JP4562888B2 - Method for producing 4,4'-bisphenolsulfone - Google Patents

Method for producing 4,4'-bisphenolsulfone Download PDF

Info

Publication number
JP4562888B2
JP4562888B2 JP2000273083A JP2000273083A JP4562888B2 JP 4562888 B2 JP4562888 B2 JP 4562888B2 JP 2000273083 A JP2000273083 A JP 2000273083A JP 2000273083 A JP2000273083 A JP 2000273083A JP 4562888 B2 JP4562888 B2 JP 4562888B2
Authority
JP
Japan
Prior art keywords
solvent
phenol
reaction
bps
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000273083A
Other languages
Japanese (ja)
Other versions
JP2002088055A (en
Inventor
友也 肥高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Nisso Metallochemical Co Ltd
Original Assignee
Nippon Soda Co Ltd
Nisso Metallochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd, Nisso Metallochemical Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2000273083A priority Critical patent/JP4562888B2/en
Publication of JP2002088055A publication Critical patent/JP2002088055A/en
Application granted granted Critical
Publication of JP4562888B2 publication Critical patent/JP4562888B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、フェノールと硫酸とを反応させて4,4’−ビスフェノールスルホン(又は4,4’−ジヒドロキシジフェニルスルホン、以下4,4’−BPSという。)を製造する方法に関する。
【0002】
【従来の技術】
4,4’−BPSはポリスルホン(PSF)やポリエーテルスルホン(PES)等のエンジニアリングプラスチックの原料として用いられるなど有用な化合物である。この4,4’−BPSを製造するためにフェノールと硫酸とを反応させる方法は従来からよく検討されているが、その技術的な課題は、主として、水の除去を如何に効率よく行うかという点と、副生物である異性体の2,4’−BPSを如何に少なくして4,4’−BPSの収率を上げるかという点にあった。
特開平3−101656号公報には、メシチレンを反応溶媒として、還流下で水を除きながらフェノールとスルホン化剤等を反応させ、生成する4,4’−BPSを懸濁させつつ反応を進行させることを特徴とする4,4’−BPSの製造方法が開示されている。メシチレンはスルホン酸等と反応せずフェノール等をよく溶解するという利点を有する。しかし、メシチレンは、この反応における副生成物である2,4’−BPSを溶解するため、この副生成物が約2割程度の顕著な量で存在してしまい4,4’−BPSの収率を上げることが容易ではない。
特開昭51−98239号公報、特開平3−206073号公報にはフェノールと硫酸との反応を、o−ジクロルベンゼンやメシチレン等の溶媒中で行うに当たり、最終的に溶媒の全てを留去して4,4’−BPSを製造する方法が記載されている。この方法では、溶媒を反応系から留去することで、溶媒に溶解している2,4’−BPSの4,4’−BPSへの異性化反応を進行させることができる。しかし溶媒の留去後に得られる反応生成物が工業的に取り扱い難い固体塊になる点や、溶媒の除去速度と異性化速度とを調整するための反応条件の管理が必要である点が問題となる。
【0003】
溶媒を用いる方法には、これら以外に、脂肪族炭化水素溶媒を用いる方法がある(特開昭64−9970、米国特許第4,996,367号等)。
脂肪族炭化水素溶媒を用いた場合、4,4’−BPS、2,4’−BPSともにこの溶媒にほとんど溶解しないことから、溶媒を留去しなくても2,4’−BPSから4,4’−BPSへの転位が進行し、工業的に扱いやすいスラリー状の生成物を得ることができるという利点を有する。
例えば、米国特許第4,996,367号は、溶媒として沸点が70〜140℃の低沸点炭化水素及び沸点が160〜220℃の高沸点炭化水素を用い、低沸点炭化水素を共沸剤として蒸留し凝縮させて得た少なくとも2層の液層のうちフェノール層を反応系へ戻す方法を開示している。このフェノール層は最も重く下層になるため還流が容易であるとしている。好ましい溶媒としてアイソパー(エクソン化学(株)の登録商標)EとアイソパーHの組み合わせを挙げている。この溶媒を用いた反応系で還流する場合、通常、凝縮液はフェノール/水/脂肪族炭化水素の3層に分離するため、水層を除去しつつ、フェノールと脂肪族炭化水素溶媒を反応層に戻すことが容易でない点が問題となる。
【0004】
【発明が解決しようとする課題】
この発明は、脂肪族飽和炭化水素溶媒中でフェノールと硫酸とを還流下で反応させる4,4’−BPSの製造方法において、反応工程及びその後の工程において4,4’−BPSの高収率をもたらすような適切な混合溶媒を用いることにより、効率よく副生する水を除去し、かつ4,4’−BPSの収率を向上させることができる製法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、フェノール及び硫酸を、沸点が175℃以上である脂肪族飽和炭化水素及びフェノールを溶解し沸点が170℃以下の溶媒から成る混合溶媒中で、水を除きながら還流下で反応させ、該フェノールを溶解し沸点が170℃以下の溶媒を反応系から留去する4,4’−ビスフェノールスルホンの製造方法である。前記反応終了後にフェノールを溶解し沸点が170℃以下の溶媒を反応系から留去することが好ましい。
本発明で用いる溶媒は、沸点が175℃以上である1種または2種以上の脂肪族飽和炭化水素及びメシチレンから成る混合溶媒である。
脂肪族飽和炭化水素が混合溶媒である場合は、その混合溶媒の留出温度が175℃以上である。この溶媒としては、例えば、アイソパー(エクソン化学(株)の登録商標)H、アイソパーL、アイソパーM、が挙げられる。この中でアイソパーHが好ましい。
【0006】
本発明のフェノールを溶解し沸点が170℃以下の溶媒としては、メシチレンやクロルベンゼン等が挙げられるが、メシチレンが好ましい。このようなフェノールを溶解する溶媒を用いることにより、脱水する際に留出する水、フェノール及び溶媒が2層になり、その取り扱い及び水の除去がきわめて容易になる。
この混合溶媒における脂肪族飽和炭化水素及びメシチレンの比に特に制限はないが、脂肪族飽和炭化水素1重量部に対し、メシチレンを0.1〜10重量部、好ましくは0.5〜1.2重量部で用いることができる。
【0007】
特にメシチレンはフェノール及び硫酸を反応させて4,4’−BPSを製造する場合に共沸剤として水の除去に有効であることはよく知られている。溶媒としてメシチレンを用いるとフェノール等をよく溶解するため、この脱水反応で必須の蒸留により水を除去する際、留出したフェノールとメシチレンは1層になりかつ比重が水よりも軽いため、重く下層である水層を除去しつつ、軽く上層であるフェノールとメシチレンを反応系に戻す操作がきわめて容易になる。
しかし、メシチレンのみを反応溶媒として用いた場合、メシチレンが2,4’−BPSを溶解するという性質上、4,4’−BPSへの転位反応が進まず収率が落ちるという問題が生じる。
【0008】
一方、脂肪族飽和炭化水素溶媒は、2,4’−異性体をほとんど溶解しないため、2,4’−異性体から4,4’−異性体への転移を促進し、4,4’−異性体を多く得ることが可能になる。
還流下で脱水反応を行う場合に、低沸点の脂肪族炭化水素溶媒のみを用いた場合には、凝縮液が下からフェノール/水/炭化水素の順で3層に分離するため、水を除きながらの還流操作が容易でなくなるが、本発明の溶媒を用いると凝縮液が下から水/フェノール及びメシチレンの2層に分離することになるため、脱水反応において効率的に水を除去することができ、この結果4,4’−BPSを効率よく生産することができる。また、脱水反応後、メシチレンを反応系から留去することにより転位反応が促進され、脂肪族飽和炭化水素に懸濁した高純度の4,4’−BPSを得ることができる。
【0009】
本発明によれば、前半の脱水反応では混合溶媒の一方にメシチレン等の比較的低沸点の溶媒が存在することにより、水の除去を促進しかつ還流操作を簡便にすることができ、後半の転位反応ではこの低沸点溶媒を留去して脂肪族飽和炭化水素から成る溶媒とすることにより、4,4’−BPSへの転位反応を促進し、4,4’−BPSの収量を上げることができる。本発明の混合溶媒を用いることにより、従来の溶媒のもつ問題点を解消し、多くの利点を一挙に達成することができる。
【0010】
【発明の実施の形態】
2,4’−異性体から4,4’−異性体への転移と温度の関係を図1に示す。
ここでは(4,4’−BPS、)2,4’−BPS及びフェノールスルホン酸の重量比20:1の混合物をアイソパー系溶媒に懸濁し、4,4’−異性体の生成比を各温度・時間毎に高速液体クロマトグラフィー(HPLC)で測定したものである。この図からもわかるように、150℃と160℃との間では転移速度が大きく異なり4,4’−異性体の生成が大きくなる。即ち、この温度以上の温度で反応を進めることにより4,4’−異性体の収率を上げることができる。
これらのことから、脂肪族飽和炭化水素溶媒の沸点はこの温度以上であって、メシチレンの沸点(約162℃)よりも有意に高いことが好ましく、特に約175℃以上であることが適当である。
【0011】
この発明において4,4’−BPSの生成反応は一般的に以下のようにして行われる。
反応容器に脂肪族飽和炭化水素及びメシチレン等のフェノールを溶解し沸点が170℃以下の溶媒から成る混合溶媒を用意する。これにフェノール及び硫酸を徐々に添加するが、これらを同時に添加してもよいしフェノールの必要量を添加後に硫酸を徐々に添加するのでもよい。フェノールの量は最終的にフェノール及び硫酸のモル比が2〜3:1の範囲、好ましくはほぼ2:1になるようにする。一方、反応液中の溶媒の割合は、硫酸重量の1から3倍重量、特にほぼ2倍となるようにする。
反応は約145から約175℃の温度範囲で行う。
【0012】
この反応において、前半は脱水反応であり、上記反応温度において生成する水をメシチレンと共沸蒸留させて、水、メシチレン等のフェノールを溶解し沸点が170℃以下の溶媒及びフェノールを留出させる。これを凝縮させると、水層及びフェノールの溶解層の2層に分離する。メシチレンを用いる場合にはこのフェノール溶解層は軽いため水層が下層になり、下部より容易に水を除去することができる。留出したフェノールは溶媒との溶液として反応系へ連続的に戻すことができる。
この還流は、水の理論量が留出したことにより、脱水反応が終了したことを確認するまで行い、その後、この還流を止めてメシチレン等の低沸点(170℃以下)溶媒を反応系より留去する。この範囲の沸点を有する溶媒は容易に留去することができる。
この時、留去するメシチレンとほぼ同量の脂肪族飽和炭化水素溶媒を更に添加してもよい。
【0013】
上記のように反応後半からは溶媒からメシチレン等の低沸点溶媒が除去されるため、溶媒はほとんど脂肪族飽和炭化水素となる。この溶媒中では2,4’−BPSから4,4’−BPSへの転移反応が促進され、最終的に4,4’−BPSの収率は向上する。
以上の操作により、結晶化した生成物が炭化水素系溶媒中に懸濁したスラリーが得られる。この溶媒層から4,4’−BPSを再結晶させるためにいかなる公知の方法を用いてもよい。
例えば、溶媒が炭化水素であることを利用して、メタノールで生成物を抽出することも可能である。
【0014】
具体的には、溶媒層にほぼ同量のメタノールを加え、約65℃程度で約1時間ほど溶解させる。このメタノールは純品でもよいし水溶液でもよい。また、純品の場合にはさらに水を同量程度加えてもよい。生成物である4,4’−BPSと2,4’−異性体との混合物はメタノールに溶解する。また、本発明の溶媒はメタノールと相溶性が小さいため、メタノール添加後、いずれも透明な2層に分離する。分離した溶媒層は容易に分液され、生成物や不純物を含まないため再利用が容易である。メタノール層には不純物除去やpH調整のため、活性炭やカセイソーダ等を添加してもよい。
その後、メタノール層に水を加えて室温近くまで冷却し、4,4’−BPSを再結晶・乾燥させて4,4’−BPSを得ることができる。2,4’−異性体は4,4’−BPSよりもメタノールに溶けるため、結晶中の4,4’−異性体の割合を99%以上にまで高めることができる。
【0015】
【実施例】
実施例1
撹拌機、温度計、水分離管を備えた500mlの4口フラスコにフェノール98.7g(1.05モル)、アイソパーH 75ml、メシチレン 50mlを仕込み、その混合物に撹拌下95%硫酸51.6g(0.50モル)を50℃で滴下後昇温した。
148℃付近から反応液の留出が始まり、この留出物は凝縮され水分離管で2層に分離され、上層の有機層は連続的に反応系に戻された。昇温から約4時間で反応系の温度は170℃となり、水の生成が停止し、水分離管で分離された水量は20.5gであった。その後、アイソパーH 50ml加えて、反応系の温度が175℃になるまで3時間かけてメシチレンを留去した。この反応物の組成を高速液体クロマトグラフィー(HPLC)で分析した結果、相対面積比(測定波長:231nm)で、4,4’−BPS 94.7%、2,4’−BPS 2.8%、フェノールスルホン酸 1.2%であった。
【0016】
比較例1
撹拌機、温度計、水分離管を備えた500mlの4口フラスコにフェノール98.7g(1.05モル)、アイソパーG 100mlを仕込み、その混合物に撹拌下95%硫酸51.6g(0.50モル)を50℃で滴下後昇温した。144℃付近から反応液の留出が始まり、この留出物は凝縮され水分離管で上層は溶媒層、中間層は水層、下層はフェノール層の3層に分離される。上層の溶媒層は連続的に反応系に戻され、下層のフェノール層は15分毎に抜き取り反応系に戻された。昇温から約7時間で反応系の温度は167℃となり、水の生成が停止し、水分離管で分離された水量は21.2gで、反応系に戻したフェノールは合計で68.0gであった。この反応物の組成を高速液体クロマトグラフィー(HPLC)で分析した結果、相対面積比(測定波長:231nm)で、4,4’−BPS 94.0%、2,4’−BPS 3.1%、フェノールスルホン酸 1.6%であった。
【0017】
【発明の効果】
以上のように、この発明の製法は沸点が175℃以上である1種または2種以上の脂肪族飽和炭化水素及びメシチレン等のフェノールを溶解し沸点が170℃以下の溶媒から成る混合溶媒から成る混合溶媒を用いることを特徴としており、メシチレン等の低沸点溶媒が共沸剤として機能し、更にこの溶媒はフェノールを溶解するため脱水する際に留出する層が2層になるため、脱水反応における水除去が極めて効率良く行われ、従ってその還流操作が容易になる。脱水反応終了後にはメシチレン等の低沸点溶媒を留去するため、脂肪族飽和炭化水素溶媒中で転位反応を促進することにより4,4’−BPSの収率を上げることが可能になる。この発明ではこのような多くの利点を一種類の混合溶媒を用いることにより容易に一挙に達成することができる。
【図面の簡単な説明】
【図1】2,4’−異性体から4,4’−異性体への転移と温度の関係を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing 4,4′-bisphenolsulfone (or 4,4′-dihydroxydiphenylsulfone, hereinafter referred to as 4,4′-BPS) by reacting phenol and sulfuric acid.
[0002]
[Prior art]
4,4′-BPS is a useful compound such as used as a raw material for engineering plastics such as polysulfone (PSF) and polyethersulfone (PES). A method of reacting phenol and sulfuric acid to produce this 4,4′-BPS has been well studied, but the technical problem is mainly how to efficiently remove water. The point was how to reduce the by-product isomer 2,4′-BPS to increase the yield of 4,4′-BPS.
In Japanese Patent Laid-Open No. 3-101656, mesitylene is used as a reaction solvent, phenol and a sulfonating agent are reacted while removing water under reflux, and the reaction proceeds while suspending the produced 4,4′-BPS. A method for producing 4,4′-BPS is disclosed. Mesitylene has the advantage that it does not react with sulfonic acid or the like and dissolves phenol or the like well. However, since mesitylene dissolves 2,4′-BPS, which is a by-product in this reaction, this by-product is present in a significant amount of about 20%, and the yield of 4,4′-BPS is reduced. It is not easy to raise the rate.
In JP-A-51-98239 and JP-A-3-206073, when the reaction of phenol and sulfuric acid is carried out in a solvent such as o-dichlorobenzene or mesitylene, all of the solvent is finally distilled off. Thus, a method for producing 4,4′-BPS is described. In this method, by distilling off the solvent from the reaction system, the isomerization reaction of 2,4′-BPS dissolved in the solvent to 4,4′-BPS can proceed. However, there are problems in that the reaction product obtained after evaporation of the solvent becomes a solid mass that is difficult to handle industrially, and that the reaction conditions must be controlled to adjust the solvent removal rate and the isomerization rate. Become.
[0003]
In addition to these methods, there are methods using an aliphatic hydrocarbon solvent (Japanese Patent Laid-Open No. 64-9970, US Pat. No. 4,996,367, etc.).
When an aliphatic hydrocarbon solvent is used, both 4,4′-BPS and 2,4′-BPS are hardly dissolved in this solvent. The rearrangement to 4′-BPS proceeds, and there is an advantage that a slurry-like product which is industrially easy to handle can be obtained.
For example, US Pat. No. 4,996,367 uses low-boiling hydrocarbons having a boiling point of 70 to 140 ° C. and high-boiling hydrocarbons having a boiling point of 160 to 220 ° C. as solvents, and low-boiling hydrocarbons as azeotropic agents. Disclosed is a method of returning a phenol layer to a reaction system among at least two liquid layers obtained by distillation and condensation. Since this phenol layer is the heaviest and lower layer, it is said that reflux is easy. A preferred solvent is a combination of Isopar (registered trademark of Exxon Chemical Co., Ltd.) E and Isopar H. When refluxing in a reaction system using this solvent, the condensate is usually separated into three layers of phenol / water / aliphatic hydrocarbon, so the phenol and aliphatic hydrocarbon solvent are removed from the reaction layer while removing the aqueous layer. The problem is that it is not easy to return to.
[0004]
[Problems to be solved by the invention]
The present invention relates to a method for producing 4,4′-BPS, in which phenol and sulfuric acid are reacted under reflux in an aliphatic saturated hydrocarbon solvent, and the high yield of 4,4′-BPS in the reaction step and the subsequent steps. It is an object of the present invention to provide a production method capable of efficiently removing by-produced water and improving the yield of 4,4′-BPS by using an appropriate mixed solvent that brings about the above.
[0005]
[Means for Solving the Problems]
In the present invention, phenol and sulfuric acid are reacted under reflux while removing water in a mixed solvent composed of a solvent having a boiling point of 175 ° C. or higher and an aliphatic saturated hydrocarbon and phenol having a boiling point of 170 ° C. or lower, This is a method for producing 4,4′-bisphenolsulfone, in which the phenol is dissolved and the solvent having a boiling point of 170 ° C. or less is distilled off from the reaction system. After completion of the reaction, it is preferable to dissolve phenol and distill off the solvent having a boiling point of 170 ° C. or less from the reaction system.
The solvent used in the present invention is a mixed solvent composed of one or more aliphatic saturated hydrocarbons having a boiling point of 175 ° C. or higher and mesitylene.
When the aliphatic saturated hydrocarbon is a mixed solvent, the distillation temperature of the mixed solvent is 175 ° C. or higher. Examples of the solvent include Isopar (registered trademark of Exxon Chemical Co., Ltd.) H, Isopar L, and Isopar M. Of these, Isopar H is preferred.
[0006]
Examples of the solvent in which the phenol of the present invention is dissolved and has a boiling point of 170 ° C. or lower include mesitylene and chlorobenzene, and mesitylene is preferable. By using such a solvent that dissolves phenol, water, phenol, and solvent distilled during dehydration become two layers, and handling and removal of water become extremely easy.
Although there is no restriction | limiting in particular in the ratio of the aliphatic saturated hydrocarbon and mesitylene in this mixed solvent, 0.1-10 weight part of mesitylene is preferable with respect to 1 weight part of aliphatic saturated hydrocarbon, Preferably it is 0.5-1.2. It can be used in parts by weight.
[0007]
In particular, it is well known that mesitylene is effective for removing water as an azeotropic agent when 4,4′-BPS is produced by reacting phenol and sulfuric acid. When mesitylene is used as a solvent, phenol and the like are dissolved well. Therefore, when water is removed by distillation, which is essential in this dehydration reaction, the distilled phenol and mesitylene are in one layer and the specific gravity is lighter than water. It is very easy to return the phenol and mesitylene, which are lightly upper layers, to the reaction system while removing the aqueous layer.
However, when only mesitylene is used as a reaction solvent, there arises a problem that the rearrangement reaction to 4,4′-BPS does not proceed and the yield decreases due to the property that mesitylene dissolves 2,4′-BPS.
[0008]
On the other hand, since the aliphatic saturated hydrocarbon solvent hardly dissolves the 2,4′-isomer, the transition from the 2,4′-isomer to the 4,4′-isomer is promoted. Many isomers can be obtained.
When the dehydration reaction is performed under reflux, if only the low-boiling point aliphatic hydrocarbon solvent is used, the condensate is separated into three layers in the order of phenol / water / hydrocarbon from the bottom. However, when the solvent of the present invention is used, the condensate is separated into two layers of water / phenol and mesitylene from the bottom, so that water can be efficiently removed in the dehydration reaction. As a result, 4,4′-BPS can be produced efficiently. Further, after the dehydration reaction, mesitylene is distilled off from the reaction system to promote the rearrangement reaction, and high-purity 4,4′-BPS suspended in an aliphatic saturated hydrocarbon can be obtained.
[0009]
According to the present invention, in the first half of the dehydration reaction, the presence of a relatively low boiling point solvent such as mesitylene in one of the mixed solvents facilitates the removal of water and simplifies the reflux operation. In the rearrangement reaction, this low boiling point solvent is distilled off to make a solvent composed of aliphatic saturated hydrocarbons, thereby promoting the rearrangement reaction to 4,4′-BPS and increasing the yield of 4,4′-BPS. Can do. By using the mixed solvent of the present invention, problems with conventional solvents can be solved and many advantages can be achieved at once.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The relationship between the transition from the 2,4′-isomer to the 4,4′-isomer and the temperature is shown in FIG.
Here, a mixture of (4,4′-BPS), 2,4′-BPS and phenolsulfonic acid in a weight ratio of 20: 1 is suspended in an isopar solvent, and the production ratio of the 4,4′-isomer is determined at each temperature.・ Measured by high performance liquid chromatography (HPLC) every hour. As can be seen from this figure, the transition rate differs greatly between 150 ° C. and 160 ° C., and the production of 4,4′-isomer increases. That is, the yield of the 4,4′-isomer can be increased by proceeding the reaction at a temperature higher than this temperature.
From these facts, the boiling point of the aliphatic saturated hydrocarbon solvent is higher than this temperature, preferably significantly higher than the boiling point of mesitylene (about 162 ° C.), and particularly preferably about 175 ° C. or higher. .
[0011]
In this invention, the 4,4′-BPS production reaction is generally carried out as follows.
A mixed solvent composed of a solvent having a boiling point of 170 ° C. or lower is prepared by dissolving a phenol such as an aliphatic saturated hydrocarbon and mesitylene in a reaction vessel. Phenol and sulfuric acid are gradually added to this, but these may be added simultaneously, or sulfuric acid may be gradually added after the required amount of phenol is added. The amount of phenol is finally such that the molar ratio of phenol and sulfuric acid is in the range of 2-3: 1, preferably approximately 2: 1. On the other hand, the ratio of the solvent in the reaction solution is set to be 1 to 3 times the weight of sulfuric acid, particularly about 2 times.
The reaction is carried out in the temperature range of about 145 to about 175 ° C.
[0012]
In this reaction, the first half is a dehydration reaction, and water produced at the above reaction temperature is azeotropically distilled with mesitylene to dissolve phenol such as water and mesitylene and distill the solvent and phenol having a boiling point of 170 ° C. or less. When this is condensed, it is separated into two layers, an aqueous layer and a phenol-dissolved layer. When mesitylene is used, since this phenol-dissolved layer is light, the water layer becomes the lower layer, and water can be easily removed from the lower part. The distilled phenol can be continuously returned to the reaction system as a solution with a solvent.
This reflux is carried out until it is confirmed that the dehydration reaction has been completed due to the distillation of the theoretical amount of water, and then the reflux is stopped and a low boiling point (170 ° C. or lower) solvent such as mesitylene is distilled from the reaction system. Leave. A solvent having a boiling point in this range can be easily distilled off.
At this time, approximately the same amount of an aliphatic saturated hydrocarbon solvent as mesitylene to be distilled off may be further added.
[0013]
As described above, since the low boiling point solvent such as mesitylene is removed from the solvent in the latter half of the reaction, the solvent is almost an aliphatic saturated hydrocarbon. In this solvent, the transfer reaction from 2,4′-BPS to 4,4′-BPS is promoted, and the yield of 4,4′-BPS is finally improved.
By the above operation, a slurry in which the crystallized product is suspended in a hydrocarbon solvent is obtained. Any known method may be used to recrystallize 4,4′-BPS from this solvent layer.
For example, it is possible to extract the product with methanol using the fact that the solvent is a hydrocarbon.
[0014]
Specifically, approximately the same amount of methanol is added to the solvent layer and dissolved at about 65 ° C. for about 1 hour. This methanol may be a pure product or an aqueous solution. In the case of a pure product, the same amount of water may be further added. A mixture of the product 4,4′-BPS and the 2,4′-isomer is dissolved in methanol. In addition, since the solvent of the present invention is poorly compatible with methanol, both are separated into two transparent layers after the addition of methanol. The separated solvent layer is easily separated and contains no products or impurities, so that it can be easily reused. Activated carbon, caustic soda, or the like may be added to the methanol layer to remove impurities or adjust pH.
Thereafter, water is added to the methanol layer and cooled to near room temperature, and 4,4′-BPS can be recrystallized and dried to obtain 4,4′-BPS. Since the 2,4′-isomer is more soluble in methanol than 4,4′-BPS, the proportion of the 4,4′-isomer in the crystal can be increased to 99% or more.
[0015]
【Example】
Example 1
A 500 ml four-necked flask equipped with a stirrer, a thermometer, and a water separation tube was charged with 98.7 g (1.05 mol) of phenol, 75 ml of Isopar H, and 50 ml of mesitylene, and 51.6 g of 95% sulfuric acid was added to the mixture with stirring. 0.50 mol) was added dropwise at 50 ° C. and the temperature was raised.
Distillation of the reaction liquid started from around 148 ° C., the distillate was condensed and separated into two layers by a water separation tube, and the upper organic layer was continuously returned to the reaction system. In about 4 hours from the temperature increase, the temperature of the reaction system became 170 ° C., the generation of water was stopped, and the amount of water separated by the water separation tube was 20.5 g. Thereafter, 50 ml of Isopar H was added, and mesitylene was distilled off over 3 hours until the temperature of the reaction system reached 175 ° C. The composition of this reaction product was analyzed by high performance liquid chromatography (HPLC). As a result, the relative area ratio (measurement wavelength: 231 nm) was 4,4′-BPS 94.7%, 2,4′-BPS 2.8%. Phenol sulfonic acid 1.2%.
[0016]
Comparative Example 1
A 500 ml four-necked flask equipped with a stirrer, thermometer and water separation tube was charged with 98.7 g (1.05 mol) of phenol and 100 ml of Isopar G, and 51.6 g (0.50) of 95% sulfuric acid was added to the mixture with stirring. Mol) was added dropwise at 50 ° C. and the temperature was raised. Distillation of the reaction liquid starts from around 144 ° C., and this distillate is condensed and separated into three layers of a water separation tube, an upper layer is a solvent layer, an intermediate layer is an aqueous layer, and a lower layer is a phenol layer. The upper solvent layer was continuously returned to the reaction system, and the lower phenol layer was withdrawn every 15 minutes and returned to the reaction system. About 7 hours after the temperature rise, the temperature of the reaction system reached 167 ° C., the generation of water stopped, the amount of water separated by the water separation tube was 21.2 g, and the total amount of phenol returned to the reaction system was 68.0 g. there were. As a result of analyzing the composition of this reaction product by high performance liquid chromatography (HPLC), it was found that the relative area ratio (measurement wavelength: 231 nm) was 4,4′-BPS 94.0%, 2,4′-BPS 3.1%. The phenol sulfonic acid was 1.6%.
[0017]
【The invention's effect】
As described above, the production method of the present invention comprises a mixed solvent composed of a solvent having a boiling point of 170 ° C. or less by dissolving one or more aliphatic saturated hydrocarbons having a boiling point of 175 ° C. or more and phenol such as mesitylene. It is characterized by using a mixed solvent, and low-boiling solvents such as mesitylene function as an azeotropic agent. Furthermore, since this solvent dissolves phenol, there are two layers to distill when dehydrating, so dehydration reaction The water removal is performed very efficiently, so that the reflux operation is facilitated. Since the low boiling point solvent such as mesitylene is distilled off after completion of the dehydration reaction, the yield of 4,4′-BPS can be increased by promoting the rearrangement reaction in the aliphatic saturated hydrocarbon solvent. In the present invention, such many advantages can be easily achieved at once by using one kind of mixed solvent.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the transition from 2,4′-isomer to 4,4′-isomer and temperature.

Claims (4)

フェノール及び硫酸を、沸点が175℃以上である脂肪族飽和炭化水素及びフェノールを溶解し沸点が170℃以下の溶媒から成る混合溶媒中で、水を除きながら還流下で反応させ、該フェノールを溶解し沸点が170℃以下の溶媒を反応系から留去する4,4’−ビスフェノールスルホンの製造方法。Phenol and sulfuric acid are dissolved in an aliphatic saturated hydrocarbon having a boiling point of 175 ° C or higher and a mixed solvent composed of a solvent having a boiling point of 170 ° C or lower and reacted under reflux while removing water to dissolve the phenol. A process for producing 4,4′-bisphenolsulfone, wherein a solvent having a boiling point of 170 ° C. or less is distilled off from the reaction system. 前記反応終了後に前記フェノールを溶解し沸点が170℃以下の溶媒を反応系から留去する請求項1に記載の製造方法。The production method according to claim 1, wherein after the reaction is completed, the phenol is dissolved and a solvent having a boiling point of 170 ° C or lower is distilled off from the reaction system. 前記フェノールを溶解し沸点が170℃以下の溶媒がメシチレンである請求項1又は2に記載の製造方法。The production method according to claim 1 or 2, wherein the solvent in which the phenol is dissolved and the boiling point is 170 ° C or lower is mesitylene. 前記脂肪族飽和炭化水素がアイソパー(エクソン化学(株)の登録商標)Hである請求項1〜3のいずれか一項に記載の製造方法。The manufacturing method according to any one of claims 1 to 3, wherein the aliphatic saturated hydrocarbon is Isopar (registered trademark of Exxon Chemical Co., Ltd.) H.
JP2000273083A 2000-09-08 2000-09-08 Method for producing 4,4'-bisphenolsulfone Expired - Lifetime JP4562888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000273083A JP4562888B2 (en) 2000-09-08 2000-09-08 Method for producing 4,4'-bisphenolsulfone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000273083A JP4562888B2 (en) 2000-09-08 2000-09-08 Method for producing 4,4'-bisphenolsulfone

Publications (2)

Publication Number Publication Date
JP2002088055A JP2002088055A (en) 2002-03-27
JP4562888B2 true JP4562888B2 (en) 2010-10-13

Family

ID=18759097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000273083A Expired - Lifetime JP4562888B2 (en) 2000-09-08 2000-09-08 Method for producing 4,4'-bisphenolsulfone

Country Status (1)

Country Link
JP (1) JP4562888B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100436410C (en) * 2002-03-20 2008-11-26 日本曹达株式会社 Process for producing 4,4'-bisphenol sulfone
JP6941893B2 (en) * 2020-03-16 2021-09-29 小西化学工業株式会社 Method for producing diphenylsulfone compound

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996367A (en) * 1989-12-20 1991-02-26 Amoco Corporation Process for making 4,4'-dihydroxydiphenyl sulfone

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124559A (en) * 1984-07-11 1986-02-03 Nikka Chem Ind Co Ltd Method of purifying dihydroxydiphenylsulfone
EP0293037A1 (en) * 1987-05-26 1988-11-30 Akzo N.V. Preparation of 4,4'-dihydroxydiphenyl sulfone
JP2507510B2 (en) * 1988-01-26 1996-06-12 日華化学株式会社 Method for purifying dihydroxydiphenyl sulfone
JPH05500522A (en) * 1990-08-06 1993-02-04 アリステック ケミカル コーポレイション Preparation method of relatively pure P,P-bisphenol S

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996367A (en) * 1989-12-20 1991-02-26 Amoco Corporation Process for making 4,4'-dihydroxydiphenyl sulfone

Also Published As

Publication number Publication date
JP2002088055A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
JPS58177928A (en) Manufacture of bis(hydroxyphenyl)methanes
WO2011021491A1 (en) Process for preparation of hexafluoroacetone monohydrate
US3535389A (en) Processes for obtaining substantially pure 4,4' - dihydroxy - diphenyl-propane-2,2
JPS6293270A (en) Synthesis of 4,4'-dihydroxydiphenylsulfone
US4613411A (en) Process for the production and purification of diethoxymethane by azeotropic distillation
US6444842B1 (en) Continuous process for the production of carboxylic acid esters of alkylene glycol monoalkyl ethers
JP4562888B2 (en) Method for producing 4,4'-bisphenolsulfone
JP4531241B2 (en) Method for producing 4,4'-bisphenolsulfone
JP4531226B2 (en) Method for producing 4,4'-bisphenolsulfone
JP6257340B2 (en) Process for producing 9,9'-spirobifluorenes
JP2952611B2 (en) Recovery method of water-insoluble epoxy alcohol
JP4038657B2 (en) Method for producing adamantanone
JP2594826B2 (en) Method for producing p- or m-hydroxyphenethyl alcohol
JP4489549B2 (en) Method for producing high purity 2,2-bis (3'-cyclohexenyl) propane
JPH082861B2 (en) Method for producing high-purity 4,4'-dihydroxydiphenyl sulfone
JP2815071B2 (en) Method for producing dichlorodiphenyl sulfone
JP2005097274A (en) Method for producing high purity olefinic compound
JPH0791261B2 (en) Process for producing 4,4'-dihydroxydiphenyl sulfone
JP4011364B2 (en) Method for producing 2,4'-dihydroxydiphenylsulfone
JP4493805B2 (en) Method for producing high-purity benzoic acid derivative
JP4930668B2 (en) Process for producing dihydroxydiphenylsulfone isomer mixture
JPH01287048A (en) Purification of 2,4-xylenol
JP2000204064A (en) Production of allyl 2-hydroxyisobutyrate
JP2829869B2 (en) Method for producing 4,4'-dihydroxybiphenyl
US20040122260A1 (en) Process for preparing 2-nitro-4'-fluorobenzophenone

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040916

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040916

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100219

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20100219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4562888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term