JP4562229B2 - Acid addition salt of optically active piperidine derivative and process for producing the same - Google Patents

Acid addition salt of optically active piperidine derivative and process for producing the same Download PDF

Info

Publication number
JP4562229B2
JP4562229B2 JP2000032961A JP2000032961A JP4562229B2 JP 4562229 B2 JP4562229 B2 JP 4562229B2 JP 2000032961 A JP2000032961 A JP 2000032961A JP 2000032961 A JP2000032961 A JP 2000032961A JP 4562229 B2 JP4562229 B2 JP 4562229B2
Authority
JP
Japan
Prior art keywords
chlorophenyl
pyridyl
methoxy
piperidine derivative
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000032961A
Other languages
Japanese (ja)
Other versions
JP2000198784A (en
Inventor
淳一郎 北
寛 藤原
真司 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Tanabe Pharma Corp
Ube Corp
Original Assignee
Mitsubishi Tanabe Pharma Corp
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18393337&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4562229(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Tanabe Pharma Corp, Ube Industries Ltd filed Critical Mitsubishi Tanabe Pharma Corp
Priority to JP2000032961A priority Critical patent/JP4562229B2/en
Publication of JP2000198784A publication Critical patent/JP2000198784A/en
Application granted granted Critical
Publication of JP4562229B2 publication Critical patent/JP4562229B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、抗ヒスタミン活性及び抗アレルギー活性が優れている(S)−4−〔4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジノ〕ブタン酸のベンゼンスルホン酸塩及びその製造法に関し、該酸付加塩は吸湿性が少なく、物理化学的安定性に優れているので、医薬品として特に適した化合物である。また、本発明は、これらを有効成分としてなる医薬組成物に関する。
【0002】
【従来の技術】
特開平2−25465号公報に記載された、式(II)
【0003】
【化2】

Figure 0004562229
【0004】
(式中、Aは低級アルキル基、ヒドロキシル基、低級アルコキシ基、アミノ基、低級アルキルアミノ基、フェニル基、又は低級アルキル置換フェニル基を表す)で示されるピペリジン誘導体又はその塩は、従来の抗ヒスタミン剤の場合にしばしば見られる中枢神経に対する刺激又は抑圧といった二次的効果が最小限に抑えられるという特徴を有しており、蕁麻疹、湿疹、皮膚炎等のアレルギー性皮膚疾患、アレルギー性鼻炎、感冒等の上気道炎によるくしゃみ、鼻汁、咳嗽、気管支喘息の治療、処理における医薬品として期待されている。しかしながら、このピペリジン誘導体は1個の不斉炭素を有しているものの、光学活性体を単離する本法は、現在まで知られていなかった。
【0005】
【発明が解決しようとする課題】
一般に光学異性体間で薬理活性や安全性が異なり、更に代謝速度、蛋白結合率にも差が生じることが知られている(ファルマシア、25(4), 311-336, 1989)。
したがって、医薬品とするには薬理学的に好ましい光学異性体を高光学純度で提供する必要がある。また該光学異性体の医薬品としての高度な品質を確保するために、物理化学的安定性に優れた性質を有することが望まれる。
【0006】
【課題を解決するための手段】
本発明者等は、この課題解決のため鋭意研究を重ねた結果、上記式(I)で示される光学活性な(S)−4−〔4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジノ〕ブタン酸のベンゼンスルホン酸塩及び安息香酸塩が医薬品として好ましい優れた安定性を有することを見い出し、本発明を完成するに至った。
【0007】
本発明の第1は、式(I)
【0008】
【化3】
Figure 0004562229
【0009】
で表される絶対配置が(S)である光学活性ピペリジン誘導体のベンゼンスルホン酸塩及び安息香酸塩に関する。
【0010】
本発明の第2は、前記式(I)で表される絶対配置が(S)である光学活性ピペリジン誘導体とベンゼンスルホン酸又は安息香酸とを、塩形成反応させる前記光学活性ピペリジン誘導体のベンゼンスルホン酸塩及び安息香酸塩の製法に関する。
【0011】
本発明の第3は、(S)−4−〔4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジノ〕ブタン酸・ベンゼンスルホン酸塩又は安息香酸を有効成分としてなる医薬組成物に関する。
【0012】
【発明の実施の形態】
(S)−ピペリジン誘導体(I)のベンゼンスルホン酸塩又は安息香酸塩は、以下の反応式(1)
【0013】
【化4】
Figure 0004562229
【0014】
(式中、HXはベンゼンスルホン酸又は安息香酸を示す)で表される方法で製造することができる(以下、塩形成反応という)。
【0015】
塩形成反応においては、ベンゼンスルホン酸又は安息香酸を、(S)−ピペリジン誘導体(I)1モルに対して0.8〜2.5倍モル、好適には0.9〜1.2倍モルを用いて行うことができる。
【0016】
塩形成反応に使用される溶媒は、反応に関与しない溶媒であれば特に制限はないが、例えばアセトニトリル、プロピオニトリルのようなニトリル類、酢酸メチル、酢酸エチルのようなエステル類、メタノール、エタノール、1−プロパノール、2−プロパノール等のアルコール類、アセトン、ジメチルホルムアミド等を挙げることができ、好適にはエタノール、2−プロパノール、アセトニトリル、酢酸エチルである。更に本発明において使用される溶媒は、前記の溶媒を単独で使用してもよく、任意の2種類以上の溶媒を混合して使用してもよい。
【0017】
塩形成反応に使用される溶媒の使用量は、通常、(S)−ピペリジン誘導体(I)1モルに対して0.5〜30Lであり、好適には0.8〜20Lであり、更に好適には1〜10Lである。
【0018】
塩形成反応の温度は、例えば5〜50℃、好適には10〜35℃であり、塩析出時の温度は、例えば−30℃〜30℃、好適には−10℃〜15℃である。また、添加方法には特に制限はないが、例えば(S)−ピペリジン誘導体と溶媒の混合液に、ベンゼンスルホン酸又は安息香酸を溶媒に溶解させて添加する方法を挙げることができる。
【0019】
生成する(S)−ピペリジン誘導体の塩は、この技術分野の常法に従って、濾過、遠心分離等により、分取した後、適宜、洗浄、乾燥することによって、容易に得ることができる。
【0020】
一般的に光学活性体を取得するためには、不斉合成、分別結晶やリパーゼ等の酵素による光学分割、光学分割カラムによる分取等の方法が知られている。本発明において光学活性の(S)−ピペリジン誘導体(I)を製造するには、以下の反応式(2)
【0021】
【化5】
Figure 0004562229
【0022】
に示すように、中間体である式(III)で示される(±)−4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジンをジアステレオマー塩に誘導し、これを分別結晶の方法で、光学分割して得られる光学活性な(S)−4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジン(IV)を中間体として使用する。
【0023】
より具体的には、本発明の(S)−ピペリジン誘導体(I)は、以下の反応式(3)
【0024】
【化6】
Figure 0004562229
【0025】
(式中、Wは脱離しうる基、例えば塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、あるいはメタンスルホニルオキシ基、p−トルエンスルホニルオキシ基等の反応性エステル基であり、Rはメチル、エチル等の低級アルキル基である)に示す方法により製造することができる。
【0026】
工程Aは、(S)−ピペリジン(IV)のN−アルキル化反応であり、ピペリジン(IV)1モルに対してエステル(V)1〜3倍モル、好適には1〜1.5倍モルを用いて行うことができる。上記の反応は、不活性溶媒中で行われる。適当な溶媒としては、例えば水;メタノール、エタノール、プロパノール、ブタノール等の低級アルコール類;アセトニトリル、プロピオニトリル等のニトリル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;1,4−ジオキサン、テトラヒドロフラン等のエーテル類;アセトン、エチルメチルケトン、メチルイソブチルケトン等のケトン類;N,N−ジメチルホルムアミド等のアミド類が挙げられ、好適には、水、アセトニトリル、アセトン、N,N−ジメチルホルムアミドである。これらは単独で使用してもよく、任意の2種類以上の溶媒を混合して使用してもよい。
【0027】
この反応は塩基の存在下で行うのが好ましく、適当な塩基としては、例えば水酸化ナトリウム等のアルカリ金属水酸化物;水酸化カルシウム等のアルカリ土類金属水酸化物;炭酸カリウム等のアルカリ金属炭酸塩;炭酸カルシウム等のアルカリ土類金属炭酸塩;炭酸水素ナトリウム等のアルカリ金属酸性炭酸塩;水素化ナトリウム等のアルカリ金属水素化物;水素化カルシウム等のアルカリ土類金属水素化物;ナトリウムメトキシド等のアルカリ金属アルコキシド;トリエチルアミン等のトリアルキルアミン及びピリジン化合物等が挙げられ、好適には炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム又は炭酸水素カリウムである。これらの塩基は1価の塩基であれば、(S)−ピペリジン(IV)1モルに対して1〜3倍モル、好適には1〜1.5倍モルを用いる。2価の塩基であれば、0.5〜1.5倍モル、好適には0.6〜1倍モルを用いる。
【0028】
また反応促進剤として、例えばヨウ化ナトリウム又はヨウ化カリウム等の少量の金属ヨウ化物を添加してもよい。反応は、反応混合物の還流温度で行うことができ、例えば5〜150℃、好適には20〜100℃である。反応時間は2〜24時間である。
【0029】
工程Bは、(S)−エステル(VI)の加水分解反応であり、水性メタノール、水性エタノール等の水性アルコール中で、例えば水酸化ナトリウム、水酸化カリウム等の無機塩基を、(S)−エステル(VI)1モルに対して1〜5倍モル、好適には1〜3倍モルを用いて行うことができる。反応温度は、例えば5〜90℃、好適には15〜70℃である。反応時間は1〜10時間である。反応終了後、例えば塩酸、硫酸等の鉱酸、あるいは酢酸、シュウ酸等の有機酸で反応液を中和処理することにより、(S)−ピペリジン誘導体(I)を製造することができる。
【0030】
〔薬理試験〕
次の光学活性ピペリジン誘導体エステルの(S)−エステル及び(R)−エステルを用いて、光学異性体による薬理作用の差を試験した。
(S)−エステル:(S)−4−〔4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジノ〕ブタン酸エチルフマル酸塩(参考例3で調製)
(R)−エステル:(R)−4−〔4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジノ〕ブタン酸エチルフマル酸塩(参考例4で調製)
【0031】
ヒスタミンショック死抑制作用
体重250〜550gのHartley系雄性モルモットを使用し、Lands等の方法(Lands, A.M., Hoppe, J.O., Siegmund, O.H. and Luduena, F.F., J. Pharmacol. Exp. Ther. 95, 45 (1949))に準じてヒスタミンショック死抑制作用を試験した。実験動物を一夜(約14h)絶食させた後、試験物質5ml/kgを経口投与した。試験物質投与2時間後に、ヒスタミン塩酸塩1.25mg/kgを静脈投与して、ヒスタミンショックを誘発させた。誘発後、実験動物の症状観察及びヒスタミンショックの発現時間を測定し、呼吸停止又は回復まで観察した。試験結果を表1に示す。
【0032】
【表1】
Figure 0004562229
【0033】
7日間homologousPCA反応抑制作用
体重250〜550gのHartley系雄性モルモットを使用し、Levine等の方法(Levine, B.B., Chang, Jr.H., and Vaz, N.M., J. Immunol. 106, 29 (1971))に準じてPCA反応抑制作用を試験した。前日に剪毛したモルモットの背部の正中線をはさんで左右2点に、生理食塩水で32倍希釈したモルモット抗BPO・BGG−IgE血清を0.05ml皮内投与した。
7日後に抗原としてbenzylpenicilloyl bovine serum albumin(BPO・BSA)500μgを含む1%Evans Blue生理食塩水1mlを静脈内投与してPCA反応を惹起させた。その30分後に放血し、皮膚を剥離して漏出した色素量をKatayama等の方法(Katayama, S., Shinoya, H. and Ohtake, S., Microbiol. Immunol. 22, 89 (1978))に準じて測定した。実験動物は一夜(約16h)絶食させ、試験物質は抗原投与の2時間前に経口投与した。試験結果を表2に示す。
【0034】
【表2】
Figure 0004562229
【0035】
表1の試験結果から、(S)−エステル及び(R)−エステルは共に用量依存的な抑制作用を示し、用量反応曲線より求めた(S)−エステル及び(R)−エステルのED50値は、各々0.023mg/kg、1.0mg/kgであり、(S)−エステルは(R)−エステルより約43倍強い活性を示した。また、表2に示すPCA反応抑制試験でも(S)−エステル及び(R)−エステルは共に用量依存的に反応を抑制した。この試験における最大抑制率は約70%程度と推察され、その50%(すなわち、35%)抑制する投与量で比較すると、(S)−エステルは(R)−エステルより約100倍以上強い作用を示した。これらのことから、光学異性体間で明らかな薬理作用の差が認められ、(S)−エステルの方が(R)−エステルより優れていることが確認された。
【0036】
しかしながら、上記(S)−エステルは後記安定性試験結果(表4)に示すように吸湿性であり、また(S)−エスエルの代謝物である式(I)の(S)−ピペリジン誘導体は、(S)−エステルと同等の薬理作用を示すが、それ自体は極めて結晶性の悪い化合物で、通常は飴状物として得られ、医薬品として高度な品質を確保、維持することは困難であった。
そこで式(I)の(S)−ピペリジン誘導体の種々の酸付加塩について、次の方法で結晶化を検討した。
【0037】
〔実験例 1〕
式(I)の(S)−ピペリジン誘導体を有機溶媒に溶解し、表3に示す酸を加えて均一にした後、放置した。析出物が得られない場合には、溶媒を留去した後、難溶性の溶媒を加えて再び放置した。酸付加塩が油状、飴状の場合を除き、得られた固形物を濾取して減圧乾燥した。得られた各種酸付加塩の性状は表3に示すように、多くは油状物又は吸湿性の結晶であった。
【0038】
【表3】
Figure 0004562229
【0039】
しかしながら、式(I)の(S)−ピペリジン誘導体のベンゼンスルホン酸塩及び安息香酸塩は吸湿性でない結晶として得られた。
【0040】
〔安定性試験〕
ベンゼンスルホン酸塩:(S)−4−〔4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジノ〕ブタン酸一ベンゼンスルホン酸塩(実施例1で調製)
安息香酸塩:(S)−4−〔4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジノ〕ブタン酸一安息香酸塩(実施例2で調製)
【0041】
上記各化合物を粉砕後、500μm篩を通過させたものを試験試料とした。各試料をガラスシャーレに分割して入れ、40℃、75%湿度にて保存し、1ヵ月後に取り出して、含有類縁物質量及びラセミ化による(R)−体含有量を測定して、試験開始時の含有量と比較した。
【0042】
(a)類縁物質の含有量変化
試料を移動相に溶かして、この液1ml中に試料約0.1%が含まれるように調製した。試料溶液25μlにつき、液体クロマトグラフ法にて各々のピーク面積百分率を自動積分法により測定した。
操作条件
検出器:紫外吸光光度計(225nm)
カラム:Cosmosil 5 ph 4.6mm×150mm(商品名、ナカライテスク社製)
カラム温度:室温
移動相:
(S)−エステル:0.01Mリン酸二水素カリウム緩衝液(0.1N水酸化ナトリウム溶液でpH5.8に調整)とアセトニトリルの混液(65:35)
ベンゼンスルホン酸塩、安息香酸塩:0.01Mリン酸二水素カリウム緩衝液(0.1N水酸化ナトリウム溶液でpH5.8に調整)とアセトニトリルの混液(72:28)
流量:0.9ml/min
面積測定範囲:試料注入後50分の範囲
【0043】
(b)(R)体量
試料約5mgを移動相に溶かして、この液1ml中に試料約0.1%が含まれるように調製した。試料溶液1.5μlにつき、液体クロマトグラフ法にて各々のピーク面積百分率を自動積分法により測定し、下式により(R)体量(%)を算出した。
【0044】
【数1】
Figure 0004562229
【0045】
操作条件
検出器:紫外吸光光度計(220nm)
カラム:ULTRON ES-OVM 4.6mm×150mm(商品名、信和化工社製)
カラム温度:室温
移動相:
(S)−エステル:0.02Mリン酸二水素カリウム緩衝液(0.1N水酸化ナトリウム溶液でpH4.6に調整)とエタノールの混液(100:13)
ベンゼンスルホン酸塩、安息香酸塩:0.02Mリン酸二水素カリウム緩衝液(0.1N水酸化ナトリウム溶液でpH5.5に調整)とアセトニトリルの混液(100:16)
流量:0.9ml/min
面積測定範囲:(S)体の保持時間の約2倍の範囲
保持時間:(R)体 約 7〜10min
(S)体 約13〜15min
【0046】
【表4】
Figure 0004562229
【0047】
表4の試験結果から、(S)−エステルは分解により類縁物質の増加が顕著に認められ、しかも(R)体量の増加に伴い光学純度が低下することが明らかになった。したがって、物理化学的に不安定な化合物であり、医薬品として長期間高度な品質を確保できるとは言い難い。一方、ベンゼンスルホン酸塩及び安息香酸塩は、類縁物質及び(R)体量の顕著な増加は認められず、吸湿性も少ないことが確認された。したがって、これらは光学活性体として物理化学的な安定性を有する化合物である。
【0048】
以上のように、(S)−ピペリジン誘導体(I)のベンゼンスルホン酸塩及び安息香酸塩は、抗ヒスタミン活性及び抗アレルギー活性を有するより優れた光学活性体であり、生体内で活性本体として作用し、また物理化学的に優れた安定性を示すことから、医薬品として適した性質を有するものである。
【0049】
【実施例】
以下に参考例及び実施例を示して本発明を更に詳しく説明するが、本発明の範囲をこれらに限定するものではない。
【0050】
参考例1
(S)−(−)−4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジン
(a)(±)−4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジン18.58g(61.36mmol)を酢酸メチル1,000mlに加熱溶解し、(−)−ジベンゾイル−L−酒石酸一水和物6.93g(18.42mmol)を加えて撹拌した。白色析出晶(結晶1)を濾別し、濾液を減圧下濃縮した。濾液を100mlに濃縮して、更に析出した白色結晶(結晶2)を濾別後、再び濾液を減圧下で濃縮した。得られた結晶及び濾液濃縮物について各々光学異性体の組成比((S)体:(R)体))を光学分割カラムを用いた高速液体クロマトグラフ法により測定した。
結晶1: 18.37g((S)体:(R)体=29.51:70.49)
結晶2: 0.57g((S)体:(R)体=33.42:66.58)
濾液濃縮物: 7.70g((S)体:(R)体=79.94:20.06)
【0051】
(b)上述の(a)で得られた濾液濃縮物7.70g(25.43mmol)をエタノール280mlに加熱溶解し、L−(+)−酒石酸3.82g(25.45mmol)を加えて再び加熱し、均一溶液とした。徐冷後、少量の種晶を添加して放置した。析出晶を濾取し、40℃で減圧乾燥した。収量8.68g((S)体:(R)体=87.44:12.56)
【0052】
(c)上述の(b)で得られた白色結晶8.68gについて、(S)体の純度が99.5%(光学純度:99.0%de)を越えるまでエタノール再結晶を繰り返した。
収量3.87g((S)体:(R)体=99.72:0.28)。
【0053】
(d)上述の(c)で得られた白色結晶2.13g(4.70mmol)に1N水酸化ナトリウム水溶液15mlを加え、クロロホルム約50mlで抽出した。抽出液を水で洗浄後、無水硫酸ナトリウムで乾燥して濃縮し、目的とする(S)−(−)−4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジンを淡黄色油状物として得た。収量1.40g(収率:98.6%)。〔α〕D 24−10.0°(c=1、MeOH)
【0054】
参考例2
(R)−(−)−4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジン
(a)参考例1(a)で得られた結晶1に0.5N水酸化ナトリウム水溶液200mlを加え、トルエン約100mlで2回抽出した。抽出液を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥して濃縮し、淡黄色油状物10.29gを得た。
【0055】
(b)上述の(a)で得られた淡黄色油状物10.29gを酢酸メチル500mlに加熱溶解し、(+)−ジベンゾイル−D−酒石酸一水和物1.96g(5.21mmol)を加えて撹拌した。白色析出晶を濾別し、濾液を減圧下で濃縮した。
得られた結晶及び濾液濃縮物について各々光学異性体の組成比((S)体:(R)体)を光学分割カラムを用いた高速液体クロマトグラフ法により測定した。
白色結晶: 4.31g((S)体:(R)体=65.52:34.48)
濾液濃縮物:7.93g((S)体:(R)体=16.61:83.39)
【0056】
(c)上述の(b)で得られた濾液濃縮物7.90g(26.09mmol)とD−(−)−酒石酸3.90g(25.98mmol)をエタノール400mlに加熱溶解し、室温で一夜放置した。析出晶を濾取し、40℃で減圧乾燥した。収量8.56g((S)体:(R)体=9.05:90.95)
【0057】
(d)上述の(c)で得られた白色結晶8.55gについて、(R)体の純度が99.5%(光学純度:99.0%de)を越えるまでエタノール再結晶を繰り返した。収量4.15g((S)体:(R)体=0.24:99.76)。
【0058】
(e)上述の(d)で得られた白色結晶4.00g(8.83mmol)に1N水酸化ナトリウム水溶液15mlを加え、クロロホルム約50mlで抽出した。抽出液を水で洗浄後、無水硫酸ナトリウムで乾燥して濃縮し、目的とする(R)−(+)−4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジンを淡黄色油状物として得た。収量2.66g(収率:99.6%)。〔α〕D 23.5+12.2°(c=2、MeOH)
【0059】
参考例3
(S)−4−〔4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジノ〕ブタン酸エチルフマル酸塩の合成
(a)参考例1にしたがって得られた(S)−(−)−4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジン1.33g(4.39mmol、光学純度:99.4%ee)をアセトン15mlに溶解し、4−ブロモブタン酸エチル1.03g(5.28mmol)と炭酸カリウム0.73g(5.28mmol)を加えて、7時間加熱還流撹拌した。不溶物を濾別し、濾液を減圧下で濃縮して、得られた微黄色油状物をクロロホルムとメタノール(溶量比30:1)の混合溶媒を展開溶媒とするシリカゲルカラムクロマトグラフィーで分離した。単離した目的化合物の画分を減圧下で濃縮し、油状物の(S)−4−〔4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジノ〕ブタン酸エチル1.71g(収率:93.4%、光学純度:99.4%ee)を得た。〔α〕D 25−6.6°(c=1、MeOH)
【0060】
(b)上述の(a)で得られたエチルエステル1.70g(4.08mmol)とフマル酸0.48g(4.14mmol)をエタノール40mlに溶解させて均一溶液にした後、混合溶液を減圧下で濃縮した。残渣に酢酸エチル18mlを加えて再び均一溶液とし、少量の種晶を加えて一夜放置した。析出晶を濾取して、目的とする(S)−4−〔4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジノ〕ブタン酸エチルフマル酸塩1.97g(収率:90.1%、光学純度:99.0%ee)を得た。融点123〜124℃
【0061】
Figure 0004562229
【0062】
参考例4
(R)−4−〔4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジノ〕ブタン酸エチルフマル酸塩の合成
(a)参考例2にしたがって得られた(R)−(+)−4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジン(光学純度:99.5%ee)を用いて、参考例3の(a)と同様の方法で(R)−4−〔4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジノ〕ブタン酸エチル(光学純度:99.5%ee)を得た。〔α〕D 25+6.6°(c=1、MeOH)
【0063】
(b)上述の(a)で得られたエチルエステルを用いて、参考例3の(b)と同様の方法で(R)−4−〔4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジノ〕ブタン酸エチルフマル酸塩(光学純度:99.3%ee)を得た。融点:117〜119℃
【0064】
Figure 0004562229
【0065】
参考例5
(S)−4−〔4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジノ〕ブタン酸の合成
参考例3(a)にしたがって得られた(S)−4−〔4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジノ〕ブタン酸エチル126.0g(0.302mol)をエタノール760mlに溶解し、5N水酸化ナトリウム水溶液120.8mlを加えて室温で一夜放置した。原料の消失を確認した後、5N塩酸121.1mlを加えて中和した。析出塩を濾別後、反応混合物を減圧下で濃縮し、酢酸メチル600mlを加えて再び減圧下で濃縮した。残渣をジクロロメタン600mlに溶解し、無水硫酸マグネシウムで十分乾燥した。不溶物を濾別後、濾液を濃縮して目的物を橙色飴状物(125.3g)として得た。この飴状物を更に減圧下で乾燥すると泡状物(120.2g)となった。〔α〕D 25+3.4°(c=5、MeOH)
【0066】
実施例1
(S)−4−〔4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジノ〕ブタン酸一ベンゼンスルホン酸塩の合成
参考例5にしたがって得られた(S)−4−〔4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジノ〕ブタン酸0.5g(1.29mmol)を酢酸エチル25mlに溶解し、ベンゼンスルホン酸一水和物0.20g(1.14mmol)を加えて減圧下濃縮した。残渣に再び酢酸エチル25mlを加えて約1週間放置すると、飴状物の一部が結晶化した。スパーテルでかぎ混ぜ、更に放置すると全体が結晶化した。この結晶をアセトニトリル5mlより再結晶し、目的物0.42g(収率:67.3%、光学純度:99.2%ee)を淡灰色プリズム晶として得た。〔α〕D 20+6.0°(c=5、MeOH)。融点:161〜163℃
【0067】
Figure 0004562229
【0068】
実施例2
(S)−4−〔4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジノ〕ブタン酸一安息香酸塩の合成
参考例5にしたがって得られた(S)−4−〔4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジノ〕ブタン酸0.91g(2.34mmol)をアセトン30mlに溶解し、安息香酸0.29g(2.37mmol)を加えて均一にした後、減圧下濃縮した。残渣にイソプロピルエーテル50mlを加えて2日間放置すると、飴状物の一部が結晶化した。スパーテルでかき混ぜ、更に放置すると全体が結晶化した。この結晶を酢酸エチル36mlより再結晶し、目的物0.87g(収率:72.8%、光学純度:99.4%ee)を白色粉末結晶として得た。〔α〕D 23−4.6°(c=1、EtOH)。融点:136〜140℃[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a benzenesulfonate salt of (S) -4- [4-[(4-chlorophenyl) (2-pyridyl) methoxy] piperidino] butanoic acid having excellent antihistaminic activity and antiallergic activity, and a process for producing the same On the other hand, the acid addition salt is a particularly suitable compound as a pharmaceutical because it has low hygroscopicity and excellent physicochemical stability. Moreover, this invention relates to the pharmaceutical composition which uses these as an active ingredient.
[0002]
[Prior art]
Formula (II) described in JP-A-2-25465
[0003]
[Chemical 2]
Figure 0004562229
[0004]
(Wherein A represents a lower alkyl group, a hydroxyl group, a lower alkoxy group, an amino group, a lower alkylamino group, a phenyl group, or a lower alkyl-substituted phenyl group), or a piperidine derivative represented by the above or a salt thereof is a conventional antihistamine Secondary effects such as irritation or suppression of the central nervous system often seen in the case of allergic diseases, allergic skin diseases such as urticaria, eczema, dermatitis, allergic rhinitis, cold It is expected as a medicine for the treatment and treatment of sneezing due to upper respiratory tract inflammation, nasal discharge, cough, and bronchial asthma. However, although this piperidine derivative has one asymmetric carbon, this method for isolating an optically active substance has not been known so far.
[0005]
[Problems to be solved by the invention]
In general, it is known that pharmacological activity and safety are different between optical isomers, and that metabolic rate and protein binding rate are also different (Pharmacia, 25 (4), 311-336, 1989).
Therefore, it is necessary to provide a pharmacologically preferable optical isomer with high optical purity to obtain a pharmaceutical product. Moreover, in order to ensure the high quality as a pharmaceutical of this optical isomer, it is desired to have a property excellent in physicochemical stability.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve this problem, the present inventors have obtained an optically active (S) -4- [4-[(4-chlorophenyl) (2-pyridyl) methoxy group represented by the above formula (I). It has been found that benzenesulfonate and benzoate of piperidino] butanoic acid have excellent stability preferable as a pharmaceutical product, and the present invention has been completed.
[0007]
The first of the present invention is the formula (I)
[0008]
[Chemical 3]
Figure 0004562229
[0009]
It is related with the benzenesulfonate and benzoate of the optically active piperidine derivative whose absolute configuration represented by (S) is.
[0010]
According to a second aspect of the present invention, the optically active piperidine derivative, benzenesulfone, which undergoes a salt-forming reaction between the optically active piperidine derivative represented by the formula (I) whose absolute configuration is (S) and benzenesulfonic acid or benzoic acid. The present invention relates to a method for producing acid salts and benzoates.
[0011]
The third aspect of the present invention relates to a pharmaceutical composition comprising (S) -4- [4-[(4-chlorophenyl) (2-pyridyl) methoxy] piperidino] butanoic acid / benzenesulfonate or benzoic acid as an active ingredient. .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The benzenesulfonate or benzoate of (S) -piperidine derivative (I) is represented by the following reaction formula (1):
[0013]
[Formula 4]
Figure 0004562229
[0014]
(Wherein, HX represents benzenesulfonic acid or benzoic acid) (hereinafter, referred to as a salt formation reaction).
[0015]
In the salt formation reaction, benzenesulfonic acid or benzoic acid is used in an amount of 0.8 to 2.5 times mol, preferably 0.9 to 1.2 times mol for 1 mol of (S) -piperidine derivative (I). Can be used.
[0016]
The solvent used in the salt formation reaction is not particularly limited as long as it does not participate in the reaction. For example, nitriles such as acetonitrile and propionitrile, esters such as methyl acetate and ethyl acetate, methanol, ethanol , Alcohols such as 1-propanol and 2-propanol, acetone, dimethylformamide and the like, and ethanol, 2-propanol, acetonitrile and ethyl acetate are preferable. Further, as the solvent used in the present invention, the above-mentioned solvents may be used alone, or any two or more kinds of solvents may be mixed and used.
[0017]
The amount of the solvent used for the salt formation reaction is usually 0.5 to 30 L, preferably 0.8 to 20 L, more preferably, with respect to 1 mol of (S) -piperidine derivative (I). 1 to 10 L.
[0018]
The temperature of the salt formation reaction is, for example, 5 to 50 ° C., preferably 10 to 35 ° C., and the temperature at the time of salt precipitation is, for example, −30 ° C. to 30 ° C., preferably −10 ° C. to 15 ° C. Moreover, there is no restriction | limiting in particular in the addition method, For example, the method of dissolving benzenesulfonic acid or benzoic acid in a solvent to the liquid mixture of a (S) -piperidine derivative and a solvent can be mentioned.
[0019]
The salt of the (S) -piperidine derivative to be produced can be easily obtained by separating it by filtration, centrifugation, etc. according to a conventional method in this technical field, and then washing and drying appropriately.
[0020]
In general, for obtaining an optically active substance, methods such as asymmetric synthesis, optical resolution with an enzyme such as fractional crystal or lipase, and fractionation with an optical resolution column are known. In order to produce the optically active (S) -piperidine derivative (I) in the present invention, the following reaction formula (2)
[0021]
[Chemical formula 5]
Figure 0004562229
[0022]
(±) -4-[(4-chlorophenyl) (2-pyridyl) methoxy] piperidine represented by the formula (III), which is an intermediate, is derived into a diastereomeric salt, which is separated into fractional crystals. In the method, optically active (S) -4-[(4-chlorophenyl) (2-pyridyl) methoxy] piperidine (IV) obtained by optical resolution is used as an intermediate.
[0023]
More specifically, the (S) -piperidine derivative (I) of the present invention has the following reaction formula (3):
[0024]
[Chemical 6]
Figure 0004562229
[0025]
Wherein W is a group capable of leaving, for example, a halogen atom such as a chlorine atom, a bromine atom or an iodine atom, or a reactive ester group such as a methanesulfonyloxy group or a p-toluenesulfonyloxy group, and R is methyl, And a lower alkyl group such as ethyl).
[0026]
Step A is an N-alkylation reaction of (S) -piperidine (IV). The ester (V) is 1 to 3 moles, preferably 1 to 1.5 moles per mole of piperidine (IV). Can be used. The above reaction is performed in an inert solvent. Suitable solvents include, for example, water; lower alcohols such as methanol, ethanol, propanol and butanol; nitriles such as acetonitrile and propionitrile; aromatic hydrocarbons such as benzene, toluene and xylene; 1,4-dioxane And ethers such as tetrahydrofuran; ketones such as acetone, ethyl methyl ketone, and methyl isobutyl ketone; and amides such as N, N-dimethylformamide, preferably water, acetonitrile, acetone, N, N-dimethyl. Formamide. These may be used alone or in combination with any two or more kinds of solvents.
[0027]
This reaction is preferably performed in the presence of a base. Examples of suitable bases include alkali metal hydroxides such as sodium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide; alkali metals such as potassium carbonate. Carbonates; alkaline earth metal carbonates such as calcium carbonate; alkali metal acid carbonates such as sodium hydrogen carbonate; alkali metal hydrides such as sodium hydride; alkaline earth metal hydrides such as calcium hydride; sodium methoxide Alkali metal alkoxides such as trialkylamines such as triethylamine and pyridine compounds are preferable, and sodium carbonate, potassium carbonate, sodium bicarbonate or potassium bicarbonate is preferred. If these bases are monovalent bases, they are used in an amount of 1 to 3 moles, preferably 1 to 1.5 moles per mole of (S) -piperidine (IV). In the case of a divalent base, 0.5 to 1.5 times mol, preferably 0.6 to 1 times mol is used.
[0028]
As a reaction accelerator, a small amount of metal iodide such as sodium iodide or potassium iodide may be added. The reaction can be carried out at the reflux temperature of the reaction mixture, for example, 5 to 150 ° C, preferably 20 to 100 ° C. The reaction time is 2 to 24 hours.
[0029]
Step B is a hydrolysis reaction of (S) -ester (VI). In an aqueous alcohol such as aqueous methanol or aqueous ethanol, an inorganic base such as sodium hydroxide or potassium hydroxide is converted to (S) -ester. (VI) The reaction can be carried out using 1 to 5 times mol, preferably 1 to 3 times mol per mol. The reaction temperature is, for example, 5 to 90 ° C, preferably 15 to 70 ° C. The reaction time is 1 to 10 hours. After completion of the reaction, the (S) -piperidine derivative (I) can be produced by neutralizing the reaction solution with a mineral acid such as hydrochloric acid or sulfuric acid, or an organic acid such as acetic acid or oxalic acid.
[0030]
[Pharmacological test]
The following optically active piperidine derivative esters (S) -esters and (R) -esters were used to test differences in pharmacological action due to optical isomers.
(S) -ester: (S) -4- [4-[(4-chlorophenyl) (2-pyridyl) methoxy] piperidino] butanoic acid ethyl fumarate (prepared in Reference Example 3)
(R) -ester: (R) -4- [4-[(4-chlorophenyl) (2-pyridyl) methoxy] piperidino] butanoic acid ethyl fumarate (prepared in Reference Example 4)
[0031]
Hartamine shock death inhibitory effect Using a Hartley male guinea pig weighing 250 to 550 g, Lands et al. (Lands, AM, Hoppe, JO, Siegmund, OH and Luduena, FF, J. Pharmacol. Exp. Ther. 95, 45 (1949)) was tested for histamine shock death inhibitory action. The experimental animals were fasted overnight (about 14 h), and then 5 ml / kg of the test substance was orally administered. Two hours after administration of the test substance, histamine hydrochloride 1.25 mg / kg was intravenously administered to induce histamine shock. After induction, experimental animals were observed for symptoms and the onset time of histamine shock was measured and observed until respiratory arrest or recovery. The test results are shown in Table 1.
[0032]
[Table 1]
Figure 0004562229
[0033]
Inhibition of homologous PCA reaction for 7 days Using a Hartley male guinea pig weighing 250 to 550 g, Levine et al. (Levine, BB, Chang, Jr. H., and Vaz, NM, J. Immunol. 106, 29 (1971) ) And PCA reaction inhibitory action was tested. 0.05 ml of guinea pig anti-BPO / BGG-IgE serum diluted 32 times with physiological saline was intradermally administered to two points on the left and right sides of the midline of the back of the guinea pigs shaved the day before.
Seven days later, 1 ml of 1% Evans Blue physiological saline containing 500 μg of benzylpenicilloyl bovine serum albumin (BPO / BSA) as an antigen was intravenously administered to induce a PCA reaction. After 30 minutes, the blood was exhaled, and the amount of pigment leaked by peeling the skin was determined according to the method of Katayama et al. (Katayama, S., Shinoya, H. and Ohtake, S., Microbiol. Immunol. 22, 89 (1978)). Measured. The experimental animals were fasted overnight (about 16 h), and the test substances were orally administered 2 hours before antigen administration. The test results are shown in Table 2.
[0034]
[Table 2]
Figure 0004562229
[0035]
From the test results of Table 1, both (S) -ester and (R) -ester showed a dose-dependent inhibitory action, and the ED 50 values of (S) -ester and (R) -ester determined from a dose-response curve. Were 0.023 mg / kg and 1.0 mg / kg, respectively, and the (S) -ester showed about 43 times stronger activity than the (R) -ester. In the PCA reaction inhibition test shown in Table 2, both (S) -ester and (R) -ester inhibited the reaction in a dose-dependent manner. The maximum inhibition rate in this test is estimated to be about 70%, and when compared with a dose that suppresses 50% (ie, 35%), (S) -ester is about 100 times stronger than (R) -ester. showed that. From these, a clear difference in pharmacological action was recognized between the optical isomers, and it was confirmed that (S) -ester was superior to (R) -ester.
[0036]
However, the (S) -ester is hygroscopic as shown in the stability test results (Table 4), and the (S) -piperidine derivative of the formula (I), which is a metabolite of (S) -SL, is , Which shows a pharmacological action equivalent to that of (S) -ester, but is itself a compound with extremely poor crystallinity, usually obtained as a rod-like substance, and it is difficult to secure and maintain a high quality as a pharmaceutical product. It was.
Therefore, crystallization of various acid addition salts of the (S) -piperidine derivative of the formula (I) was examined by the following method.
[0037]
[Experiment 1]
The (S) -piperidine derivative of the formula (I) was dissolved in an organic solvent, and the acid shown in Table 3 was added to make uniform, and then allowed to stand. When no precipitate was obtained, the solvent was distilled off, and a hardly soluble solvent was added and left again. Except for the case where the acid addition salt was oily or candy-like, the resulting solid was collected by filtration and dried under reduced pressure. As shown in Table 3, the properties of the various acid addition salts obtained were mostly oily or hygroscopic crystals.
[0038]
[Table 3]
Figure 0004562229
[0039]
However, the benzenesulfonate and benzoate salts of the (S) -piperidine derivative of formula (I) were obtained as non-hygroscopic crystals.
[0040]
[Stability test]
Benzenesulfonate: (S) -4- [4-[(4-chlorophenyl) (2-pyridyl) methoxy] piperidino] butanoic acid monobenzenesulfonate (prepared in Example 1)
Benzoate: (S) -4- [4-[(4-chlorophenyl) (2-pyridyl) methoxy] piperidino] butanoic acid monobenzoate (prepared in Example 2)
[0041]
After pulverizing each of the above compounds, a test sample was passed through a 500 μm sieve. Divide each sample into a glass petri dish, store it at 40 ° C. and 75% humidity, remove it after one month, measure the content of related substances and the content of (R) -form by racemization, and start the test Compared with the content of time.
[0042]
(A) Content change of related substances A sample was dissolved in a mobile phase so that about 0.1% of the sample was contained in 1 ml of this solution. With respect to 25 μl of the sample solution, each peak area percentage was measured by an automatic integration method by a liquid chromatography method.
Operation condition detector: UV absorption photometer (225nm)
Column: Cosmosil 5 ph 4.6 mm x 150 mm (trade name, manufactured by Nacalai Tesque)
Column temperature: Room temperature Mobile phase:
(S) -ester: mixed solution of 0.01M potassium dihydrogen phosphate buffer (adjusted to pH 5.8 with 0.1N sodium hydroxide solution) and acetonitrile (65:35)
Benzenesulfonate, benzoate: 0.01M potassium dihydrogen phosphate buffer (adjusted to pH 5.8 with 0.1N sodium hydroxide solution) and acetonitrile (72:28)
Flow rate: 0.9ml / min
Area measurement range: 50 minutes after sample injection [0043]
(B) (R) About 5 mg of a body weight sample was dissolved in a mobile phase, and about 1% of the sample was prepared in 1 ml of this solution. With respect to 1.5 μl of the sample solution, each peak area percentage was measured by an automatic integration method by liquid chromatography, and (R) body weight (%) was calculated by the following equation.
[0044]
[Expression 1]
Figure 0004562229
[0045]
Operation condition detector: UV absorption photometer (220nm)
Column: ULTRON ES-OVM 4.6mm x 150mm (trade name, manufactured by Shinwa Kako)
Column temperature: Room temperature Mobile phase:
(S) -ester: 0.02M potassium dihydrogen phosphate buffer (adjusted to pH 4.6 with 0.1N sodium hydroxide solution) and ethanol (100: 13)
Benzenesulfonate, benzoate: 0.02M potassium dihydrogen phosphate buffer (adjusted to pH 5.5 with 0.1N sodium hydroxide solution) and acetonitrile (100: 16)
Flow rate: 0.9ml / min
Area measurement range: (S) Range about twice the retention time of the body Retention time: (R) Body about 7-10 min
(S) Body about 13-15min
[0046]
[Table 4]
Figure 0004562229
[0047]
From the test results of Table 4, it was found that (S) -esters showed a significant increase in related substances due to decomposition, and the optical purity decreased with an increase in (R) body weight. Therefore, it is a physicochemically unstable compound, and it cannot be said that high quality can be secured for a long time as a pharmaceutical product. On the other hand, it was confirmed that benzenesulfonate and benzoate showed no significant increase in the related substances and (R) body weight, and the hygroscopicity was low. Therefore, these are compounds having physicochemical stability as optically active substances.
[0048]
As described above, the benzenesulfonate and benzoate of (S) -piperidine derivative (I) are superior optically active substances having antihistamine activity and antiallergic activity, and act as active bodies in vivo. In addition, since it exhibits excellent physicochemical stability, it has suitable properties as a pharmaceutical product.
[0049]
【Example】
The present invention will be described in more detail with reference to the following reference examples and examples, but the scope of the present invention is not limited thereto.
[0050]
Reference example 1
(S)-(−)-4-[(4-Chlorophenyl) (2-pyridyl) methoxy] piperidine (a) (±) -4-[(4-chlorophenyl) (2-pyridyl) methoxy] piperidine 18.58 g (61.36 mmol) was dissolved by heating in 1,000 ml of methyl acetate, and 6.93 g (18.42 mmol) of (−)-dibenzoyl-L-tartaric acid monohydrate was added and stirred. White precipitated crystals (Crystal 1) were filtered off, and the filtrate was concentrated under reduced pressure. The filtrate was concentrated to 100 ml, and the precipitated white crystals (crystal 2) were filtered off, and the filtrate was again concentrated under reduced pressure. About the obtained crystal | crystallization and filtrate concentrate, the composition ratio ((S) body: (R) body)) of each optical isomer was measured by the high performance liquid chromatograph method using an optical resolution column.
Crystal 1: 18.37 g ((S) isomer: (R) isomer = 29.51: 70.49)
Crystal 2: 0.57 g ((S) isomer: (R) isomer = 33.42: 66.58)
Filtrate concentrate: 7.70 g ((S) isomer: (R) isomer = 79.94: 20.06)
[0051]
(B) 7.70 g (25.43 mmol) of the filtrate concentrate obtained in (a) above was dissolved by heating in 280 ml of ethanol, and 3.82 g (25.45 mmol) of L-(+)-tartaric acid was added again. Heated to a homogeneous solution. After slow cooling, a small amount of seed crystals was added and allowed to stand. The precipitated crystals were collected by filtration and dried under reduced pressure at 40 ° C. Yield 8.68 g ((S) form: (R) form = 87.44: 12.56)
[0052]
(C) About 8.68 g of the white crystals obtained in the above (b), ethanol recrystallization was repeated until the purity of the (S) isomer exceeded 99.5% (optical purity: 99.0% de).
Yield 3.87 g ((S) isomer: (R) isomer = 99.72: 0.28).
[0053]
(D) To 2.13 g (4.70 mmol) of the white crystals obtained in the above (c), 15 ml of 1N aqueous sodium hydroxide solution was added and extracted with about 50 ml of chloroform. The extract is washed with water, dried over anhydrous sodium sulfate and concentrated to give the desired (S)-(−)-4-[(4-chlorophenyl) (2-pyridyl) methoxy] piperidine as a pale yellow oil. Got as. Yield 1.40 g (yield: 98.6%). [Α] D 24 −10.0 ° (c = 1, MeOH)
[0054]
Reference example 2
(R)-(−)-4-[(4-Chlorophenyl) (2-pyridyl) methoxy] piperidine (a) 200 ml of 0.5N aqueous sodium hydroxide solution was added to crystal 1 obtained in Reference Example 1 (a). And extracted twice with about 100 ml of toluene. The extract was washed with saturated brine, dried over anhydrous sodium sulfate and concentrated to give 10.29 g of a pale yellow oil.
[0055]
(B) 10.29 g of the pale yellow oil obtained in (a) above was dissolved by heating in 500 ml of methyl acetate, and 1.96 g (5.21 mmol) of (+)-dibenzoyl-D-tartaric acid monohydrate was added. Added and stirred. White precipitated crystals were filtered off, and the filtrate was concentrated under reduced pressure.
About the obtained crystal | crystallization and filtrate concentrate, the composition ratio ((S) body: (R) body) of each optical isomer was measured by the high performance liquid chromatograph method using an optical resolution column.
White crystal: 4.31 g ((S) isomer: (R) isomer = 65.52: 34.48)
Filtrate concentrate: 7.93 g ((S) isomer: (R) isomer = 16.61: 83.39)
[0056]
(C) 7.90 g (26.09 mmol) of the filtrate concentrate obtained in the above (b) and 3.90 g (25.98 mmol) of D-(−)-tartaric acid were dissolved in 400 ml of ethanol by heating and overnight at room temperature. I left it alone. The precipitated crystals were collected by filtration and dried under reduced pressure at 40 ° C. Yield 8.56 g ((S) isomer: (R) isomer = 9.05: 90.95)
[0057]
(D) About 8.55 g of the white crystals obtained in the above (c), ethanol recrystallization was repeated until the purity of the (R) isomer exceeded 99.5% (optical purity: 99.0% de). Yield 4.15 g ((S) isomer: (R) isomer = 0.24: 99.76).
[0058]
(E) To 4.00 g (8.83 mmol) of the white crystals obtained in the above (d), 15 ml of 1N aqueous sodium hydroxide solution was added and extracted with about 50 ml of chloroform. The extract is washed with water, dried over anhydrous sodium sulfate and concentrated to give the desired (R)-(+)-4-[(4-chlorophenyl) (2-pyridyl) methoxy] piperidine as a pale yellow oil. Got as. Yield 2.66 g (Yield: 99.6%). [Α] D 23.5 + 12.2 ° (c = 2, MeOH)
[0059]
Reference example 3
Synthesis of (S) -4- [4-[(4-chlorophenyl) (2-pyridyl) methoxy] piperidino] butanoic acid ethyl fumarate (a) (S)-(−) − obtained according to Reference Example 1 4-[(4-Chlorophenyl) (2-pyridyl) methoxy] piperidine 1.33 g (4.39 mmol, optical purity: 99.4% ee) was dissolved in 15 ml of acetone to obtain 1.03 g of ethyl 4-bromobutanoate (5 .28 mmol) and 0.73 g (5.28 mmol) of potassium carbonate were added, and the mixture was heated to reflux with stirring for 7 hours. Insoluble matter was filtered off, the filtrate was concentrated under reduced pressure, and the resulting pale yellow oil was separated by silica gel column chromatography using a mixed solvent of chloroform and methanol (solubility ratio 30: 1) as a developing solvent. . The isolated fraction of the target compound was concentrated under reduced pressure, and 1.71 g (yield) of oily (S) -4- [4-[(4-chlorophenyl) (2-pyridyl) methoxy] piperidino] butanoate was obtained. Ratio: 93.4%, optical purity: 99.4% ee). [Α] D 25 −6.6 ° (c = 1, MeOH)
[0060]
(B) 1.70 g (4.08 mmol) of the ethyl ester obtained in (a) above and 0.48 g (4.14 mmol) of fumaric acid were dissolved in 40 ml of ethanol to obtain a homogeneous solution, and then the mixed solution was reduced in pressure. Concentrated under. 18 ml of ethyl acetate was added to the residue to make a homogeneous solution again, and a small amount of seed crystals was added and left overnight. The precipitated crystals were collected by filtration and 1.97 g (yield: 90.1) of the desired (S) -4- [4-[(4-chlorophenyl) (2-pyridyl) methoxy] piperidino] butanoic acid ethyl fumarate. %, Optical purity: 99.0% ee). Melting point: 123-124 ° C
[0061]
Figure 0004562229
[0062]
Reference example 4
Synthesis of (R) -4- [4-[(4-chlorophenyl) (2-pyridyl) methoxy] piperidino] butanoic acid ethyl fumarate (a) (R)-(+)-obtained according to Reference Example 2 Using 4-[(4-chlorophenyl) (2-pyridyl) methoxy] piperidine (optical purity: 99.5% ee) in the same manner as (a) in Reference Example 3, (R) -4- [4 -[(4-Chlorophenyl) (2-pyridyl) methoxy] piperidino] butanoic acid ethyl (optical purity: 99.5% ee) was obtained. [Α] D 25 + 6.6 ° (c = 1, MeOH)
[0063]
(B) (R) -4- [4-[(4-chlorophenyl) (2-pyridyl)] in the same manner as in (b) of Reference Example 3 using the ethyl ester obtained in (a) above. Methoxy] piperidino] butanoic acid ethyl fumarate (optical purity: 99.3% ee) was obtained. Melting point: 117-119 ° C
[0064]
Figure 0004562229
[0065]
Reference Example 5
Synthesis of (S) -4- [4-[(4-chlorophenyl) (2-pyridyl) methoxy] piperidino] butanoic acid (S) -4- [4-[( 126.0 g (0.302 mol) of ethyl 4-chlorophenyl) (2-pyridyl) methoxy] piperidino] butanoate was dissolved in 760 ml of ethanol, 120.8 ml of 5N aqueous sodium hydroxide solution was added and the mixture was allowed to stand overnight at room temperature. After confirming disappearance of the raw materials, 121.1 ml of 5N hydrochloric acid was added to neutralize. After the precipitated salt was filtered off, the reaction mixture was concentrated under reduced pressure, added with 600 ml of methyl acetate and concentrated again under reduced pressure. The residue was dissolved in 600 ml of dichloromethane and sufficiently dried over anhydrous magnesium sulfate. The insoluble material was filtered off, and the filtrate was concentrated to give the object product as an orange bowl (125.3 g). When this cocoon was further dried under reduced pressure, it became a foam (120.2 g). [Α] D 25 + 3.4 ° (c = 5, MeOH)
[0066]
Example 1
Synthesis of (S) -4- [4-[(4-chlorophenyl) (2-pyridyl) methoxy] piperidino] butanoic acid monobenzenesulfonate (S) -4- [4- [(4-Chlorophenyl) (2-pyridyl) methoxy] piperidino] butanoic acid 0.5 g (1.29 mmol) is dissolved in 25 ml of ethyl acetate, and 0.20 g (1.14 mmol) of benzenesulfonic acid monohydrate is added. And concentrated under reduced pressure. When 25 ml of ethyl acetate was added again to the residue and allowed to stand for about 1 week, a part of the rod-like material crystallized. When mixed with a spatula and allowed to stand further, the whole crystallized. The crystals were recrystallized from 5 ml of acetonitrile to obtain 0.42 g (yield: 67.3%, optical purity: 99.2% ee) of the target product as light gray prism crystals. [Α] D 20 + 6.0 ° (c = 5, MeOH). Melting point: 161-163 ° C
[0067]
Figure 0004562229
[0068]
Example 2
Synthesis of (S) -4- [4-[(4-chlorophenyl) (2-pyridyl) methoxy] piperidino] butanoic acid monobenzoate (S) -4- [4- [ 0.91 g (2.34 mmol) of (4-chlorophenyl) (2-pyridyl) methoxy] piperidino] butanoic acid is dissolved in 30 ml of acetone, and 0.29 g (2.37 mmol) of benzoic acid is added and homogenized. The bottom was concentrated. When 50 ml of isopropyl ether was added to the residue and allowed to stand for 2 days, a part of the rod-like substance crystallized. The whole was crystallized by stirring with a spatula and further standing. The crystals were recrystallized from 36 ml of ethyl acetate to obtain 0.87 g of the desired product (yield: 72.8%, optical purity: 99.4% ee) as white powder crystals. [Α] D 23 −4.6 ° (c = 1, EtOH). Melting point: 136-140 ° C

Claims (3)

実質的に(R)体を含有しない、(S)−4−〔4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジノ〕ブタン酸・ベンゼンスルホン酸塩を有効成分としてなる、医薬組成物。  A pharmaceutical composition comprising (S) -4- [4-[(4-chlorophenyl) (2-pyridyl) methoxy] piperidino] butanoic acid / benzenesulfonate, which contains substantially no (R) isomer, as an active ingredient object. 実質的に(R)体を含有しない、(S)−4−〔4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジノ〕ブタン酸・ベンゼンスルホン酸塩の結晶を有効成分としてなる、請求項1記載の医薬組成物。  (S) -4- [4-[(4-Chlorophenyl) (2-pyridyl) methoxy] piperidino] butanoic acid / benzenesulfonate salt as an active ingredient, which contains substantially no (R) isomer, The pharmaceutical composition according to claim 1. 抗ヒスタミン剤または抗アレルギー剤である、請求項1または2に記載の医薬組成物。  The pharmaceutical composition according to claim 1 or 2, which is an antihistamine or an antiallergic agent.
JP2000032961A 1996-12-26 2000-02-10 Acid addition salt of optically active piperidine derivative and process for producing the same Expired - Lifetime JP4562229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000032961A JP4562229B2 (en) 1996-12-26 2000-02-10 Acid addition salt of optically active piperidine derivative and process for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-347895 1996-12-26
JP34789596 1996-12-26
JP2000032961A JP4562229B2 (en) 1996-12-26 2000-02-10 Acid addition salt of optically active piperidine derivative and process for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP35078497A Division JP3107784B2 (en) 1996-12-26 1997-12-19 Acid addition salts of optically active piperidine derivatives and their preparation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007000109A Division JP4704362B2 (en) 1996-12-26 2007-01-04 Acid addition salt of optically active piperidine derivative and process for producing the same

Publications (2)

Publication Number Publication Date
JP2000198784A JP2000198784A (en) 2000-07-18
JP4562229B2 true JP4562229B2 (en) 2010-10-13

Family

ID=18393337

Family Applications (9)

Application Number Title Priority Date Filing Date
JP35078497A Expired - Lifetime JP3107784B2 (en) 1996-12-26 1997-12-19 Acid addition salts of optically active piperidine derivatives and their preparation
JP2000032961A Expired - Lifetime JP4562229B2 (en) 1996-12-26 2000-02-10 Acid addition salt of optically active piperidine derivative and process for producing the same
JP2007000109A Expired - Lifetime JP4704362B2 (en) 1996-12-26 2007-01-04 Acid addition salt of optically active piperidine derivative and process for producing the same
JP2010264019A Expired - Lifetime JP5360605B2 (en) 1996-12-26 2010-11-26 Acid addition salt of optically active piperidine derivative and process for producing the same
JP2012098050A Expired - Lifetime JP5518928B2 (en) 1996-12-26 2012-04-23 Acid addition salt of optically active piperidine derivative and process for producing the same
JP2013201621A Withdrawn JP2014012732A (en) 1996-12-26 2013-09-27 Acid addition salt of optically active piperidine derivative and manufacturing method thereof
JP2014077266A Withdrawn JP2014169294A (en) 1996-12-26 2014-04-03 Acid addition salt of optically active piperidine derivative and manufacturing method thereof
JP2015137803A Withdrawn JP2016006059A (en) 1996-12-26 2015-07-09 Optically active piperidine derivative acid-addition salt and preparation thereof
JP2016170684A Pending JP2017014270A (en) 1996-12-26 2016-09-01 Acid addition salt of optical active piperidine derivative and manufacturing method therefor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP35078497A Expired - Lifetime JP3107784B2 (en) 1996-12-26 1997-12-19 Acid addition salts of optically active piperidine derivatives and their preparation

Family Applications After (7)

Application Number Title Priority Date Filing Date
JP2007000109A Expired - Lifetime JP4704362B2 (en) 1996-12-26 2007-01-04 Acid addition salt of optically active piperidine derivative and process for producing the same
JP2010264019A Expired - Lifetime JP5360605B2 (en) 1996-12-26 2010-11-26 Acid addition salt of optically active piperidine derivative and process for producing the same
JP2012098050A Expired - Lifetime JP5518928B2 (en) 1996-12-26 2012-04-23 Acid addition salt of optically active piperidine derivative and process for producing the same
JP2013201621A Withdrawn JP2014012732A (en) 1996-12-26 2013-09-27 Acid addition salt of optically active piperidine derivative and manufacturing method thereof
JP2014077266A Withdrawn JP2014169294A (en) 1996-12-26 2014-04-03 Acid addition salt of optically active piperidine derivative and manufacturing method thereof
JP2015137803A Withdrawn JP2016006059A (en) 1996-12-26 2015-07-09 Optically active piperidine derivative acid-addition salt and preparation thereof
JP2016170684A Pending JP2017014270A (en) 1996-12-26 2016-09-01 Acid addition salt of optical active piperidine derivative and manufacturing method therefor

Country Status (1)

Country Link
JP (9) JP3107784B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240982A (en) * 2011-05-23 2012-12-10 Toray Fine Chemicals Co Ltd Method for producing benzenesulfonate of optically active piperidine derivative
JP2014012732A (en) * 1996-12-26 2014-01-23 Ube Ind Ltd Acid addition salt of optically active piperidine derivative and manufacturing method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101016595B1 (en) * 2002-07-31 2011-02-22 센주 세이야꾸 가부시키가이샤 Aqueous liquid preparations and light-stabilized aqueous liquid preparations
CA2496623C (en) 2002-08-29 2008-02-12 Taisho Pharmaceutical Co., Ltd. Benzenesulfonate salts of 4-fluoro-2-cyanopyrrolidine derivatives
KR100879409B1 (en) * 2007-06-11 2009-01-19 한미약품 주식회사 Process for preparing s-bepotastine and intermediates used therein
KR20090061972A (en) * 2007-12-12 2009-06-17 한미약품 주식회사 Crystalline form of bepotastine p-toluenesulfonate, method for preparing same and pharmaceutical composition containing same
KR101132949B1 (en) 2009-09-08 2012-04-10 경희대학교 산학협력단 Bepotastine salicylate, preparation method thereof and antihistamine or antialergy pharmaceutical composition containing the same as an active ingredient
JP2011195500A (en) * 2010-03-19 2011-10-06 Tokuyama Corp Method for producing (s)-4-[4-[(4-chlorophenyl)(2-pyridyl)methoxy]piperidino]butanoic acid/benzenesulfonic acid salt
JP5641802B2 (en) * 2010-07-26 2014-12-17 株式会社トクヤマ Process for producing diastereomeric salt of (S) -4-[(4-chlorophenyl) (2-pyridyl) methoxy] piperidine
KR101232233B1 (en) 2010-12-08 2013-02-12 (주)팜스웰바이오 Preparation method of (S)-bepotastine
KR101717599B1 (en) 2015-05-11 2017-03-17 한국화학연구원 Novel chiral resolving agent and Method for optically resolving preparation of (RS)-Bepotastine using thereof
CN111116556B (en) * 2019-12-26 2021-11-02 北京鑫开元医药科技有限公司 Preparation method of (R) -2- [ (4-chlorphenyl) (4-piperidinyloxy) methyl ] pyridine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225465A (en) * 1988-07-15 1990-01-26 Ube Ind Ltd Piperidine derivative, production thereof and pharmaceutical composition containing the same derivative
JP2624372B2 (en) * 1990-11-15 1997-06-25 宇部興産株式会社 Diarylmethoxypiperidine derivative
JP2787973B2 (en) * 1993-05-28 1998-08-20 宇部興産株式会社 Purification method of piperidine intermediate
JPH08333339A (en) * 1995-06-08 1996-12-17 Fujisawa Pharmaceut Co Ltd Production of optically active piperidineacetic acid derivative
JP3107784B2 (en) * 1996-12-26 2000-11-13 宇部興産株式会社 Acid addition salts of optically active piperidine derivatives and their preparation
JPH10182635A (en) * 1996-12-26 1998-07-07 Ube Ind Ltd Optically active piperidine derivative and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014012732A (en) * 1996-12-26 2014-01-23 Ube Ind Ltd Acid addition salt of optically active piperidine derivative and manufacturing method thereof
JP2016006059A (en) * 1996-12-26 2016-01-14 宇部興産株式会社 Optically active piperidine derivative acid-addition salt and preparation thereof
JP2017014270A (en) * 1996-12-26 2017-01-19 宇部興産株式会社 Acid addition salt of optical active piperidine derivative and manufacturing method therefor
JP2012240982A (en) * 2011-05-23 2012-12-10 Toray Fine Chemicals Co Ltd Method for producing benzenesulfonate of optically active piperidine derivative

Also Published As

Publication number Publication date
JP2014012732A (en) 2014-01-23
JP2017014270A (en) 2017-01-19
JP2012180360A (en) 2012-09-20
JP2000198784A (en) 2000-07-18
JP2007145852A (en) 2007-06-14
JP5360605B2 (en) 2013-12-04
JPH10237070A (en) 1998-09-08
JP2014169294A (en) 2014-09-18
JP3107784B2 (en) 2000-11-13
JP4704362B2 (en) 2011-06-15
JP2011063619A (en) 2011-03-31
JP5518928B2 (en) 2014-06-11
JP2016006059A (en) 2016-01-14

Similar Documents

Publication Publication Date Title
JP5518928B2 (en) Acid addition salt of optically active piperidine derivative and process for producing the same
EP0949260B1 (en) Acid-addition salts of optically active piperidine compound and process for producing the same
RU2182150C2 (en) Derivatives of benzimidazole, antihistaminic pharmaceutical composition and method of treatment of allergic diseases
EP0258755B1 (en) Alpha-alkyl-4-amino-3-quinoline-methanols and 1-(4-aralkylamino-3-quinolinyl) alkanones, a process for their preparation and their use as medicaments
JPH11501640A (en) 5-HT (4) Di-substituted 1,4-piperidine esters and amides having an antagonistic action
FI91748C (en) A process for the preparation of therapeutically useful quinolinone derivatives
IE921840A1 (en) [(Arylalkylpiperidine-4-yl)methyl]-2a,3,4,5- tetrahydro-1(2H)-acenaphthylen-1-ones and related compounds, a process for their preparation and their use as medicaments
PT91783B (en) PROCESS FOR THE PREPARATION OF {(DIARYMETHYL) ALKYL} -1-PYRROLIDINS AND PIPERIDINES
TW202132289A (en) 1,2,4-oxadiazole derivatives as liver x receptor agonists
WO1984000546A1 (en) New substituted derivatives of 2,5-diamino 1,4-diazole, preparation methods thereof and pharmaceutical compositions containing them
FR2753970A1 (en) N- (BENZOTHIAZOL-2-YL) PIPERIDINE-1-ETHANAMINE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC USE
CN104936950A (en) 1 h-indole-3-carboxamide derivatives and use thereof as p2y12 antagonists
ES2302058T3 (en) ACID DERIVATIVES OF QUINOLINA AND ITS USE FOR THE PREVENTION AND / OR FOR THE TREATMENT OF PATHOLOGIES RELATED TO HYPERGLYCEMIA.
EP0739881B1 (en) Piperidine derivatives
CZ279435B6 (en) 2-HYDROXY-1,2,3-PROPANETRICARBOXYLATE (1:1) OF 3-/(5-METHYL-2-FURANYL)METHYL/-N-(4- PIPERIDINYL) 3H-IMIDAZO-(4,5-b)PYRIDIN-2-AMINE PROCESS OF ITS PREPARATION AND PHARMACEUTICAL PREPARATION BASED THEREON
WO2009153514A1 (en) Phenyl-alkyl piperazines having a modulating activity of tnf
JPH10182635A (en) Optically active piperidine derivative and its production
SK5282002A3 (en) Phenyl- and pyridyl-tetrahydro-pyridines having tnf inhibiting activity
FR2647785A1 (en) NOVEL DERIVATIVES OF PYRROLIDONE, PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS COMPRISING SAME
MXPA99006064A (en) Acid-addition salts of optically active piperidine compound and process for producing the same
JPH05213885A (en) Novel derivative of decahydroquinoline, preparation thereof, production intermediate, use thereof as medicine and composition containing same
WO2002053157A1 (en) Thiazolidine derivative
JPH01216972A (en) Optically active 1,4-dihydropyridine derivative, production and use thereof
JPH05170736A (en) Diphenylmethoxypiperidine derivative and medicine containing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180806

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term