JP4558567B2 - Dissolved oxygen sensor - Google Patents

Dissolved oxygen sensor Download PDF

Info

Publication number
JP4558567B2
JP4558567B2 JP2005117984A JP2005117984A JP4558567B2 JP 4558567 B2 JP4558567 B2 JP 4558567B2 JP 2005117984 A JP2005117984 A JP 2005117984A JP 2005117984 A JP2005117984 A JP 2005117984A JP 4558567 B2 JP4558567 B2 JP 4558567B2
Authority
JP
Japan
Prior art keywords
cathode electrode
casing
electrode
cover member
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005117984A
Other languages
Japanese (ja)
Other versions
JP2006300530A (en
Inventor
勝治 横山
修久 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2005117984A priority Critical patent/JP4558567B2/en
Publication of JP2006300530A publication Critical patent/JP2006300530A/en
Application granted granted Critical
Publication of JP4558567B2 publication Critical patent/JP4558567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水等の液体に溶解する酸素量を測定する溶存酸素センサであって、酸素を透過するための隔膜を備えた溶存酸素センサにおけるシール構造の改良を図った溶存酸素センサに関する。   The present invention relates to a dissolved oxygen sensor that measures the amount of oxygen dissolved in a liquid such as water, and relates to a dissolved oxygen sensor that has an improved seal structure in a dissolved oxygen sensor that includes a diaphragm for permeating oxygen.

バイオセンサは試料水中の測定対象化学物質を認識する分子識別素子として、酵素や抗体などの生体機能性材料や、微生物、細胞等生体そのものを利用して構成されている。すなわち、これらの生物材料を多孔性高分子膜に化学的に包括または共有結合させることにより固定化した固定化膜を備える。   Biosensors are configured using biofunctional materials such as enzymes and antibodies, and living organisms such as microorganisms and cells, as molecular identification elements that recognize chemical substances to be measured in sample water. That is, an immobilized membrane is provided in which these biological materials are chemically encapsulated or covalently bonded to a porous polymer membrane.

バイオセンサにおいては、試料水を生物材料の固定化膜に接触させ、これによって生ずる生化学反応により生成または消費される物質の濃度変化を、検出器によって電流や電圧などの電気的な出力(以下、センサ出力と記載する)の変化に変換して測定する。   In a biosensor, sample water is brought into contact with an immobilized membrane of biological material, and the concentration change of a substance generated or consumed by a biochemical reaction caused thereby is detected by an electrical output (hereinafter referred to as current or voltage) by a detector. , Measured as sensor output).

上記バイオセンサを使用した測定にあたっては、固定化した生物材料が安定に機能するように温度とpH条件を一定にすることが必要である。そのため、バイオセンサ応用計測器では、温度を一定に保つために試料水を一定温度に加温する熱交換器とセンサ温度を一定にする恒温槽が備えられ、また、pH条件を一定とするために緩衝溶液が用いられている。 In the measurement using the biosensor, it is necessary to make the temperature and pH conditions constant so that the immobilized biological material functions stably. Therefore, the biosensor application measuring instrument is equipped with a heat exchanger that warms the sample water to a constant temperature and a constant temperature bath that keeps the sensor temperature constant in order to keep the temperature constant, and to maintain a constant pH condition. A buffer solution is used.

ここで、特許文献1に示すような水中の有害物質検出用バイオセンサが開発されている。
かかる技術においては、生物材料としては有害物質に極めて弱い微生物である硝化細菌を用い、この硝化細菌を生きたまま固定化して高分子多孔膜で封じ込めた微生物膜と、検出器として溶存酸素電極とを組合せた呼吸活性検知型バイオセンサを構成し、これに硝化細菌の基質および微量栄養成分を一定濃度含む緩衝溶液と試料水を所定の比率となるように混合して連続的に流すことにより、有害物質混入の連続監視を行っている。
Here, a biosensor for detecting harmful substances in water as shown in Patent Document 1 has been developed.
In this technology, nitrifying bacteria, which are microorganisms that are extremely vulnerable to harmful substances, are used as biological materials, the nitrifying bacteria are fixed alive and sealed with a polymer porous membrane, and a dissolved oxygen electrode is used as a detector. A respiration activity detection type biosensor that is combined with a buffer solution containing a constant concentration of a substrate of nitrifying bacteria and a micronutrient and a sample water is mixed and flowed continuously at a predetermined ratio. Continuous monitoring of contamination with harmful substances.

上記バイオセンサに用いられる隔膜式ガルバニ電池方式の溶存酸素センサは、酸素透過膜を介して微生物膜の酸素量を検出する、この方式では、酸素透過膜と接触するカソード電極の端面部のみでの電位の変化を検出する。このため、それ以外の部分で、電解液とカソード電極や付属するリード線は絶縁ガラスにより絶縁保護されている。
特公平7−85072号公報
The diaphragm type galvanic cell type dissolved oxygen sensor used in the above biosensor detects the amount of oxygen in the microbial membrane through the oxygen permeable membrane. In this method, only the end face of the cathode electrode in contact with the oxygen permeable membrane is used. Detect potential changes. For this reason, the electrolytic solution, the cathode electrode, and the attached lead wires are insulated and protected by the insulating glass in other portions.
Japanese Patent Publication No. 7-85072

上記溶存酸素センサはガルバニ電池であり、長期間連続運転している間に、一般的には化学反応により、析出物が発生する。これら析出物がカソード電極と酸素透過膜との間に沈降物として、侵入するとセンサ出力が低下する。また、上記溶存酸素センサを稼働せずに長期間保管した状態でも、電解液を除去しない場合には、同様に化学反応が進み、析出物が発生する。保管期間が長い場合や保管温度が高い場合は、保管の時点でセンサ出力が低下してしまい、使用に耐えられない事態が発生する場合がある。 The dissolved oxygen sensor is a galvanic cell, and deposits are generally generated by a chemical reaction during continuous operation for a long period of time. If these deposits enter the cathode electrode and the oxygen permeable membrane as precipitates, the sensor output decreases. Further, even when the dissolved oxygen sensor is not operated and stored for a long period of time, if the electrolytic solution is not removed, the chemical reaction proceeds in the same manner and precipitates are generated. If the storage period is long or the storage temperature is high, the sensor output may decrease at the time of storage, and a situation may occur that cannot be used.

上記特許文献1のバイオセンサに用いられる従来の溶存酸素センサでは、接着剤によって電極を固定し、電解液を封止している。しかしながら、接着剤を使用すると、その粘性により流動性が悪い場合は、末端まで接着剤が流動せず接着不良やシール不良が生ずる。また、かかる従来の溶存酸素センサでは、接着層が厚いため、保管温度が高い場合には接着剤と電極や筐体間の熱応力で接着剥離が起こり、シール不良となってセンサ出力が低下したり、電解液がセンサ出力配線である銅製の電線を腐食・断線して、センサ出力が出ないという問題も有している。   In the conventional dissolved oxygen sensor used in the biosensor disclosed in Patent Document 1, the electrode is fixed with an adhesive and the electrolytic solution is sealed. However, when an adhesive is used, if the fluidity is poor due to its viscosity, the adhesive does not flow to the end, resulting in poor adhesion or poor sealing. Further, in such a conventional dissolved oxygen sensor, since the adhesive layer is thick, when the storage temperature is high, adhesive peeling occurs due to thermal stress between the adhesive and the electrode or the housing, resulting in a poor seal and lowering the sensor output. Or the electrolytic solution corrodes or breaks a copper electric wire that is a sensor output wiring, and there is a problem that the sensor output does not come out.

本発明は、上記事情に鑑みてなされたもので、化学反応による析出物のカソード電極と酸素透過膜との間への侵入に伴うセンサ出力の低下を防止するとともに、電極部の熱応力を低減して、性能の向上がなされた溶存酸素センサを提供することを目的とする。   The present invention has been made in view of the above circumstances, and prevents a decrease in sensor output accompanying a penetration of a precipitate caused by a chemical reaction between the cathode electrode and the oxygen permeable membrane, and also reduces the thermal stress of the electrode portion. Then, it aims at providing the dissolved oxygen sensor by which the performance improvement was made | formed.

上記目的を達成するために、本発明に係る溶存酸素センサは、水等の液体に溶解する酸素量を測定する溶存酸素センサにおいて、酸素を透過するための酸素透過膜を備え、上記酸素透過膜の内側に圧接する電極部を備え、該電極部の外側を絶縁保護部の内部に貫通して構成されたカソード電極と、上記カソード電極が内側に設置されたアノード電極と、上記カソード電極及び該アノード電極が臨む電解液とを筐体内に設け、該筐体は、その線膨張係数α1と上記カソード電極の線膨張係数α2との差が小さくなるような材料で構成してなることを特徴とする。   In order to achieve the above object, a dissolved oxygen sensor according to the present invention is a dissolved oxygen sensor that measures the amount of oxygen dissolved in a liquid such as water, and includes an oxygen permeable membrane for permeating oxygen, and the oxygen permeable membrane. A cathode electrode formed by penetrating the outside of the electrode portion into the inside of the insulating protection portion, an anode electrode having the cathode electrode installed inside, the cathode electrode, and the cathode electrode An electrolyte solution facing the anode electrode is provided in the casing, and the casing is made of a material that reduces the difference between the linear expansion coefficient α1 and the linear expansion coefficient α2 of the cathode electrode. To do.

そして、本発明に係る溶存酸素センサは、上記筐体の線膨張係数α1と、上記カソード電極の線膨張係数α2の比が、2倍以内であるような材料で構成する。さらに、1.6倍以内であるような材料で構成することがより好ましい。すなわち、α1:α2=2:1〜1:2、さらに好適にはα1:α2=1.6:1〜1:1.6の範囲で、お互い同士の差が越えないようにする。 The dissolved oxygen sensor according to the present invention, the linear expansion coefficient α1 of the housing, the ratio of the linear expansion coefficient α2 of the cathode electrode, that make up a material such that within 2-fold. Furthermore, it is more preferable to use a material that is 1.6 times or less. That is, α1: α2 = 2: 1 to 1: 2, more preferably α1: α2 = 1.6: 1 to 1: 1.6, so that the difference between them does not exceed each other .

また、本発明に係る溶存酸素センサは、その実施の形態で、上記カソード電極の絶縁保護部をガラス材、又は絶縁性を有するセラミックスあるいは樹脂材のいずれかで構成することが好適であり、絶縁性を有する固体であれば、材質を特に限定することなく、どのようなものでも使用することができる。   In the dissolved oxygen sensor according to the present invention, it is preferable that the insulation protection portion of the cathode electrode is made of either a glass material, an insulating ceramic, or a resin material. Any material can be used as long as it is a solid having the property without any particular limitation on the material.

また、本発明に係る溶存酸素センサは、その実施の形態で、上記カソード電極及びアノード電極の一端側を上記筐体の上部に設けられた第2の筐体に固定し、他端側を実質的な自由端に構成してなることを特徴とすることが好適である。   Further, in the dissolved oxygen sensor according to the present invention, one end side of the cathode electrode and the anode electrode is fixed to a second casing provided at the upper part of the casing, and the other end side is substantially set. It is preferable that the free end is constructed.

また、本発明に係る溶存酸素センサは、他の実施の形態で、上記第2の筐体が、上記筐体の上部に固定された上部筐体と該上部筐体に螺合され、又は該上部筐体に嵌合されたカバー部材からなり、上記上部筐体とカバー部材との間に上記アノード電極の上端部を挟持し接着剤により接着するとともに、上記カソード電極の上端部を上記カバー部材に接着剤により接着して構成したことを特徴とする。   In another embodiment, the dissolved oxygen sensor according to the present invention is such that the second casing is screwed into the upper casing and the upper casing fixed to the upper section of the casing, or The cover member is fitted to the upper housing, the upper end portion of the anode electrode is sandwiched between the upper housing and the cover member and bonded with an adhesive, and the upper end portion of the cathode electrode is attached to the cover member. It is characterized in that it is formed by adhering to an adhesive.

また、本発明に係る溶存酸素センサは、他の実施の形態で、上記第2の筐体が、上記筐体の上部に固定された上部筐体と該上部筐体の内周に螺合されたカバー部材と該カバー部材の内周に螺合された内側カバー部材とにより構成され、上記内側カバー部材の下面に上記カソード電極の上端部を当接させて、上記内側カバー部材のねじ込み力によって上記カソード電極の電極部と上記酸素透過膜の内面との接触部に接触力を付与するように構成したことを特徴とする。   In another embodiment of the dissolved oxygen sensor according to the present invention, the second casing is screwed to the upper casing fixed to the upper section of the casing and the inner periphery of the upper casing. A cover member and an inner cover member threadedly engaged with the inner periphery of the cover member. The upper end portion of the cathode electrode is brought into contact with the lower surface of the inner cover member, and the screwing force of the inner cover member is used. A contact force is applied to the contact portion between the electrode portion of the cathode electrode and the inner surface of the oxygen permeable membrane.

また、本発明に係る溶存酸素センサは、他の実施の形態で、上記第2の筐体が、上記筐体の上部に固定された上部筐体と該上部筐体の内周に螺合されたカバー部材とにより構成され、上記カバー部材の下面に上記カソード電極の上端部を当接させて、上記カバー部材のねじ込み力によって上記カソード電極の電極部と上記酸素透過膜の内面との接触部に接触力を付与するように構成したことを特徴とする。   In another embodiment of the dissolved oxygen sensor according to the present invention, the second casing is screwed to the upper casing fixed to the upper section of the casing and the inner periphery of the upper casing. A contact portion between the electrode portion of the cathode electrode and the inner surface of the oxygen permeable membrane by the screwing force of the cover member. It is characterized in that a contact force is applied to.

また、本発明に係る溶存酸素センサは、他の実施の形態で、上記カソード電極の上端部及び上記アノード電極の上端部を、パッキンを介して上記第2の筐体に固定するとともに、上記カソード電極及びアノード電極の下端側を自由端に構成してなることを特徴とする。   In another embodiment, the dissolved oxygen sensor according to the present invention fixes the upper end portion of the cathode electrode and the upper end portion of the anode electrode to the second casing through packing, and The lower end side of the electrode and the anode electrode is configured as a free end.

また、本発明に係る溶存酸素センサは、他の実施の形態で、上記アノード電極の上端部及び下端部を、パッキンを介して上記第2の筐体に固定するとともに、上記カソード電極の上端部と上記第2の筐体との間にOリングを介装し、上記2つのパッキン及びOリングにより電解液の漏洩シールを行うように構成したことを特徴とする。   In another embodiment, the dissolved oxygen sensor according to the present invention fixes the upper end portion and the lower end portion of the anode electrode to the second casing through packing, and the upper end portion of the cathode electrode. And an O-ring between the second casing and the two packings and the O-ring to perform electrolyte leakage sealing.

また、本発明に係る溶存酸素センサは、他の実施の形態で、上記アノード電極の上端部を、パッキンを介して上記第2の筐体に固定するとともに、上記カソード電極の上端部と上記第2の筐体との間及びアノード電極の下端部内周と上記カソード電極の中間部外周との間にOリングをそれぞれ介装し、上記パッキン及び上記2つのOリングにより電解液の漏洩シールを行うように構成したことを特徴とする。   In another embodiment, the dissolved oxygen sensor according to the present invention fixes the upper end of the anode electrode to the second casing via a packing, and the upper end of the cathode electrode and the first Between the two casings and between the inner periphery of the lower end portion of the anode electrode and the outer periphery of the intermediate portion of the cathode electrode, and the electrolyte solution leaks and seals by the packing and the two O rings. It is configured as described above.

本発明によれば、上記カソード電極側の材料と筐体側の材料とを、線膨張係数αがほぼ同レベルの材料の組み合わせとすることにより、上記カソード電極の下端部に固定された電極部と酸素透過膜の内面との間の接触圧力が、従来技術のようにカソード電極側と筐体側との熱膨張量の差によって低下するのを回避できる。
これにより、上記接触圧力の低下を防止できて、上記電極部と酸素透過膜の内面とは常時所定の接触圧力で接触し、化学反応により発生した析出物が、電極部と酸素透過膜の内面との隙間に侵入して、溶存酸素センサのセンサ出力が低下するのを回避でき、常時所要のセンサ出力を保持できる。このような析出物は、溶存酸素センサの運転状態、非運転状態にかかわらず生成するものであり、特に高温で溶存酸素センサを保管した場合、未使用にかかわらず、当初より十分な性能を得られないといった不都合を回避することができる。
According to the present invention, by combining the material on the cathode electrode side and the material on the housing side with a material having a linear expansion coefficient α of substantially the same level, the electrode portion fixed to the lower end portion of the cathode electrode; It can be avoided that the contact pressure between the oxygen permeable membrane and the inner surface of the oxygen permeable membrane decreases due to the difference in thermal expansion between the cathode electrode side and the housing side as in the prior art.
Thereby, the decrease in the contact pressure can be prevented, and the electrode part and the inner surface of the oxygen permeable film are always in contact with each other at a predetermined contact pressure. It is possible to avoid a decrease in the sensor output of the dissolved oxygen sensor due to intrusion into the gap, and the required sensor output can be maintained at all times. Such precipitates are generated regardless of whether the dissolved oxygen sensor is in operation or not. Especially when the dissolved oxygen sensor is stored at a high temperature, sufficient performance is obtained from the beginning regardless of whether it is not used. The inconvenience that it is not possible can be avoided.

また、本発明によれば、アノード電極の上端部及びカソード電極の上端部を、接着又はOリング又はパッキンを用いて電解液の漏洩シールを確実に行なって第2の筐体に固定できるとともに、アノード電極及びカソード電極の下端側は自由端に構成することにより拘束部が無いので、上記のような熱膨張量の差に伴う電極部と酸素透過膜との間の接触圧力の低下を防止しつつ、アノード電極及びカソード電極の熱応力を抑制できる。   In addition, according to the present invention, the upper end of the anode electrode and the upper end of the cathode electrode can be fixed to the second casing by securely performing an electrolyte leakage seal using adhesion or an O-ring or packing, Since the lower end side of the anode electrode and the cathode electrode is configured as a free end, there is no restraint portion, so that a decrease in contact pressure between the electrode portion and the oxygen permeable membrane due to the difference in the amount of thermal expansion as described above is prevented. However, the thermal stress of the anode electrode and the cathode electrode can be suppressed.

以下に、本発明に係る溶存酸素センサの実施の形態を、図面を参照しながらさらに詳細に説明する。   Embodiments of a dissolved oxygen sensor according to the present invention will be described below in more detail with reference to the drawings.

図1は本発明に係る溶存酸素センサを装備したバイオセンサの概略構造を示す構成図で、4はフローセル、5は該フローセルの内部に形成された試料通路で、該試料通路5内を図の矢印のように試料水が流動している。1は上記試料水中の微生物を付着するための微生物膜である。
2は本発明の対象である溶存酸素センサで、この実施形態では隔膜式ガルバニ電池溶存酸素センサを用いている。3は後述するアノード電極及びカソード電極からのリード線である。
FIG. 1 is a block diagram showing a schematic structure of a biosensor equipped with a dissolved oxygen sensor according to the present invention. 4 is a flow cell, 5 is a sample passage formed inside the flow cell, and the inside of the sample passage 5 is shown in FIG. The sample water is flowing as shown by the arrow. Reference numeral 1 denotes a microbial membrane for adhering microorganisms in the sample water.
Reference numeral 2 denotes a dissolved oxygen sensor which is an object of the present invention. In this embodiment, a diaphragm type galvanic cell dissolved oxygen sensor is used. Reference numeral 3 denotes a lead wire from an anode electrode and a cathode electrode described later.

このバイオセンサにおいては、試料水中の測定対象化学物質を認識する分子識別素子として、酵素や抗体などの生体機能性材料や微生物、細胞など生体そのものを利用し、これらの生物材料を多孔性高分子膜に化学的に包括または共有結合させることにより固定化した上記微生物膜1と上記溶存酸素センサ2とを組合せて、上記生物材料の分子識別信号を電気信号に変換して試料水中の化学物質の測定を行う。
すなわち、かかるバイオセンサは、試料水を上記生物材料の固定化膜である上記微生物膜1に接触させ、これによって生ずる生化学反応により生成または消費される物質の濃度変化を検出器である溶存酸素センサ2で、電流や電圧などの電気的な出力(以下、センサ出力と記載する)の変化に変換して測定する。
In this biosensor, biological functional materials such as enzymes and antibodies, and living organisms such as microorganisms and cells are used as molecular identification elements for recognizing chemical substances to be measured in sample water. A combination of the microbial membrane 1 immobilized by chemical inclusion or covalent bonding to the membrane and the dissolved oxygen sensor 2 is used to convert the molecular identification signal of the biological material into an electrical signal and to convert the chemical substance in the sample water. Measure.
That is, such a biosensor makes sample water contact the microbial membrane 1 which is an immobilization membrane of the biological material, and a dissolved oxygen which is a detector to detect a concentration change of a substance generated or consumed by a biochemical reaction caused thereby. The sensor 2 converts it into a change in electrical output such as current or voltage (hereinafter referred to as sensor output) and measures it.

図2(A)は上記溶存酸素センサ2のセンサ部の概略構造を示す概略構成図、(B)は(A)におけるZ部拡大図である。
図2(A)、(B)において、34は後述する構成を備えた筐体である。29は該筐体34の内部に取り付けられたアノード電極で、この実施形態では鉛電極を用いている。30は該アノード電極29の内側に設けられたカソード電極で、白金電極からなる電極部30a、該電極部30aに結合される銀線30b、上記電極部30a及び銀線30bの絶縁用の絶縁ガラス32等により構成される。
2A is a schematic configuration diagram showing a schematic structure of a sensor portion of the dissolved oxygen sensor 2, and FIG. 2B is an enlarged view of a Z portion in FIG.
2 (A) and 2 (B), reference numeral 34 denotes a housing having a structure to be described later. Reference numeral 29 denotes an anode electrode attached to the inside of the housing 34. In this embodiment, a lead electrode is used. Reference numeral 30 denotes a cathode electrode provided inside the anode electrode 29, an electrode portion 30a made of a platinum electrode, a silver wire 30b coupled to the electrode portion 30a, and an insulating glass for insulating the electrode portion 30a and the silver wire 30b. 32 or the like.

31は酸素透過膜で、テフロンFEP材等の水分を遮断し酸素等の気体を透過可能な薄膜からなる。該酸素透過膜31の内面と上記カソード電極30の電極部30aとは、図2(B)のように、所定の圧力で接触せしめられている。31bは接触部である。
上記筐体34内には、上記アノード電極29及びカソード電極30が臨むように電解液33が貯留されている。
31 is an oxygen permeable film, which is made of a thin film capable of blocking moisture such as Teflon FEP material and permeable to gas such as oxygen. The inner surface of the oxygen permeable membrane 31 and the electrode portion 30a of the cathode electrode 30 are brought into contact with each other with a predetermined pressure as shown in FIG. 31b is a contact part.
An electrolytic solution 33 is stored in the casing 34 so that the anode electrode 29 and the cathode electrode 30 face each other.

上記のように構成された溶存酸素センサ2において、上記微生物膜1に試料水中の微生物が付着しており、該試料水中に有害物質が混入すると、上記微生物膜1に付着している微生物が上記有害物質によって死滅または弱体化せしめられる。かかる微生物の死滅または弱体化が生じると、該微生物による酸素消費量が減少する。
したがって、上記溶存酸素センサ2によって、酸素等の気体を透過可能な酸素透過膜31を通った酸素量を検知すれば、該酸素量の変化によって、上記試料水中における有害物質の有無及び量を検出できる。
<第1実施形態>
In the dissolved oxygen sensor 2 configured as described above, microorganisms in the sample water are attached to the microbial membrane 1, and when harmful substances are mixed in the sample water, the microorganisms attached to the microbial membrane 1 are Killed or weakened by harmful substances. When such microorganisms die or weaken, the oxygen consumption by the microorganisms decreases.
Therefore, if the dissolved oxygen sensor 2 detects the amount of oxygen that has passed through the oxygen permeable membrane 31 that is permeable to gas such as oxygen, the presence or absence and amount of harmful substances in the sample water is detected by the change in the amount of oxygen. it can.
<First Embodiment>

図3は本発明の第1実施形態に係る隔膜式ガルバニ電池溶存酸素センサの要部構造を示す縦断面図である。
図3において、34は筐体、29は該筐体34の内部に取り付けられた円筒状のアノード電極で、この実施形態では鉛電極を用いている。
30は該アノード電極29の内側に設けられたカソード電極である。該カソード電極30は、白金電極からなる電極部30aの上部に、リード線に接続される銀線30bを結合し、円筒状の絶縁ガラス32の内部に上記電極部30a及び銀線30bを貫通して構成される。30cは上記アノード電極29のリード線である。
上記筐体34内に形成された電極収納穴34c内には、上記アノード電極29及びカソード電極30が臨むように電解液33が貯留されている。
38は上記カソード電極30の下部のずれを押えるための電極押えカラーである。
FIG. 3 is a longitudinal sectional view showing the structure of the main part of the diaphragm type galvanic cell dissolved oxygen sensor according to the first embodiment of the present invention.
In FIG. 3, 34 is a housing, 29 is a cylindrical anode electrode mounted inside the housing 34, and in this embodiment, a lead electrode is used.
Reference numeral 30 denotes a cathode electrode provided inside the anode electrode 29. The cathode electrode 30 has a silver wire 30b connected to a lead wire coupled to an upper portion of an electrode portion 30a made of a platinum electrode, and penetrates the electrode portion 30a and the silver wire 30b inside a cylindrical insulating glass 32. Configured. Reference numeral 30 c denotes a lead wire for the anode electrode 29.
In the electrode housing hole 34c formed in the housing 34, the electrolytic solution 33 is stored so that the anode electrode 29 and the cathode electrode 30 face each other.
Reference numeral 38 denotes an electrode pressing collar for pressing the lower portion of the cathode electrode 30.

31はテフロンFEP材等の水分を遮断し酸素等の気体を透過可能な薄膜からなる酸素透過膜で、図2(B)の接触部31bのように、その中央部内面が上記カソード電極30の電極部30aと所定の圧力で接触せしめられている。   31 is an oxygen permeable film made of a thin film capable of blocking moisture such as Teflon FEP material and allowing gas such as oxygen to pass through. The inner surface of the central part of the cathode electrode 30 is the same as the contact part 31b in FIG. It is brought into contact with the electrode portion 30a with a predetermined pressure.

上記酸素透過膜31の両端部はリテーナ36に当接し、上記筐体34の下部に螺合された下部カバー35をねじ部35aにてねじ込むことにより、該リテーナ36を介して上記筐体34の下部に固定されている。なお、リテーナ36は、回転止めピン36bによって回転を制止されている。   Both end portions of the oxygen permeable membrane 31 are in contact with the retainer 36, and a lower cover 35 screwed into the lower portion of the housing 34 is screwed with a screw portion 35 a, whereby the housing 34 is interposed via the retainer 36. It is fixed at the bottom. The retainer 36 is prevented from rotating by a rotation stop pin 36b.

37はOリングで、上記筐体34の下面と上記リテーナ36の上面との間に封設されて、上記筐体34の下部側における上記電解液33の漏洩を回避している。   Reference numeral 37 denotes an O-ring that is sealed between the lower surface of the housing 34 and the upper surface of the retainer 36 to avoid leakage of the electrolytic solution 33 on the lower side of the housing 34.

かかる実施形態においては、上記カソード電極30の絶縁ガラス32を、線膨張係数(α)がα=8.5×10-6/℃程度の鉛ガラス材で構成する一方、上記筐体34を、線膨張係数(α)が上記絶縁ガラス32の線膨張係数に近い値であるα=10×10-6/℃程度を有するガラスを添加したポリフェニルサルファイド(PPS)材、又は線膨張係数α=13.5×10-6/℃程度を有するポリフェニルサルファイド材で構成している。
このような線膨張係数の組み合わせは、一例であって、本発明では、例えばカソード電極の絶縁保護部である32と筐体34の材質は、絶縁性を有する固体であって、互いの材料の線膨張係数の比が、2倍以内となるように構成すれば良い。すなわち、α1:α2=2:1〜1:2、さらに好適にはα1:α2=1.6:1〜1:1.6の範囲を、お互い同士の差が越えないようにすることが好ましい。
In this embodiment, the insulating glass 32 of the cathode electrode 30 is made of a lead glass material having a linear expansion coefficient (α) of about α = 8.5 × 10 −6 / ° C., while the casing 34 is made of Polyphenyl sulfide (PPS) material added with glass having a linear expansion coefficient (α) of about α = 10 × 10 −6 / ° C., which is a value close to the linear expansion coefficient of the insulating glass 32, or the linear expansion coefficient α = It is composed of a polyphenyl sulfide material having about 13.5 × 10 −6 / ° C.
Such a combination of linear expansion coefficients is an example, and in the present invention, for example, the material of the cathode electrode insulation protection portion 32 and the housing 34 is an insulating solid, and the material of each other What is necessary is just to comprise so that ratio of a linear expansion coefficient may become less than 2 times. That is, α1: α2 = 2: 1 to 1: 2, more preferably α1: α2 = 1.6: 1 to 1: 1.6 is preferably set such that the difference between them does not exceed each other. .

中空筐体11は、上記筐体34の電極収納穴34cの上部に螺合される(11aはねじ部)ている。中空筺体11は、上部の蓋体12と接着剤充填部13を介して一体化されている。蓋体12の下端は、筐体34の上面34dに圧接されている。41は上記中空筐体11の外周と上記筐体34の電極収納穴34cの上部内周との間に嵌挿されたOリングで、上記電解液33の筐体34の上面34d側への漏洩をシールしている。   The hollow casing 11 is screwed into the upper part of the electrode accommodation hole 34c of the casing 34 (11a is a threaded portion). The hollow casing 11 is integrated with the upper lid 12 and the adhesive filling portion 13. The lower end of the lid 12 is in pressure contact with the upper surface 34 d of the housing 34. 41 is an O-ring inserted between the outer periphery of the hollow casing 11 and the upper inner periphery of the electrode housing hole 34c of the casing 34, and the electrolyte 33 leaks to the upper surface 34d side of the casing 34. Is sealed.

上記アノード電極29は、上部につば部29aが形成され、中空筺体11の上端に当接している。
上記中空筺体11と上記アノード電極29との間には接着剤14が長手方向に介在し、該アノード電極29と上記円筒状の絶縁ガラス32にも接着剤15が長手方向に介在している。これによって、電解液の漏洩を防止している。
The anode electrode 29 is formed with a collar portion 29 a at the upper portion, and is in contact with the upper end of the hollow casing 11.
An adhesive 14 is interposed between the hollow casing 11 and the anode electrode 29 in the longitudinal direction, and an adhesive 15 is also interposed between the anode electrode 29 and the cylindrical insulating glass 32 in the longitudinal direction. This prevents leakage of the electrolyte.

かかる第1実施形態においては、酸素センサ2の温度上昇に伴い、上記筐体34が軸方向(長手方向)に熱膨張するとともに、上記カソード電極30の絶縁ガラス32が熱膨張する。
しかるに、上記カソード電極30の絶縁ガラス32を、線膨張係数(α)がα=8.5×10-6/℃程度の鉛ガラス材で構成するとともに、上記筐体34を、線膨張係数(α)が上記絶縁ガラス32の線膨張係数に近い値であるα=10×10-6/℃程度を有するガラスを添加したポリフェニルサルファイド(PPS)材、又は線膨張係数α=13.5×10-6/℃程度を有するポリフェニルサルファイド材で構成しているので、上記カソード電極30側の絶縁ガラス32と上記筐体34側の熱膨張量がほぼ同レベルとなり、該カソード電極30の絶縁ガラス32側と筐体34側との熱膨張差がきわめて小さく、又は0(ゼロ)となる。
In the first embodiment, as the temperature of the oxygen sensor 2 rises, the casing 34 is thermally expanded in the axial direction (longitudinal direction), and the insulating glass 32 of the cathode electrode 30 is thermally expanded.
However, the insulating glass 32 of the cathode electrode 30 is made of a lead glass material having a linear expansion coefficient (α) of about α = 8.5 × 10 −6 / ° C., and the casing 34 is made of a linear expansion coefficient ( α) is a polyphenyl sulfide (PPS) material added with a glass having a value of about α = 10 × 10 −6 / ° C., which is close to the linear expansion coefficient of the insulating glass 32, or the linear expansion coefficient α = 13.5 ×. Since it is made of a polyphenyl sulfide material having a temperature of about 10 −6 / ° C., the insulating glass 32 on the cathode electrode 30 side and the thermal expansion amount on the housing 34 side are almost at the same level, and the insulation of the cathode electrode 30 is The difference in thermal expansion between the glass 32 side and the housing 34 side is extremely small or 0 (zero).

したがって、かかる第1実施形態によれば、上記カソード電極30の絶縁ガラス32側の材料と上記筐体34側の材料とを、線膨張係数αがほぼ同レベルの材料の組み合わせとすることにより、上記絶縁ガラス32の下端部に固定された電極部30aと上記薄膜からなる酸素透過膜31の中央部内面との間の接触圧力が、従来技術のように上記カソード電極30の絶縁ガラス32側と上記筐体34側との熱膨張量の差によって低下するのを回避できる。   Therefore, according to the first embodiment, the material on the insulating glass 32 side of the cathode electrode 30 and the material on the housing 34 side are combined with materials having substantially the same level of linear expansion coefficient α. The contact pressure between the electrode portion 30a fixed to the lower end portion of the insulating glass 32 and the inner surface of the central portion of the oxygen permeable membrane 31 made of the thin film is different from the insulating glass 32 side of the cathode electrode 30 as in the prior art. It is possible to avoid a decrease due to the difference in thermal expansion from the case 34 side.

よって、かかる第1実施形態によれば、上記接触圧力の低下を防止できて、上記電極部30aと上記酸素透過膜31の内面とは常時所定の接触圧力で接触し、高温下で長期間保管又は連続運転している間等において化学反応により発生した析出物が、電極部30aと酸素透過膜31の内面との隙間に侵入して、酸素センサ2のセンサ出力が低下するのを回避でき、常時所要のセンサ出力を保持できる。
<第2実施形態>
Therefore, according to the first embodiment, the decrease in the contact pressure can be prevented, and the electrode portion 30a and the inner surface of the oxygen permeable membrane 31 are always in contact with each other at a predetermined contact pressure and stored for a long time at a high temperature. Alternatively, it can be avoided that precipitates generated by a chemical reaction during continuous operation enter the gap between the electrode portion 30a and the inner surface of the oxygen permeable membrane 31 and the sensor output of the oxygen sensor 2 decreases. The required sensor output can be maintained at all times.
<Second Embodiment>

図4は本発明の第2実施形態に係る隔膜式ガルバニ電池溶存酸素センサの要部構造を示す縦断面図である。この第2実施形態は、第1の実施の形態と共通する要素もある。しかし、第1の実施の形態との相違点が相当程度あるので、あえて重複する説明を行う。   FIG. 4 is a longitudinal cross-sectional view showing the main structure of a diaphragm type galvanic cell dissolved oxygen sensor according to a second embodiment of the present invention. This second embodiment also has elements in common with the first embodiment. However, since there are considerable differences from the first embodiment, an overlapping description will be given.

図4において、34は筐体、29は該筐体34の内部に取り付けられた円筒状のアノード電極で、この実施形態では鉛電極を用いている。
30は該アノード電極29の内側に設けられたカソード電極である。該カソード電極30は、白金電極からなる電極部30aの上部に、リード線に接続される銀線30bを結合し、円筒状の絶縁ガラス32の内部に上記電極部30a及び銀線30bを貫通して構成される。30cは上記アノード電極29のリード線である。
In FIG. 4, 34 is a housing, 29 is a cylindrical anode electrode attached to the inside of the housing 34, and in this embodiment, a lead electrode is used.
Reference numeral 30 denotes a cathode electrode provided inside the anode electrode 29. The cathode electrode 30 has a silver wire 30b connected to a lead wire coupled to an upper portion of an electrode portion 30a made of a platinum electrode, and penetrates the electrode portion 30a and the silver wire 30b inside a cylindrical insulating glass 32. Configured. Reference numeral 30 c denotes a lead wire for the anode electrode 29.

上記筐体34内に形成された電極収納穴34c内には、上記アノード電極29及びカソード電極30が臨むように電解液33が貯留されている。
38は上記カソード電極30の下部のずれを押えるための電極押えカラーである。
In the electrode housing hole 34c formed in the housing 34, the electrolytic solution 33 is stored so that the anode electrode 29 and the cathode electrode 30 face each other.
Reference numeral 38 denotes an electrode pressing collar for pressing a shift of the lower portion of the cathode electrode 30.

31はテフロンFEP材等の水分を遮断し酸素等の気体を透過可能な薄膜からなる酸素透過膜で、図2(B)の接触部31bのように、その中央部内面が上記カソード電極30の電極部30aと所定の圧力で接触せしめられている。   31 is an oxygen permeable film made of a thin film capable of blocking moisture such as Teflon FEP material and allowing gas such as oxygen to pass through. The inner surface of the central part of the cathode electrode 30 is the same as the contact part 31b in FIG. It is brought into contact with the electrode portion 30a with a predetermined pressure.

上記酸素透過膜31の両端部はリテーナ36に当接し、上記筐体34の下部に螺合された下部カバー35をねじ部35aにてねじ込むことにより、該リテーナ36を介して上記筐体34の下部に固定されている。なお、本第2実施形態以降では、第1実施形態で説明した回転止め36aは省略しているが、勿論第1実施形態以外の実施形態で備えることもできる。   Both end portions of the oxygen permeable membrane 31 are in contact with the retainer 36, and a lower cover 35 screwed into the lower portion of the housing 34 is screwed with a screw portion 35 a, whereby the housing 34 is interposed via the retainer 36. It is fixed at the bottom. In the second and subsequent embodiments, the rotation stopper 36a described in the first embodiment is omitted. Of course, the rotation stopper 36a may be provided in an embodiment other than the first embodiment.

37はOリングで、上記筐体34の下面と上記リテーナ36の上面との間に封設されて、上記筐体34の下部側における上記電解液33の漏洩を回避している。   Reference numeral 37 denotes an O-ring that is sealed between the lower surface of the housing 34 and the upper surface of the retainer 36 to avoid leakage of the electrolytic solution 33 on the lower side of the housing 34.

かかる実施形態においては、上記カソード電極30の絶縁ガラス32を、線膨張係数(α)がα=8.5×10-6/℃程度の鉛ガラス材で構成する一方、上記筐体34を、線膨張係数(α)が上記絶縁ガラス32の線膨張係数に近い値であるα=10×10-6/℃程度を有するガラスを添加したポリフェニルサルファイド(PPS)材、又は線膨張係数α=13.5×10-6/℃程度を有するポリフェニルサルファイド材で構成している。
このように、本発明では、一般に上記該筐体の線膨張係数α1と、上記カソード電極の線膨張係数α2との比が、2倍以内であるような材料で構成することが好適である。すなわち、α1:α2=2:1〜1:2、さらに好適にはα1:α2=1.6:1〜1:1.6の範囲を、お互い同士の差が越えないようにすることが好ましい。
In this embodiment, the insulating glass 32 of the cathode electrode 30 is made of a lead glass material having a linear expansion coefficient (α) of about α = 8.5 × 10 −6 / ° C., while the casing 34 is made of Polyphenyl sulfide (PPS) material added with glass having a linear expansion coefficient (α) of about α = 10 × 10 −6 / ° C., which is a value close to the linear expansion coefficient of the insulating glass 32, or the linear expansion coefficient α = It is composed of a polyphenyl sulfide material having about 13.5 × 10 −6 / ° C.
As described above, in the present invention, it is generally preferable to use a material in which the ratio between the linear expansion coefficient α1 of the casing and the linear expansion coefficient α2 of the cathode electrode is within twice. That is, α1: α2 = 2: 1 to 1: 2, more preferably α1: α2 = 1.6: 1 to 1: 1.6 is preferably set such that the difference between them does not exceed each other. .

39は中空の上部筐体で、上記筐体34の電極収納穴34cの上部に螺合される(39aはねじ部)ことにより、該筐体34の上面34dに圧接されている。41は上記上部筐体39の下部外周と上記筐体34の電極収納穴34cの上部内周との間に嵌挿されたOリングで、上記電解液33の筐体34の上面34d側への漏洩をシールしている。
40は上記上部筐体39の上部穴39eに螺合された(40aはねじ部)カバー部材である。
Reference numeral 39 denotes a hollow upper housing that is screwed into the upper portion of the electrode housing hole 34c of the housing 34 (39a is a threaded portion), thereby being pressed against the upper surface 34d of the housing 34. Reference numeral 41 denotes an O-ring fitted between the lower outer periphery of the upper casing 39 and the upper inner periphery of the electrode housing hole 34c of the casing 34, and the electrolyte 33 to the upper surface 34d side of the casing 34. Seals the leak.
A cover member 40 is screwed into the upper hole 39e of the upper casing 39 (40a is a screw portion).

上記アノード電極29は、上部につば部29aが形成され、上記カバー部材40を上部筐体39にねじ込むことにより該つば部29aを挟持し、該つば部29aの上面を上記カバー部材40の下面に接着剤により接着するとともに、該つば部29aの下面を上記上部筐体39の穴に接着剤により接着している。なお、図中Sとして示したものは接着部である。   The anode electrode 29 has a flange portion 29 a formed on the upper portion thereof, and the cover member 40 is screwed into the upper housing 39 to sandwich the flange portion 29 a, and the upper surface of the flange portion 29 a is placed on the lower surface of the cover member 40. While being bonded by an adhesive, the lower surface of the collar portion 29a is bonded to the hole of the upper casing 39 by an adhesive. In addition, what was shown as S in the figure is an adhesion part.

また、上記円筒状の絶縁ガラス32上端面は上記カバー部材40の穴内に接着剤により接着され(Sは接着部)、上記アノード電極29の下端部内周と上記カソード電極30の絶縁ガラス32外周とは接着剤により接着されている(Sは接着部)。   Further, the upper end surface of the cylindrical insulating glass 32 is adhered to the hole of the cover member 40 with an adhesive (S is an adhesive portion), and the inner periphery of the lower end portion of the anode electrode 29 and the outer periphery of the insulating glass 32 of the cathode electrode 30. Are bonded by an adhesive (S is an adhesive portion).

かかる第2実施形態においては、酸素センサ2の温度上昇に伴い、上記筐体34が軸方向(長手方向)に熱膨張するとともに、上記カソード電極30の絶縁ガラス32が上記カバー部材40の穴との接着部Sを起点として、下方に熱膨張する。
しかるに、上記カソード電極30の絶縁ガラス32を、線膨張係数(α)がα=8.5×10-6/℃程度の鉛ガラス材で構成するとともに、上記筐体34を、線膨張係数(α)が上記絶縁ガラス32の線膨張係数に近い値であるα=10×10-6/℃程度を有するガラスを添加したポリフェニルサルファイド(PPS)材、又は線膨張係数α=13.5×10-6/℃程度を有するポリフェニルサルファイド材で構成しているので、上記カソード電極30側の絶縁ガラス32と上記筐体34側の熱膨張量がほぼ同レベルとなり、該カソード電極30の絶縁ガラス32側と筐体34側との熱膨張差がきわめて小さく、又は0(ゼロ)となる。
In the second embodiment, as the temperature of the oxygen sensor 2 rises, the casing 34 is thermally expanded in the axial direction (longitudinal direction), and the insulating glass 32 of the cathode electrode 30 is in contact with the hole of the cover member 40. The thermal expansion is performed downward from the adhesive portion S.
However, the insulating glass 32 of the cathode electrode 30 is made of a lead glass material having a linear expansion coefficient (α) of about α = 8.5 × 10 −6 / ° C., and the casing 34 is made of a linear expansion coefficient ( α) is a polyphenyl sulfide (PPS) material added with a glass having a value of about α = 10 × 10 −6 / ° C., which is close to the linear expansion coefficient of the insulating glass 32, or the linear expansion coefficient α = 13.5 ×. Since it is made of a polyphenyl sulfide material having a temperature of about 10 −6 / ° C., the insulating glass 32 on the cathode electrode 30 side and the thermal expansion amount on the housing 34 side are almost at the same level, and the insulation of the cathode electrode 30 is The difference in thermal expansion between the glass 32 side and the housing 34 side is extremely small or 0 (zero).

したがって、かかる第2実施形態によれば、上記カソード電極30の絶縁ガラス32側の材料と上記筐体34側の材料とを、線膨張係数αがほぼ同レベルの材料の組み合わせとすることにより、上記絶縁ガラス32の下端部に固定された電極部30aと上記薄膜からなる酸素透過膜31の中央部内面との間の接触圧力が、従来技術のように上記カソード電極30の絶縁ガラス32側と上記筐体34側との熱膨張量の差によって低下するのを回避できる。   Therefore, according to the second embodiment, by combining the material on the insulating glass 32 side of the cathode electrode 30 and the material on the housing 34 side with a material having a linear expansion coefficient α of substantially the same level, The contact pressure between the electrode portion 30a fixed to the lower end portion of the insulating glass 32 and the inner surface of the central portion of the oxygen permeable membrane 31 made of the thin film is different from the insulating glass 32 side of the cathode electrode 30 as in the prior art. It is possible to avoid a decrease due to the difference in thermal expansion from the case 34 side.

よって、かかる第2実施形態によれば、上記接触圧力の低下を防止できて、上記電極部30aと上記酸素透過膜31の内面とは常時所定の接触圧力で接触し、高温下長期間保管している間等において化学反応により発生した析出物が、電極部30aと酸素透過膜31の内面との隙間に侵入して、溶存酸素センサ2のセンサ出力が低下するのを回避でき、常時所要のセンサ出力を保持できる。   Therefore, according to the second embodiment, the decrease in the contact pressure can be prevented, and the electrode portion 30a and the inner surface of the oxygen permeable membrane 31 are always in contact with each other at a predetermined contact pressure and stored at a high temperature for a long time. It is possible to prevent the precipitates generated by the chemical reaction during the time of entering the gap between the electrode portion 30a and the inner surface of the oxygen permeable membrane 31 and the sensor output of the dissolved oxygen sensor 2 from being lowered. Sensor output can be maintained.

また、かかる第2実施形態によれば、アノード電極29の上端部を上部筐体39及びカバー部材40に固定するとともに、カソード電極30の上端部をカバー部材40に固定し、該アノード電極29の下部とカソード電極30の中間部とは振れ止め程度の接着Sにとどめて、アノード電極29及びカソード電極30の下端側は自由端に構成し、長手方向の接着剤による拘束部がないので、上記のような熱膨張量の差に伴う電極部30aと酸素透過膜31との間の接触圧力の低下を防止しつつ、アノード電極29及びカソード電極30の熱応力を抑制できる。   Further, according to the second embodiment, the upper end portion of the anode electrode 29 is fixed to the upper casing 39 and the cover member 40, and the upper end portion of the cathode electrode 30 is fixed to the cover member 40. The lower part and the intermediate part of the cathode electrode 30 are limited to the adhesion S that is about the steady state, and the lower ends of the anode electrode 29 and the cathode electrode 30 are configured as free ends, and there is no restraint part due to the adhesive in the longitudinal direction. The thermal stress of the anode electrode 29 and the cathode electrode 30 can be suppressed while preventing a decrease in contact pressure between the electrode portion 30a and the oxygen permeable membrane 31 due to the difference in thermal expansion amount.

また、かかる第2実施形態によれば、上記アノード電極29のつば部29aをカバー部材40と上部筐体39とにより挟持し、該つば部29aの上面をカバー部材40の下面に接着剤により接着部Sにて接着するとともに、該つば部29aの下面を上部筐体39に接着剤により接着部Sにて接着しており、また上記カソード電極30の絶縁ガラス32上端面とカバー部材40とを接着剤により接着部Sにて接着しているので、アノード電極29の上端部及びカソード電極30の上端部を確実に流体シールすることができて、かかる電極接続部からの電解液33の漏洩を防止できる。
<第3実施形態>
Further, according to the second embodiment, the collar portion 29a of the anode electrode 29 is sandwiched between the cover member 40 and the upper housing 39, and the upper surface of the collar portion 29a is bonded to the lower surface of the cover member 40 with the adhesive. The upper surface of the insulating glass 32 of the cathode electrode 30 and the cover member 40 are bonded to each other at the portion S, and the lower surface of the collar portion 29a is bonded to the upper housing 39 with an adhesive. Since the adhesive is bonded at the bonding portion S, the upper end portion of the anode electrode 29 and the upper end portion of the cathode electrode 30 can be surely fluid-sealed, and leakage of the electrolytic solution 33 from the electrode connection portion can be prevented. Can be prevented.
<Third Embodiment>

図5は本発明の第3実施形態を示す、第2実施形態について説明した図4に対応する図である。
かかる第3実施形態においては、上記第2実施形態における39は中空の上部筐体39の上部穴39eにカバー部材40を螺合する構造に代えて、上記中空の上部筐体39の上部穴39eにカバー部材20を嵌合し、上記アノード電極29のつば部29aを上記カバー部材20の下面と上記上部筐体39の穴との間で挟持し、該つば部29aの上面を上記カバー部材20の下面に接着剤により接着するとともに該つば部29aの下面を上部筐体39の穴に接着剤により接着している(Sは接着部)。
FIG. 5 shows the third embodiment of the present invention and corresponds to FIG. 4 describing the second embodiment.
In the third embodiment, 39 in the second embodiment is replaced with a structure in which the cover member 40 is screwed into the upper hole 39e of the hollow upper casing 39, and the upper hole 39e of the hollow upper casing 39 is replaced. The cover member 20 is fitted to the cover member 20, the collar portion 29 a of the anode electrode 29 is sandwiched between the lower surface of the cover member 20 and the hole of the upper housing 39, and the upper surface of the collar portion 29 a is held on the cover member 20. The lower surface of the flange portion 29a is bonded to the hole of the upper housing 39 with an adhesive (S is an adhesive portion).

また、上記カソード電極30の絶縁ガラス32上端面はカバー部材20の穴内に接着剤により接着されている(Sは接着部)。
この第3実施形態の場合は、上部筐体39の上部穴39eにカバー部材20を嵌合し、該カバー部材20に上記アノード電極29及びカソード電極30を接着すればよいので、上記第2実施形態よりも構造が簡単で組み立ても容易となる。
その他の構成及び作用効果は上記第2実施形態と同様であり、これと同一の部材は同一の符号で示す。
<第4実施形態>
Further, the upper end surface of the insulating glass 32 of the cathode electrode 30 is bonded to the hole of the cover member 20 with an adhesive (S is an adhesive portion).
In the case of the third embodiment, the cover member 20 is fitted into the upper hole 39e of the upper casing 39, and the anode electrode 29 and the cathode electrode 30 are bonded to the cover member 20. The structure is simpler and easier to assemble than the form.
Other configurations and operational effects are the same as those of the second embodiment, and the same members are denoted by the same reference numerals.
<Fourth embodiment>

図6は本発明の第4実施形態を示す、第2実施形態について説明した図4に対応する図である。
かかる第4実施形態においては、上記第2実施形態に対して、カバー部材20を上記上部筐体39に螺合し(20aはねじ部)て、上記アノード電極29のつば部29aを該カバー部材20と上部筐体39とにより挟持し、さらに該カバー部材20の内周側に円筒状の内側カバー部材50を螺合して(50aはねじ部)いる。
FIG. 6 shows a fourth embodiment of the present invention and corresponds to FIG. 4 describing the second embodiment.
In the fourth embodiment, the cover member 20 is screwed into the upper casing 39 (20a is a threaded portion), and the collar portion 29a of the anode electrode 29 is connected to the cover member in the second embodiment. 20 and the upper housing 39, and a cylindrical inner cover member 50 is screwed onto the inner peripheral side of the cover member 20 (50a is a threaded portion).

さらに上記カバー部材20の下面には、上記絶縁ガラス32の上端部を接着剤によって接着し(Sは接着部)、該内側カバー部材50によって上記カソード電極30の絶縁ガラス32を介して上記電極部30aと酸素透過膜31の内面との接触部に接触力を付与している。   Further, the upper end portion of the insulating glass 32 is adhered to the lower surface of the cover member 20 with an adhesive (S is an adhesive portion), and the electrode portion is interposed by the inner cover member 50 via the insulating glass 32 of the cathode electrode 30. Contact force is applied to the contact portion between 30a and the inner surface of the oxygen permeable membrane 31.

また、上記上部筐体39の下端部と上記アノード電極29の外周とを接着剤によって接着し(Sは接着部)、上記円筒状の内側カバー部材50の下端部内周と上記絶縁ガラス32の外周とを接着剤によって接着し(Sは接着部)、さらに上記アノード電極29の下端部と上記内側カバー部材50のつば部50aとを接着剤によって接着することにより(Sは接着部)、上記電解液33の漏洩を封止している。   Further, the lower end portion of the upper casing 39 and the outer periphery of the anode electrode 29 are adhered by an adhesive (S is an adhesive portion), the inner periphery of the lower end portion of the cylindrical inner cover member 50 and the outer periphery of the insulating glass 32. Are bonded with an adhesive (S is an adhesive portion), and the lower end portion of the anode electrode 29 and the collar portion 50a of the inner cover member 50 are bonded with an adhesive (S is an adhesive portion). The leakage of the liquid 33 is sealed.

この第4実施形態の場合は、上記カバー部材20の内周に螺合した内側カバー部材50のねじ込み力によって、上記電極部30aと酸素透過膜31の内面との接触部に接触力を付与しているので、該接触部の接触面圧の低下による隙間の形成及びこれに伴う隙間への析出物の侵入を回避できる。   In the case of the fourth embodiment, a contact force is applied to the contact portion between the electrode portion 30a and the inner surface of the oxygen permeable membrane 31 by the screwing force of the inner cover member 50 screwed into the inner periphery of the cover member 20. Therefore, it is possible to avoid the formation of a gap due to a decrease in the contact surface pressure of the contact portion and the intrusion of precipitates into the gap due to this.

その他の構成及び作用効果は上記第2実施形態と同様であり、これと同一の部材は同一の符号で示す。
<第5実施形態>
Other configurations and operational effects are the same as those of the second embodiment, and the same members are denoted by the same reference numerals.
<Fifth Embodiment>

図7は本発明の第5実施形態示す、第2実施形態について説明した図4に対応する図である。
かかる第5実施形態においては、上記第4実施形態に対して、アノード電極29をつば部29aを有しない円筒状に形成し、上記上部筐体39に螺合したカバー部材20の下面に該アノード電極29の上端部を接着剤によって接着するとともに(Sは接着部)、上記カソード電極30の絶縁ガラス32の上端部を上記カバー部材20の内側下面に接着剤によって接着している(Sは接着部)。
FIG. 7 shows a fifth embodiment of the present invention and corresponds to FIG. 4 describing the second embodiment.
In the fifth embodiment, in contrast to the fourth embodiment, the anode electrode 29 is formed in a cylindrical shape without the collar portion 29a, and the anode is formed on the lower surface of the cover member 20 screwed into the upper housing 39. The upper end portion of the electrode 29 is bonded by an adhesive (S is an adhesive portion), and the upper end portion of the insulating glass 32 of the cathode electrode 30 is bonded to the inner lower surface of the cover member 20 by an adhesive (S is an adhesive). Part).

また、上記上部筐体39の下部を上記筐体34内に延長して、奥部で該筐体34と螺合するとともに(34aはねじ部)、上記上部筐体39の下端部とアノード電極29の下端部とを接着剤によって接着している(Sは接着部)。   Further, the lower portion of the upper housing 39 is extended into the housing 34 and screwed into the housing 34 at the back (34a is a screw portion), and the lower end of the upper housing 39 and the anode electrode The lower end part of 29 is adhere | attached with the adhesive agent (S is an adhesion part).

この第5実施形態の場合は、上記カバー部材20のねじ込み力によって、上記電極部30aと酸素透過膜31の内面との接触部に接触力を付与しているので、該接触部の接触面圧の低下による隙間の形成及びこれに伴う隙間への析出物の侵入を回避できる。
その他の構成及び作用効果は上記第4実施形態と同様であり、これと同一の部材は同一の符号で示す。
<第6実施形態>
In the case of this fifth embodiment, since the contact force is applied to the contact portion between the electrode portion 30a and the inner surface of the oxygen permeable membrane 31 by the screwing force of the cover member 20, the contact surface pressure of the contact portion It is possible to avoid the formation of a gap due to a decrease in the thickness and the intrusion of precipitates into the gap due to this.
Other configurations and operational effects are the same as those of the fourth embodiment, and the same members are denoted by the same reference numerals.
<Sixth Embodiment>

図8は本発明の第6実施形態を示す、第2実施形態について説明した図4に対応する図である。
かかる第6実施形態においては、上記第2〜第5実施形態に対して、上記アノード電極29及びカソード電極30の絶縁ガラス32の上端部をパッキンを介して上記上部筐体39側に固定し、上記第2〜第5実施形態における接着剤による接着を廃止している。
40は上記上部筐体39の上部に螺合されたカバー部材(40aはねじ部)、22は該カバー部材40の上部内周に螺合された内側カバー部材である(22aはねじ部)。
FIG. 8 shows the sixth embodiment of the present invention and corresponds to FIG. 4 describing the second embodiment.
In the sixth embodiment, in contrast to the second to fifth embodiments, the upper ends of the insulating glass 32 of the anode electrode 29 and the cathode electrode 30 are fixed to the upper housing 39 side through packing, Adhesion by the adhesive in the second to fifth embodiments is abolished.
Reference numeral 40 denotes a cover member (40a is a screw portion) screwed to the upper portion of the upper casing 39, and 22 is an inner cover member screwed to the upper inner periphery of the cover member 40 (22a is a screw portion).

また、上記円筒形状のアノード電極29の上端部につば部29aを形成し、該つば部29a上面と上記カバー部材40の下面との間にパッキン53を挟み込み、該つば部29aの下面と上記上部筐体39の穴の底面との間にパッキン54を挟み込み、上記カバー部材40を上部筐体39に締め付けることにより、上記パッキン53及びパッキン54による流体シール(電解液33の漏洩シール)を行っている。 Further, a collar portion 29a is formed at the upper end portion of the cylindrical anode electrode 29, and a packing 53 is sandwiched between the upper surface of the collar portion 29a and the lower surface of the cover member 40, and the lower surface of the collar portion 29a and the upper portion of the collar portion 29a. The packing 54 is sandwiched between the bottom surface of the hole of the casing 39 and the cover member 40 is fastened to the upper casing 39 to perform fluid sealing (leakage sealing of the electrolyte 33) by the packing 53 and the packing 54. Yes.

さらに上記カソード電極30の絶縁ガラス32の上端部につば部32aを形成し、該つば部32a上面と上記内側カバー部材22の下面との間にパッキン51を挟み込み、該つば部32aの下面と上記カバー部材40の穴の底面との間にパッキン52を挟み込み、上記内側カバー部材22をカバー部材40に締め付けることにより、上記パッキン51及びパッキン52による流体シール(電解液33の漏洩シール)を行っている。 Further, a collar portion 32a is formed at the upper end portion of the insulating glass 32 of the cathode electrode 30, and a packing 51 is sandwiched between the upper surface of the collar portion 32a and the lower surface of the inner cover member 22, and the lower surface of the collar portion 32a and the above-mentioned The packing 52 is sandwiched between the bottom surface of the hole of the cover member 40 and the inner cover member 22 is fastened to the cover member 40, thereby performing fluid sealing (leakage sealing of the electrolyte 33) by the packing 51 and the packing 52. Yes.

この第6実施形態の場合は、アノード電極29の上端部に形成されたつば部29a両面及びカソード電極30の上端部に形成されたつば部32a両面を、パッキン53、パッキン54及びパッキン51、パッキン52によってそれぞれシールしているので、上記第1〜第5実施例のように接着剤による接着を行うことなく、より確実に電解液33の漏洩シールを行うことができる。 In the case of the sixth embodiment, both sides of the collar portion 29a formed on the upper end portion of the anode electrode 29 and both sides of the collar portion 32a formed on the upper end portion of the cathode electrode 30 are connected to the packing 53, the packing 54, the packing 51, and the packing. Therefore, the leakage of the electrolyte solution 33 can be more reliably performed without bonding with an adhesive as in the first to fifth embodiments.

また、上記アノード電極29の上端のつば部29a及びカソード電極30の上端つば部32aをパッキン51〜54を介装した強固な固定端に構成することにより、下端側を拘束部が無い完全な自由端に構成できるので、アノード電極29及びカソード電極30の熱応力を抑制効果が大きくなる。 In addition, the upper end collar portion 29a of the anode electrode 29 and the upper end collar portion 32a of the cathode electrode 30 are configured as strong fixed ends with packings 51 to 54 interposed therebetween, so that the lower end side is completely free of any restraining portion. Since it can be configured at the end, the effect of suppressing the thermal stress of the anode electrode 29 and the cathode electrode 30 is increased.

その他の構成及び作用効果は上記第2実施形態と同様であり、これと同一の部材は同一の符号で示す。
<第7実施形態>
Other configurations and operational effects are the same as those of the second embodiment, and the same members are denoted by the same reference numerals.
<Seventh embodiment>

図9は本発明の第7実施形態を示す、第2実施形態について説明した図4に対応する図である。
かかる第7実施形態においては、上記第2〜第5実施形態に対して、上記アノード電極29及びカソード電極30の絶縁ガラス32の上端部を、パッキン、Oリング、及び接着手段を組み合わせて用いて上記上部筐体39側に固定している。
FIG. 9 shows the seventh embodiment of the present invention and corresponds to FIG. 4 describing the second embodiment.
In the seventh embodiment, the upper ends of the insulating glass 32 of the anode electrode 29 and the cathode electrode 30 are used in combination with packing, an O-ring, and an adhesive means, as compared with the second to fifth embodiments. It is fixed to the upper casing 39 side.

すなわち、図9において、上記上部筐体39は、上記筐体34内部に収納される円筒における最下部のねじ部34aの内周側につば部39bを形成し、円筒体に形成された上記アノード電極29の下端面と該つば部39bの上面との間にパッキン24を挿入している。 That is, in FIG. 9, the upper casing 39 is formed with a collar portion 39b on the inner peripheral side of the lowermost threaded portion 34a in the cylinder housed in the casing 34, and the anode formed in the cylindrical body. The packing 24 is inserted between the lower end surface of the electrode 29 and the upper surface of the collar portion 39b.

一方、上記上部筐体39にはカバー部材40が螺合され(40aはねじ部)、該カバー部材40の下面と上記アノード電極29の上面との間にはパッキン53が挿入されている。
したがって、上記カバー部材40を上部筐体39にねじ込むことにより、上部側の上記パッキン53を圧縮するとともに下部側のパッキン24を圧縮することにより、アノード電極29側の電解液の漏洩シールを確実に行うことができる。
On the other hand, a cover member 40 is screwed into the upper casing 39 (40a is a threaded portion), and a packing 53 is inserted between the lower surface of the cover member 40 and the upper surface of the anode electrode 29.
Therefore, by screwing the cover member 40 into the upper housing 39, the upper packing 53 is compressed and the lower packing 24 is compressed, so that the leakage seal of the electrolyte on the anode electrode 29 side can be ensured. It can be carried out.

また、上記カソード電極30の絶縁ガラス32の上端部の外周と上記カバー部材40の穴部内周との間にはOリング23が介装されるとともに、該カソード電極30の絶縁ガラス32の上端面と上記カバー部材40の穴部底面とを接着剤によって接着している(Sは接着部)。   An O-ring 23 is interposed between the outer periphery of the upper end portion of the insulating glass 32 of the cathode electrode 30 and the inner periphery of the hole portion of the cover member 40, and the upper end surface of the insulating glass 32 of the cathode electrode 30. And the hole bottom surface of the cover member 40 are bonded by an adhesive (S is an adhesive portion).

この第7実施形態の場合は、アノード電極29の上端部及び下端部をパッキン53,24で電解液の漏洩シールを行い、上記筐体34との熱膨張差が問題になるカソード電極30の上端部側は、Oリング23及び接着剤による接着を併用して電解液の漏洩シールを行う構造としたので、カソード電極30側と筐体34との熱膨張差が抑制され、熱応力を低減しつつ電解液の漏洩シールを確実に行うことができる。   In the case of the seventh embodiment, the upper end and the lower end of the anode electrode 29 are sealed with electrolytes 53 and 24, and the upper end of the cathode electrode 30 is problematic because of the difference in thermal expansion from the casing 34. Since the part side has a structure in which the electrolyte solution leaks and seals by using the O-ring 23 and adhesive bonding together, the difference in thermal expansion between the cathode electrode 30 side and the housing 34 is suppressed, and the thermal stress is reduced. In addition, the electrolyte solution can be securely sealed.

その他の構成及び作用効果は上記第2実施形態と同様であり、これと同一の部材は同一の符号で示す。
<第8実施形態>
Other configurations and operational effects are the same as those of the second embodiment, and the same members are denoted by the same reference numerals.
<Eighth Embodiment>

図10は本発明の第8実施形態を示す、第2実施形態について説明した図4に対応する図である。
かかる第8実施形態においては、上記第2〜第5実施形態に対して、上記円筒形状のアノード電極29の上端部につば部29aを形成し、該つば部29a上面と上記上部筐体39に螺合されたカバー部材40の下面との間にパッキン53を挟み込み、該つば部29aの下面と上記上部筐体39の穴の底面との間にパッキン54を挟み込み、上記カバー部材40を上部筐体39に締め付けることにより、上記パッキン53及びパッキン54による電解液33の漏洩シールを行っている。
FIG. 10 shows an eighth embodiment of the present invention and is a view corresponding to FIG. 4 describing the second embodiment.
In the eighth embodiment, a collar portion 29a is formed at the upper end portion of the cylindrical anode electrode 29, and the upper surface of the collar portion 29a and the upper housing 39 are compared with the second to fifth embodiments. A packing 53 is sandwiched between the lower surface of the screwed cover member 40, a packing 54 is sandwiched between the lower surface of the collar portion 29a and the bottom surface of the hole of the upper housing 39, and the cover member 40 is disposed in the upper housing. By tightening to the body 39, leakage sealing of the electrolyte solution 33 by the packing 53 and the packing 54 is performed.

また、上記カソード電極30の絶縁ガラス32の上端部の外周と上記カバー部材40の穴部内周との間にはOリング55を介装し、さらに上記絶縁ガラス32の下端部の外周と上記アノード電極29の下端部内周との間にOリング56を介装している。
したがって、かかる第8実施形態においては、カソード電極30側の熱膨張を拘束して熱応力を発生させることなく上下2つのOリング55,56によってカソード電極30側における電解液33の漏洩シールを行うことができるとともに、アノード電極29は上端部を、パッキン53,54を介してのアノード電極29の強固な締着により電解液33の漏洩シールを確実に行うことができる。
Further, an O-ring 55 is interposed between the outer periphery of the upper end portion of the insulating glass 32 of the cathode electrode 30 and the inner periphery of the hole portion of the cover member 40, and the outer periphery of the lower end portion of the insulating glass 32 and the anode An O-ring 56 is interposed between the inner periphery of the lower end of the electrode 29.
Therefore, in the eighth embodiment, the leakage of the electrolytic solution 33 on the cathode electrode 30 side is sealed by the upper and lower O-rings 55 and 56 without restraining thermal expansion on the cathode electrode 30 side and generating thermal stress. In addition, the anode electrode 29 can securely seal the leakage of the electrolyte solution 33 by firmly fastening the anode electrode 29 through the packings 53 and 54 at the upper end.

その他の構成及び作用効果は上記第2実施形態と同様であり、これと同一の部材は同一の符号で示す。
なお、要求される溶存酸素センサの性能によっては、上記線膨張係数に関連する改良部分とは無関係に、第2〜第8実施形態について説明したシール構造のみを改良点として実施することもできる。
Other configurations and operational effects are the same as those of the second embodiment, and the same members are denoted by the same reference numerals.
Depending on the required performance of the dissolved oxygen sensor, only the seal structure described in the second to eighth embodiments can be implemented as an improved point regardless of the improved portion related to the linear expansion coefficient.

上記第1実施形態に係る溶存酸素センサ(実施例1〜3)、上記第8実施形態に係る溶存酸素センサ(実施例4〜6)、従来品に係る溶存酸素センサ(比較例1、2)について、65℃という高温に放置した場合の出力低下を調べた結果を図11に示す。また、実施例1〜3、実施例4〜6、比較例1、2の各平均を取り、傾向をまとめたものを図12に示す。   The dissolved oxygen sensor according to the first embodiment (Examples 1 to 3), the dissolved oxygen sensor according to the eighth embodiment (Examples 4 to 6), and the dissolved oxygen sensor according to the conventional product (Comparative Examples 1 and 2) FIG. 11 shows the result of examining the decrease in output when left at a high temperature of 65 ° C. Moreover, what took each average of Examples 1-3, Examples 4-6, and Comparative Examples 1 and 2 and put together the tendency is shown in FIG.

これらの結果から了解されるように、従来品に比べ、線膨張係数に関する改良のみを行った実施例1〜3でも明らかに溶存酸素センサの初期出力の低下が抑制されている。さらに、構造的改良を図った第8実施形態に係る実施例4〜6では、2000時間近い負荷がかかっても、初期出力の60%を維持していた。   As can be understood from these results, the decrease in the initial output of the dissolved oxygen sensor is clearly suppressed even in Examples 1 to 3 in which only the improvement relating to the linear expansion coefficient is performed as compared with the conventional product. Furthermore, in Examples 4 to 6 according to the eighth embodiment in which structural improvements were made, 60% of the initial output was maintained even when a load of nearly 2000 hours was applied.

なお、第1、8実施形態に係る実施例1〜6おいては、上記カソード電極30の絶縁ガラス32を線膨張係数(α)がα=8.5×10-6/℃の鉛ガラス材で構成するとともに上記筐体34を線膨張係数(α)が絶縁ガラス32の線膨張係数に近い値であるα=10×10-6/℃のガラスを添加したポリフェニルサルファイド材で構成した。
比較例1、2においては、上記カソード電極30の絶縁ガラス32を線膨張係数(α)がα=8.5×10-6/℃の鉛ガラス材で構成するとともに上記筐体34を線膨張係数(α)がα=8.5×10-5/℃と大きいポリアセタール材で構成した。
In Examples 1 to 6 according to the first and eighth embodiments, the insulating glass 32 of the cathode electrode 30 is a lead glass material having a linear expansion coefficient (α) of α = 8.5 × 10 −6 / ° C. The casing 34 is made of a polyphenyl sulfide material added with glass having a coefficient of linear expansion (α) close to the coefficient of linear expansion of the insulating glass 32 and α = 10 × 10 −6 / ° C.
In Comparative Examples 1 and 2, the insulating glass 32 of the cathode electrode 30 is made of a lead glass material having a linear expansion coefficient (α) of α = 8.5 × 10 −6 / ° C. and the casing 34 is linearly expanded. The polyacetal material having a large coefficient (α) of α = 8.5 × 10 −5 / ° C. was used.

上記第1実施形態に係る溶存酸素センサ(実施例1〜3)、上記第8実施形態に係る溶存酸素センサ(実施例4〜6)、従来品に係る溶存酸素センサ(比較例1、2)について、65℃という高温に放置した場合の、無酸素水に対する室温でのセンサ出力を調べた結果を図13に示す。   The dissolved oxygen sensor according to the first embodiment (Examples 1 to 3), the dissolved oxygen sensor according to the eighth embodiment (Examples 4 to 6), and the dissolved oxygen sensor according to the conventional product (Comparative Examples 1 and 2) Fig. 13 shows the results of examining the sensor output at room temperature with respect to oxygen-free water when left at a high temperature of 65 ° C.

比較例1、2では、無酸素水であっても、上記した電極先端と酸素透過膜との間隙が広がったため、電解液が流動しやすくなり、上方にある電解液に酸素を保持しがちになり、無酸素水でも酸素を検知してしまった状態であることが了解される。実施例1〜6は、そのようなことを生じていない。これは、特にバイオセンサのような微少な変化に鋭敏に対応することを要求される適用対象にとってはその効果が大きい。   In Comparative Examples 1 and 2, even in the case of oxygen-free water, the gap between the electrode tip and the oxygen permeable membrane is widened, so that the electrolyte tends to flow, and oxygen tends to be held in the electrolyte above. Therefore, it is understood that oxygen is detected even in anoxic water. Examples 1-6 do not have such a thing. This is particularly effective for an application object that is required to respond sensitively to minute changes such as a biosensor.

本発明によれば、化学反応による析出物のカソード電極と酸素透過膜との間への侵入に伴うセンサ出力の低下を防止できるとともに、電極部の熱応力を低減でき、性能の向上がなされた溶存酸素センサを提供できる。   According to the present invention, it is possible to prevent a decrease in sensor output due to penetration of a precipitate due to a chemical reaction between the cathode electrode and the oxygen permeable membrane, and it is possible to reduce the thermal stress of the electrode portion, thereby improving the performance. A dissolved oxygen sensor can be provided.

本発明に係る溶存酸素センサを装備したバイオセンサの概略構造を示す構成図である。It is a block diagram which shows schematic structure of the biosensor equipped with the dissolved oxygen sensor which concerns on this invention. (A)は上記溶存酸素センサのセンサ部の概略構造を示す概略構成図、(B)は(A)におけるZ部拡大図である。(A) is a schematic block diagram which shows schematic structure of the sensor part of the said dissolved oxygen sensor, (B) is the Z section enlarged view in (A). 本発明の第1実施形態に係る隔膜式ガルバニ電池溶存酸素センサの要部構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part structure of the diaphragm type | mold galvanic cell dissolved oxygen sensor which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る隔膜式ガルバニ電池溶存酸素センサの要部構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part structure of the diaphragm type | mold galvanic cell dissolved oxygen sensor which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態を示す、第2実施形態について用いた図4に対応する縦断面図である。It is a longitudinal cross-sectional view corresponding to FIG. 4 used about 2nd Embodiment which shows 3rd Embodiment of this invention. 本発明の第4実施形態を示す、第2実施形態について用いた図4に対応する縦断面図である。It is a longitudinal cross-sectional view corresponding to FIG. 4 used about 2nd Embodiment which shows 4th Embodiment of this invention. 本発明の第5実施形態を示す、第2実施形態について用いた図4に対 応する縦断面図である。FIG. 6 is a longitudinal sectional view corresponding to FIG. 4 used for the second embodiment, showing a fifth embodiment of the present invention. 本発明の第6実施形態を示す、第2実施形態について用いた図4に対応する縦断面図である。It is a longitudinal cross-sectional view corresponding to FIG. 4 used about 2nd Embodiment which shows 6th Embodiment of this invention. 本発明の第7実施形態を示す、第2実施形態について用いた図4に対応する縦断面図である。It is a longitudinal cross-sectional view corresponding to FIG. 4 used about 2nd Embodiment which shows 7th Embodiment of this invention. 本発明の第8実施形態を示す、第2実施形態について用いた図4に対応する縦断面図である。It is a longitudinal cross-sectional view corresponding to FIG. 4 used about 2nd Embodiment which shows 8th Embodiment of this invention. 第1実施形態に係る溶存酸素センサ(実施例1〜3)、第8実施形態に係る溶存酸素センサ(実施例4〜6)、従来品に係る溶存酸素センサ(比較例1、2)について、65℃という高温に放置した場合の出力低下を調べた結果を示すグラフである。About the dissolved oxygen sensor (Examples 1-3) which concerns on 1st Embodiment, the dissolved oxygen sensor (Examples 4-6) which concerns on 8th Embodiment, and the dissolved oxygen sensor (Comparative Examples 1 and 2) which concern on a conventional product, It is a graph which shows the result of having investigated the output fall at the time of leaving at high temperature of 65 degreeC. 実施例1〜3、実施例4〜6、比較例1、2の各平均を取った結果を示すグラフである。It is a graph which shows the result of having taken each average of Examples 1-3, Examples 4-6, and Comparative Examples 1 and 2. FIG. 上記第1実施形態に係る溶存酸素センサ(実施例1〜3)、上記第8実施形態に係る溶存酸素センサ(実施例4〜6)、従来品に溶存センサ(比較例1、2)について、65℃という高温に放置した場合の、無酸素水に対する室温でのセンサ出力を調べた結果を示すグラフである。About the dissolved oxygen sensor (Examples 1-3) which concerns on the said 1st Embodiment, the dissolved oxygen sensor (Examples 4-6) which concerns on the said 8th Embodiment, and a dissolved sensor (Comparative Examples 1 and 2) to a conventional product, It is a graph which shows the result of having investigated the sensor output at the room temperature with respect to anoxic water at the time of leaving to high temperature of 65 degreeC.

符号の説明Explanation of symbols

1 微生物膜
2 溶存酸素センサ
3 リード線
4 フローセル
5 試料流路
20,40 カバー部材
23,41, Oリング
29 アノード電極
30 カソード電極
30a 電極部
31 酸素透過膜
32 絶縁ガラス
33 電解液
34 筐体
39 上部筐体
51 パッキン
S 接着部
DESCRIPTION OF SYMBOLS 1 Microbial membrane 2 Dissolved oxygen sensor 3 Lead wire 4 Flow cell 5 Sample flow path 20 and 40 Cover members 23 and 41, O-ring 29 Anode electrode 30 Cathode electrode 30a Electrode part 31 Oxygen permeable film 32 Insulating glass 33 Electrolytic solution 34 Case 39 Upper casing 51 Packing S Bonding part

Claims (9)

気体の酸素濃度や水等の液体に溶解する酸素量を測定する溶存酸素センサにおいて、酸素を透過するための酸素透過膜を備え、上記酸素透過膜の内側に圧接する電極部を備え、該電極部の外側を絶縁保護部の内部に貫通して構成されたカソード電極と、上記カソード電極が内側に設置されたアノード電極と、上記カソード電極及び該アノード電極が臨む電解液とを筐体内に設け、該筐体は、その線膨張係数α1と上記カソード電極の線膨張係数α2との差が小さくなるような材料で構成してなり、上記筐体の線膨張係数α1と、上記カソード電極の線膨張係数α2との比が、2倍以内となるような材料で構成していることを特徴とする溶存酸素センサ。 A dissolved oxygen sensor for measuring the oxygen concentration of a gas and the amount of oxygen dissolved in a liquid such as water, comprising an oxygen permeable membrane for permeating oxygen, comprising an electrode portion in pressure contact with the inside of the oxygen permeable membrane, A cathode electrode configured by penetrating the outside of the insulating part into the inside of the insulating protection unit, an anode electrode having the cathode electrode installed therein, and an electrolyte solution facing the cathode electrode and the anode electrode are provided in the housing , the housing, the linear expansion coefficient Ri α1 and name in the difference between the linear expansion coefficient α2 of the cathode electrode is composed of a material smaller, the linear expansion coefficient α1 of the housing, the cathode electrode A dissolved oxygen sensor , characterized in that it is made of a material that has a ratio to the linear expansion coefficient α2 that is twice or less . 上記カソード電極の絶縁保護部をガラス材、又は絶縁性を有するセラミックスあるいは樹脂材のいずれかで構成したことを特徴とする請求項1の溶存酸素センサ。 2. The dissolved oxygen sensor according to claim 1, wherein the insulation protection portion of the cathode electrode is made of either a glass material, an insulating ceramic, or a resin material. 上記カソード電極及びアノード電極の一端側を上記筐体の上部に設けられた第2の筐体に固定し、他端側を実質的な自由端に構成してなることを特徴とする請求項1又は2の溶存酸素センサ。 Claim, characterized by comprising the one end of the cathode electrode and the anode electrode is fixed to the second housing provided in the upper portion of the housing, constitutes the other side to a substantial free end 1 Or 2 dissolved oxygen sensors. 上記第2の筐体は、上記筐体の上部に固定された上部筐体と該上部筐体に螺合され、又は該上部筐体に嵌合されたカバー部材からなり、上記上部筐体とカバー部材との間に上記アノード電極の上端部を挟持し接着剤により接着するとともに、上記カソード電極の上端部を上記カバー部材に接着剤により接着して構成したことを特徴とする請求項3の溶存酸素センサ。 The second casing includes an upper casing fixed to an upper portion of the casing and a cover member screwed into the upper casing or fitted to the upper casing. thereby adhering the sandwiched adhesive upper end portion of the anode electrode between the cover member, the upper end portion of the cathode electrode of claim 3, characterized by being configured bonded with adhesive to the cover member Dissolved oxygen sensor. 上記第2の筐体は、上記筐体の上部に固定された上部筐体と該上部筐体の内周に螺合されたカバー部材と該カバー部材の内周に螺合された内側カバー部材とにより構成され、上記内側カバー部材の下面に上記カソード電極の上端部を当接させて、上記内側カバー部材のねじ込み力によって上記カソード電極の電極部と上記酸素透過膜の内面との接触部に接触力を付与するように構成したことを特徴とする請求項3の溶存酸素センサ。 The second casing includes an upper casing fixed to the upper section of the casing, a cover member screwed to the inner periphery of the upper casing, and an inner cover member screwed to the inner periphery of the cover member The upper end portion of the cathode electrode is brought into contact with the lower surface of the inner cover member, and the contact portion between the electrode portion of the cathode electrode and the inner surface of the oxygen permeable membrane is caused by the screwing force of the inner cover member. The dissolved oxygen sensor according to claim 3 , wherein the sensor is configured to apply a contact force. 上記第2の筐体は、上記筐体の上部に固定された上部筐体と該上部筐体の内周に螺合されたカバー部材とにより構成され、上記カバー部材の下面に上記カソード電極の上端部を当接させて、上記カバー部材のねじ込み力によって上記カソード電極の電極部と上記酸素透過膜の内面との接触部に接触力を付与するように構成したことを特徴とする請求項3の溶存酸素センサ。 The second casing includes an upper casing fixed to an upper portion of the casing and a cover member screwed to an inner periphery of the upper casing, and the cathode electrode is formed on a lower surface of the cover member. is abutted against the upper end, claim 3, characterized by being configured to apply a contact force to the contact portion between the electrode portion and the inner surface of the oxygen permeable film of the cathode electrode by screwing force of the cover member Dissolved oxygen sensor. 上記カソード電極の上端部及び上記アノード電極の上端部を、パッキンを介して上記第2の筐体に固定するとともに、上記カソード電極及びアノード電極の下端側を自由端に構成してなることを特徴とする請求項3の溶存酸素センサ。 The upper end portion of the cathode electrode and the upper end portion of the anode electrode are fixed to the second casing through packing, and the lower end side of the cathode electrode and anode electrode is configured as a free end. The dissolved oxygen sensor according to claim 3 . 上記アノード電極の上端部及び下端部を、パッキンを介して上記第2の筐体に固定するとともに、上記カソード電極の上端部と上記第2の筐体との間にOリングを介装し、上記2つのパッキン及びOリングにより電解液の漏洩シールを行うように構成したことを特徴とする請求項3の溶存酸素センサ。 The upper end and the lower end of the anode electrode are fixed to the second casing through packing, and an O-ring is interposed between the upper end of the cathode electrode and the second casing, 4. The dissolved oxygen sensor according to claim 3 , wherein said two packings and an O-ring are configured to perform leakage leakage sealing of the electrolyte. 上記アノード電極の上端部を、パッキンを介して上記第2の筐体に固定するとともに、上記カソード電極の上端部と上記第2の筐体との間及びアノード電極の下端部内周と上記カソード電極の中間部外周との間にOリングをそれぞれ介装し、上記パッキン及び上記2つのOリングにより電解液の漏洩シールを行うように構成したことを特徴とする請求項3の溶存酸素センサ。 The upper end portion of the anode electrode is fixed to the second casing via a packing, and the upper end portion of the cathode electrode and the second casing, the inner periphery of the lower end portion of the anode electrode, and the cathode electrode 4. The dissolved oxygen sensor according to claim 3, wherein an O-ring is interposed between the outer periphery of each of the intermediate portions and the electrolyte and the two O-rings are sealed to leak electrolyte.
JP2005117984A 2005-04-15 2005-04-15 Dissolved oxygen sensor Active JP4558567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005117984A JP4558567B2 (en) 2005-04-15 2005-04-15 Dissolved oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005117984A JP4558567B2 (en) 2005-04-15 2005-04-15 Dissolved oxygen sensor

Publications (2)

Publication Number Publication Date
JP2006300530A JP2006300530A (en) 2006-11-02
JP4558567B2 true JP4558567B2 (en) 2010-10-06

Family

ID=37469015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005117984A Active JP4558567B2 (en) 2005-04-15 2005-04-15 Dissolved oxygen sensor

Country Status (1)

Country Link
JP (1) JP4558567B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101020570B1 (en) * 2008-05-30 2011-03-09 주식회사 과학기술분석센타 A Portable instrument for measuring DO, and the method of monitoring DO using the said instrument
JP5069647B2 (en) * 2008-09-02 2012-11-07 株式会社堀場製作所 Dissolved oxygen sensor
CN101825598B (en) * 2010-03-29 2013-01-23 江苏省蓝大机电设备科技有限公司 Extremely common dissolved oxygen electrode
KR101507334B1 (en) 2014-10-23 2015-03-31 길주형 Dissolved Oxygen Sensor
KR101507330B1 (en) * 2014-10-23 2015-03-31 길주형 Dissolved Oxygen Sensor
KR101617687B1 (en) 2015-10-20 2016-05-04 대윤계기산업(주) Dissolved oxygen sensor and device for measuring dissolved oxygen
KR101780985B1 (en) * 2016-08-05 2017-09-25 대윤계기산업 주식회사 A measuring apparatus of dissolved oxygen
CN110487875A (en) * 2019-08-20 2019-11-22 天津大学 A kind of biosensor measuring water body different depth dissolved oxygen
CN117836619A (en) * 2021-08-27 2024-04-05 株式会社堀场先进技术 Oxygen sensor, water quality measuring device and oxygen measuring method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358148A (en) * 1986-08-28 1988-03-12 Jgc Corp Dissolved oxygen sensor
JPS63208755A (en) * 1987-02-25 1988-08-30 Daikin Ind Ltd Manufacture of electrode for polarograph
JP2003004694A (en) * 2000-06-30 2003-01-08 Denso Corp Gas sensor
JP2004132915A (en) * 2002-10-15 2004-04-30 Oji Keisoku Kiki Kk Microbial electrode, oxygen electrode for microbial electrode, and measuring instrument using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358148A (en) * 1986-08-28 1988-03-12 Jgc Corp Dissolved oxygen sensor
JPS63208755A (en) * 1987-02-25 1988-08-30 Daikin Ind Ltd Manufacture of electrode for polarograph
JP2003004694A (en) * 2000-06-30 2003-01-08 Denso Corp Gas sensor
JP2004132915A (en) * 2002-10-15 2004-04-30 Oji Keisoku Kiki Kk Microbial electrode, oxygen electrode for microbial electrode, and measuring instrument using it

Also Published As

Publication number Publication date
JP2006300530A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4558567B2 (en) Dissolved oxygen sensor
US20200300808A1 (en) Potentiometric sensor
US3539455A (en) Membrane polarographic electrode system and method with electrochemical compensation
Karbue et al. A microsensor for urea based on an ion-selective field effect transistor
Soldatkin et al. Creatinine sensitive biosensor based on ISFETs and creatinine deiminase immobilised in BSA membrane
JP2009544020A (en) Protective device for humidity sensor in erosive outside air
US20120152765A1 (en) Potentiometric sensor and method for the start-up of a potentiometric sensor
JPH04504912A (en) Measuring sensor for amperometric measurement of gases and/or nonionic compounds contained in the measuring medium
US8632665B2 (en) Electrochemical sensor with diffusion labyrinth
JP5174914B2 (en) Constant potential electrolytic oxygen sensor
CN110501112B (en) Submersible transducer configured to resist liquid penetration
CA2648355A1 (en) Oxygen sensor
JP6467146B2 (en) Diaphragm sensor, liquid analyzer
CN110749636B (en) Diaphragm sensor, liquid analyzer, and liquid analyzing method
Mokhtarifar et al. Low-cost EGFET-based pH-sensor using encapsulated ITO/PET-electrodes
GB2299863A (en) Electrochemical measuring sensor
JP4835436B2 (en) Electrochemical gas sensor and manufacturing method thereof
US20100315107A1 (en) Electrode for electrochemical measurement apparatus and electrode for biosensors
NO833886L (en) METHOD AND DEVICE FOR DETERMINING HYDROGEN FLOW.
JP3647019B2 (en) Fixing device for oxygen permeable membrane of dissolved oxygen electrode for biosensor
US11536683B2 (en) Half cell and method for manufacturing a half cell
JP2864878B2 (en) Galvanic cell type oxygen sensor
JP3042616B2 (en) Constant potential electrolytic gas sensor
US20220283112A1 (en) Peracetic acid concentration meter
US11467119B2 (en) Ion-selective electrode and electrochemical sensor

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20080313

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080314

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100721

R150 Certificate of patent or registration of utility model

Ref document number: 4558567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140730

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250