JP4560643B2 - Ventilation distribution measurement method using respiratory CT images - Google Patents

Ventilation distribution measurement method using respiratory CT images Download PDF

Info

Publication number
JP4560643B2
JP4560643B2 JP2004179618A JP2004179618A JP4560643B2 JP 4560643 B2 JP4560643 B2 JP 4560643B2 JP 2004179618 A JP2004179618 A JP 2004179618A JP 2004179618 A JP2004179618 A JP 2004179618A JP 4560643 B2 JP4560643 B2 JP 4560643B2
Authority
JP
Japan
Prior art keywords
lung
ventilation
divergence
image
respiratory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004179618A
Other languages
Japanese (ja)
Other versions
JP2005028121A (en
Inventor
潤 桝本
裕子 北岡
恒昭 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Aze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aze Ltd filed Critical Aze Ltd
Priority to JP2004179618A priority Critical patent/JP4560643B2/en
Publication of JP2005028121A publication Critical patent/JP2005028121A/en
Application granted granted Critical
Publication of JP4560643B2 publication Critical patent/JP4560643B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

本発明は、肺の3次元的な換気分布を計測する方法に関し、特にCT(computed tomography)放射線診断システムを用いて3次元的に撮像された肺の呼気時のCT画像および吸気時のCT画像より肺の換気分布を計測するようにした、呼吸気CT画像による換気分布計測方法に関するものである。   The present invention relates to a method for measuring a three-dimensional ventilation distribution of a lung, and in particular, a CT image at the time of expiration and a CT image at the time of inhalation, which are three-dimensionally imaged using a CT (computed tomography) radiation diagnostic system. The present invention relates to a ventilation distribution measurement method based on respiratory CT images, in which the ventilation distribution of the lung is further measured.

気管支喘息、肺気腫などの呼吸器疾患は、気管支肺胞系の構造変化をもたらし、これにより換気障害を引き起こすと考えられている。現在、換気障害の検査は、肺活量計等を用いた呼吸機能検査法により行なわれるのが一般的である。しかし、呼吸機能検査法では、換気量の低下といった肺全体の機能障害については評価し得るものの、肺内の構造変化と機能障害の関係を知ることや、肺内の局所的な機能障害について評価することはできない。肺内の構造変化と機能障害の関係や肺内の局所的な機能障害を検査するには、肺内での3次元的な換気分布を知ることが極めて重要となる。   Respiratory diseases such as bronchial asthma and emphysema are thought to lead to structural changes in the bronchoalveolar system, thereby causing ventilation problems. At present, examination of ventilation disorders is generally performed by a respiratory function examination method using a spirometer or the like. However, although the respiratory function test method can evaluate pulmonary dysfunction such as a decrease in ventilation, it can know the relationship between structural changes in the lung and dysfunction, and evaluate local dysfunction in the lung. I can't do it. In order to examine the relationship between structural changes in the lungs and dysfunction and local dysfunction in the lung, it is extremely important to know the three-dimensional ventilation distribution in the lung.

従来、肺内における換気分布を求める方法としては、PET(positron emission tomography)やSPECT(single-photon emission computer tomography)などの核医学的検査(下記非特許文献1参照)が知られている。また、近年では、過分極ヘリウムを用いたMRI(magnetic resonance imaging)、いわゆる過分極HeMRI(下記非特許文献2参照)も開発されている。また、本発明者らは、肺の3次元モデルに時間軸を加えた4次元肺モデルを用いた換気分布シミュレーション方法(下記非特許文献3参照)を提案している。   Conventionally, as a method for obtaining the ventilation distribution in the lung, nuclear medical examinations (see Non-Patent Document 1 below) such as PET (positron emission tomography) and SPECT (single-photon emission computer tomography) are known. In recent years, MRI (magnetic resonance imaging) using hyperpolarized helium, so-called hyperpolarized HeMRI (see Non-Patent Document 2 below) has also been developed. In addition, the present inventors have proposed a ventilation distribution simulation method using a four-dimensional lung model in which a time axis is added to a three-dimensional lung model (see Non-Patent Document 3 below).

Musch,G.et al.:Topographical distribution of pulmonaryperfusion and ventilation, assessed by PET in supine and prone humans.J.Appl.Physiol.,93:1841-1851,2002.Musch, G. et al .: Topographical distribution of pulmonaryperfusion and ventilation, specifically by PET in supine and prone humans. J.Appl.Physiol., 93: 1841-1851,2002. Lange,E.E.et al.:Lung air space:MR imaging evaluation with hyperpolarized 3He gas.Radiology, 210:851-857,1999.Lange, E.E. et al .: Lung air space: MR imaging evaluation with hyperpolarized 3He gas. Radiology, 210: 851-857, 1999. 北岡裕子,上甲剛「肺の四次元モデルを用いた換気分布シミュレーション−換気障害の治療効果予測をめざして」週刊医学の歩み,445-448, Vol.205 No.7Yuko Kitaoka, Tsuyoshi Kamiko "Ventilation distribution simulation using a four-dimensional lung model-Aiming at predicting the therapeutic effect of ventilation disorders", Weekly Medical History, 445-448, Vol.205 No.7 Rueckert D,Sonda LI,Hayes C.et al.:Non-rigid registration using free-form deformation:application to breast MR images. IEEE-TMI.18:712-721,1999.Rueckert D, Sonda LI, Hayes C. et al .: Non-rigid registration using free-form deformation: application to breast MR images. IEEE-TMI.18: 712-721, 1999.

しかしながら、上述したPET、SPECTなどの核医学的検査および過分極HeMRIなどの方法は、高額な薬剤や重装備の設備を必要とし、また、換気画像の解像度や再現性に問題があることから、一般臨床で用いられる段階には至っていない。また、4次元肺モデルを用いた換気分布シミュレーション方法は、現時点では計算機内に構築したモデルによるシミュレーションの段階にあり、患者個別のデータに対応した換気分布の解析を行なえる段階には至っていない。   However, methods such as the above-mentioned nuclear medicine examinations such as PET and SPECT and hyperpolarized HeMRI require expensive drugs and heavy equipment, and there are problems with the resolution and reproducibility of ventilation images. It has not reached the stage used in general clinical practice. In addition, the ventilation distribution simulation method using a four-dimensional lung model is currently in the stage of simulation using a model built in a computer, and has not yet reached the stage where analysis of ventilation distribution corresponding to individual patient data can be performed.

本発明は、上記事情に鑑みてなされたものであり、患者個別のデータに対応して肺の3次元的な換気分布を高精度に計測することが可能であり、かつ高額な薬剤や設備を必要とせず一般臨床への導入が可能な呼吸気CT画像による換気分布計測方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can measure a three-dimensional lung distribution with high accuracy corresponding to individual patient data, and can provide an expensive drug or equipment. It is an object of the present invention to provide a ventilation distribution measuring method using respiratory CT images that can be introduced into general clinical practice without necessity.

上記課題を解決するため、本発明の呼吸気CT画像による換気分布計測方法は、3次元的に撮像された肺の呼気時のCT画像および吸気時のCT画像より肺領域を抽出し、非剛体レジストレーション手法を用いて前記呼気時のCT画像と前記吸気時のCT画像との間で、前記肺領域の位置合せを行ない、該位置合せにより前記肺領域における変位ベクトル場を求め、求められた前記変位ベクトル場の各点において発散を計算し、計算された前記各点における前記発散に基づき前記肺の局所換気量を求めることを特徴とするものである。   In order to solve the above-described problem, the ventilation distribution measurement method using respiratory CT images of the present invention extracts a lung region from a CT image during exhalation of lungs and a CT image during inspiration, which are three-dimensionally imaged, and is non-rigid Using the registration method, the lung region is aligned between the CT image at the time of exhalation and the CT image at the time of inhalation, and the displacement vector field in the lung region is obtained by the alignment. The divergence is calculated at each point of the displacement vector field, and the local ventilation of the lung is obtained based on the calculated divergence at each point.

上記「発散」とは、任意のベクトル関数をA(x,y,z)とするとき、一般的にdivAまたはハミルトンの演算子∇を用いて∇・Aと表記され、下式(1)で定義されるものを意味する。   The above “divergence” is generally expressed as ∇ · A using divA or a Hamilton operator ∇ when an arbitrary vector function is A (x, y, z). Means what is defined.

Figure 0004560643
ここで、A,A,Aは、ベクトル関数A(x,y,z)の各座標軸に関する成分を表す。
Figure 0004560643
Here, A x , A y , and A z represent components related to the coordinate axes of the vector function A (x, y, z).

本発明の呼吸気CT画像による換気分布計測方法において、前記局所換気量に基づき、前記肺の換気分布状態を求めるようにしてもよい。あるいは、前記発散の体積積分により前記肺の総換気量を求めるようにしてもよい。   In the method for measuring ventilation distribution using respiratory CT images of the present invention, the ventilation distribution state of the lung may be obtained based on the local ventilation. Alternatively, the total ventilation of the lung may be obtained by volume integration of the divergence.

また、前記非剛体レジストレーション手法は、前記位置合せをボクセルベースで行なって、前記変位ベクトル場を求めるボクセルベース非剛体レジストレーション手法とすることができる。この場合、呼吸中の肺の変形を記述するためには、一般的なボクセルベース非剛体レジストレーション手法において用いられている通常の評価関数に替えて、上記変位ベクトル場の発散を記述する発散項を含む評価関数を用いることが好ましい。また、その際、肺実質のボクセルに対応する発散項には負の所定の重みを与え、肺胸膜、血管のボクセルに対応する発散項には正の所定の重みを与えることが好ましい。   The non-rigid registration technique may be a voxel-based non-rigid registration technique for performing the alignment on a voxel basis to obtain the displacement vector field. In this case, in order to describe the deformation of the lung during breathing, the divergence term describing the divergence of the displacement vector field is used instead of the normal evaluation function used in the general voxel-based non-rigid registration method. It is preferable to use an evaluation function including At this time, it is preferable that a negative predetermined weight is given to the divergence term corresponding to the voxel of the lung parenchyma, and a positive predetermined weight is given to the divergence term corresponding to the lung pleura and blood vessel voxel.

本発明の呼吸気CT画像による換気分布計測方法によれば、肺の呼気時および吸気時のCT画像より肺領域を抽出した上で、非剛体レジストレーション手法を用いて、呼気時と吸気時のCT画像間で肺領域の位置合せを行なうことにより肺領域における変位ベクトル場を求め、この変位ベクトル場の各点における発散を計算する。   According to the ventilation distribution measuring method using respiratory CT images of the present invention, after extracting lung regions from CT images during exhalation and inhalation of lungs, a non-rigid registration method is used to perform exhalation and inspiration. A displacement vector field in the lung region is obtained by aligning the lung region between CT images, and a divergence at each point of the displacement vector field is calculated.

換気による肺内局所の体積変化量は局所換気量とみなすことができ、また、肺内局所の体積変化率は肺領域の変位ベクトル場の局所における発散と略一致するので、変位ベクトル場の各点における発散を計算することにより、肺内の局所換気量を高精度に求めることができる。   The volume change in the lung due to ventilation can be regarded as local ventilation, and the volume change rate in the lung is almost the same as the local divergence of the displacement vector field in the lung region. By calculating the divergence at the points, the local ventilation in the lung can be determined with high accuracy.

また、実際に撮像されたCT画像を用いるので、患者個別のデータに対応した肺の3次元的な換気分布を求めることが可能であり、さらに一般臨床への普及が進んでいるCT装置があれば、他に高額な薬剤や設備を必要とせずに実施することができることから、一般臨床への導入が容易である。   In addition, since CT images actually captured are used, it is possible to obtain a three-dimensional ventilation distribution of the lung corresponding to individual patient data, and there are CT apparatuses that are widely used in general clinical practice. For example, since it can be carried out without the need for other expensive drugs and equipment, it can be easily introduced into general clinical practice.

以下、本発明に係る呼吸気CT画像による換気分布計測方法の実施形態を、図面を参照しながら説明する。図1は本発明の一実施形態に係る肺の呼吸気CT画像を示す図で、同図(A)は最大吸気位における肺の吸気時CT画像、同図(B)は最大吸気位から空気を1リットル呼出(スパイロメトリで計測)した状態の肺の呼気時CT画像である。   Hereinafter, an embodiment of a ventilation distribution measurement method using respiratory CT images according to the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a respiratory respiratory CT image of a lung according to an embodiment of the present invention. FIG. 1A shows a CT image during lung inspiration at the maximum inspiratory position, and FIG. 1B shows air from the maximum inspiratory position. Is a CT image at the time of exhalation of the lung in a state where 1 liter is called (measured by spirometry).

この実施形態に係る方法では、まず、マルチスライスCT装置を用いて図1に示すように、人(患者)の吸気時CT画像1および呼気時CT画像2を撮像する。なお、CT画像の撮像は、吸気時および呼気時共に3次元的に行われ、各層のCT画像の画素毎に得られたCT値の空間分布は、3次元空間上での格子点を構成するボクセル(voxel)ベースで把握される。   In the method according to this embodiment, first, as shown in FIG. 1, an inhalation CT image 1 and an expiration CT image 2 of a person (patient) are captured using a multi-slice CT apparatus. The CT image is captured three-dimensionally during inspiration and expiration, and the spatial distribution of CT values obtained for each pixel of the CT image of each layer constitutes a lattice point on the three-dimensional space. Ascertained on a voxel basis.

次に、得られた吸気時CT画像1および呼気時CT画像2において、肺領域を抽出する。肺領域の抽出方法としては、各画像データから、画素ごとの濃度値をヒストグラム化し、肺領域を閾値処理して抽出する方法や、部分的なヒストグラムを用いて閾値処理し、輪郭をスプライン曲線で近似する方法などを用いることができる。   Next, lung regions are extracted from the obtained CT image 1 during inspiration and CT image 2 during expiration. As a method for extracting the lung region, a density value for each pixel is histogrammed from each image data, and the lung region is extracted by threshold processing, or threshold processing is performed using a partial histogram, and the contour is expressed by a spline curve. An approximation method can be used.

次いで、吸気時CT画像1と呼気時CT画像2との間で、抽出された肺領域の位置合せを行ない、肺領域における変位ベクトル場(位置座標を変数とするベクトル関数)を求める。位置合せの手法としては、上記非特許文献4に開示されているようなボクセルベース非剛体レジストレーション手法を用いることが好ましい。このボクセルベース非剛体レジストレーション手法は、2つの画像間の位置合せをボクセルベースで行なうもので、画素値の類似度が最大で、かつ変形による弾性エネルギが最小となる変位ベクトル場を求めることで達成される。   Next, the extracted lung region is aligned between the inspiration CT image 1 and the expiration CT image 2 to obtain a displacement vector field (a vector function having position coordinates as variables) in the lung region. As the alignment method, it is preferable to use a voxel-based non-rigid registration method as disclosed in Non-Patent Document 4 above. This voxel-based non-rigid registration method performs registration between two images on a voxel basis, and obtains a displacement vector field that maximizes the similarity of pixel values and minimizes elastic energy due to deformation. Achieved.

連続体力学によると、弾性エネルギは、変形テンソルの各成分の2乗和と発散の2乗にそれぞれ固有の弾性係数(ラメ定数、μ,λ)を掛け合わせたもので定義される。しかしながら、通常の画像位置合せの際には、対象の変形は軽度で、容積変化は無視し得ることが想定されているので、上記非特許文献4のボクセルベース非剛体レジストレーション手法で用いられている評価関数では、発散項は取り入れられていない。しかるに、呼吸中の肺の変形は、通常の弾性体の変形と異なり、空気の流出入による容積変化が主体である。したがって、吸気時と呼気時の肺の位置合せを行なう際には、発散項を導入するのが適切である。ところで、通常の物質のラメ定数は正値であり、物質に固有の値をとる。しかるに、呼吸時の肺の容積変化は空気の流出入に伴うものであるため、発散項に負の重みを与えるのが適切である。具体的には、λがμの2/3倍であるときに、等方性の容積変化のエネルギが最小値をとる。肺以外の組織(肺胸膜,血管)は、空気の流出入は起こらないので、λには正の値を与える。なお、肺と肺以外の組織の区別はCT値で(例えば、−200HU以下は肺実質、それ以上は肺以外の組織というように)なされる。   According to continuum mechanics, the elastic energy is defined as the sum of the square of each component of the deformation tensor and the square of the divergence multiplied by a specific elastic coefficient (lamé constant, μ, λ). However, during normal image alignment, it is assumed that the deformation of the object is slight and the volume change is negligible, so it is used in the voxel-based non-rigid registration method of Non-Patent Document 4 above. Some evaluation functions do not incorporate the divergence term. However, the deformation of the lung during breathing is different from the deformation of a normal elastic body, and mainly changes in volume due to the inflow and outflow of air. Therefore, it is appropriate to introduce a divergence term when aligning the lungs during inspiration and expiration. By the way, the lame constant of a normal substance is a positive value and takes a value specific to the substance. However, it is appropriate to give a negative weight to the divergence term because the change in lung volume during breathing is associated with the inflow and outflow of air. Specifically, when λ is 2/3 times μ, the energy of isotropic volume change takes the minimum value. Since tissues other than the lung (pulmonary pleura, blood vessels) do not cause air inflow and outflow, a positive value is given to λ. Note that the lungs and tissues other than the lungs are distinguished by CT values (for example, -200HU or less is lung parenchyma and more than that is tissues other than lung).

なお、吸気時CT画像と呼気時CT画像との間では、含気量の変化により画素値(CT値)が変化するため、この変化を考慮して類似度を構成する必要がある。また、肺のように骨や他の臓器が隣接している領域では、肺領域と骨や他の臓器との間の変位が不連続となる。上記非特許文献4で提案されている弾性エネルギを最小化するアルゴリズムは、位置合せの対象となる領域の変位が連続していることを前提としているので、予め肺領域を抽出しておく必要がある。   Since the pixel value (CT value) changes between the inspiration CT image and the expiration CT image due to a change in the air content, it is necessary to configure the similarity in consideration of this change. Further, in a region where bones and other organs are adjacent to each other like the lungs, the displacement between the lung region and the bones or other organs is discontinuous. Since the algorithm for minimizing elastic energy proposed in Non-Patent Document 4 is based on the premise that the displacement of the region to be aligned is continuous, it is necessary to extract the lung region in advance. is there.

次に、求められた肺領域の変位ベクトル場において、各点における発散を計算することにより、肺内の局所換気量を求める。なお、局所換気量とは、肺内の任意の一部領域(局所)内における換気量をいう。本実施形態において局所は、1または互いに隣接する複数のボクセルで構成される。肺領域の変位ベクトル場における各点の発散と肺内の局所換気量との関係は、以下のように説明される。   Next, the local ventilation in the lung is obtained by calculating the divergence at each point in the obtained displacement vector field of the lung region. Note that the local ventilation is the ventilation in an arbitrary partial region (local) in the lung. In this embodiment, the local area is composed of one or a plurality of voxels adjacent to each other. The relationship between the divergence of each point in the displacement vector field of the lung region and the local ventilation in the lung is explained as follows.

すなわち、換気は肺内における空気の非圧縮性の移動であり、空気の移動により肺実質が変形する。呼吸に伴う肺実質の変形は、肺を多孔性の弾性体とみなすことにより、弾性体の理論を適用することが可能となる。弾性体における局所変形は、局所における変位ベクトルと変形テンソル(3×3の行列形式)を用いて表すことができ、特に、座標軸の方向を変形テンソルの主方向にとれば、変形テンソルは対角化され、そのトレース(対角成分の和)は、変位ベクトルの発散と一致することが知られている。また、このとき局所における体積変化率は、対角化された変形テンソルのトレースと近似することができる、すなわち、変形による体積の変化率は変位ベクトルUの発散に一致するとみなすことが可能である。なお、肺血管など、空気の移動のない組織では、変形はしても体積変化は無視し得るため発散は0となる。   That is, ventilation is an incompressible movement of air in the lung, and the lung parenchyma is deformed by the movement of air. Deformation of the lung parenchyma accompanying breathing makes it possible to apply the theory of elastic bodies by regarding the lungs as porous elastic bodies. Local deformation in an elastic body can be expressed by using a local displacement vector and a deformation tensor (3 × 3 matrix format). In particular, if the direction of the coordinate axis is the main direction of the deformation tensor, the deformation tensor is diagonal. And its trace (sum of diagonal components) is known to match the divergence of the displacement vector. At this time, the local volume change rate can be approximated to a diagonal deformation tensor trace, that is, the volume change rate due to deformation can be regarded as coincident with the divergence of the displacement vector U. . It should be noted that in a tissue such as a pulmonary blood vessel where there is no movement of air, even if it is deformed, the volume change is negligible, so the divergence is zero.

図2は変位ベクトルの発散と変形による体積変化との関係を概念的に示す図である。なお、図2において、Uは点Pにおける変位ベクトルを表し、dx,dy,dzは単位立方体のx,y,z各座標軸方向の微小変位を示している。このとき、単位立方体の体積変化は、(1+dx)・(1+dy)・(1+dz)−1で求まるが、これは、dx+dy+dzで近似することができる。したがって、単位立方体の体積変化率は、変位ベクトルUの発散divUに一致するとみなせる。   FIG. 2 is a diagram conceptually showing the relationship between displacement vector divergence and volume change due to deformation. In FIG. 2, U represents a displacement vector at point P, and dx, dy, and dz represent minute displacements in the x, y, and z coordinate axis directions of the unit cube. At this time, the volume change of the unit cube is obtained by (1 + dx) · (1 + dy) · (1 + dz) −1, and this can be approximated by dx + dy + dz. Therefore, it can be considered that the volume change rate of the unit cube coincides with the divergence divU of the displacement vector U.

呼吸に伴う肺局所の容積変化が、肺の局所換気量となる。上述したように、変位ベクトル場の局所における発散は局所における体積変化率と略一致するので、吸気時CT画像1と呼気時CT画像2との位置合せにより得られた変位ベクトル場における各点の発散を計算することにより、肺の局所換気量を求めることが可能となる。   A change in the volume of the local lung accompanying respiration becomes the local ventilation of the lung. As described above, since the local divergence of the displacement vector field substantially coincides with the local volume change rate, each point in the displacement vector field obtained by the alignment between the inspiration CT image 1 and the expiration CT image 2 is obtained. By calculating the divergence, it is possible to determine the local ventilation of the lung.

また、変位ベクトル場における各点の発散を、肺領域内において体積積分(容積積分)することにより、肺の総換気量を求めることが可能となる。図1に示す吸気時CT画像1および呼気時CT画像2に基づき、肺の総換気量を求めたところ、0.991リットルとなった。この結果は、スパイロメトリによる計測結果と略一致する。   Further, by performing volume integration (volume integration) of the divergence of each point in the displacement vector field in the lung region, it is possible to obtain the total lung ventilation. Based on the inspiration CT image 1 and the expiration CT image 2 shown in FIG. 1, the total lung ventilation was determined to be 0.991 liters. This result substantially coincides with the measurement result by spirometry.

次に、求められた肺の局所換気量に基づき、肺の換気分布状態を求める。図3は肺の一横断面における換気分布状態を可視化した平面画像を示す図であり、図4は肺全体の換気分布状態を可視化した立体画像を示す図である。なお、図4に示す立体画像の作成にあたっては、画像処理におけるボリュームレンダリングの手法を用いている。   Next, the ventilation distribution state of the lung is obtained based on the obtained local ventilation of the lung. FIG. 3 is a diagram showing a planar image visualizing the ventilation distribution state in one transverse section of the lung, and FIG. 4 is a diagram showing a stereoscopic image visualizing the ventilation distribution state of the entire lung. Note that a volume rendering technique in image processing is used to create the stereoscopic image shown in FIG.

図3に示す平面画像3および図4に示す立体画像4は、カラー画像を白黒画像として取り込んだものであるため、判別が難しくなっているが、これらの画像において、黒く見える部分が容積減少部(図3,4において符号5を付してその一部を例示する)であり、やや白く見える部分は容積変化が無い部分(図3,4において符号6を付してその一部を例示する)である。また、図3および図4において、白い曲線で囲まれ少し黒く見える部分が容積増加部(図3,4において符号7を付してその一部を例示する)である。なお、実際の画像は、各部分が異なる色によって識別が容易なように可視化されており、その解像度は高い。   The plane image 3 shown in FIG. 3 and the three-dimensional image 4 shown in FIG. 4 are obtained by capturing a color image as a black and white image, so that it is difficult to discriminate. (Parts 5 are illustrated with reference 5 in FIGS. 3 and 4), and parts that appear slightly white are parts without volume change (parts 6 are illustrated with reference 6 in FIGS. 3 and 4). ). 3 and 4, a portion surrounded by a white curve and appearing a little black is a volume increasing portion (a part 7 is illustrated with reference numeral 7 in FIGS. 3 and 4). The actual image is visualized so that each part can be easily identified by different colors, and the resolution is high.

肺の吸気時のCT画像(A)と呼気時のCT画像(B)を示す図The figure which shows CT image (A) at the time of inhalation of a lung, and CT image (B) at the time of expiration 変位ベクトルの発散と変形による体積変化との関係を概念的に示す図Diagram conceptually showing the relationship between displacement vector divergence and deformation volume change 肺の一横断面における換気分布状態を可視化した平面画像を示す図The figure which shows the plane picture which visualized the ventilation distribution state in the cross section of the lung 肺全体の換気分布状態を可視化した立体画像を示す図The figure which shows the three-dimensional image which visualized the ventilation distribution state of the whole lung

符号の説明Explanation of symbols

1 吸気時CT画像
2 呼気時CT画像
3 平面画像
4 立体画像
5 容積減少部
6 容積変化が無い部分
7 容積増加部
DESCRIPTION OF SYMBOLS 1 CT image at the time of inspiration 2 CT image at the time of expiration 3 Plane image 4 Three-dimensional image 5 Volume decreasing part 6 Part without volume change 7 Volume increasing part

Claims (5)

3次元的に撮像された肺の呼気時のCT画像および吸気時のCT画像より肺領域を抽出し、
非剛体レジストレーション手法を用いて前記呼気時のCT画像と前記吸気時のCT画像との間で、前記肺領域の位置合せを行ない、
該位置合せにより前記肺領域における変位ベクトル場を求め、
求められた前記変位ベクトル場の各点において発散を計算し、
計算された前記各点における前記発散に基づき前記肺の局所換気量を求めることを特徴とする呼吸気CT画像による換気分布計測方法。
Extracting a lung region from a CT image at the time of exhalation and a CT image at the time of inhalation of the lung imaged three-dimensionally,
Using the non-rigid registration method, the lung region is aligned between the CT image during exhalation and the CT image during inspiration.
A displacement vector field in the lung region is determined by the alignment;
Calculate the divergence at each point of the obtained displacement vector field,
A ventilation distribution measurement method based on a respiratory CT image, wherein the local ventilation of the lung is obtained based on the divergence calculated at each point.
前記局所換気量に基づき、前記肺の換気分布状態を求めることを特徴とする請求項1記載の呼吸気CT画像による換気分布計測方法。   2. A ventilation distribution measuring method using respiratory CT images according to claim 1, wherein a ventilation distribution state of the lung is obtained based on the local ventilation. 前記発散の体積積分により前記肺の総換気量を求めることを特徴とする請求項1または2記載の呼吸気CT画像による換気分布計測方法。   3. A ventilation distribution measuring method using respiratory CT images according to claim 1, wherein a total ventilation amount of the lung is obtained by volume integration of the divergence. 前記非剛体レジストレーション手法が、前記位置合せをボクセルベースで行なって、前記変位ベクトル場を求めるボクセルベース非剛体レジストレーション手法であることを特徴とする請求項1〜3までのいずれか1項記載の呼吸気CT画像による換気分布計測方法。   4. The non-rigid registration method according to claim 1, wherein the non-rigid registration method is a voxel-based non-rigid registration method for obtaining the displacement vector field by performing the alignment on a voxel basis. Of ventilation distribution measurement using respiratory CT images of children. 前記ボクセルベース非剛体レジストレーション手法において用いられる評価関数は、前記変位ベクトル場の前記発散を記述する発散項を含み、該発散項は、肺実質のボクセルに対応するものに対しては負の所定の重みが与えられ、肺胸膜、血管のボクセルに対応するものには正の所定の重みが与えられることを特徴とする請求項4記載の呼吸気CT画像による換気分布計測方法。

The evaluation function used in the voxel-based non-rigid registration method includes a divergence term describing the divergence of the displacement vector field, the divergence term being a negative predetermined for those corresponding to lung parenchyma voxels. 5. A ventilation distribution measuring method using respiratory respiratory CT images according to claim 4, wherein a positive predetermined weight is given to those corresponding to the lung pleura and blood vessel voxels.

JP2004179618A 2003-06-17 2004-06-17 Ventilation distribution measurement method using respiratory CT images Expired - Lifetime JP4560643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004179618A JP4560643B2 (en) 2003-06-17 2004-06-17 Ventilation distribution measurement method using respiratory CT images

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003172550 2003-06-17
JP2004179618A JP4560643B2 (en) 2003-06-17 2004-06-17 Ventilation distribution measurement method using respiratory CT images

Publications (2)

Publication Number Publication Date
JP2005028121A JP2005028121A (en) 2005-02-03
JP4560643B2 true JP4560643B2 (en) 2010-10-13

Family

ID=34219934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004179618A Expired - Lifetime JP4560643B2 (en) 2003-06-17 2004-06-17 Ventilation distribution measurement method using respiratory CT images

Country Status (1)

Country Link
JP (1) JP4560643B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5676840B2 (en) * 2004-11-17 2015-02-25 コーニンクレッカ フィリップス エヌ ヴェ Improved elastic image registration function
WO2007111207A1 (en) * 2006-03-16 2007-10-04 Osaka University Three-dimensional spirogram measuring method and computer program
JP4709177B2 (en) * 2007-04-12 2011-06-22 富士フイルム株式会社 Three-dimensional image processing apparatus and method, and program
WO2009078297A1 (en) 2007-12-19 2009-06-25 Konica Minolta Medical & Graphic, Inc. Dynamic image processing system
JP5136562B2 (en) * 2008-01-15 2013-02-06 コニカミノルタエムジー株式会社 Dynamic image diagnosis support system
JP5192354B2 (en) * 2008-11-04 2013-05-08 株式会社リガク Region specifying method, volume measuring method using the same, region specifying device and region specifying program
BRPI1005358A2 (en) * 2009-01-30 2019-09-24 Koninl Philips Electronics Nv pulmonary ventilation information display system, pulmonary ventilation information display method, and computer program product
JP5572440B2 (en) 2009-09-15 2014-08-13 富士フイルム株式会社 Diagnosis support system, diagnosis support program, and diagnosis support method
JP5723541B2 (en) 2010-03-31 2015-05-27 富士フイルム株式会社 MEDICAL IMAGE DIAGNOSIS SUPPORT DEVICE, ITS OPERATION METHOD, AND PROGRAM
JP4931027B2 (en) 2010-03-29 2012-05-16 富士フイルム株式会社 Medical image diagnosis support apparatus and method, and program
JP5597429B2 (en) 2010-03-31 2014-10-01 富士フイルム株式会社 Medical image processing apparatus and method, and program
JP5844187B2 (en) 2012-03-23 2016-01-13 富士フイルム株式会社 Image analysis apparatus and method, and program
NZ710964A (en) * 2013-02-14 2019-03-29 Fluidda Respi Method for determining a respiratory condition based on functional respiratory imaging
CN105101878B (en) * 2013-04-05 2018-04-10 东芝医疗系统株式会社 Medical image-processing apparatus and medical image processing method
JP6184244B2 (en) * 2013-05-30 2017-08-23 東芝メディカルシステムズ株式会社 Medical image processing device
US9760989B2 (en) * 2014-05-15 2017-09-12 Vida Diagnostics, Inc. Visualization and quantification of lung disease utilizing image registration
JP6195681B2 (en) * 2014-05-19 2017-09-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Visualization of tissue of interest in contrast image data
US10165964B2 (en) 2015-05-08 2019-01-01 Vida Diagnostics, Inc. Systems and methods for quantifying regional fissure features
KR20170096088A (en) 2016-02-15 2017-08-23 삼성전자주식회사 Image processing apparatus, image processing method thereof and recording medium
JP6686733B2 (en) * 2016-06-23 2020-04-22 コニカミノルタ株式会社 Dynamic analysis system
US10932744B2 (en) 2016-08-18 2021-03-02 William Beaumont Hospital System and method for determining respiratory induced blood mass change from a 4D computed tomography
JP6200618B1 (en) * 2017-05-18 2017-09-20 Psp株式会社 Medical image diagnosis support system and apparatus, and program
JP6436222B2 (en) * 2017-12-21 2018-12-12 コニカミノルタ株式会社 Dynamic image analyzer

Also Published As

Publication number Publication date
JP2005028121A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
JP4560643B2 (en) Ventilation distribution measurement method using respiratory CT images
US9117287B2 (en) Image analysis apparatus, method, and program
US11089974B2 (en) Monitoring the location of a probe during patient breathing
Reinhardt et al. Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation
Yin et al. Mass preserving nonrigid registration of CT lung images using cubic B‐spline
Ding et al. Comparison of image registration based measures of regional lung ventilation from dynamic spiral CT with Xe‐CT
US10952634B2 (en) Electrical impedance tomography system
JP2016193191A (en) Medical image processor and medical image processing program
US8195269B2 (en) System and method for automatic detection and measurement of malacia in the airways
JP4356831B2 (en) Non-rigid registration method between multiple images
US11282243B2 (en) Method for processing computed tomography imaging data of a suspect's respiratory system
US20220254016A1 (en) Regional Pulmonary V/Q via image registration and Multi-Energy CT
KR20220124166A (en) Systems and Methods for Determination of Radiation Parameters
Tustison et al. Pulmonary kinematics from image data: a review
Reinhardt et al. Registration-derived estimates of local lung expansion as surrogates for regional ventilation
Cao et al. Unifying vascular information in intensity-based nonrigid lung CT registration
Tanaka et al. Computerized methods for determining respiratory phase on dynamic chest radiographs obtained by a dynamic flat-panel detector (FPD) system
KR102453028B1 (en) Method for providing three-dimensional animated video using respiratory motion tracking-based lung CT images and recording medium thereof
Ding et al. Registration-based regional lung mechanical analysis: retrospectively reconstructed dynamic imaging versus static breath-hold image acquisition
KR101529658B1 (en) Integrated method for analyzing function and anatomy of organ
Amelon Development and characterization of a finite element model of lung motion
Ding Regional lung function and mechanics using image registration
HASHIMOTO et al. Quantification of the Respiratory Activity of the Lung using CT Images
Ding Registration-based regional lung mechanical analysis
Tahir Comparison of hyperpolarised gas MRI and CT-based surrogates of ventilation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100607

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100610

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4560643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350