JP4563861B2 - Air intake duct - Google Patents

Air intake duct Download PDF

Info

Publication number
JP4563861B2
JP4563861B2 JP2005132959A JP2005132959A JP4563861B2 JP 4563861 B2 JP4563861 B2 JP 4563861B2 JP 2005132959 A JP2005132959 A JP 2005132959A JP 2005132959 A JP2005132959 A JP 2005132959A JP 4563861 B2 JP4563861 B2 JP 4563861B2
Authority
JP
Japan
Prior art keywords
air flow
air
valve body
engine
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005132959A
Other languages
Japanese (ja)
Other versions
JP2006307775A (en
Inventor
勝博 丹下
考一 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2005132959A priority Critical patent/JP4563861B2/en
Publication of JP2006307775A publication Critical patent/JP2006307775A/en
Application granted granted Critical
Publication of JP4563861B2 publication Critical patent/JP4563861B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Description

本発明は、吸気ダクトに関し、更に詳細には、エンジンの空気取込部に接続され、ダクト本体の内部に画成された空気流通路の空気流通面積を、前記エンジンの回転数に応じて増減変化させるようにした吸気ダクトに関するものである。   The present invention relates to an intake duct, and more particularly, an air flow area of an air flow passage connected to an air intake portion of an engine and defined inside the duct body is increased or decreased according to the rotational speed of the engine. The present invention relates to an intake duct that is changed.

近年生産される自動車では、エアバッグ装置やブレーキ装置等の種々安全装置を装備する一方、ボディやシャーシを高剛性化する対策を施すことで、安全性能の向上が図られている。従って、車両重量が必然的に増加する傾向にあるから、走行性能を確保するためにエンジンの高出力化が要求されている。しかしながら、環境問題がクローズアップされる今日にあっては、燃費向上、排気ガスクリーン化、騒音低減等の環境性能の向上が大きな課題となっており、排気量を大きくすることなく出力向上を図る対策が希求されている。   In recent years, automobiles produced in recent years are equipped with various safety devices such as airbag devices and brake devices, while improving the safety performance by taking measures to increase the rigidity of the body and chassis. Therefore, since the vehicle weight tends to increase inevitably, it is required to increase the output of the engine in order to ensure traveling performance. However, in today, when environmental problems are highlighted, improvement of environmental performance such as improvement of fuel consumption, exhaust gas cleanup, noise reduction, etc. is a major issue, and improvement of output without increasing the displacement is aimed at. Countermeasures are sought after.

例えば図7は、自動車のエンジンルーム12内に搭載されたエンジンEGの空気供給部を示した説明断面図であって、該エンジンEGの回転駆動に必要とされる空気は、車体10の前部に組付けた吸気ダクトD1から取込まれ、エアクリーナーACで清浄された後にエンジンEGへ供給されるようになっている。このような構成においてエンジンEGの出力向上を図るには、外部空気を取込む吸気ダクトD1の空気流通抵抗をできるだけ低減させ、取込まれた外部空気がスムーズにエンジンEGへ供給されるようにする方法が効果的とされる。具体的には、吸気ダクトD1を大型化したもとで、空気取込口22の開口面積を大きくすると共に、内部に画成された空気流通路の断面積(空気流通面積)を大きく設定すれば、エンジンの高出力化を図り易くなる。しかしながら、吸気ダクトD1を大型化した場合、空気取込口22から車外へ放射されるエンジン騒音(特に燃焼音等)が増大するという新たな問題が発生する。   For example, FIG. 7 is an explanatory sectional view showing an air supply part of an engine EG mounted in an engine room 12 of an automobile, and the air required for rotational driving of the engine EG is the front part of the vehicle body 10. The air is taken in from the intake duct D1 assembled to the air cleaner AC and cleaned by the air cleaner AC, and then supplied to the engine EG. In order to improve the output of the engine EG in such a configuration, the air flow resistance of the intake duct D1 that takes in the external air is reduced as much as possible so that the taken-in external air is smoothly supplied to the engine EG. The method is considered effective. Specifically, with the intake duct D1 enlarged, the opening area of the air intake port 22 is increased, and the cross-sectional area (air flow area) of the air flow path defined inside is set to be large. This makes it easier to increase the engine output. However, when the intake duct D1 is increased in size, a new problem that engine noise (particularly combustion noise) radiated from the air intake port 22 to the outside of the vehicle increases.

そこで、例えば図8に図示するように、大型のダクト本体20の内部に回動シャッタータイプのバルブ26を配設し、このバルブ26の姿勢を変位させることで空気流通路24内の空気流通面積を変化させるようにした吸気ダクトD1が提案されている。このようなタイプの吸気ダクトD1では、通常走行時等のエンジンEGの回転数が低い場合は、図8に実線表示した第1姿勢へバルブ26を姿勢変位させて空気流通面積を小さくし、空気取込口22から放射されるエンジン騒音を抑制するようにする。また、加速走行時等のエンジンEGの回転数が上昇する場合は、図8に2点鎖線表示した第2姿勢に向けてバルブ26を回動変位させて空気流通面積を大きくすることで、多量の外部空気の取込みを許容してエンジンEGの高出力化に対応するようになっている。このような可変吸気構造を有する吸気ダクトは、例えば特許文献1に開示されている。
特開平11−82202号公報
Therefore, for example, as shown in FIG. 8, a rotary shutter type valve 26 is disposed inside the large duct body 20, and the posture of the valve 26 is displaced to displace the air flow area in the air flow passage 24. An intake duct D1 is proposed in which the air pressure is changed. In the intake duct D1 of this type, when the rotational speed of the engine EG is low during normal driving or the like, the valve 26 is displaced to the first posture indicated by the solid line in FIG. Engine noise radiated from the intake port 22 is suppressed. Further, when the rotational speed of the engine EG increases during acceleration traveling, the valve 26 is rotated and displaced toward the second posture indicated by the two-dot chain line in FIG. The intake of external air is allowed to cope with the high output of the engine EG. An intake duct having such a variable intake structure is disclosed in Patent Document 1, for example.
Japanese Patent Laid-Open No. 11-82202

ところで、前述した従来の吸気ダクトD1は、前述した第1姿勢にバルブ26が姿勢変位している場合、空気流通路24における空気流通方向に対して略直角となっているため、空気流通抵抗が極端に悪化して充分な外部空気が取込めない不都合があった。これは、図9に破線で図示するように、バルブ26の端縁部で空気の剥離が大きく発生するため、実質的な有効空気流通面積が減少してしまうからである。このような不都合を解消するには、第1姿勢にあるバルブ26の端縁部とダクト内壁面との間の間隔を大きくすればよい訳であるが、これでは空気流通面積が拡大してしまうからエンジン騒音を抑制できなくなってしまう。   By the way, the above-described conventional intake duct D1 is substantially perpendicular to the air flow direction in the air flow passage 24 when the valve 26 is displaced in the above-described first posture, so that the air flow resistance is low. There was a problem that it was extremely deteriorated and sufficient external air could not be taken in. This is because, as shown by a broken line in FIG. 9, air separation largely occurs at the end edge portion of the valve 26, so that a substantial effective air circulation area is reduced. In order to eliminate such an inconvenience, the distance between the end edge of the valve 26 in the first posture and the inner wall surface of the duct may be increased. However, this increases the air circulation area. This makes it impossible to suppress engine noise.

そこで、図10に例示するように、ダクト本体20に対してバイパス路28を追加することで、低回転時はバルブ26を第1姿勢にしてバイパス路28を介して外部空気を取込むようにし、高回転時はバルブ26を第2姿勢にしてダクト本体20およびバイパス路28の両方から外部空気を取込むようにした吸気ダクトD1も提案されている。しかしながら、このような形態の吸気ダクトD1の場合、部品点数が増加するために製造コストが嵩む難点があると共に、外形サイズが大きくなって設置スペースを大きく確保しなければならない不都合があり、小型車等では採用できない場合もあった。   Therefore, as illustrated in FIG. 10, by adding a bypass path 28 to the duct body 20, the valve 26 is set to the first posture during low rotation so that external air is taken in via the bypass path 28. An intake duct D1 is also proposed in which the valve 26 is set to the second posture during high rotation so that external air is taken in from both the duct body 20 and the bypass passage 28. However, in the case of the intake duct D1 having such a configuration, there is a problem that the manufacturing cost increases due to an increase in the number of parts, and there is a disadvantage that the external size becomes large and a large installation space has to be secured, such as a small car. In some cases, it could not be adopted.

また、前述した回動シャッタータイプのバルブ26の場合、バルブ26の回動変位量と空気流通面積の増減量とが比例しないため、外部空気の取込量を適切に制御することができず、エンジン出力特性にも影響を及ぼしていた。例えば図11に例示するように、第1姿勢のバルブ26(実線表示)に対して30度だけ回動した30度姿勢(破線表示)の場合には、回動量に対して空気流通面積の増加量は僅かである。しかしながら、30度姿勢(破線表示)から60度姿勢(一点鎖線表示)へ回動した場合には空気流通面積の増加量はかなり大きくなり、更に60度姿勢(一点鎖線表示)から第2姿勢(二点鎖線表示)へ回動した場合には、空気流通面積の増加量が一気に2倍程度になってしまう。更に、バルブ26が第1姿勢およびそれに近い姿勢にある場合には、前述したように空気流通抵抗が大きくなるばかりか、該バルブ26の後方側(下流側)で空気流が大きく乱れる欠点も指摘される。   Further, in the case of the rotary shutter type valve 26 described above, since the rotational displacement amount of the valve 26 and the increase / decrease amount of the air flow area are not proportional, the intake amount of external air cannot be controlled appropriately, The engine output characteristics were also affected. For example, as illustrated in FIG. 11, in the case of a 30 degree posture (denoted by a broken line) rotated by 30 degrees with respect to the valve 26 (shown by a solid line) in the first posture, an increase in the air circulation area with respect to the amount of rotation The amount is slight. However, when the posture is rotated from the 30 degree posture (displayed with a broken line) to the 60 degree posture (displayed with a one-dot chain line), the amount of increase in the air circulation area becomes considerably large. In the case of rotation to (two-dot chain line display), the amount of increase in the air circulation area is doubled at once. Further, when the valve 26 is in the first posture and a posture close thereto, not only the air flow resistance increases as described above, but also the drawback that the air flow is greatly disturbed on the rear side (downstream side) of the valve 26 is pointed out. Is done.

従って本発明は、エンジン回転数に応じて外部空気の取込量を適切に制御し得ると共に、製造コストの低減等を図り得るようにした吸気ダクトを提供することを目的とする。   Accordingly, an object of the present invention is to provide an intake duct that can appropriately control the amount of external air taken in according to the engine speed and can reduce the manufacturing cost.

前記課題を解決し、所期の目的を達成するため、本願の請求項1記載の発明は、
エンジンの空気取込部に接続され、ダクト本体の内部に画成された空気流通路の空気流通面積を、前記エンジンの回転数に応じて増減変化させるようにした吸気ダクトにおいて、
前記空気流通路の所要部位に形成された空気流通口と、
前記空気流通口の下流側で前記空気流通路に設けられたバルブ設置部と、
前記バルブ設置部に空気流通方向に沿ったスライド移動が可能に配設され、前記空気流通口を指向した側が略コーン形状に膨出したバルブ体と、
前記バルブ設置部において前記バルブ体の下流側に配設され、常には該バルブ体を前記空気流通口側へ弾力付勢する付勢部材とからなり、
前記バルブ設置部は、前記バルブ体から下流側へ延出するロッドがスライド可能に整合する第1の摺動案内部と、前記第1の摺動案内部の下流側に前記空気流通方向に沿って直線的に延在するように設けられ、前記ロッドの下流端に該ロッドより太径に形成されたストッパーがスライド可能に整合する第2の摺動案内部とを備え、
前記ロッドおよびストッパーにより前記バルブ設置体に支持された前記バルブ体は、前記エンジンの低回転時に、前記付勢部材の付勢力により前記空気流通口へ近接して該空気流通口の空気流通面積を最小とし、前記エンジンの回転上昇時に、前記ダクト本体内へ取込まれた空気の圧力により前記空気流通口から下流側へ離間し、該空気流通口の空気流通面積を増加させるよう構成したことを特徴とする。
In order to solve the above-mentioned problems and achieve the intended purpose, the invention according to claim 1 of the present application,
In the intake duct connected to the air intake portion of the engine, the air flow area of the air flow passage defined inside the duct body is increased or decreased according to the rotational speed of the engine.
An air circulation port formed in a required portion of the air flow passage;
A valve installation portion provided in the air flow passage on the downstream side of the air circulation port ;
The valve installation portion slides along the air flow direction can be disposed, a valve body side has been directed to the air flow port is bulged substantially cone shape,
The valve installation portion is disposed on the downstream side of the valve body, and is always composed of a biasing member that elastically biases the valve body toward the air circulation port side,
The valve installation portion includes a first sliding guide portion in which a rod extending downstream from the valve body is slidably aligned, and a downstream side of the first sliding guide portion along the air flow direction. And a second sliding guide portion slidably aligned with a stopper formed in a diameter larger than the rod at a downstream end of the rod,
The valve body which is supported on the valve installation body by said rod and stopper, during low rotation of the engine, the air flow port proximate to by Ri before Symbol vent port to the biasing force of the biasing member the air flow area to minimize, during rotation rise of the engine, from said duct SL before Ri by the pressure of the air taken into the body vent port spaced downstream, the air flow of the air flow port It is configured to increase the area.

従って、請求項1に係る発明によれば、エンジンの回転数に応じて、バルブ設置部に配設されたバルブ体が空気流通方向へスライド移動するため、低回転時には空気流通面積を減少させてエンジン騒音が外部へ放射されるのを防止し、高回転時には空気流通面積を増大させてエンジンへ充分な空気を供給することができる。そしてバルブ体は、ロッドが第1の摺動案内部に支持されると共にストッパーが第2の摺動案内部に支持されているので、スライド移動する該バルブ体の姿勢が変化せず、空気流通路内を流通する空気流が乱れる等の不都合を防止できる。また、バルブ体が空気流通口側へ膨出した略コーン形状を呈しているため空気流通抵抗が大きく改善され、従来の吸気ダクトのようなバイパス路を設ける必要がなくなり、製造コスト低減、組付け作業の容易化、コンパクト化による設置スペースの減少等を図り得る。 Therefore, according to the first aspect of the present invention, the valve body disposed in the valve installation portion slides in the air circulation direction according to the engine speed, so that the air circulation area is reduced at the time of low rotation. Engine noise can be prevented from being radiated to the outside, and sufficient air can be supplied to the engine by increasing the air flow area at high revolutions. In the valve body, since the rod is supported by the first sliding guide portion and the stopper is supported by the second sliding guide portion, the posture of the valve body that slides does not change, and the air flow It is possible to prevent inconveniences such as disturbance of the air flow flowing through the road. In addition , since the valve body has a substantially cone shape that bulges toward the air flow port side, the air flow resistance is greatly improved, and there is no need to provide a bypass path like a conventional intake duct, reducing manufacturing costs and assembly. The installation space can be reduced by facilitating work and downsizing.

請求項2記載の発明は、請求項1記載の発明において、前記ストッパーは、前記第2の摺動案内部の上流端に当接することで、前記空気流通口の空気流通面積を最小とした状態で前記バルブ体の空気流通方向上流側への変位を規制することを要旨とする。従って、請求項2に係る発明によれば、ストッパーが第2の摺動案内部の上流端に当接することで、バルブ体が空気流通口の空気流通面積を最小とした状態で適切に姿勢保持される。 According to a second aspect of the present invention, in the first aspect of the invention, the stopper is in contact with the upstream end of the second sliding guide portion to minimize the air flow area of the air flow port. The gist is to regulate the displacement of the valve body to the upstream side in the air flow direction . Therefore, according to the second aspect of the present invention, the stopper is in contact with the upstream end of the second sliding guide portion, so that the valve body is properly maintained in a state where the air flow area of the air flow port is minimized. Is done.

請求項3記載の発明は、請求項1または2記載の発明において、前記付勢部材の付勢力は、前記エンジンの低回転時には前記空気流通口へ接近した位置に前記バルブ体を停止保持させ得る大きさで、かつ該エンジンの回転上昇に伴って該バルブ体が前記空気流通口から下流側へ離間移動するのを許容し得る大きさに設定されていることを要旨とする。従って、請求項3に係る発明によれば、バルブ体のスライド移動が、取込まれた外部空気の圧力と付勢部材の付勢力のバランス関係に基づいて行なわれるため、別途の駆動機構等を特に必要とせず、全体がコンパクトになると共に製品コストが嵩むことを防止できる。 According to a third aspect of the present invention, in the first or second aspect of the present invention, the urging force of the urging member stops and holds the valve body at a position closest to the air circulation port when the engine is running at a low speed. The gist of the invention is that the valve body is set to a size that allows the valve body to move away from the air circulation port to the downstream side as the rotation of the engine increases. Therefore, according to the third aspect of the present invention, the sliding movement of the valve body is performed based on the balance between the taken-in external air pressure and the urging force of the urging member. It is not particularly necessary, and the whole can be made compact and the product cost can be prevented from increasing.

請求項4記載の発明は、請求項1〜3の何れかに記載の発明において、前記バルブ体のスライド移動量と、これに伴う前記空気流通口の空気流通面積の増減量とが、略比例関係となるよう設定されたことを要旨とする。従って、請求項4に係る発明によれば、エンジンの回転数および出力が直接的に増加するようになり、理想的なエンジン出力特性を得ることができる。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the sliding movement amount of the valve body and the accompanying increase / decrease amount of the air circulation area of the air circulation port are substantially proportional. The gist is that the relationship is set. Therefore, according to the fourth aspect of the invention, the engine speed and output directly increase, and ideal engine output characteristics can be obtained.

本発明に係る吸気ダクトによれば、エンジン回転数に応じて外部空気の取込量を適切に制御することができると共に、製造コストの低減を図り得る等の有益な効果を奏する。   According to the intake duct according to the present invention, it is possible to appropriately control the amount of external air taken in according to the engine speed, and to achieve a beneficial effect such as reduction in manufacturing cost.

次に、本発明に係る吸気ダクトにつき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。   Next, an intake duct according to the present invention will be described below with reference to the accompanying drawings by way of preferred embodiments.

図1は、好適実施例に係る吸気ダクトを、バルブ体により空気流通面積を最小とした状態で示した断面図、図2は、図1のII−II線断面図、図3は、バルブ体により空気流通面積を最大とした状態で示した吸気ダクトの断面図である。本実施例の吸気ダクトDは、図7の場合と同様に、車体10の前部におけるエンジンルーム12の前側に組付けられ、車体10の前方方向へ空気取込口33を指向させる一方、エンジンEGの空気取込部に配設されたエアクリーナーACに後端部を連結して実施に供される。なお、説明の便宜上、図1の図面左側を吸気ダクトの前側、図面右側を吸気ダクトの後側とする。   1 is a cross-sectional view showing an intake duct according to a preferred embodiment in a state where an air flow area is minimized by a valve body, FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1, and FIG. It is sectional drawing of the intake duct shown in the state which made the air | flow distribution area the maximum by. As in the case of FIG. 7, the intake duct D of the present embodiment is assembled to the front side of the engine room 12 in the front portion of the vehicle body 10, and directs the air intake port 33 in the forward direction of the vehicle body 10, while The rear end portion is connected to an air cleaner AC disposed in the air intake portion of the EG, and then provided for implementation. For convenience of explanation, the left side of FIG. 1 is the front side of the intake duct, and the right side of the drawing is the rear side of the intake duct.

本実施例の吸気ダクトDは、ダクト本体30内に形成された空気流通口50と、ダクト本体30内において空気流通口50の下流側に位置し、空気流通方向に沿ってスライド移動可能に配設されたバルブ体60と、常にはバルブ体60を空気流通口50側へ弾力付勢する圧縮スプリング70とを有している。そして、エンジンEGが回転駆動することで取込まれた空気の圧力と圧縮スプリング70の付勢力とのバランス関係により、バルブ体60が空気流通方向に沿ってスライド移動し、空気流通口50における空気流通面積Sを変化させる構造となっている。このような構成によれば、エンジンEGの低回転時には空気流通面積Sが減少してエンジン騒音が外部へ放射されるのを防止でき、またエンジンEGの高回転時には空気流通面積Sが増加してエンジンEGへ充分な空気を供給することができる。   The intake duct D of the present embodiment is located on the downstream side of the air circulation port 50 in the duct body 30 and is slidably movable along the air circulation direction. The valve body 60 is provided, and a compression spring 70 that constantly urges the valve body 60 toward the air circulation port 50 side. Then, the valve body 60 slides along the air flow direction due to the balance between the pressure of the air taken in as the engine EG rotates and the urging force of the compression spring 70, and the air in the air flow port 50 The distribution area S is changed. According to such a configuration, it is possible to prevent the air circulation area S from decreasing when the engine EG is rotating at a low speed and radiating the engine noise to the outside, and to increase the air circulation area S when the engine EG is rotating at a high speed. Sufficient air can be supplied to the engine EG.

本実施例の吸気ダクトDの主体をなすダクト本体30は、エアクリーナーACに連結固定されるダクト部材32と、このダクト部材32の前側に装着される空気取込部材34とからなっている。ダクト部材32は、高密度ポリエチレン等を材質とする合成樹脂成形材であって、図1および図2に例示したように、2つの樋状半体32A,32Aを対向接合することで円筒形状をなし、前端部分から所要長までの前側部分が、これより後方の後側部分より太径となっている。この太径部分には、後述するように、空気取込部材34のバルブ設置部40が収容されるようになっている。そして、空気取込部材34用の設置開口部36が前側端面にスリーブ状に形成されていると共に、エアクリーナーACに連結される空気送出口35が後側端面に開設されている。   The duct main body 30 that forms the main body of the intake duct D of this embodiment includes a duct member 32 that is connected and fixed to the air cleaner AC, and an air intake member 34 that is attached to the front side of the duct member 32. The duct member 32 is a synthetic resin molding material made of high-density polyethylene or the like. As illustrated in FIGS. 1 and 2, the duct member 32 has a cylindrical shape by opposingly joining the two half-shaped halves 32A and 32A. None, the front part from the front end part to the required length has a larger diameter than the rear part behind it. As will be described later, the large-diameter portion accommodates the valve installation portion 40 of the air intake member 34. An installation opening 36 for the air intake member 34 is formed in a sleeve shape on the front end face, and an air outlet 35 connected to the air cleaner AC is opened on the rear end face.

空気取込部材34は、高密度ポリエチレン等を材質とする合成樹脂成形材であって、図5に例示するように、前方の空気取込口33が先端に向けて拡大した所謂ファンネル形状を呈する空気取込筒部38と、この空気取込筒部38の後方側に一体的に連設されたバルブ設置部40とから構成されている。バルブ設置部40は、前述した設置開口部36を介してダクト部材32内への挿通が許容され得る外径寸法に設定されている。これにより空気取込部材34は、このバルブ設置部40をダクト部材32内へ挿入させ、空気取込筒部38を前方へ延出させた状態で、ダクト部材32の前側に取付固定される。なお、空気取込部材34の外面に、その円周方向へ延在するリブ42が突設されており、このリブ42が設置開口部36の開口端面へ当接させることで、ダクト部材32に対する空気取込部材34の位置決めが図られる。なお、ダクト部材32に対する空気取込部材34の固定は、図示しないビス等の適宜固定手段による。   The air intake member 34 is a synthetic resin molding material made of high-density polyethylene or the like, and has a so-called funnel shape in which the front air intake port 33 expands toward the tip as illustrated in FIG. The air intake tube portion 38 and a valve installation portion 40 integrally connected to the rear side of the air intake tube portion 38 are configured. The valve installation part 40 is set to an outer diameter dimension that allows the insertion into the duct member 32 through the installation opening 36 described above. Thus, the air intake member 34 is attached and fixed to the front side of the duct member 32 in a state where the valve installation portion 40 is inserted into the duct member 32 and the air intake tube portion 38 extends forward. In addition, a rib 42 extending in the circumferential direction is provided on the outer surface of the air intake member 34, and the rib 42 abuts against the opening end surface of the installation opening 36, thereby preventing the duct member 32. The air intake member 34 is positioned. The air intake member 34 is fixed to the duct member 32 by appropriate fixing means such as a screw (not shown).

バルブ設置部40は、図4および図5に例示するように、その前側部分が前述した空気取込筒部38に連通するバルブ収納空間44とされて後述するバルブ体60が収納され、このバルブ収納空間44の後側に、該バルブ体60をスライド移動可能に支持する摺動案内部46,48を有している。そして、空気取込筒部38とバルブ設置部40との境界部分、すなわちバルブ収納空間44の前端部分が空気流通口50とされ、またバルブ収納空間44に対応した外壁部分には合計4個の開口部52が周方向へ開設されている。これにより、前述した空気流通口50および夫々の開口部52を介して、空気取込筒部38の内部からダクト部材32の内部へ至る空気流通路54が画成されている。   As illustrated in FIGS. 4 and 5, the valve installation portion 40 has a front portion serving as a valve storage space 44 communicating with the air intake tube portion 38 described above, and stores a valve body 60 described later. On the rear side of the storage space 44, there are slide guide portions 46 and 48 for supporting the valve body 60 so as to be slidable. A boundary portion between the air intake tube portion 38 and the valve installation portion 40, that is, a front end portion of the valve storage space 44 is an air circulation port 50, and a total of four outer wall portions corresponding to the valve storage space 44 are provided. The opening 52 is opened in the circumferential direction. Thus, an air flow passage 54 is defined from the inside of the air intake cylinder portion 38 to the inside of the duct member 32 via the air circulation port 50 and the respective openings 52 described above.

バルブ体60は、前述したバルブ収納空間44内に設置可能な外径サイズで、かつ空気流通口50を指向した前側が膨出した略コーン形状を呈しており、その最大外形部分の外径寸法は空気流通口50の内径寸法と略同一か僅かに小さく設定されている。そして、バルブ体60の後端部には、細径の摺動案内部46へ挿通されるロッド62が配設されると共に、このロッド62の先端に、太径の摺動案内部48に摺接するストッパー64が固定されている。従ってバルブ体60は、ロッド62およびストッパー64が夫々の摺動案内部46,48へ摺接していることで、バルブ収納空間44内で空気流通方向に沿ってスライド移動が許容される。なお、本願が規定する前述の「コーン形状」とは、各図に例示した砲弾形状の他に、円錐形状、円錐台形状、傘形状等、先端側に向けて外径寸法が漸減する形状のものを全て含むと共に、取込まれた外部空気に対する空気流通抵抗の増加を可能な限り低く抑え得る形状であることが前提とされる。   The valve body 60 has an outer diameter size that can be installed in the valve storage space 44 described above, and has a substantially cone shape in which the front side facing the air circulation port 50 is expanded, and the outer diameter dimension of the maximum outer shape portion thereof. Is set to be substantially the same as or slightly smaller than the inner diameter of the air circulation port 50. A rod 62 inserted into the small-diameter sliding guide 46 is disposed at the rear end of the valve body 60, and is slid onto the large-diameter sliding guide 48 at the tip of the rod 62. The stopper 64 which contacts is fixed. Therefore, the valve body 60 is allowed to slide along the air flow direction in the valve storage space 44 because the rod 62 and the stopper 64 are in sliding contact with the respective sliding guide portions 46 and 48. In addition, the above-mentioned “cone shape” defined by the present application is a shape in which the outer diameter dimension gradually decreases toward the tip side, such as a conical shape, a truncated cone shape, an umbrella shape, etc. in addition to the bullet shape illustrated in each figure. It is assumed that the shape is such that all can be contained and an increase in air flow resistance against the external air taken in can be suppressed as low as possible.

ここで、ストッパー64が摺動案内部48の前端面に当接したバルブ体60の最前進状態では、図1に例示したように、該バルブ体60の前側膨出部が空気流通口50へ適宜突入して、これらバルブ体60と空気流通口50との間に画成される空気流通面積Sが最小(S1)となるように設定されている。すなわち、バルブ体60が最前進した場合には、該バルブ体60の外面が空気流通口50の端縁に若干の隙間を以て位置するようになり、図6(a)に概略図示するように、エンジンEGの低回転時に必要とされる空気の取込みが許容される必要最小限の空気流通面積S(S1)が確保される。   Here, in the most advanced state of the valve body 60 in which the stopper 64 is in contact with the front end surface of the sliding guide portion 48, the front bulge portion of the valve body 60 is connected to the air circulation port 50 as illustrated in FIG. 1. The air flow area S defined between the valve body 60 and the air flow port 50 is set to be minimum (S1) by appropriately entering. That is, when the valve body 60 is moved forward most, the outer surface of the valve body 60 is positioned at the edge of the air circulation port 50 with a slight gap, as schematically shown in FIG. A minimum necessary air flow area S (S1) that allows the intake of air required when the engine EG is running at a low speed is ensured.

しかも、バルブ体60の前側が砲弾形状に膨出しているため、空気取込口33を介して空気取込部材34の内部へ取込まれた外部空気は、該バルブ体60の前側膨出面に衝突すると同時に該膨出面に沿って放射状にスムーズに広がり、空気流通口50および各開口部52を介してダクト部材32の内部へ流れるようになる。従って最小とされる空気流通面積S1は、図8等に例示した従来の吸気ダクトD1と比べてかなり小さくても、エンジンEGに必要とされる空気の取込みが可能である。このため、空気流通面積Sが最小となるため、エンジン騒音に対する遮蔽性能が向上するようになり、空気取込口33を介して外部へ放射されるエンジン騒音の低減が図られる。   In addition, since the front side of the valve body 60 bulges into a bullet shape, the external air taken into the air intake member 34 via the air intake port 33 is applied to the front side bulge surface of the valve body 60. Simultaneously with the collision, it spreads smoothly and radially along the bulging surface, and flows into the duct member 32 through the air circulation port 50 and each opening 52. Therefore, even if the minimum air flow area S1 is considerably smaller than that of the conventional intake duct D1 illustrated in FIG. 8 and the like, the air required for the engine EG can be taken in. For this reason, since the air circulation area S is minimized, the shielding performance against engine noise is improved, and engine noise radiated to the outside through the air intake port 33 is reduced.

一方、バルブ体60がバルブ収納空間44の後端面に当接したバルブ体60の最後退状態では、図3に例示したように、該バルブ体60が空気流通口50から略完全に抜け出るようになり、これらバルブ体60と空気流通口50との間に画成される空気流通面積Sが最大(S2)となるように設定されている。そして、バルブ体60が最後退した場合には、ストッパー64が摺動案内部48から脱抜しないようになっており、図6(b)に概略図示するように、エンジンEGの高回転時に必要とされる空気の取込みが許容される空気流通面積S(S2)が確保される。   On the other hand, in the last retracted state of the valve body 60 in which the valve body 60 is in contact with the rear end surface of the valve storage space 44, the valve body 60 is almost completely removed from the air circulation port 50 as illustrated in FIG. Thus, the air flow area S defined between the valve body 60 and the air flow port 50 is set to be the maximum (S2). When the valve body 60 is finally retracted, the stopper 64 is prevented from being removed from the sliding guide portion 48, and is necessary when the engine EG is rotating at high speed, as schematically shown in FIG. 6 (b). The air circulation area S (S2) that allows the intake of air is secured.

しかも、バルブ体60が前側へ砲弾形状に膨出しているため、空気取込口33を介して空気取込部材34の内部へ取込まれた外部空気は、該バルブ体60の前側膨出面に衝突すると同時に該膨出面に沿って放射状にスムーズに広がり、空気流通口50および各開口部52を介してダクト部材32の内部へ流れるようになる。そして、後方側へスライドするに際して、ダクト体60の姿勢が変化しないため、取込まれた外部空気が、安定的にダクト部材32の太径部分へ流入するようになり、該ダクト部材32内において空気の乱れが発生することが防止される。   In addition, since the valve body 60 bulges forward in the shape of a bullet, external air taken into the air intake member 34 via the air intake port 33 enters the front bulge surface of the valve body 60. Simultaneously with the collision, it spreads smoothly and radially along the bulging surface, and flows into the duct member 32 through the air circulation port 50 and each opening 52. Then, since the posture of the duct body 60 does not change when sliding backward, the taken-in external air stably flows into the large-diameter portion of the duct member 32, and in the duct member 32 Air turbulence is prevented from occurring.

また、前述したロッド62には、バルブ体60とバルブ設置部40(ダクト本体30)とに係合し、常にはバルブ体60を空気流通口50側へ弾力的に付勢する圧縮スプリング(付勢部材)70が装着されている。この圧縮スプリング70の付勢力は、(1)エンジンEGの低回転時には空気流通口50へ接近した位置(前進状態)にバルブ体60を停止保持させ得る大きさで、(2)かつ該エンジンEGの回転上昇に伴って該バルブ体60が空気流通口50から離間移動するのを許容し得る大きさに設定されている。すなわち、エンジンEGが回転駆動することで取込まれた空気の圧力と圧縮スプリング70の付勢力とのバランス関係により、エンジンEGの回転数に追従連動するようにバルブ体60を前後にスライド移動させ、空気流通口50における空気流通面積Sを変化させ得る。 Further, the rod 62 described above is engaged with the valve body 60 and the valve installation portion 40 (duct body 30), and is always a compression spring (attached) that elastically biases the valve body 60 toward the air circulation port 50 side. Force member) 70 is attached. The urging force of the compression spring 70 is such that (1) the valve body 60 can be stopped and held at a position closest to the air circulation port 50 ( most advanced state) when the engine EG is rotating at a low speed. The valve body 60 is set to a size that allows the valve body 60 to move away from the air circulation port 50 as the engine EG rotates. That is, the valve body 60 is slid back and forth so as to follow the rotational speed of the engine EG according to the balance relationship between the pressure of the air taken in by the rotational drive of the engine EG and the urging force of the compression spring 70. The air flow area S at the air flow port 50 can be changed.

これにより、エンジンEGがアイドリング状態を含む低回転時には、取込まれた外部空気の圧力よりも圧縮スプリング70の付勢力が勝っているため、バルブ体60が最前進位置に停止保持されて空気流通口50へ突入し、該空気流通口50の空気流通面積Sが最小S1となる。これにより、空気取込口33を介して外部へ放射されるエンジン騒音(燃焼音等)が、好適に低減される。   As a result, when the engine EG is in a low rotation including an idling state, the urging force of the compression spring 70 is greater than the pressure of the taken-in external air. The air flow area S of the air flow port 50 becomes the minimum S1. Thereby, the engine noise (combustion sound etc.) radiated | emitted outside via the air intake 33 is reduced suitably.

一方、エンジンEGの回転上昇時には、取込まれた外部空気の圧力が圧縮スプリング70の付勢力に勝るようになるため、圧縮スプリング70の付勢力に抗してバルブ体60が空気流通口50から後方側へ離間移動し、該空気流通口50の空気流通面積Sを増加させる。しかも、エンジンの回転数が高くなる程に取込まれた外部空気の圧力が上昇するため、バルブ体60のスライド移動量が大きくなって空気流通面積Sが大きくなる。そして実施例に例示した構造では、バルブ体60のスライド移動量と、これに伴う空気流通口50の空気流通面積Sの増減量とが、略比例関係となるよう設定されている。   On the other hand, when the rotation of the engine EG is increased, the pressure of the external air taken in becomes greater than the urging force of the compression spring 70, so that the valve body 60 moves from the air circulation port 50 against the urging force of the compression spring 70. It moves away to the rear side and increases the air flow area S of the air flow port 50. Moreover, since the pressure of the external air taken in increases as the engine speed increases, the amount of sliding movement of the valve body 60 increases and the air circulation area S increases. In the structure illustrated in the embodiment, the sliding movement amount of the valve body 60 and the accompanying increase / decrease amount of the air circulation area S of the air circulation port 50 are set to have a substantially proportional relationship.

なお、実施例の吸気ダクトDでは、空気流通路54において、空気取込筒部38におけるポイントP1での断面積(空気流通面積)Saと、ダクト部材32の太径部分におけるポイントP2での断面積(空気流通面積)Sbは、略同一かSbの方が大きくなるように設定されている。また、バルブ体60が最後退した際の空気流通口50における空気流通面積S(S2)が、前述した各断面積Sa,Sbと略同一となるように設定されている。これにより、バルブ体60が最後退した際には、空気流通路54の断面積がどのポイントでもほぼ一定となり、取込まれた外部空気の円滑な流通が実現される。   In the intake duct D of the embodiment, in the air flow passage 54, the cross-sectional area (air flow area) Sa at the point P 1 in the air intake cylinder portion 38 and the break at the point P 2 in the large diameter portion of the duct member 32. The area (air flow area) Sb is set to be substantially the same or larger. The air flow area S (S2) at the air flow port 50 when the valve body 60 is finally retracted is set to be substantially the same as the above-described cross-sectional areas Sa and Sb. As a result, when the valve body 60 is finally retracted, the cross-sectional area of the air flow passage 54 is substantially constant at any point, and smooth circulation of the taken-in external air is realized.

前述した本実施例の吸気ダクトDによれば、次のような効果を奏する。先ず、エンジンEGの回転数に応じてバルブ体60がスライド移動するため、低回転時には空気流通面積Sを減少させてエンジン騒音が外部へ放射されるのを防止し、高回転時には空気流通面積Sを増大させてエンジンEGへ充分な空気を供給することができる。そして、バルブ体60が空気流通口50側へ膨出した略コーン形状を呈しているため空気流通抵抗が大きく改善され、図10に例示した従来の吸気ダクトD1のようなバイパス路28を設ける必要がなくなり、製造コスト低減、組付け作業の容易化、コンパクト化による設置スペースの減少等を図り得る。よって、低回転時における空気流通面積Sを小さくすることができるため、低回転時の空気取込口33からのエンジン音の放射が低く抑えられ、容積の大きなレゾネータが不要となる。   According to the intake duct D of the present embodiment described above, the following effects can be obtained. First, since the valve body 60 slides in accordance with the rotational speed of the engine EG, the air flow area S is reduced during low rotation to prevent the engine noise from being radiated to the outside, and the air flow area S during high rotation. Sufficient air can be supplied to the engine EG. And since the valve body 60 is exhibiting the substantially cone shape which bulged to the air circulation port 50 side, air circulation resistance is improved greatly, and it is necessary to provide the bypass path 28 like the conventional intake duct D1 illustrated in FIG. Therefore, the manufacturing cost can be reduced, the assembly work can be facilitated, and the installation space can be reduced by downsizing. Therefore, since the air circulation area S at the time of low rotation can be reduced, radiation of the engine sound from the air intake port 33 at the time of low rotation can be suppressed low, and a resonator having a large volume becomes unnecessary.

また、バルブ体60が空気流通路54の空気流通方向に沿ってスライド移動するに際し、取込まれた外部空気の流れに対して姿勢が変化しないため、空気流通路54内を流通する空気流が乱れること等が好適に防止できる。また、バルブ体60のスライド移動は、取込まれた外部空気の圧力と圧縮スプリング70の付勢力のバランス関係に基づいて行なわれるため、別途の駆動機構等を特に必要とせず、全体がコンパクトになると共に製品コストが嵩むことが防止される。更に、バルブ体60のスライド移動量と、これに伴う空気流通口50の空気流通面積Sの増減量とが、略比例関係となるよう設定されているため、エンジンの回転数および出力が直接的に増加するようになり、理想的なエンジン出力特性を得ることができる。   Further, when the valve body 60 slides along the air flow direction of the air flow passage 54, the posture does not change with respect to the flow of the taken-in external air. Disturbances can be suitably prevented. Further, the sliding movement of the valve body 60 is performed based on the balance relationship between the pressure of the taken-in external air and the urging force of the compression spring 70, so that no separate drive mechanism or the like is required, and the whole is compact. In addition, the product cost is prevented from increasing. Furthermore, the amount of slide movement of the valve body 60 and the accompanying increase / decrease amount of the air flow area S of the air flow port 50 are set to have a substantially proportional relationship. Thus, an ideal engine output characteristic can be obtained.

なお、ボディ形状やサイズが違う車種に搭載する場合には、ダクト部材32だけを、サイズ、形状が異なる別のダクト部材に変更すればよく、空気取込部材34およびこれに取付けられるバルブ体60を共通的に使用することができるため、部品の共通化によるコスト低減効果が更に高まる。   In addition, when installing in the vehicle type from which a body shape and size differ, it is sufficient to change only the duct member 32 into another duct member from which a size and a shape differ, and the air intake member 34 and the valve body 60 attached to this. Can be used in common, and the cost reduction effect due to the common use of parts is further enhanced.

本発明に係る吸気ダクトは、エンジンの空気取込部に装着して実施に供されるため、エンジンを搭載した種々自動車やその他の産業機械等に広く実施することが可能である。   Since the intake duct according to the present invention is mounted on an air intake portion of an engine and used for implementation, it can be widely implemented in various automobiles and other industrial machines equipped with the engine.

好適実施例に係る吸気ダクトを、バルブ体により空気流通面積を最小とした状態で示した断面図。Sectional drawing which showed the air intake duct which concerns on a suitable Example in the state which made the air | flow distribution area the minimum with the valve body. 図1のII−II線断面図。II-II sectional view taken on the line of FIG. 図1に例示した吸気ダクトを、バルブ体により空気流通面積を最大とした状態で示した断面図。Sectional drawing which showed the air intake duct illustrated in FIG. 1 in the state which maximized the air circulation area with the valve body. 吸気ダクトの主要部分を一部破断して示した部分斜視図。The partial perspective view which showed the main part of the air intake duct partly broken. 空気取込部材、バルブ体および圧縮スプリングの分解斜視図。The exploded perspective view of an air intake member, a valve body, and a compression spring. 空気流通面積の最小状態および最大状態を概略的に示した説明図。Explanatory drawing which showed schematically the minimum state and the maximum state of an air circulation area. 吸気ダクトを組付けた車体前側部分を示した車両の側断面図。1 is a side sectional view of a vehicle showing a front side portion of a vehicle body with an intake duct assembled thereto. 従来の吸気ダクトにおける空気流通面積の可変構造を概略図示した説明図。Explanatory drawing which illustrated schematically the variable structure of the air circulation area in the conventional intake duct. 図8に例示した吸気ダクトの問題点を示した説明図。Explanatory drawing which showed the problem of the air intake duct illustrated in FIG. 従来実施されている吸気ダクトの構成を示した説明断面図。Explanatory sectional drawing which showed the structure of the intake duct currently implemented. 図8に例示した吸気ダクトの更に別の問題点を示した説明図。FIG. 9 is an explanatory diagram showing still another problem of the intake duct exemplified in FIG. 8.

符号の説明Explanation of symbols

30 ダクト本体,40 バルブ設置部,44 バルブ収納空間
46 細径の摺動案内部(第1の摺動案内部),48 太径の摺動案内部(第2の摺動案内部)
50 空気流通口,54 空気流通路,60 バルブ体,62 ロッド,64 ストッパー
70 圧縮スプリング(付勢部材),EG エンジン,S 空気流通面積

30 Duct body, 40 Valve installation section, 44 Valve storage space
46 Sliding guide part with a small diameter (first sliding guide part), 48 Sliding guide part with a large diameter (second sliding guide part)
50 air flow port, 54 air flow passage, 60 valve body, 62 rod, 64 stopper 70 compression spring (biasing member), EG engine, S air flow area

Claims (4)

エンジン(EG)の空気取込部に接続され、ダクト本体(30)の内部に画成された空気流通路(54)の空気流通面積(S)を、前記エンジン(EG)の回転数に応じて増減変化させるようにした吸気ダクトにおいて、
前記空気流通路(54)の所要部位に形成された空気流通口(50)と、
前記空気流通口(50)の下流側で前記空気流通路(54)に設けられたバルブ設置部(40)と、
前記バルブ設置部(40)に空気流通方向に沿ったスライド移動が可能に配設され、前記空気流通口(50)を指向した側が略コーン形状に膨出したバルブ体(60)と、
前記バルブ設置部(40)において前記バルブ体(60)の下流側に配設され、常には該バルブ体(60)を前記空気流通口(50)側へ弾力付勢する付勢部材(70)とからなり、
前記バルブ設置部(40)は、前記バルブ体(60)から下流側へ延出するロッド(62)がスライド可能に整合する第1の摺動案内部(46)と、前記第1の摺動案内部(46)の下流側に前記空気流通方向に沿って直線的に延在するように設けられ、前記ロッド(62)の下流端に該ロッド(62)より太径に形成されたストッパー(64)がスライド可能に整合する第2の摺動案内部(48)とを備え、
前記ロッド(62)およびストッパー(64)により前記バルブ設置体(40)に支持された前記バルブ体(60)は、前記エンジン(EG)の低回転時に、前記付勢部材(70)の付勢力により前記空気流通口(50)へ近接して該空気流通口(50)の空気流通面積(S)を最小とし、前記エンジン(EG)の回転上昇時に、前記ダクト本体(30)内へ取込まれた空気の圧力により前記空気流通口(50)から下流側へ離間し、該空気流通口(50)の空気流通面積(S)を増加させるよう構成した
ことを特徴とする吸気ダクト。
The air flow area (S) of the air flow passage (54) connected to the air intake portion of the engine (EG) and defined in the duct body (30) is determined according to the rotational speed of the engine (EG). In the intake duct that is changed by
An air circulation port (50) formed in a required portion of the air flow passageway (54), and
A valve installation part (40) provided in the air flow passage (54) on the downstream side of the air circulation port (50) ;
A valve body (60) in which the valve installation part (40) is arranged so as to be slidable along the air flow direction, and the side facing the air flow port (50) is bulged into a substantially cone shape,
An urging member (70) disposed downstream of the valve body (60) in the valve installation portion (40) and constantly urging the valve body (60) toward the air circulation port (50). And consist of
The valve installation part (40) includes a first sliding guide part (46) in which a rod (62) extending downstream from the valve body (60) is slidably aligned, and the first sliding part. A stopper (linearly extending along the air flow direction on the downstream side of the guide portion (46), and formed on the downstream end of the rod (62) with a larger diameter than the rod (62) ( 64) comprises a second sliding guide (48) slidably aligned,
The valve body (60) supported by the valve installation body (40) by the rod (62) and the stopper (64) is attached to the biasing member (70) when the engine (EG) is rotated at a low speed. air flow port air flow area of the (50) (S) and the minimum is close to I Ri before Symbol vent port to force (50), during rotation rise of the engine (EG), the duct body (30 ) by the pressure of the incorporated air to intake into the Ri before Symbol vent port from (50) spaced downstream, by being configured so as to increase the air flow area (S) of the air flow port (50) Intake duct characterized by.
前記ストッパー(64)は、前記第2の摺動案内部(48)の上流端に当接することで、前記空気流通口(50)の空気流通面積(S)を最小とした状態で前記バルブ体(60)の空気流通方向上流側への変位を規制する請求項1記載の吸気ダクト。 The stopper (64) is in contact with the upstream end of the second sliding guide portion (48), so that the valve body in a state where the air flow area (S) of the air flow port (50) is minimized. The intake duct according to claim 1 , wherein displacement of (60) upstream in the air flow direction is restricted . 前記付勢部材(70)の付勢力は、前記エンジン(EG)の低回転時には前記空気流通口(50)へ接近した位置に前記バルブ体(60)を停止保持させ得る大きさで、かつ該エンジン(EG)の回転上昇に伴って該バルブ体(60)が前記空気流通口(50)から下流側へ離間移動するのを許容し得る大きさに設定されている請求項1または2記載の吸気ダクト。 The urging force of the urging member (70) is large enough to stop and hold the valve body (60) at a position closest to the air circulation port (50) when the engine (EG) is rotated at a low speed. The size is set to allow the valve body (60) to move away from the air circulation port (50) to the downstream side as the rotation of the engine (EG) increases. Intake duct. 前記バルブ体(60)のスライド移動量と、これに伴う前記空気流通口(50)の空気流通面積(S)の増減量とが、略比例関係となるよう設定された請求項1〜3の何れか一項に記載の吸気ダクト。 The sliding movement amount of the valve body (60) and the accompanying increase / decrease amount of the air circulation area (S) of the air circulation port (50) are set to have a substantially proportional relationship. The intake duct according to any one of the above.
JP2005132959A 2005-04-28 2005-04-28 Air intake duct Expired - Fee Related JP4563861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005132959A JP4563861B2 (en) 2005-04-28 2005-04-28 Air intake duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005132959A JP4563861B2 (en) 2005-04-28 2005-04-28 Air intake duct

Publications (2)

Publication Number Publication Date
JP2006307775A JP2006307775A (en) 2006-11-09
JP4563861B2 true JP4563861B2 (en) 2010-10-13

Family

ID=37474940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005132959A Expired - Fee Related JP4563861B2 (en) 2005-04-28 2005-04-28 Air intake duct

Country Status (1)

Country Link
JP (1) JP4563861B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2868900B1 (en) 2013-11-05 2017-07-26 MANN+HUMMEL GmbH Control system of at least one flap of a fluid duct and fluid duct system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073896A (en) * 1998-08-25 2000-03-07 Tochigi Fuji Ind Co Ltd Fluid machine
JP2000145559A (en) * 1998-11-12 2000-05-26 Toyoda Gosei Co Ltd Intake duct
JP2001221115A (en) * 2000-02-10 2001-08-17 Toyoda Gosei Co Ltd Intake air duct
JP2004278403A (en) * 2003-03-14 2004-10-07 Inoac Corp Sectional area variable structure of air intake duct

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073896A (en) * 1998-08-25 2000-03-07 Tochigi Fuji Ind Co Ltd Fluid machine
JP2000145559A (en) * 1998-11-12 2000-05-26 Toyoda Gosei Co Ltd Intake duct
JP2001221115A (en) * 2000-02-10 2001-08-17 Toyoda Gosei Co Ltd Intake air duct
JP2004278403A (en) * 2003-03-14 2004-10-07 Inoac Corp Sectional area variable structure of air intake duct

Also Published As

Publication number Publication date
JP2006307775A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP6017798B2 (en) Exhaust flow path valve device
JP5680517B2 (en) Flow control valve
EP2604845B1 (en) Intake apparatus for internal combustion engine
CA2675005A1 (en) Automotive vehicle having engine air guide passage
JP5912031B2 (en) Flow control valve
US20130129492A1 (en) Turbocharger
JP6201524B2 (en) Turbocharger for vehicle engine
US20180274552A1 (en) Compressor
JP4563861B2 (en) Air intake duct
JP4928135B2 (en) Intake device and intake manifold of internal combustion engine
JP4234121B2 (en) Engine intake system
EP2333294A1 (en) Air intake apparatus for internal combustion engine
JP2006022803A (en) Variable intake system of automobile
JP4542470B2 (en) Air intake duct
JP4589827B2 (en) Air intake duct
JP2006313011A (en) Flow regulating valve and bush for flow regulating valve
JP2006029300A (en) Throttle valve
JP2019015217A (en) Valve arrangement structure
JP2007071086A (en) Air-intake device for engine
JP2012102623A (en) Variable intake system
JP2018062894A (en) Centrifugal compressor and vehicle including the same
JP2009287461A (en) Intake device and intake method
JP5774394B2 (en) Flow control valve
JP4375060B2 (en) Intake device for internal combustion engine
WO2019008710A1 (en) Engine peripheral structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4563861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees