係る燃料電池発電装置を搭載した車両を示す側面図、図2は図1の燃料電池発電装置の詳細を示す構成図、図3は図2のラジエータに設けられる気液分離部を示す拡大図である。   Next, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. In the drawings to be referred to, FIG. 1 is a side view showing a vehicle equipped with a fuel cell power generator according to the present embodiment, FIG. 2 is a configuration diagram showing details of the fuel cell power generator of FIG. 1, and FIG. 3 is a radiator of FIG. It is an enlarged view which shows the gas-liquid separation part provided in FIG.

図1に示すように、燃料電池発電装置1は、車両Mの図示しない車室内の床下に配設される燃料電池2と、車両Mの前方に配設されるラジエータ3と、燃料電池2とラジエータ3との間で冷却水を循環させる冷却水循環流路4とを主に備えている。なお、燃料電池2は、図示しないエアコンプレッサなどの空気供給源と水素タンクなどの水素供給源から供給される空気と水素によって発電する。   As shown in FIG. 1, the fuel cell power generator 1 includes a fuel cell 2 disposed under a floor of a vehicle interior (not shown) of a vehicle M, a radiator 3 disposed in front of the vehicle M, a fuel cell 2, A cooling water circulation channel 4 that circulates cooling water with the radiator 3 is mainly provided. The fuel cell 2 generates power using air and hydrogen supplied from an air supply source such as an air compressor (not shown) and a hydrogen supply source such as a hydrogen tank.

燃料電池2は、図2に示すように、水素ガス供給配管21と空気供給配管(酸素ガス供給配管)22からそれぞれ水素ガスと空気(酸素ガス)が供給されることで、水素ガスと空気中の酸素ガスとの電気化学反応により発電するものである。空気供給配管22は、その適所で二股に分岐しており、その一方の電池側配管22aが燃料電池2に接続され、他方の信号圧配管22bがラジエータ3の上部に接続されている。   As shown in FIG. 2, the fuel cell 2 is supplied with hydrogen gas and air (oxygen gas) from a hydrogen gas supply pipe 21 and an air supply pipe (oxygen gas supply pipe) 22, respectively. It generates electricity by electrochemical reaction with oxygen gas. The air supply pipe 22 is bifurcated at an appropriate position, one battery side pipe 22 a is connected to the fuel cell 2, and the other signal pressure pipe 22 b is connected to the upper portion of the radiator 3.

ラジエータ3は、燃料電池2を冷却するための放熱器であり、具体的には図示しないファンからの送風などによって冷却される複数枚のフィン31,・・・間に、燃料電池2内で温められた冷却水を流すことで、この冷却水を冷却させるものである。また、ラジエータ3は、冷却水が平面方向に流れる、いわゆるサイドフロー方式となっており、その流れの下流側の上部に、上方に向かって突出するように形成される気液分離部32が配置されている。   The radiator 3 is a radiator for cooling the fuel cell 2, and is specifically heated in the fuel cell 2 between a plurality of fins 31,... Cooled by air blown from a fan (not shown). The cooling water is cooled by flowing the cooling water. The radiator 3 has a so-called side flow system in which cooling water flows in a plane direction, and a gas-liquid separation unit 32 formed so as to protrude upward is disposed at an upper part on the downstream side of the flow. Has been.

気液分離部32は、その内部にラジエータ3内を流通する冷却水内に混在する空気(ガス)を分離するための気相室32aを有している。そして、この気相室32a内に前記した信号圧配管22bが直接連通するように、気液分離部32の上壁32bには信号圧配管22bが接続されている。   The gas-liquid separation unit 32 has a gas phase chamber 32a for separating air (gas) mixed in the cooling water flowing through the radiator 3 therein. And the signal pressure piping 22b is connected to the upper wall 32b of the gas-liquid separation part 32 so that the above-mentioned signal pressure piping 22b may communicate directly with this gas phase chamber 32a.

なお、この気液分離部32の設置場所であるラジエータ3の上部は、図1に示すように、車両Mの床下に燃料電池2を配設し、ラジエータ3を車両Mの前方に配設したことで、ラジエータ3と冷却水循環流路4とで主に構成される冷却システムの最上部に位置するため、この気液分離部32が冷却システムの最上部に位置するようになっている。また、ラジエータ3は、従来のバランサ容器に比べ、大型であるため、図3に示すように、従来必要であった水深分(水面から冷却水の出口までの距離)は、十分確保されることとなる。言い換えると、ラジエータ3内の冷却水が、従来のバランサ容器内で必要とした冷却水を兼ねるため、従来必要であった冷却水の容積分(図中、斜線で示した範囲)だけ小型化を図ることができる。   As shown in FIG. 1, the fuel cell 2 is disposed under the floor of the vehicle M, and the radiator 3 is disposed in front of the vehicle M, as shown in FIG. Thus, the gas-liquid separator 32 is positioned at the top of the cooling system because it is positioned at the top of the cooling system mainly composed of the radiator 3 and the cooling water circulation passage 4. Moreover, since the radiator 3 is larger than the conventional balancer container, as shown in FIG. 3, the water depth (distance from the water surface to the outlet of the cooling water) that has been required in the past should be sufficiently secured. It becomes. In other words, since the cooling water in the radiator 3 also serves as the cooling water required in the conventional balancer vessel, the size of the cooling water required in the past (the range indicated by the hatched area in the figure) can be reduced. You can plan.

図2に示すように、冷却水循環流路4は、ラジエータ3で冷却された冷却水を燃料電池2に供給するための供給用流路41と、燃料電池2から排出される冷却水を再度ラジエータ3へ戻すための戻し用流路42とで主に構成されている。供給用流路41は、ラジエータ3のフィン31,・・・の下流側の下部に接続され、戻し用流路42は、ラジエータ3のフィン31,・・・の上流側の上部に接続されている。そして、戻し用流路42の適所には、冷却水を冷却水循環流路4内において一方向へ循環させるための循環用ポンプ43が設けられている。なお、図示は省略したが、供給用流路41と戻し用流路42の間には、ラジエータ3をバイパスするバイパス流路が設けられ、このバイパス流路の適所には、水温に応じて冷却水が通る流路をバイパス流路とラジエータ3側の流路とに切り替えるサーモスタットバルブが設けられている。   As shown in FIG. 2, the cooling water circulation channel 4 includes a supply channel 41 for supplying the cooling water cooled by the radiator 3 to the fuel cell 2, and the cooling water discharged from the fuel cell 2 again with the radiator. And a return flow path 42 for returning to 3. The supply channel 41 is connected to the lower part of the radiator 3 on the downstream side of the fins 31,..., And the return channel 42 is connected to the upper part of the radiator 3 on the upstream side of the fins 31,. Yes. A circulating pump 43 for circulating the cooling water in one direction in the cooling water circulation channel 4 is provided at an appropriate position of the return channel 42. Although not shown in the figure, a bypass channel that bypasses the radiator 3 is provided between the supply channel 41 and the return channel 42, and cooling is performed at an appropriate position of the bypass channel according to the water temperature. A thermostat valve is provided for switching the flow path through which the water passes to a bypass flow path and a flow path on the radiator 3 side.

次に、この燃料電池発電装置1による圧力調整方法について図2を参照して説明する。
まず、図示しないエアコンプレッサや水素タンクから空気や水素ガスを燃料電池2へ供給させるとともに、循環用ポンプ43を駆動させて冷却水を循環させる。このように燃料電池2への空気や冷却水の供給が開始されると、空気の圧力が前記エアコンプレッサの回転速度に応じた値になるとともに、冷却水の圧力が循環用ポンプ43の回転速度に応じた値となる。
Next, a pressure adjustment method using the fuel cell power generator 1 will be described with reference to FIG.
First, air and hydrogen gas are supplied to the fuel cell 2 from an air compressor and a hydrogen tank (not shown), and the cooling pump 43 is driven to circulate cooling water. Thus, when the supply of air or cooling water to the fuel cell 2 is started, the pressure of the air becomes a value corresponding to the rotation speed of the air compressor, and the pressure of the cooling water becomes the rotation speed of the circulation pump 43. It becomes a value according to.

そして、燃料電池2の出力に変化が生じると、図示しない制御器はその出力に応じた空気供給流量になるように前記エアコンプレッサの回転数を制御する。さらに前記制御器は、燃料電池2の出力(すなわち発電量)に応じた冷却水流量になるように循環用ポンプ43を制御する。ここで、空気の圧力と冷却水の圧力はその流量変化に伴い変動することになるが、ラジエータ3上部に設けた気相室32aと空気の信号圧配管22bとを接続したことにより、ラジエータ3内の冷却水の圧力と気相室32aでの空気の圧力とが実質的に等しく均衡されるため、燃料電池2へ供給される空気と冷却水との圧力差が所定の圧力範囲に収まることになる。すなわち、流量を変化させることによる圧力変動をラジエータ3により許容することができるので、エアコンプレッサ、循環用ポンプ43などの制御性が向上するとともに、反応ガスと冷却水との圧力差を所定の圧力範囲に保つことができ、固体高分子膜へのダメージを減らすことができる。   When a change occurs in the output of the fuel cell 2, a controller (not shown) controls the rotational speed of the air compressor so that the air supply flow rate is in accordance with the output. Further, the controller controls the circulation pump 43 so that the flow rate of the cooling water corresponds to the output (that is, the power generation amount) of the fuel cell 2. Here, the pressure of the air and the pressure of the cooling water fluctuate with the change in the flow rate, but by connecting the gas phase chamber 32a provided at the upper part of the radiator 3 and the air signal pressure pipe 22b, the radiator 3 Since the pressure of the cooling water inside and the pressure of the air in the gas phase chamber 32a are balanced substantially equally, the pressure difference between the air supplied to the fuel cell 2 and the cooling water falls within a predetermined pressure range. become. That is, since the pressure fluctuation caused by changing the flow rate can be allowed by the radiator 3, the controllability of the air compressor, the circulation pump 43 and the like is improved, and the pressure difference between the reaction gas and the cooling water is set to a predetermined pressure. The range can be maintained, and damage to the solid polymer film can be reduced.

また、燃料電池2内で冷却水に空気が混在した場合には、この冷却水に気泡として含まれる空気は、ラジエータ3のフィン31,・・・の下流側において上昇していき、上部にある気相室32a内に入ることによって冷却水と分離される。これにより、冷却水循環流路4内やラジエータ3のフィン31,・・・の間に空気が溜まることが防止される。   When air is mixed in the cooling water in the fuel cell 2, the air contained in the cooling water as bubbles rises on the downstream side of the fins 31,. By entering the gas phase chamber 32a, it is separated from the cooling water. This prevents air from accumulating in the cooling water circulation channel 4 or between the fins 31 of the radiator 3.

以上によれば、本実施形態において、次のような効果を得ることができる。
従来のバランサ容器の機能をラジエータ3に持たせることとなるので、バランサ容器を別個に設ける必要がなくなり、その分コストの低減や小型化を図ることができる。
According to the above, the following effects can be obtained in the present embodiment.
Since the radiator 3 has the function of the conventional balancer container, there is no need to provide a separate balancer container, and the cost and size can be reduced accordingly.

圧力バランサの機能を兼ねる気液分離部32が、冷却システムの最上部となるラジエータ3の上部に設けられるので、従来のように別個に設けたバランサ容器を冷却システムの最上部の位置へレイアウトするためにバランサ容器の周囲の構造などを細かく検討する必要がなくなり、そのレイアウトが容易となる。また、従来のように別個に設けたバランサ容器まで配管を伸ばす必要がなくなるので、その分冷却システムを小型化することができる。   Since the gas-liquid separation unit 32 that also functions as a pressure balancer is provided at the top of the radiator 3 that is the uppermost part of the cooling system, a balancer container that is separately provided as in the prior art is laid out at the uppermost position of the cooling system. Therefore, it is not necessary to study the structure around the balancer container in detail, and the layout becomes easy. Further, since it is not necessary to extend the pipe to the balancer container provided separately as in the conventional case, the cooling system can be reduced in size accordingly.

気液分離部32によって冷却水循環流路4内に溜まった空気が信号圧配管22bを伝って排出されるので、循環用ポンプ43が空気を噛み込まずに良好に運転されることとなる。また、気液分離部32によってラジエータ3のフィン31,・・・の間に空気が溜まらないので、ラジエータ3の伝熱性能も維持することができる。   Since the air accumulated in the cooling water circulation passage 4 is discharged through the signal pressure pipe 22b by the gas-liquid separator 32, the circulation pump 43 is operated well without biting the air. Moreover, since air does not accumulate between the fins 31 of the radiator 3 by the gas-liquid separation part 32, the heat transfer performance of the radiator 3 can also be maintained.

以上、本発明は、前記実施形態に限定されることなく、様々な形態で実施される。
本実施形態では、信号圧配管22bを空気供給配管22に設けたが、本発明はこれに限定されず、信号圧配管22bを水素ガス供給配管21に設けてもよい。
本実施形態では、フィン31の下流側の上部に気液分離部32を設けたが、本発明はこれに限定されず、例えばフィン31の上流側の上部に気液分離部32を設けてもよい。ただし、上流側に気液分離部32を設ける場合は、気液分離部32内の空気が燃料電池2側から送られてくる冷却水に巻き込まれて下流側へ流される可能性があるが、本実施形態のように下流側に気液分離部32を設ける場合は、その可能性がないので、このような構造にするのが望ましい。
As mentioned above, this invention is implemented in various forms, without being limited to the said embodiment.
In the present embodiment, the signal pressure pipe 22 b is provided in the air supply pipe 22, but the present invention is not limited to this, and the signal pressure pipe 22 b may be provided in the hydrogen gas supply pipe 21.
In the present embodiment, the gas-liquid separation unit 32 is provided on the upper portion on the downstream side of the fin 31, but the present invention is not limited to this, and for example, the gas-liquid separation unit 32 may be provided on the upper portion on the upstream side of the fin 31. Good. However, when the gas-liquid separator 32 is provided on the upstream side, the air in the gas-liquid separator 32 may be caught in the cooling water sent from the fuel cell 2 side and flowed downstream. In the case where the gas-liquid separation part 32 is provided on the downstream side as in the present embodiment, there is no possibility of this, so it is desirable to adopt such a structure.

また、ラジエータキャップを取り付けるための既設の突出部を気液分離部32として利用してもよい。このようにすれば、コストを低減することができるとともに、ラジエータキャップを外すだけで、冷却水の補充や気液分離部32のメンテナンスを同時に行うことができる。   Moreover, you may utilize the existing protrusion part for attaching a radiator cap as the gas-liquid separation part 32. FIG. In this way, the cost can be reduced, and the coolant can be replenished and the gas-liquid separator 32 can be simultaneously maintained by simply removing the radiator cap.

本実施形態では、サイドフロー方式のラジエータ3を採用したが、本発明はこれに限定されず、例えば冷却水が上から下に流れるダウンフロー方式のラジエータを採用してもよい。ただし、この場合は、気液分離部からラジエータ内の冷却水に加わる圧力の方向と、冷却水の流れの方向が一致するため、上から下へ流れる冷却水に気液分離部内の空気が巻き込まれて出口から出て行く可能性がある。これに対し、本実施形態のようなサイドフロー方式のラジエータ3では、気液分離部32から冷却水に加わる圧力の方向とは異なる方向で、冷却水がラジエータ3内を流れることとなるので、気液分離部32内の空気がラジエータ3内を流れる冷却水に巻き込まれて出口から出て行くことを確実に防止することができる。   In the present embodiment, the side flow type radiator 3 is adopted. However, the present invention is not limited to this, and for example, a down flow type radiator in which cooling water flows from top to bottom may be adopted. However, in this case, the direction of the pressure applied to the cooling water in the radiator from the gas-liquid separation unit and the direction of the flow of the cooling water match, so the air in the gas-liquid separation unit is caught in the cooling water flowing from the top to the bottom. There is a possibility of going out from the exit. On the other hand, in the side flow type radiator 3 as in the present embodiment, the cooling water flows in the radiator 3 in a direction different from the direction of the pressure applied to the cooling water from the gas-liquid separator 32. It is possible to reliably prevent the air in the gas-liquid separation unit 32 from being caught in the cooling water flowing in the radiator 3 and going out from the outlet.

本実施形態に係る燃料電池発電装置を搭載した車両を示す側面図である。It is a side view which shows the vehicle carrying the fuel cell electric power generating apparatus which concerns on this embodiment. 図1の燃料電池発電装置の詳細を示す構成図である。It is a block diagram which shows the detail of the fuel cell electric power generating apparatus of FIG. 図2のラジエータに設けられる気液分離部を示す拡大図である。It is an enlarged view which shows the gas-liquid separation part provided in the radiator of FIG. 従来の圧力バランサを示す斜視図である。It is a perspective view which shows the conventional pressure balancer.

符号の説明Explanation of symbols

1 燃料電池発電装置
2 燃料電池
3 ラジエータ
4 冷却水循環流路
21 水素ガス供給配管
22 空気供給配管
22a 電池側配管
22b 信号圧配管
31 フィン
32 気液分離部
32a 気相室
32b 上壁
41 供給用流路
42 戻し用流路
43 循環用ポンプ
M 車両
DESCRIPTION OF SYMBOLS 1 Fuel cell power generation apparatus 2 Fuel cell 3 Radiator 4 Cooling water circulation flow path 21 Hydrogen gas supply piping 22 Air supply piping 22a Battery side piping 22b Signal pressure piping 31 Fin 32 Gas-liquid separation part 32a Gas phase chamber 32b Upper wall 41 Supply flow Path 42 Return path 43 Circulation pump M Vehicle

Claims (2)

水素ガス供給配管と酸素ガス供給配管からそれぞれ水素ガスと酸素ガスが供給されることで、前記水素ガスと前記酸素ガスとの電気化学反応により発電する燃料電池と、
前記燃料電池とラジエータとの間で冷却水を循環させる冷却水循環流路と、を備えた燃料電池発電装置において、
前記ラジエータ内を流通する冷却水内に混在するガスを分離するための気相室を有する気液分離部を、前記ラジエータの上部に前記ラジエータの内部が上方に向かって突出するように形成し
前記水素ガス供給配管または前記酸素ガス供給配管から分岐した信号圧配管と、前記気液分離部の気相室とを連通することで、前記冷却水の圧力と前記水素ガスまたは前記酸素ガスの圧力とを前記ラジエータ内で均衡させることを特徴とする燃料電池発電装置。
A fuel cell that generates electricity by an electrochemical reaction between the hydrogen gas and the oxygen gas by supplying hydrogen gas and oxygen gas from a hydrogen gas supply pipe and an oxygen gas supply pipe, respectively;
In a fuel cell power generator comprising: a cooling water circulation passage for circulating cooling water between the fuel cell and the radiator;
Forming a gas-liquid separation part having a gas phase chamber for separating gas mixed in the cooling water flowing through the radiator so that the inside of the radiator protrudes upward at the upper part of the radiator ;
The pressure of the cooling water and the pressure of the hydrogen gas or the oxygen gas are communicated with the signal pressure pipe branched from the hydrogen gas supply pipe or the oxygen gas supply pipe and the gas phase chamber of the gas-liquid separation unit. Is balanced in the radiator. A fuel cell power generator.
水素ガス供給配管と酸素ガス供給配管からそれぞれ水素ガスと酸素ガスが供給されることで、前記水素ガスと前記酸素ガスとの電気化学反応により発電する燃料電池と、
前記燃料電池とラジエータとの間で冷却水を循環させる冷却水循環流路と、を備えた燃料電池発電装置において、前記水素ガスまたは前記酸素ガスの圧力と、前記冷却水の圧力とを調整する圧力調整方法であって、
前記水素ガスまたは前記酸素ガスの一部を前記ラジエータの上部に前記ラジエータの内部が上方に向って突出するように形成した気液分離部内の前記冷却水内に混在するガスを分離するための気相室に導入させることで、前記水素ガスまたは前記酸素ガスの圧力と、前記冷却水の圧力とを前記ラジエータ内で均衡させることを特徴とする圧力調整方法。
A fuel cell that generates electricity by an electrochemical reaction between the hydrogen gas and the oxygen gas by supplying hydrogen gas and oxygen gas from a hydrogen gas supply pipe and an oxygen gas supply pipe, respectively;
In a fuel cell power generation device comprising a cooling water circulation passage for circulating cooling water between the fuel cell and the radiator, a pressure for adjusting the pressure of the hydrogen gas or the oxygen gas and the pressure of the cooling water An adjustment method,
Gas for separating the gas mixed in the cooling water in the gas-liquid separation part formed so that the hydrogen gas or a part of the oxygen gas protrudes upward at the upper part of the radiator. A pressure adjustment method characterized by balancing the pressure of the hydrogen gas or the oxygen gas and the pressure of the cooling water in the radiator by introducing the phase into the phase chamber .
JP2003304708A 2003-08-28 2003-08-28 Fuel cell power generator and pressure adjustment method Expired - Fee Related JP4564247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304708A JP4564247B2 (en) 2003-08-28 2003-08-28 Fuel cell power generator and pressure adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003304708A JP4564247B2 (en) 2003-08-28 2003-08-28 Fuel cell power generator and pressure adjustment method

Publications (2)

Publication Number Publication Date
JP2005078831A JP2005078831A (en) 2005-03-24
JP4564247B2 true JP4564247B2 (en) 2010-10-20

Family

ID=34408326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304708A Expired - Fee Related JP4564247B2 (en) 2003-08-28 2003-08-28 Fuel cell power generator and pressure adjustment method

Country Status (1)

Country Link
JP (1) JP4564247B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109489342A (en) * 2018-12-12 2019-03-19 庞良庆 A kind of self sucking high-pressure component and cold water mechanism
CN109654803B (en) * 2018-12-12 2024-01-26 庞良庆 Cooling device and water chiller

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093356A (en) * 1999-09-27 2001-04-06 Sumitomo Wiring Syst Ltd Twisted pair cable
JP2002124269A (en) * 2000-10-13 2002-04-26 Honda Motor Co Ltd Cooling system of fuel cell
JP2002289225A (en) * 2001-03-26 2002-10-04 Nissan Motor Co Ltd Fuel cell system
JP2002329521A (en) * 2001-04-27 2002-11-15 Calsonic Kansei Corp Fuel cell system and fuel cell automobile
JP2004349248A (en) * 2003-04-30 2004-12-09 Honda Motor Co Ltd Cooling device of fuel cell
JP2004349247A (en) * 2003-04-30 2004-12-09 Honda Motor Co Ltd Cooling device of fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093356A (en) * 1999-09-27 2001-04-06 Sumitomo Wiring Syst Ltd Twisted pair cable
JP2002124269A (en) * 2000-10-13 2002-04-26 Honda Motor Co Ltd Cooling system of fuel cell
JP2002289225A (en) * 2001-03-26 2002-10-04 Nissan Motor Co Ltd Fuel cell system
JP2002329521A (en) * 2001-04-27 2002-11-15 Calsonic Kansei Corp Fuel cell system and fuel cell automobile
JP2004349248A (en) * 2003-04-30 2004-12-09 Honda Motor Co Ltd Cooling device of fuel cell
JP2004349247A (en) * 2003-04-30 2004-12-09 Honda Motor Co Ltd Cooling device of fuel cell

Also Published As

Publication number Publication date
JP2005078831A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
US6375812B1 (en) Water electrolysis system
JP5055751B2 (en) Fuel cell system
US20060222923A1 (en) Direct methanol fuel cell system
JP2008027684A (en) Ion exchanger
US6916571B2 (en) PEM fuel cell passive water management
JP2007073280A (en) Fuel cell system
CA2820633A1 (en) Fuel cell system with ejector bypass channel control
JP4564247B2 (en) Fuel cell power generator and pressure adjustment method
KR101095665B1 (en) Fuel cull power generation system
JP6861141B2 (en) Gas-liquid separator
JP2006120342A (en) Fuel cell system
JP4555601B2 (en) Fuel cell cooling system
JP3998200B2 (en) Fuel cell cooling system
US11652222B2 (en) Fuel cell system
JP4283584B2 (en) Fuel cell cooling system
JP5310739B2 (en) Fuel cell system
KR101601438B1 (en) Thermal management system for fuel cell vehicles
JP4944403B2 (en) Cathode gas supply device for polymer electrolyte fuel cell
CN113497247A (en) High-response-level hydrogen fuel cell system
JP5737158B2 (en) Fuel cell system
JP4925078B2 (en) Polymer electrolyte fuel cell
JP2004152592A (en) Fuel cell system
JP2004349247A (en) Cooling device of fuel cell
JP5387710B2 (en) Fuel cell system
CN110137546A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140806

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees