JP4559879B2 - Non-oriented electrical steel sheet and manufacturing method thereof - Google Patents

Non-oriented electrical steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP4559879B2
JP4559879B2 JP2005061881A JP2005061881A JP4559879B2 JP 4559879 B2 JP4559879 B2 JP 4559879B2 JP 2005061881 A JP2005061881 A JP 2005061881A JP 2005061881 A JP2005061881 A JP 2005061881A JP 4559879 B2 JP4559879 B2 JP 4559879B2
Authority
JP
Japan
Prior art keywords
steel sheet
oxide layer
oriented electrical
electrical steel
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005061881A
Other languages
Japanese (ja)
Other versions
JP2006241563A (en
Inventor
和年 竹田
憲人 阿部
明宏 村上
浩明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005061881A priority Critical patent/JP4559879B2/en
Publication of JP2006241563A publication Critical patent/JP2006241563A/en
Application granted granted Critical
Publication of JP4559879B2 publication Critical patent/JP4559879B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、電気機器の鉄芯材料として使用される無方向性電磁鋼板に関し、特に磁気特性の良好な無方向性電磁鋼板及びその製造方法に関するものである。   The present invention relates to a non-oriented electrical steel sheet used as an iron core material for electrical equipment, and more particularly to a non-oriented electrical steel sheet having good magnetic properties and a method for manufacturing the same.

電気機器の高効率化は、地球環境保全の観点から、また世界的な電力・エネルギー節約の観点から近年強く要望されている。このため、モーター鉄芯あるいは小型トランス等の鉄芯として使用されている無方向性電磁鋼板においても磁気特性の向上が求められている。   In recent years, high efficiency of electrical equipment has been strongly demanded from the viewpoint of global environmental conservation and from the viewpoint of global power and energy saving. For this reason, improvement in magnetic properties is also required for non-oriented electrical steel sheets used as iron cores for motor iron cores or small transformers.

このような無方向性電磁鋼板の特性向上策としては、SiやAlの含有量を増加して固有抵抗を増大させたり、板厚を薄くして渦電流損を低減したりする方法が一般的である。さらには、SiやAlは添加量が増大するに従って、鋼板が脆くなり圧延が困難になったりして製造が難しくなることからMnを添加することもよく行われている。   As a measure for improving the characteristics of such non-oriented electrical steel sheets, there is a general method of increasing the specific resistance by increasing the content of Si or Al, or reducing the eddy current loss by reducing the sheet thickness. It is. Furthermore, Mn is often added because Si and Al are made more difficult to manufacture because the steel sheet becomes brittle and rolling becomes difficult as the addition amount increases.

また、鉄損低減には鋼板表面層も重要な要素であることが知られている。鋼板の表面層を制御して磁気特性向上を図る方法としては、例えば特許文献1や特許文献2、さらに特許文献3がある。特許文献1は鋼板表層部の内部酸化層を1μm未満とすることで磁気特性が向上する技術を開示するものであり、特許文献2は内部酸化層を除去した後に冷間圧延を行い、その後の熱処理を所定の水蒸気分圧/水素分圧とすることで、内部酸化層を生じないようにする技術を開示している。
また特許文献3は、冷延後の焼鈍雰囲気を特定することにより、内部酸化層の抑制と窒化を防止する技術を開示するものであり、焼鈍雰囲気が内部酸化層による磁性劣化だけでなく、窒化による劣化にも影響を及ぼすことを示している。
It is also known that the steel sheet surface layer is an important factor for reducing iron loss. Examples of methods for improving the magnetic properties by controlling the surface layer of the steel sheet include Patent Document 1, Patent Document 2, and Patent Document 3. Patent Document 1 discloses a technique in which the magnetic properties are improved by setting the internal oxide layer of the steel sheet surface layer portion to less than 1 μm, and Patent Document 2 performs cold rolling after removing the internal oxide layer, A technique for preventing the generation of an internal oxide layer by disposing the heat treatment at a predetermined water vapor partial pressure / hydrogen partial pressure is disclosed.
Patent Document 3 discloses a technique for suppressing the internal oxide layer and preventing nitridation by specifying the annealing atmosphere after cold rolling. The annealing atmosphere is not only magnetic deterioration due to the internal oxide layer, but also nitriding. It also has an effect on deterioration caused by

一方、表面層に生じる酸化層を積極的に利用する技術についても検討されており、例えば特許文献4や特許文献5がある。特許文献4には、冷間圧延後の連続焼鈍を還元性雰囲気でかつ露点が−15℃から+5℃の炉内領域を通過する際の鋼板の板温を900℃以下に制御することで押し疵を抑制する技術が開示されている。
特許文献5には、冷間圧延後の焼鈍雰囲気をH2 :7〜36%、露点−20℃〜+10℃とすることにより、鋼板表面に3.0〜6.5μmの酸化膜を形成する技術が開示されている。上記公報では、炉内雰囲気を制御することにより磁気特性を劣化させる内部酸化層は形成させずに押し疵を防止したり、内部酸化層を形成せずに表面酸化層を生成する技術が開示されている。
On the other hand, techniques that actively utilize an oxide layer generated on the surface layer are also being studied, for example, Patent Document 4 and Patent Document 5. In Patent Document 4, continuous annealing after cold rolling is performed by controlling the plate temperature of a steel sheet to 900 ° C. or lower when passing through a furnace atmosphere with a reducing atmosphere and a dew point of −15 ° C. to + 5 ° C. Techniques for suppressing wrinkles are disclosed.
In Patent Document 5, an annealing film after cold rolling is set to H 2 : 7 to 36% and dew point of −20 ° C. to + 10 ° C., thereby forming an oxide film of 3.0 to 6.5 μm on the steel plate surface. Technology is disclosed. The above-mentioned publication discloses a technique for preventing surface squeezing without forming an internal oxide layer that deteriorates magnetic properties by controlling the furnace atmosphere, or generating a surface oxide layer without forming an internal oxide layer. ing.

さらに特許文献6では、仕上げ焼鈍雰囲気の水素水蒸気分圧を0.02以下とすることにより、GDS分析法で定義される鋼板表面のAl酸化層の厚みが1.0μm以下であることを特徴とする無方向性電磁鋼板が開示されている。しかしながら、GDSによる分析法では存在する元素が判明するだけであり、酸化した状態であるかどうか、すなわち、Alの化学的状況に関する情報では無いため、酸化層の有無を定義するためには、元素の化学状態に関する情報が得られる分析法が必要である。
そこで、本発明者等は化学的情報の得られる分析方法として光電子分光分析法(ESCA)に着目し、検討した。
特公昭48−19048号公報 特公昭48−19766号公報 特公昭58−30368号公報 特開平3−36214号公報 特許第2701314号公報 特開2001−140018号公報
Further, Patent Document 6 is characterized in that the thickness of the Al oxide layer on the steel sheet surface defined by the GDS analysis method is 1.0 μm or less by setting the hydrogen water vapor partial pressure in the finish annealing atmosphere to 0.02 or less. A non-oriented electrical steel sheet is disclosed. However, the analysis method by GDS only reveals the elements present and is not information on whether or not it is in an oxidized state, that is, the chemical state of Al. There is a need for an analytical method that can provide information on the chemical state of the product.
Therefore, the present inventors focused on and examined photoelectron spectroscopy (ESCA) as an analytical method for obtaining chemical information.
Japanese Patent Publication No. 48-19048 Japanese Patent Publication No. 48-19766 Japanese Patent Publication No.58-30368 JP-A-3-36214 Japanese Patent No. 2701314 Japanese Patent Laid-Open No. 2001-140018

このような表面の酸化層を制御する技術は、SiやAlといったFeよりも酸化しやすい元素を比較的多めに添加するような場合に重要であるが、特に近年生産性の観点から焼鈍時間を短縮するために焼鈍温度を高める傾向にあり、非常に重要な要素となっている。 すなわち、従来は無方向性電磁鋼板の最終仕上げ焼鈍において、比較的低温で長時間加熱していたが、生産性向上のために近年では高温短時間の連続焼鈍が要求されている。   Such a technique for controlling the oxide layer on the surface is important in the case where a relatively large amount of an element that oxidizes more than Fe, such as Si and Al, is added. In order to shorten it, it tends to raise the annealing temperature, which is a very important factor. That is, conventionally, in the final finish annealing of a non-oriented electrical steel sheet, it was heated for a long time at a relatively low temperature. However, in recent years, continuous annealing at a high temperature for a short time has been required to improve productivity.

上記特許文献3に開示される技術では、このような内部酸化層生成防止と窒化物生成を抑制するために焼鈍雰囲気をH2 ≧45%(N2 ≦55%)とする技術が開示されている。しかしながら鉄損改善のためにMn含有量を増加させた場合には、このような条件でも内部酸化層を生成しやすく、磁気特性が劣化する場合があった。また、H2 濃度が高いとコストが高く、特にフローティング炉の場合には、H2 ガスは比重が低く軽いガスであるため鋼板を浮上させる力が弱くなり、したがってファンの回転数を上げなければならず、さらに製造コストの上昇を招くといった問題がある。 The technique disclosed in Patent Document 3 discloses a technique for setting the annealing atmosphere to H 2 ≧ 45% (N 2 ≦ 55%) in order to prevent the formation of an internal oxide layer and suppress the formation of nitride. Yes. However, when the Mn content is increased in order to improve the iron loss, an internal oxide layer is easily generated even under such conditions, and the magnetic characteristics may be deteriorated. In addition, if the H 2 concentration is high, the cost is high. In particular, in the case of a floating furnace, the H 2 gas is a light gas with a low specific gravity, so the force to lift the steel sheet is weakened. In addition, there is a problem that the manufacturing cost is further increased.

本発明者等は、SiやAl、Mnといった元素を比較的多く含む無方向性電磁鋼板では、仕上げ焼鈍の昇温領域の水蒸気水素分圧と露点を制御することにより、極表層に形成される表面酸化層を特定組成にすることが可能で、内部酸化層の生成と窒化を低コストで防止した無方向性電磁鋼板を製造でき、かつフローティング炉の場合でも通板性に問題の無い無方向性電磁鋼板とその製造方法を見出した。   In the non-oriented electrical steel sheet containing a relatively large amount of elements such as Si, Al, and Mn, the present inventors are formed on the extreme surface layer by controlling the steam hydrogen partial pressure and the dew point in the temperature raising region of finish annealing. Non-oriented electrical steel sheet with a specific composition of the surface oxide layer that can prevent the formation and nitridation of the internal oxide layer at low cost, and has no problem in plateability even in the case of a floating furnace. The electrical conductive steel sheet and its manufacturing method were discovered.

本発明は以下の構成を要旨とする。
(1)質量%で、Si:1%以上、Al:0.2%以上、Mn:0.2%以上含有し、残部はFeおよび不可避的不純物元素からなる鋼板で、表面にESCA(光電子分光分析法)で測定して2〜20nmの厚さのSiO2 とMnOを主成分とする酸化層を保持していることを特徴とする無方向性電磁鋼板。
(2)質量%で、Si:1%以上、Al:0.2%以上、Mn:0.2%以上含有し、残部はFeおよび不可避的不純物元素からなる鋼板を最終冷延後、焼鈍する際に、水素濃度を20%以下とし、650℃までの炉内雰囲気の水蒸気水素分圧比を0.35以上0.5以下とし、650℃以上の所定の焼鈍均熱温度では水蒸気水素分圧比を0.1から0.3で焼鈍することを特徴とする無方向性電磁鋼板の製造方法。
The gist of the present invention is as follows.
(1) By mass%, Si: 1% or more, Al: 0.2% or more, Mn: 0.2% or more, the balance is a steel plate made of Fe and inevitable impurity elements, and ESCA (photoelectron spectroscopy) on the surface A non-oriented electrical steel sheet characterized by holding an oxide layer mainly composed of SiO 2 and MnO having a thickness of 2 to 20 nm as measured by an analytical method.
(2) In mass%, Si: 1% or more, Al: 0.2% or more, Mn: 0.2% or more, and the balance is annealed after the final cold rolling of a steel plate made of Fe and inevitable impurity elements In this case, the hydrogen concentration is set to 20% or less, the steam hydrogen partial pressure ratio in the furnace atmosphere up to 650 ° C. is set to 0.35 or more and 0.5 or less, and the steam hydrogen hydrogen partial pressure ratio is set at a predetermined annealing soaking temperature of 650 ° C. or more. A method for producing a non-oriented electrical steel sheet, characterized by annealing at 0.1 to 0.3.

本発明によれば、特定添加元素を含む無方向性電磁鋼板の最終焼鈍において、特定の温度域を特定の分圧比に制御することにより、鋼板の最表面に極めて緻密な酸化層を形成することで、良好な特性を持つ無方向性電磁鋼板を得ることができる。   According to the present invention, in the final annealing of a non-oriented electrical steel sheet containing a specific additive element, an extremely dense oxide layer is formed on the outermost surface of the steel sheet by controlling a specific temperature range to a specific partial pressure ratio. Thus, a non-oriented electrical steel sheet having good characteristics can be obtained.

以下、本発明を実施する具体的形態について説明する。
まず、本発明で使用できる無方向性電磁鋼板は、質量%でSi:1%以上、Al:0.2%以上、Mn:0.2%以上含有するものに限定される。
本発明では、加熱段階での雰囲気を制御することで鋼板の極表面に特定組成の表面酸化層を形成し、この酸化層の働きによって内部酸化層の形成と吸窒を防止する。そのため、Si、Al、Mnといった表面酸化層を形成する特定合金元素が鋼成分に特定量以上含有されていることが必要である。
Hereinafter, specific modes for carrying out the present invention will be described.
First, the non-oriented electrical steel sheet that can be used in the present invention is limited to those containing, by mass, Si: 1% or more, Al: 0.2% or more, and Mn: 0.2% or more.
In the present invention, a surface oxide layer having a specific composition is formed on the extreme surface of the steel sheet by controlling the atmosphere in the heating stage, and the formation of an internal oxide layer and nitrogen absorption are prevented by the action of this oxide layer. Therefore, it is necessary that a specific alloy element such as Si, Al, or Mn that forms a surface oxide layer is contained in the steel component in a specific amount or more.

Si量が1%未満では十分な表面酸化層の量が形成できず、AlとMn量がそれぞれ0.2%未満では表面酸化層が本発明の組成を形成できず、本発明の効果が得られないためである。特に望ましくはSi:2.0%以上、Al:0.3%以上、Mn:0.4%以上である。   If the amount of Si is less than 1%, a sufficient amount of the surface oxide layer cannot be formed. If the amounts of Al and Mn are less than 0.2%, the surface oxide layer cannot form the composition of the present invention, and the effects of the present invention are obtained. It is because it is not possible. Particularly desirable are Si: 2.0% or more, Al: 0.3% or more, and Mn: 0.4% or more.

各成分の上限は、Siは脆性のために生産性が低下するため、Si:5.0%以下、望ましくは3.5%以下であり、Alは磁束密度が低下するため、Al:2.0%以下、望ましくは1.5%以下、さらに望ましくは0.8%以下であり、Mnも磁束密度が低下するため、Mn:2.0%以下、望ましくは1.0%以下である。   The upper limit of each component is Si: 5.0% or less, preferably 3.5% or less, because Si is brittle, resulting in a decrease in productivity. It is 0% or less, desirably 1.5% or less, more desirably 0.8% or less, and Mn also decreases the magnetic flux density, so Mn: 2.0% or less, desirably 1.0% or less.

水素濃度に関しては、高いほどフローティング炉の場合には鋼板の浮上力が低下し、さらにはコストも上昇するため、20%以下で、望ましくは10〜15%以下である。   Regarding the hydrogen concentration, in the case of a floating furnace, the levitation force of the steel sheet decreases and the cost also increases, so that the hydrogen concentration is 20% or less, preferably 10 to 15% or less.

次に、本発明では650℃までの雰囲気中の水蒸気水素分圧比を0.35以上0.5の範囲に限定する。0.35未満では十分な量の外部酸化層が生成できず、本発明の効果が得られないためであり、0.5超では内部酸化層が形成されて磁性が劣化するためである。 Next, in the present invention, the steam hydrogen partial pressure ratio in the atmosphere up to 650 ° C. is limited to a range of 0.35 to 0.5. This is because if the amount is less than 0.35 , a sufficient amount of the outer oxide layer cannot be formed, and the effect of the present invention cannot be obtained.

次に、650℃以上では水蒸気水素分圧比を0.1から0.3に限定する。その理由は、650℃以上では分圧比が0.3超でも内部酸化層が形成され、磁性が劣化する恐れがあるためであり0.1未満では本発明の外部酸化層が還元されて本発明の効果が得られないためである。さらに望ましくは0.2から0.3の範囲であり、0.2未満では表層に生成する酸化層の窒化抑制効果が幾分劣るためである。   Next, at 650 ° C. or higher, the steam hydrogen partial pressure ratio is limited to 0.1 to 0.3. The reason is that at 650 ° C. or higher, an internal oxide layer may be formed even if the partial pressure ratio exceeds 0.3, and the magnetism may be deteriorated. Below 0.1, the external oxide layer of the present invention is reduced and the present invention is reduced. This is because the above effect cannot be obtained. More desirably, it is in the range of 0.2 to 0.3. If it is less than 0.2, the effect of suppressing nitridation of the oxide layer formed on the surface layer is somewhat inferior.

650℃を境界条件として異なる焼鈍雰囲気を設定する理由は、連続して無方向性電磁鋼板を仕上げ焼鈍するような加熱の場合には、通常では数秒から数十秒といった短い時間で所定の温度に到達する。このような場合には昇温初期には温度が低いことで酸化反応が進行しにくいため、鋼板最表面のみが酸化しやすいのに対し、温度が高くなると相対的に鋼板表面のより内部側まで酸化する可能性がある。本発明者等が検討した結果、経験的に650℃前後でこのような2つのメカニズムの影響度が入替わることを見出した。   The reason for setting different annealing atmospheres with 650 ° C. as a boundary condition is that, in the case of heating for continuously annealing a non-oriented electrical steel sheet, the temperature is usually set to a predetermined temperature in a short time such as several seconds to several tens of seconds. To reach. In such a case, since the oxidation reaction is difficult to proceed due to the low temperature at the beginning of the temperature rise, only the outermost surface of the steel sheet is likely to be oxidized, whereas when the temperature becomes higher, the inner surface is relatively closer to the inner side. There is a possibility of oxidation. As a result of studies by the present inventors, it has been empirically found that the influence of these two mechanisms is switched around 650 ° C.

内部酸化層の生成を防止したり、吸窒を防止したりするためには、鋼板表面に外部酸化型の酸化層で緻密な酸化層を形成する必要がある。外部酸化型とは鋼板の表面に形成される酸化層で、一般的には低露点のいわゆるドライな雰囲気下で生成される酸化層であり、水素窒素混合雰囲気下で実施される連続焼鈍においては、数nmから数十nmといった極めて薄い層である。このような外部酸化型の酸化層は表面層の最外層に形成されるため、赤外分光装置や光電子分光分析法(ESCA)により検出可能である。   In order to prevent the formation of an internal oxide layer or to prevent nitrogen absorption, it is necessary to form a dense oxide layer with an external oxidation type oxide layer on the steel plate surface. The external oxidation type is an oxide layer formed on the surface of the steel sheet, and is generally an oxide layer generated in a so-called dry atmosphere with a low dew point. In continuous annealing performed in a hydrogen-nitrogen mixed atmosphere, , A very thin layer of several nm to several tens of nm. Since such an external oxidation type oxide layer is formed on the outermost layer of the surface layer, it can be detected by an infrared spectrometer or photoelectron spectroscopy (ESCA).

図1は本発明の実施例の無方向性電磁鋼板のESCAデプスチャートであり、図2は比較例のESCAデプスチャートである。ESCAデプスチャートは、鋼板表面をESCA測定した後、スパッタガンで鋼板の極表層をスパッタしてからESCA測定することを繰り返し、最表層からの深さ方向の情報を記録したものである。   FIG. 1 is an ESCA depth chart of a non-oriented electrical steel sheet according to an embodiment of the present invention, and FIG. 2 is an ESCA depth chart of a comparative example. The ESCA depth chart records information in the depth direction from the outermost layer by repeatedly measuring the surface of the steel plate by ESCA and then repeating the ESCA measurement after sputtering the extreme surface layer of the steel plate.

図1の詳細は、Si:3.0%、Al:0.4%、Mn:0.5%、その他は鉄及び不可避的不純物を含む熱延板を供試材として0.3mm厚さに冷延し、1000℃で30秒間加熱し650℃までの水蒸気水素分圧比を0.35、650℃以上を0.2で実施したサンプルを光電子分光分析法(ESCA)で測定した例である。
チャートの横軸は結合エネルギー(eV)で、元素の化学状態によって変化するため元素の状態(例えば酸化状態や金属状態)が検出でき、縦軸はその相対強度を示す。
チャート線が複数見られるのは、上方よりスパッタ時間を示しサンプル表面から内部に向かって分析したことを示す。一番上側が最表層を示し、2番目がSi換算で18Å、3番目が53Å、4番目が123Å、5番目が193Å、6番目が368Å内部であり、酸化層の厚みは約19nmとなる。
The details of FIG. 1 are as follows: Si: 3.0%, Al: 0.4%, Mn: 0.5%, others using hot-rolled sheet containing iron and inevitable impurities as a test material. This is an example in which a sample obtained by cold rolling, heating at 1000 ° C. for 30 seconds, and performing a steam hydrogen partial pressure ratio up to 650 ° C. at 0.35 and 650 ° C. or more at 0.2 is measured by photoelectron spectroscopy (ESCA).
The horizontal axis of the chart is the binding energy (eV), which changes depending on the chemical state of the element, so that the state of the element (for example, the oxidation state or the metal state) can be detected, and the vertical axis indicates the relative intensity.
A plurality of chart lines can be seen, indicating the sputtering time from above and analyzing from the sample surface toward the inside. The uppermost layer is the outermost layer, the second is 18Å in terms of Si, the third is 53Å, the fourth is 123Å, the fifth is 193Å, the sixth is 36836, and the thickness of the oxide layer is about 19 nm.

図2は同様のサンプルを、650℃までを水蒸気水素分圧比0.40、650℃以上を同分圧比0.08で行った比較例であり、図1のチャートと同様のスケールで表示したものである。   FIG. 2 is a comparative example in which the same sample was subjected to a steam hydrogen partial pressure ratio of 0.40 up to 650 ° C. and 650 ° C. or higher at the same partial pressure ratio of 0.08, and displayed on the same scale as the chart of FIG. It is.

図1と図2を比較すると、Mnのピークが図2よりも図1の方が大きく、MnとSiの比率が異なっていることがわかる。また、Oのピークから図1では複数の酸化状態が検出されており、複数の酸化物が存在すると推定されるのに対し、図2では主ピークが1本検出されるだけで、Siのピークと合わせて考慮すると、図2ではSiO2 が主体の酸化物を生成しているものと推定される。なお、酸化層の厚みは約12nmである。 Comparing FIG. 1 and FIG. 2, it can be seen that the peak of Mn is larger in FIG. 1 than in FIG. 2, and the ratio of Mn and Si is different. Further, in FIG. 1, a plurality of oxidation states are detected from the O peak, and it is estimated that a plurality of oxides are present, whereas in FIG. 2, only one main peak is detected, and the Si peak is detected. In addition, in FIG. 2, it is presumed that SiO 2 is the main oxide in FIG. The thickness of the oxide layer is about 12 nm.

図1の本発明によるものはSi、Mnの元素が検出され、SiO2 とMnO2 の複合酸化物が生成していると推定されるのに対し、比較例ではSiとAl、Mnが検出されるが、主にSiO2 を主体とする酸化物層であると推定され、生成する酸化層が全く異なることがわかる。 In the case of the present invention shown in FIG. 1, the elements Si and Mn are detected, and it is presumed that a composite oxide of SiO 2 and MnO 2 is formed. In the comparative example, Si, Al, and Mn are detected. However, it is estimated that the oxide layer is mainly composed of SiO 2 , and it can be seen that the generated oxide layers are completely different.

本発明者等は、このように薄い酸化層であっても、生成する酸化物の構成元素や割合によって様々な形態が有り、酸化層によってはその後の内部酸化層形成を防止したり、吸窒を抑制することが可能であることを見出したものである。   The present inventors have various forms depending on the constituent elements and the ratio of the oxide to be generated even if it is such a thin oxide layer. It has been found that it is possible to suppress this.

本発明で言うSiO2 とMnO2 を主成分とする酸化層とは、SiO2 とMnO2 とその他の酸化物から形成されるが、ESCA測定を行った際に、主にSiO2 とMnO2 の両方が検出されるもので、特に限定するものではないが、ピーク強度比より換算されるSiO2 とMnO2 の存在比が3:7から8:2の範囲が好適である。3:7未満では吸窒抑制効果が少なく、8:2超では酸化層が厚くなる傾向がある。 The oxide layer mainly composed of SiO 2 and MnO 2 in the present invention, is formed from a other oxides SiO 2 and MnO 2, when subjected to ESCA measurement, mainly SiO 2 and MnO 2 in which both are detected, but not limited to, the presence ratio of SiO 2 and MnO 2 which is converted from the peak intensity ratio of 3: 7 to 8: 2 by weight is preferred. If it is less than 3: 7, the effect of suppressing nitrogen absorption is small, and if it exceeds 8: 2, the oxide layer tends to be thick.

また、酸化層自体の厚さを2nmから20nmに限定する理由は、2nm未満では、やはり吸窒抑制効果が少なく、20nm超では内部酸化層による磁性劣化が発生する恐れがあるためであり、さらに好ましくは8nmから20nmの範囲である。   The reason why the thickness of the oxide layer itself is limited to 2 nm to 20 nm is that if it is less than 2 nm, the effect of suppressing nitrogen absorption is still small, and if it exceeds 20 nm, magnetic deterioration due to the internal oxide layer may occur. Preferably it is the range of 8 nm to 20 nm.

本発明の発現メカニズムについては詳細には明らかにはなっていない。しかし、厚み自体はわずか十数nmの酸化層によって顕著な効果が発揮されることから、酸化層の構造が大きく影響を及ぼしていると推定される。
特に鋼板の酸化過程において生成し易いSiO2 、MnO2 、Al2 3 については、3元状態図が知られているが、それによるとMnO 2 が少なくSiO2 −Al2 3 が多い領域ではムライトが生成し易く、SiO2 が少なくMnO2 −Al2 3 が多い領域ではコランダムが生成し易い。それに対し、Al2 3 が少なくSiO2 −MnO2 が多い領域ではトリディマイト、スペサタイトを初め様々な結晶形態が存在することが知られている。
The expression mechanism of the present invention has not been clarified in detail. However, since the remarkable effect is exhibited by the oxide layer having a thickness of only a few dozen nm, it is presumed that the structure of the oxide layer has a great influence.
For particular produced in oxidation of the steel sheet easily SiO 2, MnO 2, Al 2 O 3, but ternary phase diagram is known, many SiO 2 -Al 2 O 3 less MnO 2 according to which region In, mullite is likely to be generated, and corundum is likely to be generated in a region with a small amount of SiO 2 and a large amount of MnO 2 —Al 2 O 3 . On the other hand, it is known that various crystal forms including tridymite and spesatite exist in a region where Al 2 O 3 is small and SiO 2 —MnO 2 is large.

このような領域では、様々な結晶形態の酸化物がそれぞれの隙間を埋めるため、鋼板表層を緻密に覆う外部酸化層を形成して酸素や窒素の透過性が低下し、内部酸化層の増大や吸窒を防止したりするのではないかと推定するものであり、未だ不明な点が多いが、本発明の範囲ではクリストバライト、トリディマイト、スペサタイト、ムライトと言った酸化物、あるいはそれらの混合形態が生成していると推定される。   In such regions, oxides of various crystal forms fill the gaps between them, so that an outer oxide layer that densely covers the steel sheet surface layer is formed to reduce the permeability of oxygen and nitrogen, increase the inner oxide layer, It is presumed that nitrogen absorption will be prevented, and there are still many unclear points, but within the scope of the present invention, oxides such as cristobalite, tridymite, spessite, mullite, or a mixed form thereof are formed. It is estimated that

Si:3.0%、Al:0.1〜1.0%、Mn:0.05〜0.8%、C:0.0011%、その他はFe及び不可避的不純物からなる鋼について、2.0mmの熱延板を作製した。本熱延板を1000℃で30秒間焼鈍した後、0.35mmまで冷間圧延した。さらに仕上げ焼鈍として、1050℃で30秒間加熱し、表1の条件でそれぞれ最終仕上げ焼鈍を行い、磁気特性はSST法で、LC平均値で評価した。表中の酸化層厚みは光電子分光分析法により酸素とシリコンのピークより酸化層厚みを測定した。
表1に示すように、本発明の効果が明らかとなった。
1. About steel consisting of Si: 3.0%, Al: 0.1-1.0%, Mn: 0.05-0.8%, C: 0.0011%, and others including Fe and inevitable impurities. A 0 mm hot-rolled sheet was produced. The hot-rolled sheet was annealed at 1000 ° C. for 30 seconds and then cold-rolled to 0.35 mm. Furthermore, as final annealing, it heated at 1050 degreeC for 30 second, the final finishing annealing was performed on the conditions of Table 1, respectively, and the magnetic characteristic was evaluated by LC average value by SST method. The oxide layer thickness in the table was measured from the peak of oxygen and silicon by photoelectron spectroscopy.
As shown in Table 1, the effect of the present invention was clarified.

Figure 0004559879
Figure 0004559879

本発明の実施例における無方向性電磁鋼板のESCAデプスチャートである。It is an ESCA depth chart of the non-oriented electrical steel sheet in the Example of this invention. 比較例における無方向性電磁鋼板のESCAデプスチャートである。It is an ESCA depth chart of the non-oriented electrical steel sheet in a comparative example.

Claims (2)

質量%で、Si:1%以上、Al:0.2%以上、Mn:0.2%以上含有し、残部はFeおよび不可避的不純物元素からなる鋼板で、表面にESCA(光電子分光分析法)で測定して2〜20nmの厚さのSiO2 とMnOを主成分とする酸化層を保持していることを特徴とする無方向性電磁鋼板。 In mass%, Si: 1% or more, Al: 0.2% or more, Mn: 0.2% or more, the balance is a steel plate made of Fe and unavoidable impurity elements, ESCA (photoelectron spectroscopy) on the surface A non-oriented electrical steel sheet, characterized by holding an oxide layer mainly composed of SiO2 and MnO having a thickness of 2 to 20 nm as measured by. 質量%で、Si:1%以上、Al:0.2%以上、Mn:0.2%以上含有し、残部はFeおよび不可避的不純物元素からなる鋼板を最終冷延後、焼鈍する際に、水素濃度を20%以下とし、650℃までの炉内雰囲気の水蒸気水素分圧比を0.35以上0.5以下とし、650℃以上の所定の焼鈍均熱温度では水蒸気水素分圧比を0.1から0.3で焼鈍することを特徴とする無方向性電磁鋼板の製造方法。 In mass%, Si: 1% or more, Al: 0.2% or more, Mn: 0.2% or more, the balance is the final cold-rolled steel sheet made of Fe and inevitable impurity elements, when annealing, The hydrogen concentration is 20% or less, the steam hydrogen partial pressure ratio in the furnace atmosphere up to 650 ° C. is 0.35 or more and 0.5 or less, and the steam hydrogen hydrogen partial pressure ratio is 0.1 at a predetermined annealing soaking temperature of 650 ° C. or more. The manufacturing method of the non-oriented electrical steel sheet characterized by annealing at 0.3.
JP2005061881A 2005-03-07 2005-03-07 Non-oriented electrical steel sheet and manufacturing method thereof Active JP4559879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005061881A JP4559879B2 (en) 2005-03-07 2005-03-07 Non-oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005061881A JP4559879B2 (en) 2005-03-07 2005-03-07 Non-oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006241563A JP2006241563A (en) 2006-09-14
JP4559879B2 true JP4559879B2 (en) 2010-10-13

Family

ID=37048255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005061881A Active JP4559879B2 (en) 2005-03-07 2005-03-07 Non-oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4559879B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5423440B2 (en) * 2010-02-02 2014-02-19 新日鐵住金株式会社 Non-oriented electrical steel sheet and method for producing non-oriented electrical steel sheet
JP5839778B2 (en) * 2010-04-06 2016-01-06 新日鐵住金株式会社 Non-oriented electrical steel sheet with excellent high-frequency iron loss and manufacturing method thereof
KR101649324B1 (en) 2010-04-26 2016-08-19 주식회사 포스코 Non-oriented electrical steel sheets having excellent magnetic property and Method for manufacturing the same
WO2023079922A1 (en) * 2021-11-02 2023-05-11 Jfeスチール株式会社 Finish annealing facility for electromagnetic steel sheet, finish annealing method and production method for electromagnetic steel sheet, and non-oriented electromagnetic steel sheet
JP7392901B1 (en) 2022-02-02 2023-12-06 Jfeスチール株式会社 Non-oriented electrical steel sheet and its manufacturing method
WO2023149249A1 (en) * 2022-02-02 2023-08-10 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283343A (en) * 1988-05-10 1989-11-14 Nkk Corp Nonoriented electrical sheet having excellent magnetic characteristics and its manufacture
WO1997022723A1 (en) * 1995-12-19 1997-06-26 Pohang Iron & Steel Co., Ltd. Process for producing nondirectional electrical steel sheet excellent in close adhesion of insulating film
JPH10212556A (en) * 1997-01-31 1998-08-11 Kawasaki Steel Corp Nonoriented silicon steel sheet excellent in magnetic property after stress relieving annealing and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283343A (en) * 1988-05-10 1989-11-14 Nkk Corp Nonoriented electrical sheet having excellent magnetic characteristics and its manufacture
WO1997022723A1 (en) * 1995-12-19 1997-06-26 Pohang Iron & Steel Co., Ltd. Process for producing nondirectional electrical steel sheet excellent in close adhesion of insulating film
JPH10212556A (en) * 1997-01-31 1998-08-11 Kawasaki Steel Corp Nonoriented silicon steel sheet excellent in magnetic property after stress relieving annealing and its production

Also Published As

Publication number Publication date
JP2006241563A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
KR101558292B1 (en) Method for producing grain-oriented electrical steel sheet
JP5975076B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
EP3395961B1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP6461798B2 (en) Manufacturing method of high magnetic flux density general-purpose directional silicon steel
JP6344490B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP3387914B1 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with excellent film properties and high magnetic field iron loss
JP4559879B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
JP6995010B2 (en) A method for producing directional silicon steel with improved forsterite coating properties.
KR101762341B1 (en) Annealing separating agent for oriented electrical steel, oriented electrical steel, and method for manufacturing oriented electrical steel
KR101973305B1 (en) Grain-oriented electrical steel sheet and method for producing same
JP6194866B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6903996B2 (en) Non-oriented electrical steel sheet
CN111868273A (en) Method for producing grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
JP2023509382A (en) Steel plate for enamel and manufacturing method thereof
JP6962471B2 (en) Original plate for grain-oriented electrical steel sheet, method for manufacturing grain-oriented silicon steel sheet used as material for grain-oriented electrical steel sheet, method for manufacturing grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet
JP5520086B2 (en) High Si content steel sheet with excellent surface properties and method for producing the same
US20220074011A1 (en) Annealing separator composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet
JP5287641B2 (en) Method for producing grain-oriented electrical steel sheet
JP4608562B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
JP4276547B2 (en) Super high magnetic flux density unidirectional electrical steel sheet with excellent high magnetic field iron loss and coating properties
JP7352108B2 (en) grain-oriented electrical steel sheet
CN112437817B (en) Grain-oriented electromagnetic steel sheet and method for producing same
JPWO2020149331A1 (en) Directional electrical steel sheet and its manufacturing method
RU2778537C1 (en) Method for manufacturing a sheet of anisotropic electrical steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100723

R151 Written notification of patent or utility model registration

Ref document number: 4559879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350