JP4558297B2 - Detection / separation / identification method of expressed trace protein / peptide - Google Patents

Detection / separation / identification method of expressed trace protein / peptide Download PDF

Info

Publication number
JP4558297B2
JP4558297B2 JP2003342681A JP2003342681A JP4558297B2 JP 4558297 B2 JP4558297 B2 JP 4558297B2 JP 2003342681 A JP2003342681 A JP 2003342681A JP 2003342681 A JP2003342681 A JP 2003342681A JP 4558297 B2 JP4558297 B2 JP 4558297B2
Authority
JP
Japan
Prior art keywords
protein
peptide
fluorescent
hplc
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003342681A
Other languages
Japanese (ja)
Other versions
JP2005017264A (en
Inventor
一洋 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003342681A priority Critical patent/JP4558297B2/en
Publication of JP2005017264A publication Critical patent/JP2005017264A/en
Application granted granted Critical
Publication of JP4558297B2 publication Critical patent/JP4558297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

本発明は、微量の発現タンパク質及び/又はペプチドの検出・分離・同定方法に関するものであり、更に詳しくは、生体において遺伝子の発現により産生される微量の発現タンパク質及び/又はペプチドを簡便な方法で、高感度に検出し、同定することを可能とする新規な発現タンパク質及び/又はペプチドの検出・分離・同定方法、及びその同定システムに関するものである。
本発明は、ポストゲノム時代において重要な役割を果たすことが期待される、発現タンパク質及び/又はペプチドを網羅的に解析するプロテオーム技術における新しい検出・分離・同定手法を提供するものとして有用である。
The present invention relates to a method for detecting / separating / identifying a minute amount of expressed protein and / or peptide. More specifically, the present invention relates to a minute amount of expressed protein and / or peptide produced by gene expression in a living body by a simple method. The present invention relates to a novel expression protein and / or peptide detection / separation / identification method and identification system that enable detection and identification with high sensitivity.
The present invention is useful as a new detection / separation / identification technique in proteome technology that comprehensively analyzes expressed proteins and / or peptides that are expected to play an important role in the post-genomic era.

ポストゲノム時代において重要な課題は、遺伝子を介して発現する発現タンパク質/ペプチドの微量検出とその分離・同定である。従来、この課題達成のために、2次元電氣泳動後のペプチドフィンガープリント法が汎用されてきた(非特許文献1参照)。しかし、この方法は、煩雑な操作のために該方法の再現性に難点があった。この難点を克服する手法として、最近、多次元高速液体クロマトグラフィー(多次元HPLC)による分離・同定法、或いはICATによる手法が提案されている(非特許文献2参照)。   An important issue in the post-genomic era is the detection and separation / identification of expressed proteins / peptides expressed via genes. Conventionally, in order to achieve this problem, a peptide fingerprint method after two-dimensional electrophoresis has been widely used (see Non-Patent Document 1). However, this method has difficulty in reproducibility of the method due to complicated operations. As a technique for overcoming this difficulty, a separation / identification method by multidimensional high performance liquid chromatography (multidimensional HPLC) or a technique by ICAT has been recently proposed (see Non-Patent Document 2).

これらのうち、タンパク質/ペプチドを、直接、多次元HPLCで分離・同定する方法は、全てのタンパク質/ペプチドを同時に処理するために、多大な労力と時間を要するという欠点がある。また、ICATによる手法は、チオール含有タンパク質/ペプチドのチオール基をisotope−coded affinity tags (ICAT) reagentで標識した後、それをビオチン結合カラムにて捕集し、これら全てを酵素水解し、得られたペプチドフラグメント混合物をHPLCで分離、質量分析計(MS)にて質量分析し、タンパク質/ペプチドを網羅的に解析しようとするものである。しかし、この方法は、チオール含有タンパク質/ペプチドの全てを酵素水解するため、大量に存在する目的以外のタンパク質/ペプチドのフラグメントが、目的とする微量タンパク質/ペプチドのフラグメントの検出及びその同定を妨害する、と言う欠点があり、当技術分野においては、更なる方法のブレークスルーが必要とされていた。   Among these, the method of directly separating and identifying proteins / peptides by multidimensional HPLC has a drawback that it takes a lot of labor and time to process all the proteins / peptides simultaneously. Moreover, the method by ICAT is obtained by labeling the thiol group of a thiol-containing protein / peptide with isotopic-coded affinity tags (ICAT) reagent, collecting it with a biotin-binding column, and hydrolyzing all of them. The peptide fragment mixture was separated by HPLC and mass analysis was performed with a mass spectrometer (MS) to comprehensively analyze proteins / peptides. However, this method enzymatically hydrolyzes all of the thiol-containing proteins / peptides, so that a large amount of non-target protein / peptide fragments interferes with the detection and identification of the desired trace protein / peptide fragments. , And there has been a need in the art for further method breakthroughs.

Dunn MJ.Two−dimensional gel electrophoresis of proteins, J Chromatogr 1987;418:145−185Dunn MJ. Two-dimensional gel electrophoresis of proteins, J Chromatogr 1987; 418: 145-185. Gygi S.P, Rist B, Gerber S.A, Turecek F, Gelb M.H, Aebersold R、 Quantitative analysis of complex protein mixtures using isotope−coded affinitytags,Nature Biotechnology 1999;17:994−999Gygi S.M. P, Rist B, Gerber S. A, Truecek F, Gelb M. et al. H, Abersold R, Quantitative analysis of complex protein mixture using isotopic-coded affinity tags, Nature Biotechnology 1999; 17: 994-999.

このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記従来技術における諸問題を抜本的に解決することを目標として鋭意研究を積み重ねた結果、従来法と異なり、被験試料中の蛍光標識可能なタンパク質及び/又はペプチドのみを蛍光選択的に分離した後、これを酵素水解に付し、分画した蛍光画分を質量分析、データベース照合、構造解析に供することにより、従来法では検出不可能であった微量の発現タンパク質及び/又はペプチドを高感度に検出し、同定することができることを見出し、本発明を完成するに至った。   In such a situation, in view of the above prior art, the present inventors have conducted extensive research with the goal of drastically solving the problems in the above prior art. After only fluorescently labelable protein and / or peptide in the sample is selectively separated by fluorescence, this is subjected to enzymatic hydrolysis, and the fractionated fluorescent fraction is subjected to mass spectrometry, database verification, and structural analysis. The inventors have found that trace amounts of expressed proteins and / or peptides that could not be detected by conventional methods can be detected and identified with high sensitivity, and the present invention has been completed.

本発明は、遺伝子を介して発現する微量の発現タンパク質及び/又はペプチドを、簡便な測定手法で、高感度に検出・分離・同定することを可能とする上記発現タンパク質及び/又はペプチドの微量検出・分離・同定方法を提供することを目的とするものである。
また、本発明は、上記微量検出・分離・同定方法に使用する微量の発現タンパク質及び/又はペプチドを、高感度で検出・分離・同定するための発現タンパク質及び/又はペプチド同定システムを提供することを目的とするものである。
更に、本発明は、従来法では検出することができなかった、遺伝子を介して発現する微量の発現タンパク質及び/又はペプチドを超高感度で検出・分離・同定することを可能とする新しい分析方法及び手段を提供することを目的とする。
The present invention provides a trace amount detection of the expressed protein and / or peptide that enables highly sensitive detection, separation and identification of a small amount of expressed protein and / or peptide expressed via a gene by a simple measurement technique. -It is intended to provide a separation / identification method.
In addition, the present invention provides an expressed protein and / or peptide identification system for detecting, separating and identifying trace amounts of expressed proteins and / or peptides used in the above-described trace amount detection, separation and identification methods with high sensitivity. It is intended.
Furthermore, the present invention provides a new analytical method that enables detection, separation, and identification of a very small amount of expressed protein and / or peptide expressed through a gene that could not be detected by a conventional method with ultrahigh sensitivity. And to provide a means.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)被験試料中の発現微量タンパク質及び/又はペプチドを高感度に検出・分離・同定する方法であって、(a)被験試料中のタンパク質及び/又はペプチドを該タンパク質及び/又はペプチドとの反応で蛍光を発する親水性の蛍光試薬で標識する、(b)それを1次元又は2次元のHPLC/蛍光検出により、その蛍光分画を捕集する、(c)上記蛍光分画を酵素水解に付する、(d)それを第二段階のHPLC/蛍光検出により、その蛍光クロマトグラムを得ると共に、その画分を質量分析又はMS/MS分析に付し、データベース照合、構造解析に供して発現タンパク質及び/又はペプチドの同定を行うことを特徴とする上記発現タンパク質及び/又はペプチドの検出・分離・同定方法。
(2)タンパク質及び/又はペプチド試料の水溶液に、官能基特異的蛍光試薬を加え、場合により、界面活性剤及び/又はタンパク変性剤を加えあるいは加えることなく、タンパク質及び/又はペプチドを蛍光標識する、前記(1)に記載の方法。
(3)蛍光標識したタンパク質及び/又はペプチド試料を蛍光検出器付きイオン交換カラムHPLC、逆相分配HPLC、ゲル濾過HPLC、又は電気泳動による分離手段に付し、蛍光をモニターしながらそのピーク分画を捕集する、前記(1)に記載の方法。
(4)蛍光分画を、ペプチダーゼ、トリプシン、又はキモトリプシンのタンパク質分解酵素を用いて酵素水解する、前記(1)に記載の方法。
(5)酵素水解物を蛍光検出器付き逆相HPLCに付し、蛍光ピークを検出すると共に、蛍光標識フラグメント及び蛍光非標識フラグメントの質量分析又はMS/MS分析を行う、前記(1)に記載の方法。
(6)質量分析又はMS/MS分析に付して得られた各フラグメントのイオン分子量情報を、コンピューターによるタンパク質及び/又はペブチドフラグメントデータベースと照合し、構造解析して、酵素水解以前のタンパク質及び/又はペプチドの同定を行う、前記(1)に記載の方法。
(7)被験試料が、生体試料から採取したタンパク質及び/又はペプチド試料である、前記(1)に記載の方法。
(8)タンパク質及び/又はペプチドフラグメント情報、及び蛍光試薬で標識したアミノ酸の情報を含んだデータベースを用いてデータベース照合する、前記(1)に記載の方法。
(9)前記(1)から(8)のいずれかに記載の方法に使用する発現微量タンパク質及び/又はペプチド検出・分離・同定システムであって、被験試料のタンパク質及び/又はペプチドを蛍光試薬で標識するための第一反応器、蛍光試薬で標識した蛍光誘導体を蛍光分画するための1次元又は2次元の蛍光検出器付きHPLC、蛍光分画を酵素水解するための第二反応器、酵素水解物の蛍光標識フラグメントを蛍光検出するための第二段階の蛍光検出器付きHPLC、これに接続する質量分析装置、及び蛍光試薬で標識したアミノ酸の情報を含んだデータベースを搭載した構造解析装置を構成要素として含むことを特徴とする上記検出・分離・同定システム。
(10)上記第一反応器、1次元又は2次元の蛍光検出器付きHPLC、第二反応器、第二段階の蛍光検出器付きHPLCを直列に配置してなる、前記(9)に記載のシステム。
The present invention for solving the above-described problems comprises the following technical means.
(1) A method for detecting, separating, and identifying expressed protein and / or peptide in a test sample with high sensitivity, wherein (a) the protein and / or peptide in the test sample is combined with the protein and / or peptide. Label with a hydrophilic fluorescent reagent that fluoresces in the reaction, (b) collect the fluorescent fraction by one-dimensional or two-dimensional HPLC / fluorescence detection, (c) enzymatically hydrolyze the fluorescent fraction. (D) The fluorescence chromatogram is obtained by HPLC / fluorescence detection in the second stage, and the fraction is subjected to mass spectrometry or MS / MS analysis, and subjected to database verification and structural analysis. A method for detecting / separating / identifying the expressed protein and / or peptide, wherein the expressed protein and / or peptide is identified.
(2) A functional group-specific fluorescent reagent is added to an aqueous solution of a protein and / or peptide sample, and in some cases, the protein and / or peptide is fluorescently labeled with or without adding a surfactant and / or a protein denaturant The method according to (1) above.
(3) Fluorescently labeled protein and / or peptide samples are subjected to ion exchange column HPLC with fluorescence detector, reverse phase partition HPLC, gel filtration HPLC, or electrophoresis separation means, and peak fractionation is monitored while monitoring fluorescence. The method as described in said (1) which collects.
(4) The method according to (1) above, wherein the fluorescent fraction is subjected to enzymatic hydrolysis using a peptidase, trypsin, or chymotrypsin proteolytic enzyme.
(5) The enzyme hydrolyzate is subjected to reverse phase HPLC with a fluorescence detector to detect a fluorescence peak, and mass spectrometry or MS / MS analysis of a fluorescence labeled fragment and a fluorescence unlabeled fragment is performed. the method of.
(6) The ionic molecular weight information of each fragment obtained by mass spectrometry or MS / MS analysis is collated with a protein and / or peptide fragment database by a computer, the structure is analyzed, and the protein before enzyme hydrolysis The method according to (1) above, wherein peptide identification is performed.
(7) The method according to (1) above, wherein the test sample is a protein and / or peptide sample collected from a biological sample.
(8) The method according to (1) above, wherein database verification is performed using a database including protein and / or peptide fragment information and information on amino acids labeled with a fluorescent reagent.
(9) An expression trace protein and / or peptide detection / separation / identification system used in the method according to any one of (1) to (8) above, wherein a protein and / or peptide of a test sample is detected with a fluorescent reagent First reactor for labeling, HPLC with one- or two-dimensional fluorescence detector for fluorescent fractionation of fluorescent derivatives labeled with fluorescent reagents, second reactor for enzymatic hydrolysis of fluorescent fractions, enzyme the second stage of the fluorescence detector with HPLC, mass spectrometer connected thereto, and structural analysis equipment equipped with a database that contains information of the labeled amino acid with a fluorescent reagent for fluorescence detection of a fluorescent label fragment hydrolysates The above detection / separation / identification system characterized by comprising:
(10) The first reactor, the one-dimensional or two-dimensional HPLC with fluorescence detector, the second reactor, and the second stage HPLC with fluorescence detector are arranged in series, as described in (9) above system.

次に、本発明について更に詳細に説明する。
本発明は、上記従来法の難点を克服するためになされたものであり、1)微量の発現タンパク質/ペプチドを蛍光試薬で標識し、2)それをHPLC/蛍光検出にて第一段の分離・蛍光検出を行い、3)その蛍光分画(コントロール試料と比べて、被験試料に特異的に増減する蛍光画分)のみを捕集後、酵素水解し、それを第二段のHPLC/蛍光検出にて分離し、蛍光ピークの確認を行った後、HPLC/MSに付し、蛍光標識タンパク質/ペプチドフラグメントの同定を行い、当該微量タンパク質/ペプチドの特定を行う方法に関するものである。尚、タンパク質/ペプチド試料が純度の高い場合には、第一段のHPLC/蛍光検出による分離を省くことができる。本発明の方法は、従来法と異なり、蛍光標識可能なタンパク質/ペプチドのみを特異的に抽出し、検出・同定することができるという特徴を有し、微量の発現タンパク質/ペプチドを特定するために尤も相応しい方法である。
Next, the present invention will be described in more detail.
The present invention has been made to overcome the above-mentioned difficulties of the conventional methods. 1) A small amount of expressed protein / peptide is labeled with a fluorescent reagent, and 2) it is separated in the first stage by HPLC / fluorescence detection. -Fluorescence detection is performed. 3) After collecting only the fluorescence fraction (fluorescence fraction that increases or decreases specifically in the test sample compared to the control sample), the enzyme is hydrolyzed, and then the second stage HPLC / fluorescence is collected. The present invention relates to a method of separating by detection and confirming a fluorescence peak, followed by HPLC / MS, identifying a fluorescently labeled protein / peptide fragment, and specifying the trace protein / peptide. If the protein / peptide sample is high in purity, the first-stage separation by HPLC / fluorescence detection can be omitted. Unlike the conventional method, the method of the present invention is characterized in that only a fluorescently labelable protein / peptide can be specifically extracted, detected and identified, and for identifying a minute amount of expressed protein / peptide. It is a reasonable method.

本発明では、被験試料として、生体から採取したあらゆる種類のタンパク質及び/又はペプチドを含む試料が対象とされる。本発明の方法では、被験試料中の微量の発現タンパク質/ペプチドを蛍光試薬で標識し、蛍光誘導体化するが、この場合、タンパク質/ペプチド水溶液に、官能基特異的蛍光試薬を加え、場合により、界面活性剤及び/又はタンパク変性剤を加え、発現タンパク質/ペプチドを定量的に誘導体化することが重要である。即ち、本発明では、タンパク質/ペプチド試料の水溶液に、界面活性剤と場合によっては還元剤を添加し、これに官能基特異的蛍光試薬を加え、必要により、加温することにより、タンパク質及び/又はペプチドを蛍光標識する。本発明では、上記界面活性剤として、非イオン性、陰イオン性、陽イオン性及び両イオン性界面活性剤が用いられる。また、本発明では、上記還元剤として、好適には、Tris(2−carboxyethyl)phosphine、tributylphosphineが用いられるが、これらに制限されるものではなく、同効のものであれば同様に使用することができる。   In the present invention, a sample containing all kinds of proteins and / or peptides collected from a living body is a target sample. In the method of the present invention, a small amount of expressed protein / peptide in a test sample is labeled with a fluorescent reagent and fluorescent derivatized. In this case, a functional group-specific fluorescent reagent is added to the protein / peptide aqueous solution. It is important to add a surfactant and / or protein denaturant to quantitatively derivatize the expressed protein / peptide. That is, in the present invention, a surfactant and optionally a reducing agent are added to an aqueous protein / peptide sample solution, a functional group-specific fluorescent reagent is added thereto, and if necessary, the protein and / or the Alternatively, the peptide is fluorescently labeled. In the present invention, nonionic, anionic, cationic and amphoteric surfactants are used as the surfactant. Further, in the present invention, Tris (2-carboxyethyl) phosphine and triphenylphosphine are preferably used as the reducing agent. However, the reducing agent is not limited to these and may be used in the same manner as long as they have the same effect. Can do.

本発明において、上記官能基特異的蛍光試薬として、(例えば、4−Fluoro−7−nitro−2,1,3−benzoxadiazole(NBD−F)、 5−(N,N−Dimethylamino)naphthalene−1−sulfonyl chloride (DNS−CL)、Orthophthaldehyde(OPA)、Fluorescamine、 9−Fluorenylmethyl chloroformate (FMOC)等のアミノ基特異的蛍光試薬、Ammonium 7−fluoro−2,1,3−benzoxadiazole−4−sulfonate(SBD−F)、4−(Aminosulfonyl)−7−fluoro−2,1,3−benzoxadiazole(ABD−F)、4−(Acetylaminosulfonyl)−7−fluoro−2,1,3−benzoxadiazole(AcABD−F)、4−Fluoro−7−trichloroacetylaminosulfonyl−2,1,3−benzoxadiazole(TcAcABD−F)、monobromobimane等のチオール基特異的蛍光試薬、4−Nitro−7−N−piperazino−2,1,3−benzoxadiazole(NBD−PZ)、4−N,N−Dimethylaminosulfonyl−7−N−piperazino−2,1,3−benzoxadiazole(DBD−PZ)と縮合剤との組み合わせによるカルボキシル基特異的蛍光試薬、又は、4−(N−Chloroformylmethyl−N−methyl)amino−7−nitro−2,1,3−benzoxadiazole(NBD−COCL)等の水酸基用蛍光試薬)が例示されるが、これらに制限されない。   In the present invention, the functional group-specific fluorescent reagent includes (for example, 4-Fluoro-7-nitro-2,1,3-benzazodiazole (NBD-F), 5- (N, N-Dimethylamino) naphthalene-1- Amino group-specific fluorescent reagents such as sulfuryl chloride (DNS-CL), Orthophthaldehyde (OPA), Fluorescamine, 9-Fluorenylmethyl chloroformate (FMOC), Ammonium 7-fluorz, 4-sulolate, F), 4- (Aminosulfonyl) -7-fluoro-2,1,3-benzoxadiazole (AB) -F), 4- (Acetylaminosulfonyl) -7-fluoro-2,1,3-benzoxadiazole (AcABD-F), 4-Fluoro-7-trichloroacetylaminosulfonyl-2,1,3-benzoxadiazole (TcFacAmBondomoBm) Thiol group specific fluorescent reagent, 4-Nitro-7-N-piperazino-2,1,3-benzazodiazole (NBD-PZ), 4-N, N-Dimethylaminosulfonyl-7-N-piperazino-2,1,3 A carboxyl group-specific fluorescent reagent by a combination of -benzoxazole (DBD-PZ) and a condensing agent, or 4- (N-Chlo) (formylmethyl-N-methyl) amino-7-nitro-2,1,3-benzazodiazole (NBD-COCL) and the like), but is not limited thereto.

本発明においては、必要により、加温する(例えば、30−100℃、望ましくは40−70℃で10−300分間、望ましくは60−180分間)ことにより、タンパク質/ペプチドを蛍光標識する。その後、反応液のほぼ全量を蛍光検出器付きイオン交換カラムHPLC、又は逆相分配HPLC、又はゲル濾過HPLCに付し、蛍光をモニターしながらピーク分画を分取する。この場合、蛍光検出は、標識蛍光体の励起・蛍光波長に相当する波長に設定して行う。例えば、NBD−F、又はSBD−Fで標識した場合には、励起波長480nm或いは380nm、励起波長520nm又は505nmに設定する。イオン交換HPLCの場合には、塩、例えば、食塩、硫酸ナトリウム、過塩素酸カリウム、酢酸アンモニウムなど、望ましくは酢酸アンモニウムのような揮発性の塩を段階的に増量し、それぞれの画分を得る。この画分そのもの又はこの画分を濃縮・乾固した試料を、酵素水解に付す。酵素としては、各種ペプチダーゼ、トリプシン、キモトリプシンなど、適宜のタンパク質分解酵素が用いられる。この際、酵素カラムを接続してオンラインで酵素水解を行うこともできる。   In the present invention, if necessary, the protein / peptide is fluorescently labeled by heating (for example, 30-100 ° C., desirably 40-70 ° C., 10-300 minutes, desirably 60-180 minutes). Thereafter, almost the entire amount of the reaction solution is subjected to ion exchange column HPLC equipped with a fluorescence detector, reverse phase partition HPLC, or gel filtration HPLC, and a peak fraction is collected while monitoring fluorescence. In this case, fluorescence detection is performed at a wavelength corresponding to the excitation / fluorescence wavelength of the labeled phosphor. For example, when labeled with NBD-F or SBD-F, the excitation wavelength is set to 480 nm or 380 nm, and the excitation wavelength is set to 520 nm or 505 nm. In the case of ion exchange HPLC, salt, for example, sodium chloride, sodium sulfate, potassium perchlorate, ammonium acetate, etc., preferably a volatile salt such as ammonium acetate is gradually increased to obtain each fraction. . The fraction itself or a sample obtained by concentrating and drying the fraction is subjected to enzymatic hydrolysis. As the enzyme, appropriate proteolytic enzymes such as various peptidases, trypsin, chymotrypsin and the like are used. At this time, enzyme hydrolysis can be performed online by connecting an enzyme column.

この溶液の一部を蛍光検出器付き逆相分配HPLCに付し、蛍光標識体の溶出位置を確認する。次いで、この逆相HPLCカラムの出口を質量分析計(どの様な質量分析計でも対応可能であるが、望ましくはエレクトロスプレー型質量分析計を用いる)に接続し、酵素水解物の蛍光標識フラグメント及び蛍光非標識フラグメントの質量分析(蛍光標識フラグメントは一回の質量分析、蛍光非標識フラグメントは親イオンを更に質量分析する)又は質量分析/質量分析(MS/MS)を行う。この際、蛍光検出器と質量分析計を直列に接続することも可能である。このようにして得られた各フラグメントのイオン分子量情報を、コンピューターに接続したタンパク質/ペプチドフラグメントデータベースと照合し、構造解析することにより、酵素水解以前のタンパク質/ペプチドの同定を行う。この場合、本発明では、タンパク質及び/又はペプチドフラグメント情報、及び蛍光試薬で標識したアミノ酸の情報を含んだデータベースを用いてデータベース照合を行う。   A part of this solution is subjected to reverse phase partition HPLC with a fluorescence detector to confirm the elution position of the fluorescent label. The reverse-phase HPLC column outlet is then connected to a mass spectrometer (any mass spectrometer can be used, but preferably an electrospray mass spectrometer), and the enzyme hydrolyzate fluorescently labeled fragment and Mass analysis of fluorescent unlabeled fragments (single mass analysis for fluorescently labeled fragments, mass analysis of parent ions further for fluorescent unlabeled fragments) or mass spectrometry / mass spectrometry (MS / MS) is performed. At this time, the fluorescence detector and the mass spectrometer can be connected in series. The ionic molecular weight information of each fragment thus obtained is collated with a protein / peptide fragment database connected to a computer, and structural analysis is performed to identify the protein / peptide before enzyme hydrolysis. In this case, in the present invention, database collation is performed using a database including protein and / or peptide fragment information and amino acid information labeled with a fluorescent reagent.

本発明では、発現タンパク質及び/又はペプチドを含む被験試料中のタンパク質及び/又はペプチドを蛍光誘導体化し、この蛍光誘導体をHPLC/蛍光検出で分離し、蛍光ピークの強さを比較して標的発現タンパク質及び/又はペプチドの蛍光誘導体を分離し、得られた標的発現タンパク質及び/又はペプチドのピーク画分を酵素分解し、次いで、質量分析又はMS/MS分析、データベース照合、構造解析により、上記タンパク質及び/又はペプチドを同定する。タンパク質及び/又はペプチドのアミノ基、チオール基、水酸基及びカルボキシル基などの機能性部分を誘導化するための多くの蛍光試薬が存在するので、本発明では、その目的に応じて、適当な試薬を任意に選択して使用することができる。後記する実施例に示されるように、例えば、Cys−含有タンパク質を誘導化するためには、チオール基に特異的な試薬である、Ammonium 7−fluoro−2,1,3−benzoxadizole−4−sulfonate(SBD−F)を使用することができる。図1に、本発明の方法のプロセスの一例を模式的に示す。後記する実施例に示されるように、実際、このようにして、ラットに10mgのデキサメタゾンを投与して2日後のランゲルハンス島におけるPancreatic polypeptide、プロインシュリン 2、78KD Glucose−regulated protein、プロテイン結合フォスファチジルアミン及びチオレドキシンが強く誘導されたことが示された。   In the present invention, the protein and / or peptide in the test sample containing the expressed protein and / or peptide is fluorescently derivatized, the fluorescent derivative is separated by HPLC / fluorescence detection, and the intensity of the fluorescent peak is compared to compare the target expressed protein And / or separating the fluorescent derivative of the peptide, enzymatically degrading the obtained target expressed protein and / or peptide peak fraction, and then analyzing the protein and the peptide by mass spectrometry or MS / MS analysis, database verification, and structural analysis. Identify peptides. There are many fluorescent reagents for derivatizing functional moieties such as amino groups, thiol groups, hydroxyl groups and carboxyl groups of proteins and / or peptides. In the present invention, an appropriate reagent is selected according to the purpose. It can be arbitrarily selected and used. As shown in the examples below, for example, to derivatize Cys-containing proteins, ammonia 7-fluor-2,1,3-benzoxazole-4-sulfonate, a reagent specific for thiol groups. (SBD-F) can be used. FIG. 1 schematically shows an example of the process of the method of the present invention. As shown in the examples below, in fact, in this way, rats were given 10 mg of dexamethasone and two days later Pancreatic polypeptide, proinsulin 2, 78 KD glucose-regulated protein, protein-binding phosphatidyl. It was shown that amine and thioredoxin were strongly induced.

本発明の方法で重要な点は、各組織におけるタンパク質の量は、HPLC/蛍光検出で分離する前に、例えば、正常組織と非正常組織との組織間で定量、比較されるべきであることから、標的発現タンパク質を定量的に誘導体化することである。そのために、本発明では、適宜の界面活性剤が用いられるが、例えば、いくつかの界面活性剤についてBSAにより検討したところ、CHAPSがn−Dodecyl−β−D−maltopyranosideと比べて高い強度を示した(図2参照)。本発明では、pH、温度、反応時間及び誘導体化反応の添加剤等について、標的発現タンパク質及び/又はペプチドに応じて、最適条件を設定することで定量的な蛍光誘導体化が可能である。本発明では、これらの条件は、発現タンパク質/ペプチドの種類、分析目的等に応じて、適宜設定することができる。本発明の方法により、試験タンパク質/ペプチドのクロマトグラムは単一の蛍光ピークを示した(図3参照)。本発明の方法において、タンパク質及び/又はペプチドの検出限界は、0.2−6.0fmolであり、最適条件下での10−1000fmolの範囲で良好な直線(γ>0.9994)の測定曲線が得られ(表1参照)、検出性能は、従来法に比べて、顕著であることが分かる。表1に、蛍光検出/HPLCによる各種タンパク質及び/又はペプチドの検出限界を示した。   The important point in the method of the present invention is that the amount of protein in each tissue should be quantified and compared, for example, between normal and non-normal tissues before separation by HPLC / fluorescence detection. From this, the target expression protein is quantitatively derivatized. Therefore, in the present invention, an appropriate surfactant is used. For example, when several surfactants were examined by BSA, CHAPS showed higher strength than n-Dodecyl-β-D-maltopyranoside. (See FIG. 2). In the present invention, quantitative fluorescence derivatization is possible by setting optimum conditions for pH, temperature, reaction time, derivatization reaction additives, and the like according to the target expressed protein and / or peptide. In the present invention, these conditions can be appropriately set according to the type of expressed protein / peptide, the purpose of analysis, and the like. According to the method of the present invention, the chromatogram of the test protein / peptide showed a single fluorescence peak (see FIG. 3). In the method of the present invention, the detection limit of the protein and / or peptide is 0.2-6.0 fmol, and a measurement curve with a good straight line (γ> 0.9994) in the range of 10-1000 fmol under the optimum conditions. (See Table 1), and it can be seen that the detection performance is remarkable as compared with the conventional method. Table 1 shows detection limits of various proteins and / or peptides by fluorescence detection / HPLC.

Figure 0004558297
Figure 0004558297

更に、本発明では、上記方法に使用する微量の発現タンパク質及び/又はペプチド検出・分離・同定システムとして、被験試料のタンパク質及び/又はペプチドを蛍光試薬で標識するための第一反応器、蛍光試薬で標識した蛍光誘導体を蛍光分画するための1次元又は2次元の蛍光検出器付きHPLC、蛍光分画を酵素水解するための第二反応器、酵素水解物の蛍光標識フラグメントを蛍光検出するための第二段階の蛍光検出器付きHPLC、及び蛍光試薬で標識したアミノ酸の情報を含んだデータベースを搭載した構造解析装置の1種又は2種以上を構成要素として含む上記検出・分離・同定システムが用いられる。この場合、上記第一反応器、2次元の蛍光検出器付きHPLC、第二反応器、第二段階の蛍光検出器付きHPLCを直列に配置することができる。これらの装置は、その使用目的に応じて、適宜の容量、形態に任意に設計することができる。   Furthermore, in the present invention, as a trace amount expressed protein and / or peptide detection / separation / identification system used in the above method, a first reactor for labeling a protein and / or peptide of a test sample with a fluorescent reagent, a fluorescent reagent HPLC with a one-dimensional or two-dimensional fluorescence detector for fluorescent fractionation of fluorescent derivatives labeled with, a second reactor for enzymatic hydrolysis of the fluorescent fraction, and fluorescence detection of fluorescently labeled fragments of the enzymatic hydrolyzate The above-mentioned detection / separation / identification system comprising, as a constituent element, one or more of a structural analysis apparatus equipped with a second stage HPLC equipped with a fluorescence detector and a database containing amino acid information labeled with a fluorescent reagent Used. In this case, the first reactor, the HPLC with the two-dimensional fluorescence detector, the second reactor, and the HPLC with the second stage fluorescence detector can be arranged in series. These devices can be arbitrarily designed to have an appropriate capacity and form according to the purpose of use.

本発明は、被験試料中のタンパク質及び/又はペプチドを、蛍光誘導体化試薬として、前記一般式(1)〔式中、Xは、ハロゲン、Yは、O、Se又はS、Rは、−NH、又は−NHR′(但し、R′はN置換アルキル)を示す。〕で表わされる化合物、又は前記一般式(2)(式中、Xは、ハロゲン、Yは、Se又はSを示す。)で表わされる化合物、を用いて、蛍光誘導体とすることができる。更に、本発明は、これらの化合物のいずれか1種を有効成分とする新規蛍光誘導体化試薬を提供することができる。 In the present invention, a protein and / or peptide in a test sample is used as a fluorescent derivatization reagent, and the above general formula (1) [wherein, X is halogen, Y is O, Se or S, R is —NH 2 or -NHR '(where R' is an N-substituted alkyl). ] Or a compound represented by the general formula (2) (wherein X represents halogen, Y represents Se or S) can be used as a fluorescent derivative. Furthermore, the present invention can provide a novel fluorescent derivatization reagent containing any one of these compounds as an active ingredient.

これらの化合物の具体例としては、好適には、例えば、以下の例があげられるが、これらに制限されるものではなく、これらと同等ないし類似の化合物であれば同様に使用することができる。本発明の化合物は、後記する実施例に具体的に記載した方法と同様にして容易に合成することができる。
(1)DAABD−Cl[4-(dimethylaminoethyl aminosulfonyl)-7-chloro-2,
1, 3-benzoxadiazole]
(2)TAABD−Cl(7-chloro-2,
1, 3-benzoxadiazole-4-sulfonylaminoethyl rimethylammonium
chloride)
(3)DAABD−F[4-(dimethylaminoethyl aminosulfonyl)-7-fluoro-2,
1, 3-benzoxadiazole]
(4)TAABD−F(7-fluoro-2,
1, 3-benzoxadiazole-4-sulfonylaminoethyl trimethylammonium
chloride)
(5)DAABSeD−Cl[4-(dimethylaminoethyl aminosulfonyl)-7-chloro-2,
1, 3-benzoselenadiazole]
(6)TAABSeD−Cl(7-chloro-2,
1, 3-benzoselenadiazole-4-sulfonylaminoethyl trimethylammonium
chloride)
(7)DAABSeD−F[4-(dimethylaminoethyl aminosulfonyl)-7-fluoro-2,
1, 3- benzoselenadiazole]
(8)TAABSeD−F(7-fluoro-2,
1, 3-benzoselenadiazole-4-sulfonylaminoethyl trimethylammonium
chloride)
(9)DAABThD−Cl[4-(dimethylaminoethyl aminosulfonyl)-7-chloro-2,
1, 3-benzothiadiazole]
(10)TAABThD−Cl(7-chloro-2,
1, 3-benzothiadiazole-4-sulfonylaminoethyl trimethylammonium
chloride)
(11)DAABThD−F[4-(dimethylaminoethyl aminosulfonyl)-7-fluoro-2,
1, 3-benzothiadiazole]
(12)TAABThD−F(7-fluoro-2,
1, 3-benzothiadiazole-4-sulfonylaminoethyl trimethylammonium
chloride)
Preferable examples of these compounds include, but are not limited to, the following examples, and any equivalent or similar compounds can be used in the same manner. The compounds of the present invention can be easily synthesized in the same manner as specifically described in the examples described later.
(1) DAABD-Cl [4- (dimethylaminoethyl aminosulfonyl) -7-chloro-2,
1, 3-benzoxadiazole]
(2) TAABD-Cl (7-chloro-2,
1, 3-benzoxadiazole-4-sulfonylaminoethyl rimethylammonium
chloride)
(3) DAABD-F [4- (dimethylaminoethyl aminosulfonyl) -7-fluoro-2,
1, 3-benzoxadiazole]
(4) TAABD-F (7-fluoro-2,
1, 3-benzoxadiazole-4-sulfonylaminoethyl trimethylammonium
chloride)
(5) DAABSeD-Cl [4- (dimethylaminoethyl aminosulfonyl) -7-chloro-2,
1,3-benzoselenadiazole]
(6) TAABSeD-Cl (7-chloro-2,
1, 3-benzoselenadiazole-4-sulfonylaminoethyl trimethylammonium
chloride)
(7) DAABSeD-F [4- (dimethylaminoethyl aminosulfonyl) -7-fluoro-2,
1,3-benzoselenadiazole]
(8) TAABSeD-F (7-fluoro-2,
1, 3-benzoselenadiazole-4-sulfonylaminoethyl trimethylammonium
chloride)
(9) DAABThD-Cl [4- (dimethylaminoethyl aminosulfonyl) -7-chloro-2,
1,3-benzothiadiazole]
(10) TAABThD-Cl (7-chloro-2,
1, 3-benzothiadiazole-4-sulfonylaminoethyl trimethylammonium
chloride)
(11) DAABThD-F [4- (dimethylaminoethyl aminosulfonyl) -7-fluoro-2,
1,3-benzothiadiazole]
(12) TAABThD-F (7-fluoro-2,
1, 3-benzothiadiazole-4-sulfonylaminoethyl trimethylammonium
chloride)

本発明により、1)遺伝子を介して発現する発現タンパク質及び/又はペプチドを簡便な方法及び手段で、高感度に検出・分離・同定することができる、2)本発明の方法により、従来法では検出できなかった微量の発現タンパク質及び/又はペプチドを短時間で、感度良く検出・分離・同定することができる、3)また、上記検出・分離・同定方法に使用する微量の発現タンパク質及び/又はペプチドの微量検出・分離・同定システムを提供することができる、4)本発明は、プロテオームのプラットフォーム技術を提供するものとして有用である、という効果が奏される。   According to the present invention, 1) an expressed protein and / or peptide expressed via a gene can be detected / separated / identified with high sensitivity by a simple method and means. 2) According to the method of the present invention, A small amount of expressed protein and / or peptide that could not be detected can be detected, separated and identified with high sensitivity in a short time. 3) Also, a small amount of expressed protein and / or used in the above detection, separation and identification method It is possible to provide a trace amount detection / separation / identification system for peptides. 4) The present invention has an effect of being useful as a platform technology for proteome.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

ラット膵ランゲルハンス島(ラ島)中チオール含有タンパク質/ペプチドの分離・同定(1)ラ島中チオール含有タンパク質/ペプチドの蛍光誘導体化
ラ島に0.1Mホウ酸緩衝液(pH9.0)に溶解した6M塩酸グアニジン溶液50μlを加えて可溶化した。これに6M塩酸グアニジン溶液に溶解した17.5mMTCEP、17.5mMSBD−F、10mMEDTA及び50mMCHAPSをそれぞれ50μlずつ加え、混合した。この溶液を40℃にて3時間反応させることにより蛍光誘導体化を行った。
(2)イオン交換HPLCによる1次分離
上記の反応溶液をイオン交換カラムに付し、NaClのグラジエント(0、0.04、0.08、0.12及び0.3M)により蛍光タンパク質/ペプチドを溶出させ、5つのフラクションに分離した。なお、蛍光タンパク質/ペプチドの検出はSBD骨格の蛍光により行った。HPLC条件を以下に示す。
Isolation and identification of thiol-containing proteins / peptides in rat pancreatic islets (Ra island) (1) Fluorescence derivatization of thiol-containing proteins / peptides in Ra islands Dissolved in 0.1 M borate buffer (pH 9.0) in Ra islands 50 μl of 6M guanidine hydrochloride solution was added to solubilize. 50 μl each of 17.5 mM TCEP, 17.5 mM SBD-F, 10 mM EDTA and 50 mM CHAPS dissolved in 6 M guanidine hydrochloride solution was added and mixed. Fluorescence derivatization was performed by reacting this solution at 40 ° C. for 3 hours.
(2) Primary separation by ion exchange HPLC The above reaction solution is applied to an ion exchange column, and fluorescent protein / peptide is separated by NaCl gradient (0, 0.04, 0.08, 0.12 and 0.3M). Elute and separate into 5 fractions. The fluorescent protein / peptide was detected by fluorescence of the SBD skeleton. The HPLC conditions are shown below.

(HPLC条件)
カラム:TSKgel DEAE−5PW 7.5×75mm(東ソー(株))
ガードカラム:C8−300−S 54.0×10mm(YMC(株))
移動相:段階溶離〔0−5分:C100%、5−15分:A100%、15−25分:A87%B13%、25−35分A73%B27%、35−45分:A60%B40%、45−55分:B100%〕
A:5mMトリス塩酸緩衝液(pH8.0)/アセトニトリル(50:50)
B:5mMトリス塩酸緩衝液(pH8.0)/アセトニトリル(50:50) (0.3MNaCl含有)
C:5mMトリス塩酸緩衝液(pH8.0)
カラム温度:室温(約25℃))
流速:0.5ml/min
検出:Ex380nm、 Em505nm
注入量:200μl
(HPLC conditions)
Column: TSKgel DEAE-5PW 7.5 × 75 mm (Tosoh Corporation)
Guard column: C8-300-S 54.0 × 10 mm (YMC Corporation)
Mobile phase: step elution [0-5 min: C100%, 5-15 min: A100%, 15-25 min: A87% B13%, 25-35 min A73% B27%, 35-45 min: A60% B40% 45-55 minutes: B100%]
A: 5 mM Tris-HCl buffer (pH 8.0) / acetonitrile (50:50)
B: 5 mM Tris-HCl buffer (pH 8.0) / acetonitrile (50:50) (containing 0.3 M NaCl)
C: 5 mM Tris-HCl buffer (pH 8.0)
Column temperature: room temperature (about 25 ° C)
Flow rate: 0.5 ml / min
Detection: Ex380nm, Em505nm
Injection volume: 200 μl

(3)逆相HPLCによる2次分離
上記の各画分を濃縮し、アセトニトリルを蒸発させた後、逆相カラムに付し、アセトニトリルの勾配溶離によりタンパク質/ペプチドをカラムから溶出させた。なお、タンパク質/ペプチドの検出はSBD骨格の蛍光によりモニターした。HPLC条件を以下に示す。
(3) Secondary separation by reverse phase HPLC Each of the above fractions was concentrated and the acetonitrile was evaporated, and then applied to a reverse phase column, and the protein / peptide was eluted from the column by gradient elution of acetonitrile. Protein / peptide detection was monitored by fluorescence of the SBD skeleton. The HPLC conditions are shown below.

(HPLC条件)
カラム:カプセルパックC8 SG300 2.0×100mm((株)資生堂)
移動相:勾配溶離(0→60分:B40%→100%)
A:0.05%トリフルオロ酢酸
B:0.05%トリフルオロ酢酸/アセトニトリル(40:60)
カラム温度:室温(約25℃)
流速:0.2ml/min
検出:Ex380nm、 Em505nm
注入量:50μl
(HPLC conditions)
Column: Capsule pack C8 SG300 2.0 × 100 mm (Shiseido Co., Ltd.)
Mobile phase: gradient elution (0 → 60 min: B40% → 100%)
A: 0.05% trifluoroacetic acid B: 0.05% trifluoroacetic acid / acetonitrile (40:60)
Column temperature: Room temperature (about 25 ° C)
Flow rate: 0.2 ml / min
Detection: Ex380nm, Em505nm
Injection volume: 50 μl

(4)酵素処理
採取した画分をそれぞれのチューブに0.5M炭酸水素アンモニウム溶液5μlを加えてトリフルオロ酢酸を中和後、濃縮してアセトニトリルを蒸発させた。残渣(約80μl)に20μg/mlトリプシン(プロメガ)及び10mM塩化カルシウムをそれぞれ10μlずつ添加した。これを37℃で2時間インキュベートし、MS/MS測定用の試料とした。
(4) Enzyme treatment The collected fraction was neutralized with trifluoroacetic acid by adding 5 μl of 0.5 M ammonium hydrogen carbonate solution to each tube, and then concentrated to evaporate acetonitrile. 10 μl each of 20 μg / ml trypsin (Promega) and 10 mM calcium chloride was added to the residue (about 80 μl). This was incubated at 37 ° C. for 2 hours to obtain a sample for MS / MS measurement.

(5)MS/MS測定によるタンパク質/ペプチドの同定
上記の試料を逆相カラムHPLCに付し、エレクトロスプレー法によるMS/MS測定を行った。HPLC条件を以下に示す。なお、タンパク質/ペプチドの同定はデータベースにNCBI、サーチエンジンにMASCOTを使用した。
(5) Identification of protein / peptide by MS / MS measurement The above sample was subjected to reverse phase column HPLC, and MS / MS measurement by electrospray method was performed. The HPLC conditions are shown below. For identification of proteins / peptides, NCBI was used as a database and MASCOT was used as a search engine.

(HPLC条件)
カラム:Cadenza TC−C18 2.0 ×100mm(Imtact(株))
移動相:勾配溶離(0→30分:B20%→100%)
A:0.1%ギ酸
B:0.1%ギ酸/アセトニトリル(50:50)
カラム温度:室温(約25℃)
流速:0.2ml/min
測定モード:positive
測定範囲:500−3000m/z
注入量:50μl
(HPLC conditions)
Column: Cadenza TC-C18 2.0 × 100 mm (Imactact)
Mobile phase: gradient elution (0 → 30 min: B20% → 100%)
A: 0.1% formic acid B: 0.1% formic acid / acetonitrile (50:50)
Column temperature: Room temperature (about 25 ° C)
Flow rate: 0.2 ml / min
Measurement mode: positive
Measurement range: 500-3000 m / z
Injection volume: 50 μl

上記の方法により、約130のタンパク質/ペプチドのピークが分離できた。
そのうち、約50のタンパク質/ペプチドが同定できた(表2、図6参照)。
About 130 protein / peptide peaks could be separated by the above method.
Among them, about 50 proteins / peptides were identified (see Table 2 and FIG. 6).

Figure 0004558297
Figure 0004558297

SBD−Fで誘導体化したBSAを、図1に示されるプロセスにより、トリプシンで酵素水解し、得られたペプチド混合物を逆相液体クロマトグラフィー(RPLC)で分離し、蛍光検出器で検出した。次いで、各ペプチドをESIイオンタップ質量分析計によるMS/MS分析に供した。原理的には、トリプシン分解により、BSAは、4個のアミノ酸残基以上の25のシステイン含有ペプチド及
び35のシステイン非含有ペプチドが生成されるが、本実施例では、27以上の蛍光ペプチドが蛍光検出され、定量的に誘導体化が行われた(図4、A)。
BSA derivatized with SBD-F was enzymatically hydrolyzed with trypsin according to the process shown in FIG. 1, and the resulting peptide mixture was separated by reverse phase liquid chromatography (RPLC) and detected with a fluorescence detector. Each peptide was then subjected to MS / MS analysis using an ESI ion tap mass spectrometer. In principle, by trypsin degradation, BSA produces 25 cysteine-containing peptides with 4 or more amino acid residues and 35 cysteine-free peptides. In this example, 27 or more fluorescent peptides are fluorescent. Detected and quantitatively derivatized (FIG. 4, A).

また、11のシステイン含有ペプチド及び17の非システイン含有ペプチドがマスクロマトグラフィーで検出された(図4、B)。 図5に、(M+2H)2+プレカーサー、m/z=873.4(図4で矢印で示した)から得たMS/MSスペクトルを示す。
全てのペプチドフラグメントのCIDスペクトルにより、確率的プロテイン同定法に基づくMASCOTによるデータベース照合を行い、予測通り、完全にBSAとしてタンパク質を同定した(スコア:39)。
In addition, 11 cysteine-containing peptides and 17 non-cysteine-containing peptides were detected by mass chromatography (FIG. 4, B). FIG. 5 shows the MS / MS spectrum obtained from (M + 2H) 2+ precursor, m / z = 873.4 (indicated by arrows in FIG. 4).
Based on the CID spectra of all peptide fragments, MASCOT database verification based on the probabilistic protein identification method was performed, and as expected, the protein was completely identified as BSA (score: 39).

デキサメタゾン(Dex)投与及び非投与のラット膵臓について試験した。
Dexは、肝臓のグルコース産生の増加とインシュリン耐性の誘導により主なヒト糖尿病であるタイプ2の糖尿病を誘発する。実際に、Dex処理の24時間後に、血中グルコースレベルは209.8mg/dLに達し、処理前の値の118.3mg/dLより著しく高い(p<0.05)。本実施例では、2日間Dexで処理又は未処理のラット膵臓からランゲルハンス島(60島)を採取し、S
BD−Fで誘導体化した。本発明の方法を生物試料に適用するための重要な態様は、タンパク質混合物からHPLCで発現タンパク質を分離することである。本実施例では、蛍光タンパク質は、まず、SBD−Fにより生成した多くのマイナス電荷と酸性アミノ酸部分に基づいてイオン交換クロマトグラフィー(IEC)で分離された。
Rat pancreas with and without dexamethasone (Dex) was tested.
Dex induces type 2 diabetes, the main human diabetes, by increasing hepatic glucose production and inducing insulin resistance. Indeed, after 24 hours of Dex treatment, blood glucose levels reach 209.8 mg / dL, significantly higher than the pre-treatment value of 118.3 mg / dL (p <0.05). In this example, islets of Langerhans (60 islets) were collected from rat pancreas treated or not treated with Dex for 2 days.
Derivatized with BD-F. An important aspect for applying the method of the invention to biological samples is to separate the expressed protein by HPLC from the protein mixture. In this example, fluorescent proteins were first separated by ion exchange chromatography (IEC) based on many negative charges and acidic amino acid moieties generated by SBD-F.

IECは、塩化ナトリウムの段階溶離(0、0.04、0.08、0.12、及び0.3M NaCl)により行い、蛍光タンパク質混合物を5つの画分として得た。次いで、各画分は、更に、それらの疎水性に基づいて、逆相液体クロマトグラフィー(RPLC)により分離された。この実験でのピークの容量(n=L/(4σ)、但し、Lは分析のトータル時間及び4σはピーク幅、としてのHPLCの性能の理論値)は、各RPLCフラクションにつき40と計算され、IEC−RPLC法の5つのステップのピーク容量は、約200であった。本実施例では、各RPLCサイクルで約3−50ピーク、合計で129ピークであった(図6)。   IEC was performed by step elution of sodium chloride (0, 0.04, 0.08, 0.12, and 0.3 M NaCl) to give a fluorescent protein mixture as 5 fractions. Each fraction was then further separated by reverse phase liquid chromatography (RPLC) based on their hydrophobicity. The peak volume in this experiment (n = L / (4σ), where L is the total time of analysis and 4σ is the peak width, the theoretical value of HPLC performance) is calculated to be 40 for each RPLC fraction, The peak capacity of the five steps of the IEC-RPLC method was about 200. In this example, there were about 3-50 peaks in each RPLC cycle, totaling 129 peaks (FIG. 6).

微量タンパク質を検出するために、IECの段階溶離ステップを増やしてピーク容量を増加させた。未処理及びDex処理ラットから得られたRPLCクロマトグラムの全ての蛍光ピークを比較した。その結果、5本の蛍光ピークが1.8以上増加し、3本の蛍光ピークがDex処理で約1.5倍減少したことが見出された(表2)。表2に、Dex投与2日後の発現タンパク質の変化を示した。これらのタンパク質(即ち、標的発現タンパク質)は、広い小孔を有するRPLC(30nm小孔径)で分離され、トリプシンで分解し、各ペプチド混合物とした。各ペプチド混合物は、通常の小孔を有するRPLC(10nm小孔径)に供し、MS/MS分析した。データベース照合により、Dex処理後2日で増加したピークは、各々、膵臓ポリペプチド、プロインシュリン2、78KDグルコース−調節タンパク質、ホスファチジルエタノールアミン結合タンパク質、及びチオレドキシンであり、減少したピークは、各々、プロテイン31、dnak−タイプ分子キャペロンhsp72−psl、及びインシュリンであった。   In order to detect trace proteins, the IEC step elution step was increased to increase the peak volume. All fluorescence peaks of RPLC chromatograms obtained from untreated and Dex-treated rats were compared. As a result, it was found that the five fluorescent peaks increased by 1.8 or more and the three fluorescent peaks decreased about 1.5 times by Dex treatment (Table 2). Table 2 shows changes in expressed protein 2 days after Dex administration. These proteins (ie, target expressed proteins) were separated by RPLC (30 nm small pore diameter) having a wide small pore, and digested with trypsin to obtain each peptide mixture. Each peptide mixture was subjected to RPLC (10 nm small pore diameter) having normal small pores and subjected to MS / MS analysis. According to database matching, the peaks increased 2 days after Dex treatment are pancreatic polypeptide, proinsulin 2, 78 KD glucose-regulated protein, phosphatidylethanolamine binding protein, and thioredoxin, respectively, and the decreased peaks are respectively protein 31, dnak-type molecular caperon hsp72-psl, and insulin.

本実施例では、以下の化の(1)及び(2)の反応式により、新規蛍光誘導体化試薬の合成を行った。 In this embodiment, by the reaction equation of the following Formula 1 (1) and (2), was synthesized novel fluorescent derivatization reagent.

Figure 0004558297
Figure 0004558297

(1)DAAB-Clの合成
4-chlorosulfonyl-7-chloro-2,1,3-benzoxadiazole(CBD-Cl)(126.53 mg)をCH3CN に溶解し、N,N-dimethylethylenediamineを滴下し、triethylamineを加えた。室温で約10分間攪拌後、反応液を減圧乾固した後、シリカゲルカラム(CH2Cl2)で精製し、4-(dimethylaminoethy laminosulfonyl)-7-chloro-2,1,3-benzoxadiazole(DAABD-Cl) (20.2 mg, 87.4
%)を得た。
得られた化合物の確認データを以下に示す。
1H-NMR (CD3OD) : 7.94 (1H, d,
J=7.5), 7.65 (1H, d, J=7.5), 3.06 (2H, t, J=6.7), 2.30 (2H, t, J=6.7), 2.02
(6H, s)。ESI-MS : m/z 305 (M+H)+
(1) Synthesis of DAAB-Cl
4-chlorosulfonyl-7-chloro-2,1,3-benzoxadiazole (CBD-Cl) (126.53 mg) was dissolved in CH 3 CN, N, N-dimethylethylenediamine was added dropwise, and triethylamine was added. After stirring at room temperature for about 10 minutes, the reaction solution was dried under reduced pressure and purified with a silica gel column (CH 2 Cl 2 ), and 4- (dimethylaminoethylaminosulfonyl) -7-chloro-2,1,3-benzoxadiazole (DAABD- Cl) (20.2 mg, 87.4
%).
Confirmation data of the obtained compound is shown below.
1H-NMR (CD 3 OD): 7.94 (1H, d,
J = 7.5), 7.65 (1H, d, J = 7.5), 3.06 (2H, t, J = 6.7), 2.30 (2H, t, J = 6.7), 2.02
(6H, s). ESI-MS: m / z 305 (M + H) +

(2)TAABD−Clの合成
4−chlorosulfonyl−7−chloro−2,1,3−benzoxadiazole(CBD−Cl)(126.53mg)をCHCNに溶解し、HOに溶かしたaminoethyl trimethylammonium chlorideを滴下し、triethylamineを加えた。室温で約20分間攪拌後、反応液を減圧乾固した後、0.1%トリフルオロ酢酸(TFA)に溶かし、ODSカラムを用いて分取し、画分には、SBD−Cl(化)が不純物として入っていたため、陰イオン交換カラムを用いて分取し、減圧乾固して、7−chloro−2,1,3−benzoxadiazole−4−sulfoneaminoethyl trimethylammonium chloride(TAABD−Cl)(127.2mg,58.8%)を得た。
得られた化合物の確認データを以下に示す。
1H−NMR(CDOD):8.01(1H,d,J=7.3),7.69(1H,d,J=7.3),3.46−3.48(4H,m),3.12(9H,s)。ESI−MS :m/z 319(M)+
(2) Synthesis of TAABD-Cl 4-chlorosulfonyl-7-chloro-2,1,3-benzazodiazole (CBD-Cl) (126.53 mg) was dissolved in CH 3 CN and dissolved in H 2 O, an aminoethyl trimethylammonium chloride Was added dropwise and triethylamine was added. After stirring for about 20 minutes at room temperature, after the reaction solution was evaporated to dryness under reduced pressure, dissolved in 0.1% trifluoroacetic acid (TFA), aliquoted using an ODS column, the fractions, SBD-Cl (formula 2 ) Was contained as an impurity, and therefore, it was collected using an anion exchange column, dried under reduced pressure, and 7-chloro-2,1,3-benzazodiazole-4-sulfaminoaminotrimethylammonium chloride (TAABD-Cl) (127. 2 mg, 58.8%).
Confirmation data of the obtained compound is shown below.
1H-NMR (CD 3 OD): 8.01 (1H, d, J = 7.3), 7.69 (1H, d, J = 7.3), 3.46-3.48 (4H, m ), 3.12 (9H, s). ESI-MS: m / z 319 (M) +

Figure 0004558297
Figure 0004558297

本実施例では、新規蛍光誘導体化試薬の反応性について検討した。
DAABD-C、TAABDD-ClのSBD-Fとの比較
10μM還元型グルタチオン、システイン、ホモシステイン混合液100μLとDAABD-Cl又はTAABD-Cl 100 μLを混合し、pH 9、40℃、10〜120分間反応させた。尚、各試薬は5 mM EDTA含む0.10 M ホウ酸緩衝液 (pH 9) に溶解した。0.1 % ぎ酸で反応停止後、生成物をHPLCを用いて測定した。
In this example, the reactivity of the novel fluorescent derivatization reagent was examined.
Comparison of DAABD-C and TAABDD-Cl with SBD-F 10 μM reduced glutathione, cysteine and homocysteine mixed solution 100 μL and DAABD-Cl or TAABD-Cl 100 μL, pH 9, 40 ° C., 10 to 120 minutes Reacted. Each reagent was dissolved in 0.10 M borate buffer (pH 9) containing 5 mM EDTA. After quenching with 0.1% formic acid, the product was measured using HPLC.

図7に、蛍光誘導体化反応時間と蛍光強度との関係(左図:DAABD−Cl、右図: TAABD−Cl)を示す。
SBD−F(化)の場合、40℃で誘導体化を行うと120分間の反応時間が必要であったが、DAABD−Clは10〜20分、TAABD−Clは20〜30分で反応が終了することがわかった。
したがって、反応時間はDAABD−Clの場合は20分、TAABD−Clの場合は30分が好適である。
FIG. 7 shows the relationship between the fluorescence derivatization reaction time and the fluorescence intensity (left diagram: DAABD-Cl, right diagram: TAABD-Cl).
In the case of SBD-F (Chemical Formula 3 ), 120 minutes of reaction time was required when derivatization was performed at 40 ° C., but DAABD-Cl was reacted for 10 to 20 minutes, and TAABD-Cl was reacted for 20 to 30 minutes. I knew it would end.
Accordingly, the reaction time is preferably 20 minutes for DAABD-Cl and 30 minutes for TAABD-Cl.

Figure 0004558297
Figure 0004558297

(2)新規蛍光誘導体化試薬のMSでの感度
上記(1)で作成したサンプルをLC-MSにより検出し、蛍光誘導体化試薬でラベル化していないもの及びSBD-Fで誘導体化したものと、相対強度を比較した。
(2) Sensitivity in MS of novel fluorescent derivatization reagent The sample prepared in (1) above was detected by LC-MS, and the one not labeled with the fluorescent derivatization reagent and the one derivatized with SBD-F, The relative intensities were compared.

蛍光誘導体化試薬でラベル化していないcysteine、homocysteine、GSHの高さをそれぞれ1としたときの相対強度は表3の通りであった。これより、DAABD-Cl がMSでの感度が最も高いことがわかった。また、移動相が酸性であるので、DAABD化誘導体はプラスに荷電され水溶性であると考えられる。   Table 3 shows the relative intensities when the heights of cysteine, homocysteine, and GSH not labeled with a fluorescent derivatization reagent are each 1. From this, it was found that DAABD-Cl 2 has the highest sensitivity in MS. Further, since the mobile phase is acidic, the DAABD-derivatized derivative is considered to be positively charged and water-soluble.


Figure 0004558297
Figure 0004558297

(1)TAABD-Clのペプチドへの応用

10μMの以下に示した4種類のペプチド標品、17.5 mM TAABD-Cl、10 mM EDTA、50 mM CHAPS(界面活性剤)、2.5 mM TCEP(還元剤)それぞれ50μLを混合し、pH 9、40℃で、30, 60, 90, 120 分間反応させた。尚、各試薬は6.0
M 塩酸グアニジン(タンパク変性剤)を含む0.10
M ホウ酸緩衝液 (pH9) に溶解した。生成したTAABD化ペプチドをHPLCを用いて測定した。
1. vasopressin
2. oxytocin
3. somatostatin
4. amylin (rat)
図8に TAABD-Clとの反応時間と蛍光強度との関係を示す。
図8より、反応時間が60分までは生成量が増加した。反応停止後は氷冷下で保存し、-20℃にて保存すると、48時間はほとんど分解しなかった。
(1) Application of TAABD-Cl to peptides

10 μM of the following four peptide preparations, 17.5 mM TAABD-Cl, 10 mM EDTA, 50 mM CHAPS (surfactant), 2.5 mM TCEP (reducing agent) 50 μL each, mixed at pH 9 and 40 ° C. And reacted for 30, 60, 90, 120 minutes. Each reagent is 6.0
M 0.10 containing guanidine hydrochloride (protein denaturant)
Dissolved in M borate buffer (pH 9). The produced TAABD peptide was measured using HPLC.
1. vasopressin
2. Oxytocin
3. somatostatin
4. amylin (rat)
FIG. 8 shows the relationship between TAABD-Cl reaction time and fluorescence intensity.
From FIG. 8, the amount of production increased until the reaction time was 60 minutes. After stopping the reaction, it was stored under ice-cooling, and when it was stored at -20 ° C, it hardly decomposed for 48 hours.

(2)DAABD化ペプチド・タンパクの検出限界
表4に示した10種類のペプチド・タンパク標品10
μM混合液、2.5 mM TCEP、17.5 mM DAABD-Cl、10 mM EDTA、50 mM CHAPSそれぞれ50μLを混合し、pH 9、40℃で、30分間反応させた。尚、各試薬は6.0
M 塩酸グアニジンを含む0.10 M ホウ酸緩衝液 (pH9) に溶解した。生成したDAABD化ペプチド・タンパクはHPLCを用いて測定し、蛍光検出の検出限界をSBD-Fと比較した。
(2) Detection limit of DAABD peptide / protein 10 types of peptide / protein preparations shown in Table 4 10
50 μL each of μM mixed solution, 2.5 mM TCEP, 17.5 mM DAABD-Cl, 10 mM EDTA, 50 mM CHAPS were mixed and reacted at pH 9 and 40 ° C. for 30 minutes. Each reagent is 6.0
Dissolved in 0.10 M borate buffer (pH 9) containing M guanidine hydrochloride. The generated DAABD peptide / protein was measured using HPLC, and the detection limit of fluorescence detection was compared with that of SBD-F.

Figure 0004558297
Figure 0004558297

(3)DAABD化ペプチド・タンパクの同定
上記(2)で誘導体化した物質のうち、vasopressin、oxytocin、somatostatin、calcitonin、amylinはLC-MSにより同定できた。それらの分子量を以下に示す。
m/z
541.8 (M+3H)3+ [DAABD-vasopressin]
516.0 (M+3H)3+
[DAABD-oxytocin]
726.6 (M+3H)3+
[DAABD-somatostatin]
989.9 (M+4H)4+
[DAABD-calcitonin]
892.8 (M+5H)5+
[DAABD-amylin]
(3) Identification of DAABD peptide / protein Among the substances derivatized in (2) above, vasopressin, oxytocin, somatostatin, calitonin and amylin could be identified by LC-MS. Their molecular weights are shown below.
m / z
541.8 (M + 3H) 3+ [DAABD-vasopressin]
516.0 (M + 3H) 3+
[DAABD-oxytocin]
726.6 (M + 3H) 3+
[DAABD-somatostatin]
989.9 (M + 4H) 4+
[DAABD-calcitonin]
892.8 (M + 5H) 5+
[DAABD-amylin]

これら全ての分子量は、それぞれのペプチドの2つのシステイン残基にDAABDが付加したとしたときの分子量であり、多価イオンピークの検出結果よりDAABD-Clによる誘導体化において、これらのペプチドのシステイン残基間のS-S結合が還元され、二つのチオール基両方に試薬が反応したことがわかった。
また、タンパク質の場合は酵素によってペプチドに分解する必要があるため、酵素トリプシンで消化し、LC-MS/MS検出及びMASCOTによるデータベース検索を行って同定を試みた結果、システインを含まないペプチドのアミノ酸配列を同定し、タンパク質を同定することができた。
All of these molecular weights are the molecular weights when DAABD is added to the two cysteine residues of each peptide. From the detection result of the polyvalent ion peak, derivatization with DAABD-Cl reveals the cysteine residues of these peptides. It was found that the SS bond between the groups was reduced and the reagent reacted to both two thiol groups.
In addition, in the case of protein, it is necessary to break down into peptides by an enzyme, and as a result of digestion with the enzyme trypsin and identification by performing a database search with LC-MS / MS detection and MASCOT, amino acids of peptides that do not contain cysteine The sequence was identified and the protein could be identified.

(SBSeD−Fの合成)

2-fluoroacetanilideを硝酸で処理して、1-acetylamino-2-nitro-6-fluorobenzeneとし、これを脱アルミ化して、2-fluoro-6-nitroanillineとし、次いで、パラジウム担持炭素触媒を用いて水素化して、3-fluoro-o-phenylenediamineを得た。
Selenium dioxideエタノール加熱溶液を、3-fluoro-o-phenylenediamine (60 mg,
0.48 mmol)のエタノール加熱溶液に加え、混合物を30分加熱した。これを、シリカゲルカラムによるクロマトグラフィーに供し、溶離液のジクロロメタンで溶出し、4-fluoro-2, 1, 3-benzoselenadiazoleを白色粉末(88mg)として得た。得られた化合物の確認データを以下に示す。
mp. 129℃、NMR (methanol-d4): δ7.55(1H, d, J=9.2)、7.41(1H, m)、7.06(1H, m)、ESI−MS:m/z202.8[(M+H)]。
(Synthesis of SBSeD-F)

2-fluoroacetanilide is treated with nitric acid to give 1-acetylamino-2-nitro-6-fluorobenzene, which is dealuminated to 2-fluoro-6-nitroanilline, and then hydrogenated using a palladium-supported carbon catalyst. Thus, 3-fluoro-o-phenylenediamine was obtained.
Selenium dioxide ethanol solution was added to 3-fluoro-o-phenylenediamine (60 mg,
0.48 mmol) in ethanol, and the mixture was heated for 30 minutes. This was subjected to chromatography on a silica gel column and eluted with dichloromethane as an eluent to give 4-fluoro-2,1,3-benzoselenadiazole as a white powder (88 mg). Confirmation data of the obtained compound is shown below.
. mp 129 ℃, NMR (methanol -d 4): δ H 7.55 (1H, d, J = 9.2), 7.41 (1H, m), 7.06 (1H, m), ESI-MS: m / z 202.8 [(M + H)].

このようにして得た4-fluoro-2, 1,
3-benzoselenadiazoleをfuming sulfuric
acid (60%)に溶かし、130℃で3時間還流した。この溶液を冷却し、冷水(30ml)に注ぎ、28% ammonium hydroxideで中和した。この中性溶液にエタノール100mlを加え、濾過物を減圧乾固させた。残渣を水(1.0ml)に溶解し、更に、以下のHPLCで精製した。即ち、残渣の100μlをHPLC分離に供した。SBSeD−Fに相当するフラクションを集め、減圧して白色粉末(50mg)を得た。得られた化合物の確認データを以下に示す。
m.P. > 300℃、NMR (methanol-d4): δ7.97(1H, d d, J=7.6, J=5.4)、7.11(1H, d d,J=7.6, J=10.1)、ESI−MS:m/z280.8[(M−H)]。
4-fluoro-2, 1, 1, obtained in this way
3-benzoselenadiazole fuming sulfuric acid
It was dissolved in acid (60%) and refluxed at 130 ° C. for 3 hours. The solution was cooled, poured into cold water (30 ml) and neutralized with 28% ammonium hydroxide. 100 ml of ethanol was added to this neutral solution, and the filtrate was dried under reduced pressure. The residue was dissolved in water (1.0 ml) and further purified by the following HPLC. That is, 100 μl of the residue was subjected to HPLC separation. Fractions corresponding to SBSeD-F were collected and decompressed to give a white powder (50 mg). Confirmation data of the obtained compound is shown below.
m. P. > 300 ° C., NMR (methanol-d 4 ): δ H 7.97 (1H, dd, J = 7.6, J = 5.4), 7.11 (1H, dd, J = 7.6, J = 10.1), ESI-MS: m / z 280.8 [(M-H)].

(SBThD−Fの合成)

N−thionylaniline (0.49 g, 3.5 mmol)を3-fluoro-o-phenylenediamine(200mg, 1.6mmol)トルエン(2 ml)溶液に加えた。反応混合物を100−120℃で4時間加熱し、溶媒を濾別した後、残渣をジクロロメタンに溶かし、溶液を10%HCl溶液及び水で各々洗浄した。有機相を乾燥し、減圧乾固させた。これをシリカゲルによるクロマトグラフィーに供し、溶離液のクロロホルムで溶出し、4-fluoro-2, 1, 3-benzothiadiazoleを淡黄色油として得た。得られた化合物の確認データを以下に示す。
NMR(methanol-d4): δH7.69(1H, d, J=8.9)、7.50(1H, m)、7.20(1H,m)、ESI−MS:m/z154.9[(M+H)]。
(Synthesis of SBThD-F)

N-thionylaniline (0.49 g, 3.5 mmol) was added to a solution of 3-fluoro-o-phenylenediamine (200 mg, 1.6 mmol) in toluene (2 ml). The reaction mixture was heated at 100-120 ° C. for 4 hours, the solvent was filtered off, the residue was dissolved in dichloromethane, and the solution was washed with 10% HCl solution and water, respectively. The organic phase was dried and evaporated to dryness. This was subjected to chromatography on silica gel and eluted with chloroform as eluent to give 4-fluoro-2, 1, 3-benzothiadiazole as a pale yellow oil. Confirmation data of the obtained compound is shown below.
NMR (methanol-d 4 ): δ H 7.69 (1H, d, J = 8.9), 7.50 (1H, m), 7.20 (1H, m), ESI-MS: m / z 154 .9 [(M + H)].

このようにして得た4−fluoro−2,1,3−benzothiadiazole(30ml)をfuming sulfuric acid(60%)に溶かし、130℃で3時間還流した。次いで、この溶液を冷却し、ゆっくり冷水(30ml)に注ぎ、28% ammonium hydroxideで中和した。中性溶液にエタノール100mlを加え、得られた濾過物を減圧乾固した。残渣を水(1.0ml)に溶かし、更に、以下の条件でHPLCで精製した。SBThD−Fに相当するフラクションを集め、減圧し、白色粉末(25mg)を得た。得られた化合物の確認データを以下に示す。
decomp.265℃、NMR(methanol−d):δ8.06(1H,d d,J=7.9,J=4.9)、7.11(1H,d d,J=7.9,J=9.8)、ESI−MS:m/z232.8[(M−H)]。
上記方法により合成したSBSeD−F及びSBThD−Fを下記の化に示す。
The 4-fluoro-2,1,3-benzothiazole (30 ml) thus obtained was dissolved in fuming sulfur acid (60%) and refluxed at 130 ° C. for 3 hours. The solution was then cooled, slowly poured into cold water (30 ml) and neutralized with 28% ammonia hydride. 100 ml of ethanol was added to the neutral solution, and the obtained filtrate was dried under reduced pressure. The residue was dissolved in water (1.0 ml) and further purified by HPLC under the following conditions. Fractions corresponding to SBThD-F were collected and decompressed to give a white powder (25 mg). Confirmation data of the obtained compound is shown below.
decomp. 265 ° C., NMR (methanol-d 4 ): δ H 8.06 (1H, dd, J = 7.9, J = 4.9), 7.11 (1H, dd, J = 7.9, J = 9.8), ESI-MS: m / z 232.8 [(M−H)].
SBSeD-F and SBThD-F synthesized by the above method are shown in Chemical Formula 4 below.

Figure 0004558297
Figure 0004558297

(1) システイン誘導体の蛍光スペクトル
1mMEDTAを含む0.1Mホウ酸緩衝液(pH9.0)による上記SBSeD−F、SBThD−F又はSBD−Fの各蛍光試薬溶液(4mM)の500μl部分を、0.1Mホウ酸緩衝液(pH9.0)によるシステイン(0.4mM)溶液の同量と混合した。この混合物を60℃で8時間放置した。反応の後、反応混合物をHPLC分離し、各システイン誘導体に相当するフラクションを集め、それらの蛍光スペクトルを測定した。
(1) Fluorescence spectrum of cysteine derivative A 500 μl portion of each fluorescent reagent solution (4 mM) of the above SBSeD-F, SBThD-F or SBD-F with 0.1 M borate buffer (pH 9.0) containing 1 mM EDTA Mixed with the same volume of cysteine (0.4 mM) solution in 1 M borate buffer (pH 9.0). The mixture was left at 60 ° C. for 8 hours. After the reaction, the reaction mixture was subjected to HPLC separation, fractions corresponding to the respective cysteine derivatives were collected, and their fluorescence spectra were measured.

SBSeD−FとSBThD−Fのシステインに対する反応性
4mMの各試薬、SBSeD−F、SBThD−F又はSBD−F及び1mM EDTAを含む0.1Mホウ酸緩衝液(pH9.0又はpH10)の500μl部分を、0.1Mホウ酸緩衝液(pH9.0又はpH10)によるシステイン溶液(0.4mM)の同量と混合した。反応混合物をHPLC分離し、60℃での反応をモニターした。
Reactivity of SBSeD-F and SBThD-F to cysteine 500 μl portion of 0.1 M borate buffer (pH 9.0 or pH 10) containing 4 mM of each reagent, SBSeD-F, SBThD-F or SBD-F and 1 mM EDTA Was mixed with the same amount of cysteine solution (0.4 mM) in 0.1 M borate buffer (pH 9.0 or pH 10). The reaction mixture was HPLC separated and the reaction at 60 ° C. was monitored.

(2) 結果
SBD−Fのような水溶性試薬は、そのsulfonic acid残渣により水溶体中での誘導体の可溶性を増加させ、結果として、誘導体の吸収又は沈殿が減少する。したがって、インシュリンのような比較的疎水性ペプチドのSBD−Fによる誘導体は、逆相カラムで溶出され、高感度に検出されたが、本実施例では、更に、benzoselenadiazole又はbenzothiadiazole骨格をもつ蛍光試薬としてSBSeD−F及びSBThD−Fを合成し、それらのシステインに対する反応性及びその誘導体の蛍光特性を調べた。
(2) Results A water-soluble reagent such as SBD-F increases the solubility of the derivative in the aqueous form due to its sulphonic acid residue, resulting in a decrease in absorption or precipitation of the derivative. Accordingly, a derivative of a relatively hydrophobic peptide such as insulin by SBD-F was eluted with a reverse phase column and detected with high sensitivity. In this example, however, as a fluorescent reagent having a benzoselenadiazole or benzothiadiazole skeleton, SBSeD-F and SBThD-F were synthesized, and their reactivity to cysteine and the fluorescence properties of their derivatives were investigated.

最大励起(λex)及び発光波長(λex)、及び誘導体のリテンションタイムを表5に示す。各システイン誘導体のmass number([M+H])は、SBSeD−F(m/z381.9)、SBThD−F(m/z334.0)及びSBD−F(m/z318.0)について、理論値(各々382.0、334.0及び318.0)と一致した。誘導体の最大励起波長は、SBSeD−F(340nm)及びSBThD−F(315nm)はSBD−F(365nm)より短く、誘導体の最大発光波長は、SBSeD−F(542nm)は、SBSeD−F(517nm)及びSBD−F(514nm)よりも長かった。SBSeD−F自体は蛍光が少ないが、SBThD−Fは多少の蛍光を与えた(λex ;350nm,λem:424nm)。SBSeD−F、SBThD−F及びSBD−Fのシステイン誘導体の逆相カラム(C18)に対するpH2.0の移動相によるリテンションタイム(tp)は、各々4.5、5.3及び4.8分であった。これから、SBSeD−Fは、これらの中で最も親水性の蛍光試薬であった。 Table 5 shows the maximum excitation (λ ex ) and emission wavelength (λ ex ) and the retention time of the derivatives. The mass number ([M + H]) of each cysteine derivative is the theoretical value for SBSeD-F (m / z 381.9), SBThD-F (m / z 334.0) and SBD-F (m / z 318.0). 382.0, 334.0 and 318.0) respectively. The maximum excitation wavelength of the derivative is shorter than SBD-F (365 nm) for SBSeD-F (340 nm) and SBThD-F (315 nm), and the maximum emission wavelength of the derivative is SBSeD-F (517 nm) for SBSeD-F (542 nm). ) And SBD-F (514 nm). SBSeD-F itself has little fluorescence, but SBThD-F gave some fluorescence (λ ex ; 350 nm, λ em : 424 nm). Retention times (tp) with mobile phase at pH 2.0 for reversed phase columns (C 18 ) of cysteine derivatives of SBSeD-F, SBThD-F and SBD-F are 4.5, 5.3 and 4.8 min, respectively. Met. From this, SBSeD-F was the most hydrophilic fluorescent reagent among them.

SBD−Fの場合、至適反応条件は60℃でpH9.5で1時間であるが、SBSeD−F及びSBThD−Fの反応性は、SBD−Fと比べて低く、蛍光強度は8−24時間で徐々に増加し(図9、10)、24時間後でも、反応は最大に達しなかった(図9)。pH10.0及び60℃では、SBSeD−F又はSBThD−Fとシステインの量的反応時間は、8時間以上であり、SBD−Fでは、1時間以内で完全に反応した(図10)。

このように、水溶性の蛍光試薬SBSeD−F及びSBThD−Fは、SBD−Fと比べて蛍光特性及び疎水性の点で異なっており、プロテオーム解析のための新規蛍光誘導体化試薬として有用である。
In the case of SBD-F, the optimum reaction conditions are 60 ° C. and 1 hour at pH 9.5, but the reactivity of SBSeD-F and SBThD-F is lower than that of SBD-F, and the fluorescence intensity is 8-24. It gradually increased with time (FIGS. 9 and 10), and even after 24 hours, the response did not reach a maximum (FIG. 9). At pH 10.0 and 60 ° C., the quantitative reaction time of SBSeD-F or SBThD-F and cysteine was 8 hours or more, and SBD-F reacted completely within 1 hour (FIG. 10).

Thus, the water-soluble fluorescent reagents SBSeD-F and SBThD-F differ from SBD-F in terms of fluorescence characteristics and hydrophobicity, and are useful as novel fluorescent derivatization reagents for proteome analysis. .

DAABD−ClによるC.elegansタンパク質の誘導体化及び同定
(1)方法
C.elegans(Bristol N2株)を、E.coliのOP50株を栄養源として20℃で、NGM寒天上に培養し、M9バッファーにより浮遊させてバクテリアから分離した。上記線虫をM9バッファーで2回洗った後、−80℃で保管して用いた。この線虫を等量の10mM CHAPSに懸濁し、超音波で溶解した。可溶性のフラクションを4℃で10,000rpm、5分の遠心分離により集めた。上澄を可溶性フラクションとして−20℃で保管した。このフラクションのタンパク質濃度をBSAを標準に用いるBradford methodで決定した。上澄の約20μL(100μgタンパク質)を同容量の2.5mM TCEP,17.5mM DAABD−Cl、10mM Na2 EDTA及び50mM CHAPSを6.0Mグアニジンを含む100mMホウ酸塩バッファー(pH9.0)中で混合した。反応混合物を40℃で30分インキュベートした後、反応を200μLの0.1%ギ酸で停止し、次いで、反応混合物(10μgタンパク質)の30μLをHPLCシステムに注入した。
C. by DAABD-Cl. Derivatization and identification of elegans protein (1) Method elegans (Bristol N2 strain). The OP50 strain of E. coli was cultured on NGM agar at 20 ° C. as a nutrient source and suspended from M9 buffer to separate it from bacteria. The nematode was washed twice with M9 buffer and stored at -80 ° C for use. This nematode was suspended in an equal amount of 10 mM CHAPS and dissolved by ultrasonic waves. Soluble fractions were collected by centrifugation at 10,000 rpm for 5 minutes at 4 ° C. The supernatant was stored at −20 ° C. as a soluble fraction. The protein concentration of this fraction was determined by the Bradford method using BSA as a standard. About 20 μL of the supernatant (100 μg protein) in the same volume of 2.5 mM TCEP, 17.5 mM DAABD-Cl, 10 mM Na 2 EDTA and 50 mM CHAPS in 100 mM borate buffer (pH 9.0) containing 6.0 M guanidine. Mixed. After incubating the reaction mixture at 40 ° C. for 30 minutes, the reaction was stopped with 200 μL of 0.1% formic acid and then 30 μL of the reaction mixture (10 μg protein) was injected into the HPLC system.

RPカラムがPROTEIN(30nmポアサイズ、250×4.6mm i.d.)(Imtakt)、移動相が溶離液(A)0.1%トリフルオロ酢酸及び溶離液(B)水/CH3 CN/トリフルオロ酢酸(70/30/0.1)、グラジエントシステムが流速0.25mL/minで100分以上の30から70%Bの条件でHPLCを行った。蛍光検出は508nm、励起波長は387nmで行った。同定のために、蛍光タンパク質誘導体のいくつかのピークフラクションを分離し、減圧下に10μLに濃縮した。各フラクションは、2μg/mLトリプシン及び1.0mM塩化カルシウムを含む90μLの5.0mM重炭酸アンモニウム溶液(pH7.8)で希釈し、37℃で2時間インキュベートした。各タンパク質加水分解ペプチド混合物を直接ESIイオントラップ質量分析装置を用いたLC−MS/MSに供した。クロマトグラフィーは、HP1090シリーズIIシステム及びCadenza TC−18 column(12nmポーラスシリカ、100×2.0mm i.d.)のカラムを用いて実施した。移動相は溶離液(A)1.0mMギ酸アンモニウム及び溶離液(B)1.0mMギ酸アンモニウム/CH3 CN(50/50)とした。グラジエント溶出は、流速0.2mL/minで60分以上の0から100%で行った。タンパク質の同定は、システインのチオール残基に結合したDAABDを記憶するMASCOT(Matrix Science Ltd.,U.K.)データベースサーチアルゴリズムを有するNCBInrデータベースを用いて実施した。 RP column is PROTEIN (30 nm pore size, 250 × 4.6 mm id) (Imtakt), mobile phase is eluent (A) 0.1% trifluoroacetic acid and eluent (B) water / CH 3 CN / tri Fluoroacetic acid (70/30 / 0.1), HPLC was performed under the conditions of 30 to 70% B over 100 minutes at a flow rate of 0.25 mL / min with a gradient system. The fluorescence detection was performed at 508 nm and the excitation wavelength was 387 nm. For identification, several peak fractions of the fluorescent protein derivative were separated and concentrated to 10 μL under reduced pressure. Each fraction was diluted with 90 μL of 5.0 mM ammonium bicarbonate solution (pH 7.8) containing 2 μg / mL trypsin and 1.0 mM calcium chloride and incubated at 37 ° C. for 2 hours. Each protein hydrolyzed peptide mixture was directly subjected to LC-MS / MS using an ESI ion trap mass spectrometer. Chromatography was performed using a column of HP1090 series II system and Cadenza TC-18 column (12 nm porous silica, 100 × 2.0 mm id). The mobile phases were eluent (A) 1.0 mM ammonium formate and eluent (B) 1.0 mM ammonium formate / CH 3 CN (50/50). Gradient elution was performed from 0 to 100% over 60 minutes at a flow rate of 0.2 mL / min. Protein identification was performed using the NCBInr database with the MASCOT (Matrix Science Ltd., UK) database search algorithm that stores DAABD bound to the thiol residue of cysteine.

(2)結果
図11は、DAABD−Clで誘導体化した、C.elegansの可溶性フラクションから得られたタンパク質(約10μg)のクロマトグラムを示す。本実施例では、タンパク質の分離、トリプシンによる加水分解及び任意に選択されたピークフラクションのLC−MS/MS同定により、10種類のタンパク質が同定された。
図中、1はリボゾームタンパク質S3a(MW=28942)、2はカルレティキュリン(calreticulin)前駆体(MW=45588)、3はリボゾームタンパク質L1(MW=38635)、4は伸長因子(elongation factor)1−アルファ(MW=50636)、5はリンゴ酸デヒドロゲナーゼ(MW=35098)、6は40Sリボゾームタンパク質(MW=22044)、7はビテロゲニン(vitellogenin)(MW=193098)、8はアルギニンキナーゼ(MW=41969)、9はHSP−1熱ショック(heat shock)70kdタンパク質A(MW=69680)及び10はリボゾームタンパク質L7Ae(MW=13992)を示す。本実施例では、任意に選択された10種類のタンパク質が同定されたが、本発明では、同様にして、他のタンパク質の同定をすることが可能である。
(2) Results FIG. 11 shows C.I. derivatized with DAABD-Cl. The chromatogram of the protein (about 10 microgram) obtained from the soluble fraction of elegans is shown. In this example, 10 proteins were identified by protein separation, hydrolysis with trypsin, and LC-MS / MS identification of arbitrarily selected peak fractions.
In the figure, 1 is a ribosomal protein S3a (MW = 28942), 2 is a calreticulin precursor (MW = 45588), 3 is a ribosomal protein L1 (MW = 38635), and 4 is an elongation factor. 1-alpha (MW = 50636), 5 is malate dehydrogenase (MW = 35098), 6 is 40S ribosomal protein (MW = 22044), 7 is vitellogenin (MW = 193098), 8 is arginine kinase (MW = 41969), 9 indicates HSP-1 heat shock 70 kd protein A (MW = 69680) and 10 indicates ribosomal protein L7Ae (MW = 13992). In this example, 10 kinds of proteins selected arbitrarily were identified, but in the present invention, other proteins can be identified in the same manner.

以上詳述したように、本発明は、微量の発現タンパク質及び/又はペプチドの検出・分離・同定方法及びそのシステムに係るものであり、本発明により、遺伝子を介して発現する発現タンパク質及び/又はペプチドを簡便な方法及び手段で、高感度に検出・分離・同定することができる。本発明の方法により、従来法では検出できなかった微量の発現タンパク質及び/又はペプチドを短時間で、感度良く検出・分離・同定することができる。また、上記検出・分離・同定方法に使用する微量の発現タンパク質及び/又はペプチドの微量検出・分離・同定システムを提供することができる。本発明は、プロテオームのプラットフォーム技術を提供するものとして有用である。   As described above in detail, the present invention relates to a method for detecting, separating and identifying a small amount of expressed protein and / or peptide, and a system thereof. According to the present invention, the expressed protein and / or expressed via a gene Peptides can be detected, separated and identified with high sensitivity by simple methods and means. According to the method of the present invention, a small amount of expressed protein and / or peptide that could not be detected by the conventional method can be detected, separated and identified with high sensitivity in a short time. In addition, it is possible to provide a minute amount detection / separation / identification system for expressed proteins and / or peptides used in the detection / separation / identification method. The present invention is useful for providing proteome platform technology.

本発明の方法の操作工程の一例を示す。An example of the operation process of the method of this invention is shown. 界面活性剤の種類と蛍光誘導体の生成の度合いとの関係を示す。The relationship between the kind of surfactant and the production | generation degree of a fluorescent derivative is shown. 本発明の方法により試験した蛍光誘導体タンパク質/ペプチドのそれぞれの蛍光ピークを示す。The respective fluorescence peaks of the fluorescent derivative proteins / peptides tested by the method of the present invention are shown. 酵素水解物の蛍光クロマトグラム(A)、及びマスクロマトグラム(B)を示す。The fluorescence chromatogram (A) and mass chromatogram (B) of an enzyme hydrolyzate are shown. MS/MSによるマススペクトルを示す。The mass spectrum by MS / MS is shown. 実施例3における逆相クロマトグラフィー(RPLC)によるクロマトグラムを示す。The chromatogram by the reverse phase chromatography (RPLC) in Example 3 is shown. 蛍光誘導体化の反応時間と蛍光強度との関係を示す(左図:DAABD−Cl,右図:TAABD−Cl)。The relationship between the reaction time of fluorescence derivatization and the fluorescence intensity is shown (left: DAABD-Cl, right: TAABD-Cl). TAABD−Clとの反応時間と蛍光強度との関係を示す。The relationship between TAABD-Cl reaction time and fluorescence intensity is shown. 新規蛍光試薬によるシステインの蛍光誘導体化(pH9.0)の反応時間とピーク領域との関係を示す。The relationship between the reaction time of the derivatization (pH 9.0) of cysteine with a novel fluorescent reagent and the peak area is shown. 新規蛍光試薬によるシステインの蛍光誘導体化(pH10.0)の反応時間とピーク領域との関係を示す。The relationship between the reaction time of the derivatization (pH 10.0) of cysteine with a novel fluorescent reagent and the peak area is shown. DAABD−Clで誘導体化した、線虫(C.elegans)の可溶性フラクションが得られたタンパク質(約10μg)のクロマトグラムを示す。The chromatogram of the protein (about 10 micrograms) from which the soluble fraction of C.elegans derivatized with DAABD-Cl was obtained is shown.

Claims (10)

被験試料中の発現微量タンパク質及び/又はペプチドを高感度に検出・分離・同定する方法であって、(1)被験試料中のタンパク質及び/又はペプチドを該タンパク質及び/又はペプチドとの反応で蛍光を発する親水性の蛍光試薬で標識する、(2)それを1次元又は2次元のHPLC/蛍光検出により、その蛍光分画を捕集する、(3)上記蛍光分画を酵素水解に付する、(4)それを第二段階のHPLC/蛍光検出により、その蛍光クロマトグラムを得ると共に、その画分を質量分析又はMS/MS分析に付し、データベース照合、構造解析に供して発現タンパク質及び/又はペプチドの同定を行うことを特徴とする上記発現タンパク質及び/又はペプチドの検出・分離・同定方法。   A method for highly sensitively detecting, separating, and identifying expressed trace proteins and / or peptides in a test sample, wherein (1) the protein and / or peptide in a test sample is fluorescent by reaction with the protein and / or peptide (2) Collect the fluorescent fraction by one-dimensional or two-dimensional HPLC / fluorescence detection, and (3) subject the fluorescent fraction to enzymatic hydrolysis. (4) The fluorescence chromatogram is obtained by HPLC / fluorescence detection in the second stage, and the fraction is subjected to mass spectrometry or MS / MS analysis, and subjected to database verification and structural analysis to express the expressed protein and A method for detecting / separating / identifying the expressed protein and / or peptide, wherein the peptide is identified. タンパク質及び/又はペプチド試料の水溶液に、官能基特異的蛍光試薬を加え、場合により、界面活性剤及び/又はタンパク変性剤を加えあるいは加えることなく、タンパク質及び/又はペプチドを蛍光標識する、請求項1に記載の方法。   A functional group-specific fluorescent reagent is added to an aqueous solution of a protein and / or peptide sample, and optionally, the protein and / or peptide is fluorescently labeled with or without the addition of a surfactant and / or a protein denaturant. The method according to 1. 蛍光標識したタンパク質及び/又はペプチド試料を蛍光検出器付きイオン交換カラムHPLC、逆相分配HPLC、ゲル濾過HPLC、又は電気泳動による分離手段に付し、蛍光をモニターしながらそのピーク分画を捕集する、請求項1に記載の方法。   Fluorescently labeled protein and / or peptide samples are applied to separation means by ion exchange column HPLC with fluorescence detector, reverse phase partition HPLC, gel filtration HPLC, or electrophoresis, and peak fractions are collected while monitoring fluorescence. The method of claim 1. 蛍光分画を、ペプチダーゼ、トリプシン、又はキモトリプシンのタンパク質分解酵素を用いて酵素水解する、請求項1に記載の方法。   The method according to claim 1, wherein the fluorescent fraction is subjected to enzymatic hydrolysis using a peptidase, trypsin, or chymotrypsin proteolytic enzyme. 酵素水解物を蛍光検出器付き逆相HPLCに付し、蛍光ピークを検出すると共に、蛍光標識フラグメント及び蛍光非標識フラグメントの質量分析又はMS/MS分析を行う、請求項1に記載の方法。   The method according to claim 1, wherein the enzyme hydrolyzate is subjected to reverse phase HPLC with a fluorescence detector to detect a fluorescence peak, and mass spectrometry or MS / MS analysis of a fluorescently labeled fragment and a fluorescent unlabeled fragment is performed. 質量分析又はMS/MS分析に付して得られた各フラグメントのイオン分子量情報を、コンピューターによるタンパク質及び/又はペブチドフラグメントデータベースと照合し、構造解析して、酵素水解以前のタンパク質及び/又はペプチドの同定を行う、請求項1に記載の方法。   The ionic molecular weight information of each fragment obtained by mass spectrometry or MS / MS analysis is collated with a computerized protein and / or peptide fragment database, subjected to structural analysis, and protein and / or before enzyme hydrolysis. The method according to claim 1, wherein the peptide is identified. 被験試料が、生体試料から採取したタンパク質及び/又はペプチド試料である、請求項1に記載の方法。   The method according to claim 1, wherein the test sample is a protein and / or peptide sample collected from a biological sample. タンパク質及び/又はペプチドフラグメント情報、及び蛍光試薬で標識したアミノ酸の情報を含んだデータベースを用いてデータベース照合する、請求項1に記載の方法。   The method according to claim 1, wherein database verification is performed using a database including protein and / or peptide fragment information and information on amino acids labeled with a fluorescent reagent. 請求項1から8のいずれかに記載の方法に使用する発現微量タンパク質及び/又はペプチド検出・分離・同定システムであって、被験試料のタンパク質及び/又はペプチドを蛍光試薬で標識するための第一反応器、蛍光試薬で標識した蛍光誘導体を蛍光分画するための1次元又は2次元の蛍光検出器付きHPLC、蛍光分画を酵素水解するための第二反応器、酵素水解物の蛍光標識フラグメントを蛍光検出するための第二段階の蛍光検出器付きHPLC、これに接続する質量分析装置、及び蛍光試薬で標識したアミノ酸の情報を含んだデータベースを搭載した構造解析装置を構成要素として含むことを特徴とする上記検出・分離・同定システム。 An expression trace protein and / or peptide detection / separation / identification system used in the method according to any one of claims 1 to 8, wherein the first protein and / or peptide is labeled with a fluorescent reagent. Reactor, HPLC with one- or two-dimensional fluorescence detector for fluorescent fractionation of fluorescent derivatives labeled with fluorescent reagents, second reactor for enzymatic hydrolysis of fluorescent fractions, fluorescently labeled fragments of enzyme hydrolyzate fluorescence detection to the second stage of a fluorescence detector with HPLC for mass spectrometer connected thereto, and contain containing information of amino acids labeled with a fluorescent reagent equipped with the structural analysis equipment database as a component The detection / separation / identification system described above. 上記第一反応器、1次元又は2次元の蛍光検出器付きHPLC、第二反応器、第二段階の蛍光検出器付きHPLCを直列に配置してなる、請求項9に記載のシステム。   The system according to claim 9, wherein the first reactor, the one-dimensional or two-dimensional HPLC with fluorescence detector, the second reactor, and the second stage HPLC with fluorescence detector are arranged in series.
JP2003342681A 2002-10-01 2003-09-30 Detection / separation / identification method of expressed trace protein / peptide Expired - Lifetime JP4558297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003342681A JP4558297B2 (en) 2002-10-01 2003-09-30 Detection / separation / identification method of expressed trace protein / peptide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002289313 2002-10-01
JP2003160201 2003-06-05
JP2003342681A JP4558297B2 (en) 2002-10-01 2003-09-30 Detection / separation / identification method of expressed trace protein / peptide

Publications (2)

Publication Number Publication Date
JP2005017264A JP2005017264A (en) 2005-01-20
JP4558297B2 true JP4558297B2 (en) 2010-10-06

Family

ID=34198690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003342681A Expired - Lifetime JP4558297B2 (en) 2002-10-01 2003-09-30 Detection / separation / identification method of expressed trace protein / peptide

Country Status (1)

Country Link
JP (1) JP4558297B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309707A (en) * 2006-05-16 2007-11-29 Kazuhiro Imai Fluorescence reagent
JP2009236908A (en) * 2008-03-04 2009-10-15 Kazuhiro Imai Diagnostic and therapeutic method for breast cancer
JP2010071986A (en) * 2008-08-20 2010-04-02 Kazuhiro Imai Fluorescence reagent
CN105092754B (en) * 2014-05-21 2018-09-18 天津市汉康医药生物技术有限公司 A method of measuring sulfonic acid esters genotoxicity impurity using HPLC
WO2023140228A1 (en) * 2022-01-18 2023-07-27 国立大学法人東北大学 Method for visualizing modified state or aggregated state of protein

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235477A (en) * 2000-02-23 2001-08-31 Natl Inst Of Advanced Industrial Science & Technology Meti Method for analyzing sequence of peptide amino acid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235477A (en) * 2000-02-23 2001-08-31 Natl Inst Of Advanced Industrial Science & Technology Meti Method for analyzing sequence of peptide amino acid

Also Published As

Publication number Publication date
JP2005017264A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP4300029B2 (en) Method and apparatus for gel-free qualitative and quantitative proteomic analysis and use thereof
US7635573B2 (en) Mass spectroscopic method for comparing protein levels in two or more samples
US20180052174A1 (en) Methods and reagents for biomolecule labeling, enrichment and gentle elution
US20110028330A1 (en) Compounds and methods for the labelling and affinity-selection of proteins
JP4679368B2 (en) Detection / separation / identification method of expressed trace protein / peptide
JP4558297B2 (en) Detection / separation / identification method of expressed trace protein / peptide
US20100167262A1 (en) Method and reagent for the specific identification and quantification of one or more proteins in a sample using in particular inductively coupled plasma-mass spectrometry
US7244411B2 (en) Method of selective peptide isolation for the identification and quantitative analysis of proteins in complex mixtures
EP2545384B1 (en) Method for determining the concentration of a peptide
JP4271687B2 (en) Labeling substance for mass spectrometry and phosphorylation position analysis of phosphorylated protein
US20050042676A1 (en) Characterising polypeptides
WO2006073563A2 (en) Fluorescent affinity tag to enhance phosphoprotein detection
US20070128729A1 (en) Method for the identification and relative quantification of proteins based on the selective isolation of RRnK peptides for the simplification of complex mixtures of proteins
EP4130022A1 (en) Phosphorylated protein labeling reagent containing equal-weight stable isotopes, preparation method therefor and use thereof
Guo et al. A novel quantitative proteomics reagent based on soluble nanopolymers
WO2004013636A2 (en) Differential labeling for quantitative analysis of complex protein mixtures by trifunctional synthetic peptide based reagents with iodoacetamido groups
WO2005015239A2 (en) Method for n-terminal labeling of proteins
CN116337567A (en) Quick and efficient chemical proteomics sample preparation method
CN117946081A (en) Mass spectrum cleavable abnormal-shaped difunctional crosslinking agent and preparation method and application thereof
KR20050079558A (en) Selective labeling agent for phosphoproteome analysis and phosphorylated site analysis
Stone et al. Identification of proteins based on MS/MS spectra and location of posttranslational modifications
JP2005291836A (en) Functional tag for concentrating target substance and method for using the same
AU2002310610A1 (en) Characterising polypeptides

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091007

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091207

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100721

R150 Certificate of patent or registration of utility model

Ref document number: 4558297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term