JP4558883B2 - Method for determination of copper in acidic electroless tin plating solution - Google Patents

Method for determination of copper in acidic electroless tin plating solution Download PDF

Info

Publication number
JP4558883B2
JP4558883B2 JP2000083143A JP2000083143A JP4558883B2 JP 4558883 B2 JP4558883 B2 JP 4558883B2 JP 2000083143 A JP2000083143 A JP 2000083143A JP 2000083143 A JP2000083143 A JP 2000083143A JP 4558883 B2 JP4558883 B2 JP 4558883B2
Authority
JP
Japan
Prior art keywords
copper
plating solution
electroless tin
tin plating
acidic electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000083143A
Other languages
Japanese (ja)
Other versions
JP2001272389A (en
Inventor
義和 小林
Original Assignee
義和 小林
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 義和 小林 filed Critical 義和 小林
Priority to JP2000083143A priority Critical patent/JP4558883B2/en
Publication of JP2001272389A publication Critical patent/JP2001272389A/en
Application granted granted Critical
Publication of JP4558883B2 publication Critical patent/JP4558883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は酸性無電解錫めっき液中の銅の定量方法に係り、特にめっき装置と共にシステム化され自動化の可能な酸性無電解錫めっき液中の銅の定量方法に関する。
【0002】
【従来の技術】
酸性無電解錫めっき液は一般に2価の錫とチオ尿素、有機酸、その他の添加剤を含む組成からなり、このめっき液中に金属銅を浸漬すると、銅と錫の置換反応により銅表面に錫が析出する。
Sn2+ + 2Cu → 2Cu2+ + Sn
【0003】
めっき工程ではめっき液中に銅イオンが増加するので銅濃度の管理が非常に重要である。一般に、銅を定量する方法としては、(1)ヨウ化カリウムと銅を反応させ、遊離ヨウ素を還元剤(チオ硫酸ナトリウム)で滴定する方法、(2)銅を錯化し、EDTAで滴定する方法、(3)銅アンモニウム錯塩を作り、特定波長の吸光度を測定する方法および(4)直接特定波長の吸光度を測定する方法等がある。
【0004】
しかし、これらの銅についての一般的な分析方法はいずれも酸性無電解錫めっき液の特性からそのめっき液中の銅の定量には適していない。すなわち、酸性無電解錫めっき液には多量の錫(2価、4価)が存在するのでヨウ素滴定法やEDTAによる滴定法では直接銅を測定することはできない。また酸性無電解錫めっき液のスペクトルを示す図1にみられるように、めっき液中に銅が溶解していても特定波長での吸収がおこらず、また酸性無電解錫めっき液にアンモニアを加えると白濁を生じるためこれらの方法による光学的な測定も不可能である。
【0005】
したがって、従来酸性無電解錫めっき液中の銅の定量は一般には原子吸光分析法によって定量されているが、高感度のため試料の希釈操作が必要とし、かつフレームを用いるため自動化(無人化)には危険を伴い、また装置自体が非常に高価なためめっき工場等に設置して用いるのには適していない。
【0006】
本発明者は酸性無電解錫めっき液の銅の定量に銅をアンモニウム錯塩とした状態で吸光度測定法を用いることを前提とし、その際アンモニアの添加によって液中に生じる白濁を回避する手段について研究した結果、正確で迅速な酸性無電解錫めっき液中の銅の定量方法およびそのための定量装置の開発に成功し本発明を完成した。
【0007】
すなわち、前記本発明の課題は、酸性無電解錫めっき液中の銅の定量方法において、めっき液試料をメタノール、錫マスキング剤および銅錯化剤としてのアンモニアと混合して測定用試料を調製し、前記測定量試料中の銅濃度を所定波長での吸光度法によって定量することを特徴とする酸性無電解錫めっき液中の銅の定量方法(請求項1)によって解決される。
【0008】
前記請求項1記載の酸性無電解錫めっき液の銅の定量方法は、酸性無電解錫めっき液中の銅濃度をめっき液試料の吸光度に基づいて光学的に測定する銅の定量装置において、めっき液試料、メタノール、錫隠蔽剤およびアンモニアを攪拌混合して測定用試料を調製する反応容器と、前記調製された測定用試料の特定の波長における吸光度を測定して対応する銅濃度を求めるフォトセルと、前記フォトセルからの銅濃度信号に基づいて銅濃度値を演算して表示しおよび/またはめっき浴の濃度管理装置の動作を制御する処理装置とを有することを特徴とする酸性無電解錫めっき液中の銅の定量装置を用いることによって実施することができる。
【0009】
吸光度測定法の障害となる有機酸等に原因すると考えられ白濁を防止するためには、酸性無電解錫めっき液中にかかる有機物を溶解する有機溶媒を加えることが考えられる。しかし、本発明者が各種の溶媒を用いて試験した結果、ジエチルエーテル、ジオキサン、エタノール、アセトン等のほとんどの一般的な有機溶媒ではいずれも液中に白沈を生じて白濁した。これに対して、その理由は必ずしも明らかではないが、溶媒としてメタノールを使用すると前記白濁が全く生じないことが発見された。尚銅の定量の際の妨害成分となる錫はたとえばトリエタノールアミンでマスキングすることができる。
【0010】
メタノールに酸性無電解錫めっき液を加え、さらにトリエタノールアミンを加えてもその溶液は無色透明を保つ。この溶液にアンモニア水を加えると、銅が溶解している場合には銅アンモニウム錯塩特有の青色を呈する。水酸化ナトリウムを加えてpHを高くすると青色はさらに強まる。一方銅を溶解していない建浴液は、無色透明を保つ。
【0011】
図1は銅を溶解していない酸性無電解錫めっき液のスペルトルを、図2は1g/Lの銅を溶解している酸性無電解錫めっき液のスペクトルを、図3は2g/Lの銅を溶解している酸性無電解錫めっき液のスペクトルを夫々示す。
【0012】
銅を溶解していない酸性無電解錫めっき液では吸収波長に山がなく(図1)、1g/Lの銅を溶解している酸性無電解錫めっき液では吸収波長670nmに山があり、ABS値は0.207である(図2)。さらに2g/Lの銅を溶解している酸性無電解錫めっき液では前記吸収波長670nmにおける山のABS値が0.419であり(図3)、銅の溶解量が2倍の場合にABSが約2倍となっており、以下同様にして銅の溶解量の増加に伴って対応するABS値の増加が認められた。したがって試料の670nmでの吸収を測定することにより銅の定量が可能となる。
【0013】
酸性無電解錫めっき液の銅の分析手順の具体例を以下説明する。
200mLのトールビーカに50mLのメタノールを入れ、これに1mLのめっき液試料をホールピペットで加えて攪拌する。こゝに10mLのアンモニア水を加えて約5分間攪拌する。この段階で試料が青色に発色すれば銅が溶解していることを示す。
【0014】
銅を含まない建浴液(ブランク液)と予め原子吸光分析計で測定した銅濃度既知の試料を夫々前記と同様の操作で調製し、分光光度計において波長670nmでのブランク液と既知の濃度液を校正し、その後波長670nmで試料の銅濃度を測定する。尚、測定試料の調製を簡略化するため、前記メタノール、トリエタノールアミン、アンモニア水を予め所定の割合で混合して専用の緩衝液を調製しておいてもよい。
【0015】
以上のように、本発明による酸性無電解錫めっき液中の銅の定量方法によれば、銅アンモニウム錯塩の形成による吸光度測定方法を用い、この場合液中の有機物によると思われる白沈をメタノールを加えることで防止し、かつ共存する錫イオンをマスキングすることによって簡単な方法で銅を正確に定量することができる。またこの方法で調製した測定試料は通常の方法で吸光分析することができ、そのための装置はめっきシステムに容易に組込んで自動化することができる。
【0016】
図5は本発明による酸性無電解錫めっき液中の銅の定量のための自動化装置の一例を示すフロー図である。
【0017】
図5の酸性無電解錫めっき液中の銅濃度の定量装置では、ロードセル2に支持された反応容器3がめっき槽1に対して試料ポンプ4、試料電磁弁5を介して接続されており、この反応容器3にはメタノールのタンク9、注入ポンプ10、注入電磁弁11、トリエタノールアミンのタンク12、注入ポンプ13、注入電磁弁14、アンモニア水のタンク18、注入ポンプ19、注入電磁弁20が夫々接続されている。これらの試料調製薬剤とめっき液とは反応容器3中に設けられた攪拌機6によって攪拌下に反応され、得られた測定用試料は反応容器3から排出電磁弁7を介して吸光度測定用のフォトセル23に送出される。
【0018】
フォトセル23の両面には光源23および受光部24が対向して設けられ、受光部の出力はADコンバータ25を介してCPU28に接続され、CPUは演算処理の結果を表示部27に送って濃度表示をさせ又はめっき液槽1のめっき液の管理機構(図示せず)の動作部に送られる。
【0019】
測定に際しては、まず電磁弁8を介して送られる洗浄水によって反応容器3の内部が洗浄され、洗浄水は電磁弁7、フォトセル23を通してポンプ21により排出される。次いでメタノールのタンク9からメタノールをポンプ10および電磁弁11を介して、次いでめっき槽1からめっき液をポンプ4と電磁弁5を介して、またトリエタノールアミンのタンク12からトリエタノールアミンをポンプ13と電磁弁14を介して夫々所定量で反応容器3に注入する。
【0020】
さらにアンモニア水のタンク15からアンモニアをポンプ16と電磁弁17を介してまた水酸化ナトリウムのタンク18から水酸化ナトリウムをポンプ19と電磁弁20を介して夫々所定量で反応容器3に注入する。これら各試料調製薬剤およびめっき試料の注入量は反応容器3を負荷されたロードセル2によって正確に計量され、各ポンプや電磁弁の逐次作動はCPU28によりインターフェイス26を介して所定のプログラムにしたがって制御される。反応容器3の内部を攪拌機6によって所定時間充分に攪拌し、ポンプ7によりフォトセル23に送り出す。
【0021】
フォトセル23では光源22からの所定波長の光がセル内部用測定の試料を透過して受光部23に入り、受光部23からの試料濃度に対応する濃度信号がADコンバータ25で変換されてCPU28に送られる。CPU28では予め測定したブランクと既知濃度の銅試料の吸光度に基いてフォトセル内の試料の銅濃度を演算しその値が表示部25に表示される。一方この値が予め設定された基準濃度を超えると、めっき液の補給信号や希釈信号が出力され、また所定の管理範囲を超えると警報信号が出力される。
【0022】
以上のように本発明の酸性無電解錫めっき液中の銅濃度定量装置によれば吸光度測定用の試料の調製、この試料による銅濃度の定量およびそれに基く液管理等の手順をすべて支障なく自動化することができる。尚、前記のようにメタノール、アンモニア、トリエタノールアミン等の試料調製薬剤を予め所定割合で混合して単一の緩衝液としておく場合には、前記各薬剤の供給系統を一体化して装置を更に簡略化することができる。
【0023】
【発明の効果】
本発明によれば酸性無電解錫めっき液中の銅濃度をメッキ液中に含まれる有機物や共存する錫イオンの影響を受けずに正確にかつ迅速に自動的に定量することができ、かつこの方法を具体化した装置によれば、かゝる銅の定量を液濃度の管理を含めてめっきシステムの一環として簡単な構成によって組込み自動化することが可能である。
【図面の簡単な説明】
【図1】酸性無電解錫めっき液の吸光スペクトルを示す図である。
【図2】本発明に用いる銅を含まない酸性無電解錫めっき液の吸光スペクトルを示す図である。
【図3】本発明に用いる1g/Lの銅を含む酸性無電解錫めっき液の吸光スペクトルを示す図である。
【図4】本発明に用いる2g/Lの銅を含む酸性無電解錫めっき液の吸光スペクトルを示す図である。
【図5】本発明の酸性無電解錫めっき液中の銅濃度定量装置のフロー図である。
【符号の説明】
1 めっき槽
2 ロードセル
3 反応容器
4 ポンプ
5 電磁弁
6 攪拌機
7 電磁弁
8 電磁弁
9 メタノールタンク
10 メタノール注入ポンプ
11 メタノール注入電磁弁
12 トリエタノールアミンタンク
13 トリエタノールアミン注入ポンプ
14 トリエタノールアミン注入電磁弁
15 アンモニアタンク
16 アンモニア注入ポンプ
17 アンモニア注入電磁弁
18 水酸化ナトリウムタンク
19 水酸化ナトリウム注入ポンプ
20 水酸化ナトリウム注入電磁弁
21 排出ポンプ
22 光源
23 フォトセル
24 受光部
25 ADコンバータ
26 インターフェイス
27 表示部
28 CPU
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of quantifying the copper acidic electroless tin plating solution, on the determination method of copper systematized capable acidic electroless tin plating solution of the automation with particular plating apparatus.
[0002]
[Prior art]
An acidic electroless tin plating solution generally comprises a composition containing divalent tin, thiourea, an organic acid, and other additives. When metallic copper is immersed in this plating solution, the copper surface undergoes a substitution reaction between copper and tin. Tin is deposited.
Sn 2+ + 2Cu → 2Cu 2+ + Sn
[0003]
In the plating process, since copper ions increase in the plating solution, management of the copper concentration is very important. Generally, as a method for quantifying copper, (1) a method of reacting potassium iodide with copper and titrating free iodine with a reducing agent (sodium thiosulfate), and (2) a method of complexing copper and titrating with EDTA And (3) a method of preparing a copper ammonium complex salt and measuring the absorbance at a specific wavelength, and (4) a method of directly measuring the absorbance at a specific wavelength.
[0004]
However, none of these general analytical methods for copper is suitable for the determination of copper in the plating solution because of the characteristics of the acidic electroless tin plating solution. That is, since a large amount of tin (divalent and tetravalent) is present in the acidic electroless tin plating solution, copper cannot be directly measured by the iodine titration method or the EDTA titration method. Further, as shown in FIG. 1 showing the spectrum of the acidic electroless tin plating solution, absorption at a specific wavelength does not occur even when copper is dissolved in the plating solution, and ammonia is added to the acidic electroless tin plating solution. Therefore, optical measurement by these methods is impossible.
[0005]
Therefore, the conventional method of quantifying copper in acidic electroless tin plating solutions is generally quantified by atomic absorption spectrometry. However, because of its high sensitivity, sample dilution is required and it is automated because it uses a frame (unmanned). Is dangerous, and the apparatus itself is very expensive, so it is not suitable for installation in a plating factory or the like.
[0006]
The present inventor presupposes that the absorbance measurement method is used in the state where copper is converted into an ammonium complex salt for the determination of copper in the acidic electroless tin plating solution, and at that time, a means for avoiding cloudiness generated in the solution by adding ammonia is studied. As a result, the inventors have succeeded in developing an accurate and rapid method for quantitatively determining copper in an acidic electroless tin plating solution and a quantitative device therefor, thereby completing the present invention.
[0007]
That is, the object of the present invention is to prepare a measurement sample by mixing a plating solution sample with methanol, a tin masking agent, and ammonia as a copper complexing agent in a method for quantifying copper in an acidic electroless tin plating solution. This is solved by a method for quantifying copper in an acidic electroless tin plating solution, wherein the copper concentration in the sample to be measured is quantified by an absorbance method at a predetermined wavelength.
[0008]
The method for quantifying copper in an acidic electroless tin plating solution according to claim 1 is a copper quantification device for optically measuring the copper concentration in an acidic electroless tin plating solution based on the absorbance of the plating solution sample. A reaction vessel for preparing a measurement sample by stirring and mixing a liquid sample, methanol, tin concealing agent and ammonia, and a photocell for measuring the absorbance at a specific wavelength of the prepared measurement sample to obtain the corresponding copper concentration And a processing device that calculates and displays a copper concentration value based on the copper concentration signal from the photocell and / or controls the operation of the plating bath concentration management device. It can implement by using the determination apparatus of the copper in a plating solution.
[0009]
In order to prevent white turbidity, which may be caused by an organic acid or the like that hinders the absorbance measurement method, it is conceivable to add an organic solvent that dissolves the organic matter in the acidic electroless tin plating solution. However, as a result of tests conducted by the present inventor using various solvents, white-sedimentation occurred in the liquid and white turbidity in most common organic solvents such as diethyl ether, dioxane, ethanol, acetone and the like. On the other hand, although the reason is not necessarily clear, it has been discovered that the use of methanol as a solvent does not cause the above-described cloudiness at all. In addition, tin which becomes an interference component in the determination of copper can be masked with, for example, triethanolamine.
[0010]
Even if an acid electroless tin plating solution is added to methanol and further triethanolamine is added, the solution remains colorless and transparent. When ammonia water is added to this solution, when copper is dissolved, a blue color peculiar to a copper ammonium complex is exhibited. When sodium hydroxide is added to raise the pH, the blue color becomes stronger. On the other hand, the bath solution that does not dissolve copper remains colorless and transparent.
[0011]
Fig. 1 shows the spectrum of acidic electroless tin plating solution without dissolving copper, Fig. 2 shows the spectrum of acidic electroless tin plating solution with dissolved 1g / L copper, and Fig. 3 shows 2g / L copper. The spectrum of the acidic electroless tin plating solution in which is dissolved is shown.
[0012]
The acidic electroless tin plating solution in which copper is not dissolved has no peaks in the absorption wavelength (FIG. 1), and the acidic electroless tin plating solution in which 1 g / L of copper is dissolved has peaks in the absorption wavelength of 670 nm. The value is 0.207 (FIG. 2). Furthermore, in the acidic electroless tin plating solution in which 2 g / L of copper is dissolved, the ABS value of the peak at the absorption wavelength of 670 nm is 0.419 (FIG. 3), and the ABS is reduced when the amount of dissolved copper is doubled. In the same manner, the corresponding ABS value was increased as the amount of copper dissolved increased. Therefore, copper can be quantified by measuring the absorption of the sample at 670 nm.
[0013]
A specific example of the copper analysis procedure of the acidic electroless tin plating solution will be described below.
Add 50 mL of methanol to a 200 mL tall beaker, add 1 mL of the plating solution sample to this with a whole pipette, and stir. Add 10 mL of ammonia water to the pot and stir for about 5 minutes. If the sample turns blue at this stage, it indicates that the copper is dissolved.
[0014]
A preparation solution containing no copper (blank solution) and a sample with a known copper concentration previously measured with an atomic absorption spectrometer were prepared in the same manner as described above, and a blank solution at a wavelength of 670 nm and a known concentration were measured in a spectrophotometer. The solution is calibrated and then the copper concentration of the sample is measured at a wavelength of 670 nm. In order to simplify the preparation of the measurement sample, the dedicated buffer solution may be prepared by previously mixing the methanol, triethanolamine, and aqueous ammonia at a predetermined ratio.
[0015]
As described above, according to the method for quantifying copper in an acidic electroless tin plating solution according to the present invention, an absorbance measurement method based on the formation of a copper ammonium complex salt is used. By adding tin, the copper can be accurately quantified by a simple method by masking the coexisting tin ions. Further, the measurement sample prepared by this method can be subjected to absorption analysis by an ordinary method, and the apparatus for that purpose can be easily incorporated into a plating system and automated.
[0016]
FIG. 5 is a flow diagram showing an example of an automated apparatus for the determination of copper in an acidic electroless tin plating solution according to the present invention.
[0017]
In the copper concentration determination device in the acidic electroless tin plating solution of FIG. 5, the reaction vessel 3 supported by the load cell 2 is connected to the plating tank 1 via the sample pump 4 and the sample electromagnetic valve 5. The reaction vessel 3 includes a methanol tank 9, an injection pump 10, an injection electromagnetic valve 11, a triethanolamine tank 12, an injection pump 13, an injection electromagnetic valve 14, an ammonia water tank 18, an injection pump 19, and an injection electromagnetic valve 20. Are connected to each other. The sample preparation agent and the plating solution are reacted with stirring by a stirrer 6 provided in the reaction vessel 3, and the obtained measurement sample is passed through the discharge electromagnetic valve 7 from the reaction vessel 3 and is used to measure absorbance. It is sent to the cell 23.
[0018]
The light source 23 and the light receiving unit 24 are provided opposite to each other on the photocell 23, and the output of the light receiving unit is connected to the CPU 28 via the AD converter 25. The CPU sends the result of the arithmetic processing to the display unit 27 and the density. It is displayed or sent to an operating part of a plating solution management mechanism (not shown) in the plating solution tank 1.
[0019]
In the measurement, first, the inside of the reaction vessel 3 is washed with washing water sent through the electromagnetic valve 8, and the washing water is discharged by the pump 21 through the electromagnetic valve 7 and the photocell 23. Subsequently, methanol is pumped from the methanol tank 9 via the pump 10 and the solenoid valve 11, then the plating solution is pumped from the plating tank 1 via the pump 4 and the solenoid valve 5, and triethanolamine is pumped from the triethanolamine tank 12 to the pump 13. And a predetermined amount of each is injected into the reaction vessel 3 through the electromagnetic valve 14.
[0020]
Further, ammonia is injected into the reaction vessel 3 from the ammonia water tank 15 through the pump 16 and the electromagnetic valve 17 and from the sodium hydroxide tank 18 through the pump 19 and the electromagnetic valve 20 in a predetermined amount. The injection amount of each sample preparation agent and plating sample is accurately measured by the load cell 2 loaded with the reaction vessel 3, and the sequential operation of each pump and solenoid valve is controlled by the CPU 28 through the interface 26 according to a predetermined program. The The inside of the reaction vessel 3 is sufficiently stirred for a predetermined time by the stirrer 6 and sent out to the photocell 23 by the pump 7.
[0021]
In the photocell 23, light of a predetermined wavelength from the light source 22 passes through the sample for measurement inside the cell and enters the light receiving unit 23. A concentration signal corresponding to the sample concentration from the light receiving unit 23 is converted by the AD converter 25 and the CPU 28. Sent to. The CPU 28 calculates the copper concentration of the sample in the photocell based on the previously measured blank and the absorbance of the copper sample of known concentration, and displays the value on the display unit 25. On the other hand, if this value exceeds a preset reference concentration, a replenishment signal or dilution signal for the plating solution is output, and if it exceeds a predetermined management range, an alarm signal is output.
[0022]
As described above, according to the copper concentration quantification apparatus in the acidic electroless tin plating solution of the present invention, the preparation of the sample for absorbance measurement, the quantification of the copper concentration by this sample and the liquid management based on it are all automated without any trouble. can do. In addition, when sample preparation drugs such as methanol, ammonia, triethanolamine and the like are mixed in advance at a predetermined ratio to prepare a single buffer solution as described above, the apparatus is further integrated by integrating the supply systems of the respective drugs. It can be simplified.
[0023]
【The invention's effect】
According to the present invention, the copper concentration in the acidic electroless tin plating solution can be automatically and accurately quantified accurately and quickly without being affected by organic substances contained in the plating solution and coexisting tin ions. According to the apparatus embodying the method, it is possible to incorporate and automate the determination of such copper with a simple configuration as a part of the plating system including the control of the liquid concentration.
[Brief description of the drawings]
FIG. 1 is a diagram showing an absorption spectrum of an acidic electroless tin plating solution.
FIG. 2 is a graph showing an absorption spectrum of an acidic electroless tin plating solution not containing copper used in the present invention.
FIG. 3 is a graph showing an absorption spectrum of an acidic electroless tin plating solution containing 1 g / L of copper used in the present invention.
FIG. 4 is a graph showing an absorption spectrum of an acidic electroless tin plating solution containing 2 g / L of copper used in the present invention.
FIG. 5 is a flow diagram of a device for determining the copper concentration in an acidic electroless tin plating solution of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Plating tank 2 Load cell 3 Reaction container 4 Pump 5 Electromagnetic valve 6 Stirrer 7 Electromagnetic valve 8 Electromagnetic valve 9 Methanol tank 10 Methanol injection pump 11 Methanol injection electromagnetic valve 12 Triethanolamine tank 13 Triethanolamine injection pump 14 Triethanolamine injection electromagnetic Valve 15 Ammonia tank 16 Ammonia injection pump 17 Ammonia injection electromagnetic valve 18 Sodium hydroxide tank 19 Sodium hydroxide injection pump 20 Sodium hydroxide injection electromagnetic valve 21 Discharge pump 22 Light source 23 Photocell 24 Light receiving unit 25 AD converter 26 Interface 27 Display unit 28 CPU

Claims (2)

酸性無電解錫めっき液中のの定量方法において、めっき液試料をメタノール、錫マスキング剤および銅錯化剤としてのアンモニアと混合して測定用試料を調製し、前記測定量試料中の銅濃度を所定波長での吸光度法によって定量することを特徴とする酸性無電解錫めっき液中のの定量方法。In the method for quantifying copper in an acidic electroless tin plating solution, a plating solution sample is mixed with methanol, a tin masking agent, and ammonia as a copper complexing agent to prepare a measurement sample, and the copper concentration in the measurement amount sample Quantification of copper in an acidic electroless tin plating solution, characterized in that quantification is performed by an absorbance method at a predetermined wavelength. 前記測定用試料中に発色促進のためpH調節剤をさらに混合する請求項1記載の酸性無電解錫めっき液中の銅の定量方法。  The method for quantifying copper in an acidic electroless tin plating solution according to claim 1, wherein a pH adjusting agent is further mixed in the measurement sample to promote color development.
JP2000083143A 2000-03-24 2000-03-24 Method for determination of copper in acidic electroless tin plating solution Expired - Fee Related JP4558883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000083143A JP4558883B2 (en) 2000-03-24 2000-03-24 Method for determination of copper in acidic electroless tin plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000083143A JP4558883B2 (en) 2000-03-24 2000-03-24 Method for determination of copper in acidic electroless tin plating solution

Publications (2)

Publication Number Publication Date
JP2001272389A JP2001272389A (en) 2001-10-05
JP4558883B2 true JP4558883B2 (en) 2010-10-06

Family

ID=18599830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000083143A Expired - Fee Related JP4558883B2 (en) 2000-03-24 2000-03-24 Method for determination of copper in acidic electroless tin plating solution

Country Status (1)

Country Link
JP (1) JP4558883B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4589840B2 (en) * 2005-07-26 2010-12-01 株式会社堀場製作所 Ammonia detector, ammonia detector, manufacturing method thereof, and analyzer using the same
JP5363377B2 (en) * 2010-02-19 2013-12-11 新光電気工業株式会社 Wiring board and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272048A (en) * 1993-01-21 1994-09-27 C Uyemura & Co Ltd Method for electroless-plating of tin, lead or their alloy and device therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421799A (en) * 1990-05-14 1992-01-24 Mitsubishi Heavy Ind Ltd Through defect-detecting solution
JP2616321B2 (en) * 1991-11-11 1997-06-04 上村工業株式会社 Analysis method of metal ion concentration in electroless plating bath
JP2787142B2 (en) * 1991-03-01 1998-08-13 上村工業 株式会社 Electroless tin, lead or their alloy plating method
JPH0830274B2 (en) * 1991-03-01 1996-03-27 上村工業株式会社 Method for analyzing copper ion concentration in electroless tin, lead or their alloy plating bath

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272048A (en) * 1993-01-21 1994-09-27 C Uyemura & Co Ltd Method for electroless-plating of tin, lead or their alloy and device therefor

Also Published As

Publication number Publication date
JP2001272389A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
Lambert et al. Stable reagents for the colorimetric determination of cyanide by modified Koenig reactions
CA2806491C (en) Simultaneous determination of multiple analytes in industrial water system
CN107402204A (en) A kind of lead ion detection method
CA2071206A1 (en) Reagent and methods for calcium determination
EP0536059A2 (en) Test kit and method for the determination of metal ion concentration in solution
JP4558883B2 (en) Method for determination of copper in acidic electroless tin plating solution
US3796543A (en) Automatic analysis for phosphorous content
Chen et al. Catalytic kinetic methods for photometric or fluorometric determination of heavy metal ions
JP2002522647A (en) Automatic adjustment and control of cleaning bath
Lima et al. A micro-flow-batch analyzer using webcam for spectrophotometric determination of Ortho-phosphate and aluminium (III) in tap water
US4871681A (en) Method for the colorimetric determination of the cyanide concentration of aqueous solutions
Taylor et al. The determination of vanadium (V) in the presence of vanadium (IV) using 4-(2-pyridylazo) resorcinol in a flow-injection manifold
Hayashi et al. Spectrophotometric determination of fluoride using lanthanum chloranilate
EP1762843A1 (en) Metal indicator
Lambert et al. Colorimetric determination of chloride ion via ion exchange
Nusbaum et al. Determination of cyanides in sewage and polluted waters
KR20180057725A (en) Acetate complex and method for quantifying acetate
EP3956659A1 (en) Colorimetric detection of fluoride in an aqueous sample
CN103940810A (en) Preparation method of reagent pack for detection of lead ions in water
JPH0820434B2 (en) Flux acid value automatic measuring device
Jamieson The Gravimetric and Volumetric Determination of Mercury Precipitated as Mercury Zinc Thiocyanate.
KR100298255B1 (en) Method of rapidly measuring exchangeable calcium amount of soil by using spectrophotometer
Guo et al. Determination of mercury in blood by on-line digestion with FIMS
CN106885777A (en) A kind of calcium and magnesium coexists calcium ion content method of testing in water body
Holtkamp et al. A simple automated method for the fluorometric titration of calcium in biological fluids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100722

R150 Certificate of patent or registration of utility model

Ref document number: 4558883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees