JP4556007B2 - Radioactive element-containing waste adsorbent and radioactive element immobilization method - Google Patents

Radioactive element-containing waste adsorbent and radioactive element immobilization method Download PDF

Info

Publication number
JP4556007B2
JP4556007B2 JP2004169137A JP2004169137A JP4556007B2 JP 4556007 B2 JP4556007 B2 JP 4556007B2 JP 2004169137 A JP2004169137 A JP 2004169137A JP 2004169137 A JP2004169137 A JP 2004169137A JP 4556007 B2 JP4556007 B2 JP 4556007B2
Authority
JP
Japan
Prior art keywords
radioactive element
immobilizing
hydroxide
metal hydroxide
containing waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004169137A
Other languages
Japanese (ja)
Other versions
JP2005345449A (en
Inventor
山田裕久
田村堅志
田中順三
生駒俊之
末次寧
守吉佑介
渡辺雄二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004169137A priority Critical patent/JP4556007B2/en
Priority to US11/628,787 priority patent/US8207391B2/en
Priority to PCT/JP2005/010414 priority patent/WO2005120699A1/en
Priority to EP09000877.2A priority patent/EP2045007B1/en
Priority to EP05749075.7A priority patent/EP1785186B1/en
Publication of JP2005345449A publication Critical patent/JP2005345449A/en
Priority to US12/708,735 priority patent/US20100191033A1/en
Application granted granted Critical
Publication of JP4556007B2 publication Critical patent/JP4556007B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、使用済核燃料再処理工場で発生する放射性元素を吸着捕集する吸着剤と特に
長半減期のC−14,Cl−36,Se−79,Tc−99,I−129などを含む放射
性元素含有廃棄物を吸着捕集し、最終的な処分に適した固化体とする方法に関するもので
ある。
The present invention includes an adsorbent that adsorbs and collects radioactive elements generated in a spent nuclear fuel reprocessing plant, and in particular, C-14, Cl-36, Se-79, Tc-99, I-129 and the like having a long half-life. The present invention relates to a method of adsorbing and collecting radioactive element-containing waste to obtain a solidified body suitable for final disposal.

使用済核燃料再処理工場で使用済核燃料を再処理する際に発生する揮発性放射性核種の
一つである放射性ヨウ素はオフガス中に含まれることになるため、通常はアルカリでオフ
ガスを洗浄したり、ヨウ素吸着剤を充填したフィルターにオフガスを通して放射性ヨウ素
を吸着除去したりして、環境への影響をなくすようにしているが、ヨウ素吸着剤による吸
着除去が主流となりつつある。放射性ヨウ素を吸着捕集したヨウ素吸着剤等は放射性ヨウ
素含有廃棄物として固化処理されて、最終的な処分に供される。
Radioiodine, which is one of the volatile radionuclides generated when reprocessing spent nuclear fuel at a spent nuclear fuel reprocessing plant, will be contained in the offgas, so usually the offgas is washed with alkali, The radioactive iodine is absorbed and removed through an off-gas through a filter filled with an iodine adsorbent so as to eliminate the influence on the environment. However, the adsorption removal by the iodine adsorbent is becoming mainstream. The iodine adsorbent or the like that adsorbs and collects radioactive iodine is solidified as a radioactive iodine-containing waste and is subjected to final disposal.

また、原子力発電所の放射性核種を含む系統水中には、Co−60(コバルト60)、
Cs−137(セシウム137)、Sr−90(ストロンチウム90)、その他Fe(鉄
)やNi(ニッケル)等の放射能強度の高い陽イオン種と、C−14(炭素14)、Cl
−36(塩素36)、Se−79(セレン79)、Tc−99(テクネチウム99)、I
−129(ヨウ素129)を含む放射能強度が低い陰イオン種(H14CO 14
2−,H79SeO 79SeO 2−99TcO な形で存在)とが含ま
れている。特にこれらの放射性陰イオンなどの場合、適切な鉱物系吸着剤がないためイオ
ン交換樹脂が吸着剤として用いられている。イオン交換樹脂は廃棄の際に減容化が必要と
なり、減容化処理後に、それをセメント固化体やアスファルト固化体などにして廃棄処理
を行っている。
In addition, Co-60 (cobalt 60), a system water containing radionuclides of nuclear power plants,
Cs-137 (cesium 137), Sr-90 (strontium 90), other high-activity cation species such as Fe (iron) and Ni (nickel), C-14 (carbon 14), Cl
-36 (chlorine 36), Se-79 (selenium 79), Tc-99 (technetium 99), I
-129 (iodine 129) -containing anionic species with low radioactivity intensity (H 14 CO 3 , 14 C
O 2 2− , H 79 SeO 3 , 79 SeO 4 2− , and 99 TcO 4 are present). Particularly in the case of these radioactive anions, an ion exchange resin is used as the adsorbent because there is no appropriate mineral adsorbent. It is necessary to reduce the volume of the ion exchange resin at the time of disposal, and after the volume reduction treatment, the waste is treated as a cement solidified body or an asphalt solidified body.

放射性廃棄物の固化処理方法としてはセメント固化(特許文献1)、プラスチック固化
、アスファルト固化、金属固化(特許文献2、3)、ガラス固化(特許文献4、5)、ア
パタイト固化(特許文献6)など種々の方法が提案されている。セメント固化、プラスチ
ック固化及びアスファルト固化は、吸着体をそのまま低温度封入できるため、処理プロセ
スが簡単で二次廃棄物の発生が少ないという利点がある。しかしながら、セメント、プラ
スチック、アスファルト、金属は、一般に数十年から数百年で材質が劣化し、且つヨウ素
が不均一に封入されているため、材質劣化後にヨウ素が外側に浸出する虞がある。これに
対し、ガラス材は緻密な材料であり、又ヨウ素を固溶すればガラスの溶解分程度にヨウ素
浸出を抑制することが期待できる。また、アパタイト材は、骨の成分であり、数百万年安
定して形状を保たれることが恐竜の化石等からも実証されていることから安定的長期保存
の固定化材に向いていると考えられている。
Radioactive waste solidification methods include cement solidification (Patent Document 1), plastic solidification, asphalt solidification, metal solidification (Patent Documents 2 and 3), glass solidification (Patent Documents 4 and 5), and apatite solidification (Patent Document 6). Various methods have been proposed. Cement solidification, plastic solidification, and asphalt solidification have the advantage that the adsorbent can be sealed at a low temperature as it is, so that the treatment process is simple and the generation of secondary waste is small. However, cement, plastic, asphalt, and metal are generally deteriorated in materials from several decades to several hundred years, and iodine is encapsulated in a non-uniform manner, so that there is a risk that iodine will leach outside after deterioration of the material. On the other hand, the glass material is a dense material, and if iodine is dissolved, it can be expected that the leaching of iodine is suppressed to the extent of dissolution of the glass. In addition, apatite is a bone component, and since it has been demonstrated from dinosaur fossils and the like that it can be stably maintained for millions of years, it is suitable for a fixed material for stable long-term storage. It is believed that.

特開平10−227895号公報Japanese Patent Laid-Open No. 10-227895 特開平10−62598号公報Japanese Patent Laid-Open No. 10-62598 特開2000−249792号公報JP 2000-249792 A 特開平09−171096号公報Japanese Patent Laid-Open No. 09-171096 特開2001−116894号公報JP 2001-116894 A 特開2001−91694号公報JP 2001-91694 A

一般に放射性ヨウ素の固化処理における課題は、I−129が長半減期核種であるため
長期間にわたる安定な閉じ込め性が得られること、微量に存在する放射性元素、特に揮発
性のヨウ素を効率的に捕集、吸着できなければならない。これまで検討されてきた固定化
方法の観点から、長期間の安定性を考えるとアパタイト系鉱物などのマトリックスの固定
化剤が好ましい。しかしながら、吸着体をアパタイト系セラミックスマトリックス中で固
定化処理する場合、廃棄物とガラスが均質に溶け合った固化体と比べると、固化時に吸着
剤ドメインに応力が集中することにより固化体にクラックなどが発生し、問題となる。
In general, the problems in solidifying radioactive iodine are that I-129 is a long half-life nuclide, so that stable confinement can be obtained over a long period of time, and trace amounts of radioactive elements, particularly volatile iodine, can be captured efficiently. It must be able to collect and adsorb. From the viewpoint of the immobilization methods that have been studied so far, a matrix immobilizing agent such as an apatite-based mineral is preferable in view of long-term stability. However, when the adsorbent is fixed in an apatite-based ceramic matrix, compared to a solidified body in which waste and glass are homogeneously melted, stress is concentrated in the adsorbent domain during solidification, which causes cracks in the solidified body. Occurs and becomes a problem.

そこで、本発明は、揮発性のヨウ素や排水中の放射性陰イオンなどを効率的に吸着捕集
可能で、固化処理後の固化体耐クラック性に優れる吸着剤と該放射性元素含有廃棄物の閉
じ込め性と長期安定性を備えた放射性元素含有廃棄物の固化方法を提供することを課題と
する。
Therefore, the present invention is capable of efficiently adsorbing and collecting volatile iodine, radioactive anions in waste water, etc., and confining the adsorbent excellent in solidified crack resistance after solidification and the radioactive element-containing waste. It is an object of the present invention to provide a method for solidifying radioactive element-containing wastes that is stable and has long-term stability.

本発明者らは、上述の問題点を改善するため鋭意検討した結果、金属水酸化物が揮発性
ヨウ素や放射性陰イオンを強く吸着し捕集することを見出した。この金属水酸化物を真球
状にした吸着剤を用いることにより、固化プロセスにおいて、ひび割れなどの欠陥の生じ
にくく、固化体マトリックス中に放射性廃棄物含有吸着剤が均一に分散した固化体を得ら
れことが明らかになった。
As a result of intensive studies to improve the above-mentioned problems, the present inventors have found that metal hydroxides strongly adsorb and collect volatile iodine and radioactive anions. By using an adsorbent made of this metal hydroxide in a spherical shape, defects such as cracks are less likely to occur in the solidification process, and a solidified product in which the radioactive waste-containing adsorbent is uniformly dispersed in the solidified matrix can be obtained. It became clear.

すなわち、本発明は以下の[1]〜[14]に示される構成を講じることによって解決
した。
[1]元素周期律表の第2族、第4族、第5族、第6族、第11族、第12 族、第13
族の金属原子、及びマンガン、鉄、コバルト、ニッケル、鉛、並びにビスマスからなる金
属原子の群より選ばれる金属含有の球状金属水酸化物からなる放射性元素含有廃棄物の吸
着剤。
That is, this invention was solved by taking the structure shown by the following [1]-[14].
[1] Group 2, Group 4, Group 5, Group 6, Group 11, Group 12, Group 13 of Periodic Table of Elements
A radioactive element-containing waste adsorbent comprising a metal atom and a metal-containing spherical metal hydroxide selected from the group of metal atoms consisting of manganese, iron, cobalt, nickel, lead, and bismuth.

[2] 前記金属水酸化物が、水酸化アルミニウム、水酸化マグネシウム、水酸化鉄(I
I)、酸化水酸化鉄(III)、水酸化鉄(III)、であることを特徴とする[1]記載の球
状金属水酸化物からなる放射性元素含有廃棄物の吸着剤。
[2] The metal hydroxide contains aluminum hydroxide, magnesium hydroxide, iron hydroxide (I
The radioactive element-containing waste adsorbent comprising the spherical metal hydroxide according to [1], which is I), iron oxide (III) oxide, or iron (III) hydroxide.

[3] [1]又は[2]において、球状金属水酸化物の平均粒子径が1.0μm〜20
0μmであることを特徴とする球状金属水酸化物からなる放射性元素含有廃棄物の吸着剤
[3] In [1] or [2], the average particle size of the spherical metal hydroxide is 1.0 μm to 20 μm.
A radioactive element-containing waste adsorbent comprising a spherical metal hydroxide, characterized by being 0 μm.

[4] 前記球状金属水酸化物の表面が疎水化処理されていることを特徴とする[1]か
ら[3]のいずれかに記載の球状金属水酸化物からなる放射性元素含有廃棄物の吸着剤。
[4] Adsorption of radioactive element-containing waste comprising spherical metal hydroxide according to any one of [1] to [3], wherein the surface of the spherical metal hydroxide is hydrophobized. Agent.

[5] [4]記載の疎水化処理がシラン化剤により行なわれることを特徴とする球状金
属水酸化物からなる放射性元素含有廃棄物の吸着剤。
[5] A radioactive element-containing waste adsorbent comprising a spherical metal hydroxide, wherein the hydrophobizing treatment according to [4] is performed with a silanizing agent.

[6] [5]記載の放射性元素含有廃棄物吸着剤において、シラン化剤が下記式で表さ
れることを特徴とする球状金属水酸化物からなる放射性元素含有廃棄物の吸着剤。
[6] The radioactive element-containing waste adsorbent according to [5], wherein the silanizing agent is represented by the following formula:

4-nSiXn n=1,2,3(R:炭素数が1〜32の炭化水素基であるか、その水
素原子の一部又は全部がフッ素原子に置換されているものである。ただし、炭素数が1で
n=1のものは除く。X:アルコキシ基、水素原子、水酸基、フェノキシ基、又はジエチ
ルアミノ基である。)
R 4-n SiX n n = 1, 2, 3 (R: a hydrocarbon group having 1 to 32 carbon atoms, or a part or all of the hydrogen atoms are substituted with fluorine atoms. (However, those having 1 carbon atom and n = 1 are excluded. X: an alkoxy group, a hydrogen atom, a hydroxyl group, a phenoxy group, or a diethylamino group.)

[7] 前記球状金属水酸化物に放射性元素を吸着させ、放射性元素が吸着した球状金
属水酸化物粉末(A)と固化体の処分環境で耐食性を有する固定化剤(B)からなる複合
粉末を加圧成型した後、所定温度で焼成することを特徴とする放射性元素の固定化方法。
[7] A composite powder comprising a spherical metal hydroxide powder (A) in which a radioactive element is adsorbed on the spherical metal hydroxide, and a fixing agent (B) having corrosion resistance in the disposal environment of the solidified body. A method for immobilizing a radioactive element, characterized by firing at a predetermined temperature after pressure molding.

[8] 前記複合粉末の組成が、放射性元素を吸着した球状金属水酸化物粉末(A)と固
定化剤(B)の配合量が質量比で(A):(B)=5:95〜60:40であることを特
徴とする[7]記載の放射性元素の固定化方法。
[8] The composition of the composite powder is such that the blending amount of the spherical metal hydroxide powder (A) adsorbing the radioactive element and the immobilizing agent (B) is (A) :( B) = 5: 95 to mass ratio. It is 60:40, The fixing method of the radioactive element as described in [7] characterized by the above-mentioned.

[9] [8]又は[9]に記載の放射性元素含有廃棄物の固定化方法において、加圧成
型した試料を、マイクロ波処理することにより焼結体を得ることを特徴とする放射性元素
の固定化方法。
[9] In the method for immobilizing radioactive element-containing waste according to [8] or [9], a sintered body is obtained by subjecting a pressure-molded sample to microwave treatment. Immobilization method.

[10] [7]又は[8]に記載の放射性元素含有廃棄物の固定化方法において、放射
性元素を吸着した球状金属水酸化物粉末(A)と固定化剤(B)からなる複合粉末を、所
定の押圧力で圧縮して圧粉体とすると共に、該圧粉体にパルス状電圧を印加することによ
り所定温度に加熱することを特徴とする放射性元素の固定化方法。
[10] In the method for immobilizing radioactive element-containing waste according to [7] or [8], a composite powder comprising a spherical metal hydroxide powder (A) adsorbed with a radioactive element and an immobilizing agent (B) is used. A method for immobilizing a radioactive element, comprising compressing with a predetermined pressing force to obtain a green compact, and applying a pulse voltage to the green compact to heat it to a predetermined temperature.

[11] [7]から[10]のいずれかに記載の固定化剤が燐酸カルシウム系セラミッ
クスであることを特徴とする放射性元素の固定化方法。
[11] A method for immobilizing a radioactive element, wherein the immobilizing agent according to any one of [7] to [10] is a calcium phosphate ceramic.

[12] [11]記載のリン酸カルシウム系セラミックスがハイドロキシアパタイト及
び/又はフッ素アパタイトであることを特徴とする放射性元素の固定化方法。
[12] A method for immobilizing a radioactive element, wherein the calcium phosphate ceramics according to [11] is hydroxyapatite and / or fluorapatite.

[13] 前記複合粉体に加圧する所定の押圧力が5MPa以上100MPa以下であ
ることを特徴とする[7]から[12]のいずれかに記載の放射性元素の固定化方法。
[13] The method for immobilizing a radioactive element according to any one of [7] to [12], wherein a predetermined pressing force applied to the composite powder is 5 MPa or more and 100 MPa or less.

[14] 前記複合粉体の焼結温度が700℃以上1200℃以下であることを特徴と
する[7]から[13]のいずれかに記載の放射性元素の固定化方法。
[14] The method for immobilizing a radioactive element according to any one of [7] to [13], wherein the sintering temperature of the composite powder is 700 ° C. or higher and 1200 ° C. or lower.

以下、本発明の構成をさらに詳細に説明する。本発明において好適に用いられる球状金
属水酸化物は、例えば噴霧乾燥法などの方法により得ることができる。本発明の放射性元
素の固定化プロセスに使用するものは、平均粒子径が1〜200μmの範囲のものが好ま
しい。
Hereinafter, the configuration of the present invention will be described in more detail. The spherical metal hydroxide suitably used in the present invention can be obtained by a method such as spray drying. What is used for the fixation process of the radioactive element of this invention has an average particle diameter of the range of 1-200 micrometers.

本発明中の金属水酸化物は、比較的低温でアルカリによる中和反応、過飽和水溶液から
の析出、金属アルコキシドの加水分解などにより容易に合成可能な物質である。これらの
金属水酸化物は、元素周期律表の第2族、第4族、第5族、第6族、第11族、第12
族、第13族の金属原子、及びマンガン、鉄、コバルト、ニッケル、鉛、並びにビスマス
からなる金属原子の群より選ばれる金属含有の球状金属水酸化物である。具体的には、第
2族がベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム、
第3族がスカンジウム、イットリウム、ランタノイド、アクチノイド、第4族がチタン、
ジルコニウム、ハフニウム、第5族がバナジウム、ニオブ、タンタル、第6族がクロム、
モリブデン、タングステン、第11族が銅、金、第12族が亜鉛、カドミウム、第13族
がアルミニウム、ガリウム、インジウム、タリウム、及びマンガン、鉄、コバルト、ニッ
ケル、鉛、並びにビスマスである。
The metal hydroxide in the present invention is a substance that can be easily synthesized by a neutralization reaction with alkali at a relatively low temperature, precipitation from a supersaturated aqueous solution, hydrolysis of a metal alkoxide, and the like. These metal hydroxides are Group 2, Group 4, Group 5, Group 6, Group 11, Group 12 of the Periodic Table of Elements.
A metal-containing spherical metal hydroxide selected from the group of metal atoms consisting of Group, Group 13 metal atoms, and manganese, iron, cobalt, nickel, lead, and bismuth. Specifically, group 2 is beryllium, magnesium, calcium, strontium, barium, radium,
Group 3 is scandium, yttrium, lanthanoid, actinoid, Group 4 is titanium,
Zirconium, hafnium, Group 5 is vanadium, niobium, tantalum, Group 6 is chromium,
Molybdenum, tungsten, Group 11 is copper, gold, Group 12 is zinc, cadmium, Group 13 is aluminum, gallium, indium, thallium, and manganese, iron, cobalt, nickel, lead, and bismuth.

前記金属原子の内、更に好ましい金属原子からなる金属水酸化物 の具体例としては、
水酸化マグネシウム、水酸化カルシウム(II)、水酸化ストロンチウム、水酸化バリウム
、酸化チタン水和物、水酸化バナジウム(III)、水酸化銅(II)、水酸化金(III)、水
酸化亜鉛、水酸化カドミウム、ギブサイトα−Al(OH),バイアライトβ−Al(
OH)、ベーマイトα−AlO(OH)、ダイアスポアβ−AlO(OH)に代表され
る水酸化アルミニウム、水酸化ガリウム(III)、水酸化インジウム(III)、水酸化タリ
ウム(I)、水酸化タリウム(III)、水酸化マンガン(II)、酸化水酸化マンガン(III
)、水酸化鉄(II)、ゲータイトα−FeO(OH),アカガネアイトβ−FeO(OH
),レピドクロサイトγ−FeO(OH)、リモナイトδ−FeO(OH)に代表される
酸化水酸化鉄(III)、水酸化鉄(III)、シュベルトマナイト等の非晶質鉄水酸化物、水
酸化コバルト、酸化水酸化コバルト(III)、水酸化ニッケル、水酸化鉛(II)、酸化ビ
スマス水和物等が挙げられる。これらのうち、特に好ましいのは水酸化マグネシウム、水
酸化アルミニウム、水酸化鉄(II)、酸化水酸化鉄(III)、水酸化鉄(III)である。
As a specific example of the metal hydroxide comprising a more preferable metal atom among the metal atoms,
Magnesium hydroxide, calcium hydroxide (II), strontium hydroxide, barium hydroxide, titanium oxide hydrate, vanadium hydroxide (III), copper hydroxide (II), gold hydroxide (III), zinc hydroxide, Cadmium hydroxide, Gibbsite α-Al (OH) 3 , Vialite β-Al (
OH) 3 , boehmite α-AlO (OH), aluminum hydroxide represented by diaspore β-AlO (OH), gallium hydroxide (III), indium hydroxide (III), thallium hydroxide (I), hydroxylated Thallium (III), manganese hydroxide (II), manganese oxide hydroxide (III
), Iron hydroxide (II), goethite α-FeO (OH), akaganeite β-FeO (OH
), Lepidocrocite γ-FeO (OH), amorphous iron hydroxides such as iron oxide (III) oxide represented by limonite δ-FeO (OH), iron hydroxide (III), Schwertmannite , Cobalt hydroxide, cobalt oxide (III) hydroxide, nickel hydroxide, lead (II) hydroxide, bismuth oxide hydrate and the like. Of these, magnesium hydroxide, aluminum hydroxide, iron hydroxide (II), iron oxide hydroxide (III), and iron hydroxide (III) are particularly preferable.

本発明の球形の金属水酸化物を得るには噴霧乾燥(スプレイドライ)法による方法が好
適である。これを用いることにより簡便で比較的粒子径の整った球形金属水酸化物が得ら
れる。すなわち金属水酸化物を水性溶媒中に分散してゲル化し、しかる後に該分散液を噴
霧乾燥する方法である。上記ゲルを調製するに当たっては金属水酸化物の濃度が20重量
%以下になることが好ましく、更に好ましくは1〜10重量%である。20重量%を超え
る濃度ではゲル粘度が高く、噴霧乾燥時の噴霧ノズルへの液の送りが難しく、またノズル
の目詰まり等が生じてしまう。
In order to obtain the spherical metal hydroxide of the present invention, a method by a spray drying method is suitable. By using this, a spherical metal hydroxide having a simple and relatively uniform particle diameter can be obtained. That is, it is a method in which a metal hydroxide is dispersed in an aqueous solvent to form a gel, and then the dispersion is spray-dried. In preparing the gel, the concentration of the metal hydroxide is preferably 20% by weight or less, more preferably 1 to 10% by weight. If the concentration exceeds 20% by weight, the gel viscosity is high, it is difficult to feed the liquid to the spray nozzle during spray drying, and the nozzle is clogged.

噴霧乾燥に際してはディスクタイプや加圧ノズル式、2流体ノズル式などの一般的噴霧
乾燥法が適用できる。いずれの場合も噴霧時の入り口空気温度は、金属水酸化物が300
℃位までは熱的に十分に安定であることから100〜300℃程度の幅広い温度範囲を設
定できる。こうして得られる粒状金属水酸化物の粒子径は1〜200μmである。この球
状金属水酸化物は必要に応じて通常の乾式分級法により分級して用いられる。
For spray drying, general spray drying methods such as a disk type, a pressure nozzle type, and a two-fluid nozzle type can be applied. In both cases, the inlet air temperature during spraying is 300 for metal hydroxide.
A temperature range of about 100 to 300 ° C. can be set since it is sufficiently thermally stable up to about ° C. The particle size of the granular metal hydroxide thus obtained is 1 to 200 μm. The spherical metal hydroxide is classified and used by an ordinary dry classification method as necessary.

本発明の球状金属水酸化物は、電子顕微鏡法による粒子径測定法において平均粒子径が
1〜200μm、特に好適な範囲は2〜100μmの範囲にある。固化体への充填性、耐
クラック性の観点でいえば、用いる粒子の粒径には一定の好適範囲があり、上記範囲は圧
力を均一にかけられる点で好適な範囲である。
The spherical metal hydroxide of the present invention has an average particle size of 1 to 200 μm and a particularly preferred range of 2 to 100 μm in the particle size measurement method by electron microscopy. From the viewpoint of the filling property to the solidified body and crack resistance, the particle size of the particles to be used has a certain preferable range, and the above range is a preferable range in that the pressure can be applied uniformly.

この場合、粒子径の測定は、沈降重量法や遠心沈降光透過法、レーザー回折・光散乱法
などの測定法が可能である。流動相中における凝集などを区別できない可能性があるので
、透過型電子顕微鏡、走査型電子顕微鏡により直接観察し、個々の粒子の長短径の平均値
を求め、個数基準による各フラクションの対数正規分布から平均粒子径を求めることが好
ましい。
In this case, the particle size can be measured by a sedimentation weight method, a centrifugal sedimentation light transmission method, a laser diffraction / light scattering method, or the like. Since there is a possibility that aggregation in the fluid phase cannot be discriminated, it is directly observed with a transmission electron microscope or scanning electron microscope, the average value of the major and minor diameters of individual particles is obtained, and the log normal distribution of each fraction based on the number It is preferable to determine the average particle size from

水中に含まれる放射性陰イオンなどの除去の場合、前記の吸着剤に耐水性が要求される
。本発明の球状金属水酸化物は優れた耐水性を有するが、更に表面処理を行うことによっ
て耐水性の向上が可能である。
In the case of removing radioactive anions contained in water, the adsorbent is required to have water resistance. The spherical metal hydroxide of the present invention has excellent water resistance, but the water resistance can be improved by further surface treatment.

表面処理剤としては、シラン化剤でよいが下記式で示されるシラン化剤が特に好ましい

4-nSiXn n=1,2,3
(R:炭素数が1から32までの炭化水素基であるか、その水素原子の一部又は全部がフ
ッ素原子に置換されているものである。ただし、炭素数が1でn=1のものは除く。X:
アルコキシ基、水素原子、水酸基、フェノキシ基、ジエチルアミノ基である。)
As the surface treatment agent, a silanizing agent may be used, but a silanizing agent represented by the following formula is particularly preferable.
R 4-n SiX n n = 1, 2, 3
(R is a hydrocarbon group having 1 to 32 carbon atoms, or part or all of the hydrogen atoms are replaced by fluorine atoms, provided that the number of carbon atoms is 1 and n = 1. X:
An alkoxy group, a hydrogen atom, a hydroxyl group, a phenoxy group, and a diethylamino group. )

このシラン化剤の例として、3,3,3−トリフルオロプロピルメトキシシラン、n−
オクタデシルトリエトキシシラン、n−オクタデシルトリメトキシシラン、n−オクタデ
シルシラン、n−オクチルメチルジメトキシシラン、n−オクチルシラン、n−オクチル
トリエトキシシラン、n−ブチルトリメトキシシラン、n−プロピルトリメトキシシラン
、エチルトリエトキシシラン、エチルトリメトキシシラン、メチルトリメトキシシラン、
ジメチルジメトキシシラン、ジエチルジエトキシシラン、n−オクタデシルジメチルメト
キシシランなどが挙げられる。
Examples of this silanizing agent include 3,3,3-trifluoropropylmethoxysilane, n-
Octadecyltriethoxysilane, n-octadecyltrimethoxysilane, n-octadecylsilane, n-octylmethyldimethoxysilane, n-octylsilane, n-octyltriethoxysilane, n-butyltrimethoxysilane, n-propyltrimethoxysilane, Ethyltriethoxysilane, ethyltrimethoxysilane, methyltrimethoxysilane,
Examples include dimethyldimethoxysilane, diethyldiethoxysilane, and n-octadecyldimethylmethoxysilane.

つぎに、放射性元素を吸着させた上記球状金属水酸化物を固化体中に固定化する方法に
ついて述べる。まず、放射性元素を吸着させた球状金属水酸化物(A)と固化体の処分環
境で耐食性を有する固定化剤(B)を所定量混合し、型に混合粉末を充填し、所定圧力で
圧縮、加熱して焼結体を得る。この焼結過程は圧力を維持状態でも開放した状態でも可能
である。
Next, a method for fixing the spherical metal hydroxide adsorbed with the radioactive element in the solidified body will be described. First, the spherical metal hydroxide (A) adsorbed with the radioactive element and the fixing agent (B) having corrosion resistance in the disposal environment of the solidified body are mixed in a predetermined amount, the mixed powder is filled in the mold, and compressed at a predetermined pressure To obtain a sintered body. This sintering process can be performed with the pressure maintained or released.

これら放射性元素を吸着した金属水酸化物粉末(A)と固定化剤(B)の配合比は、質
量比で(A):(B)=5:95〜60:40の範囲であり、好ましくは10:90〜4
0:60、更に好ましくは10:90〜30:70の範囲である。(A)成分の配合量が
5質量%未満になると廃棄物処理にかかるコストに影響し、(A)成分の配合量が60質
量%を超えるとマトリックスとなる(B)成分が減少するため放射性元素含有廃棄物を完
全に固定化できなくなる虞がある。
The compounding ratio of the metal hydroxide powder (A) adsorbing these radioactive elements and the immobilizing agent (B) is in the range of (A) :( B) = 5: 95 to 60:40, preferably by mass ratio. 10: 90-4
The range is 0:60, more preferably 10:90 to 30:70. If the blending amount of the component (A) is less than 5% by mass, the cost for waste treatment will be affected. If the blending amount of the component (A) exceeds 60% by mass, the component (B) that is the matrix will decrease, resulting in radioactive. There is a possibility that the element-containing waste cannot be completely fixed.

本発明の固定化剤(B)としてはリン酸カルシウム系化合物としては、例えば、ハイド
ロキシアパタイト、フッ素アパタイト、炭酸アパタイト等のアパタイト類、リン酸二カル
シウム、リン酸三カルシウム、リン酸四カルシウム、リン酸八カルシウム等が挙げられ、
これらのうちの1種または2種以上を組み合わせて用いることができる。放射性元素を固
定化する固化剤としてはアパタイト類の中でも水への溶解性が最も低いフッ素アパタイト
(Ca5 (PO4 )3F)を用いることが好ましい。
Examples of the fixing agent (B) of the present invention include calcium phosphate compounds such as hydroxyapatite, fluorapatite, carbonate apatite, and the like, dicalcium phosphate, tricalcium phosphate, tetracalcium phosphate, and eight phosphate phosphates. Calcium and the like,
One or more of these can be used in combination. As a solidifying agent for immobilizing a radioactive element, it is preferable to use fluorapatite (Ca 5 (PO 4 ) 3F) having the lowest solubility in water among apatites.

本発明の記載の放射性元素含有廃棄物の固定化法は例えば、所定圧力と所定温度を同時
にかけられるホットプレス焼結法(HP)、熱間等方圧焼結法(HIP)、熱プラズマ焼
結、放電プラズマ焼結(SPS)、また所定圧力で成形体を形成した後に所定温度をかけ
る常圧焼結法(PLS)、マイクロ波焼結、ミリ波焼結、高周波プラズマ焼結などが例示
できる。
Examples of the method for immobilizing radioactive element-containing waste described in the present invention include hot press sintering (HP), hot isostatic sintering (HIP), thermal plasma sintering, in which a predetermined pressure and a predetermined temperature are simultaneously applied. Examples include sintering, spark plasma sintering (SPS), atmospheric pressure sintering (PLS) in which a predetermined temperature is applied after forming a molded body at a predetermined pressure, microwave sintering, millimeter wave sintering, and high-frequency plasma sintering. it can.

マイクロ波加熱による焼結は、従来の加熱に比べて低温でしかも短時間で緻密化できる
という点で好ましい。マイクロ波による加熱、焼結機構は十分に理解されているとは言え
ないが、現在明らかにされているところでは加熱の拡散促進、内部加熱、表面活性化など
の効果により緻密な焼結体を得ることが可能となる。
Sintering by microwave heating is preferable in that it can be densified at a lower temperature and in a shorter time than conventional heating. The mechanism of heating and sintering by microwaves cannot be said to be fully understood, but at present, a dense sintered body is formed by effects such as promotion of diffusion of heating, internal heating, and surface activation. Can be obtained.

さらに、放電による直接発熱方式のため熱効率に優れるという点で比較的単時間で焼結
体が得られることから放電プラズマ焼結(SPS)が特に好ましい。放電焼結装置は、粉
体を圧縮して圧粉体とし、この圧粉体にパルス電圧を印加することによって、粉体に生ず
るジュール熱と粉体粒子間に生ずる放電現象及び電界拡散効果を利用して焼結 を促進す
るものである。
Furthermore, since a sintered body can be obtained in a relatively short time in terms of excellent thermal efficiency due to a direct heat generation method by discharge, discharge plasma sintering (SPS) is particularly preferable. The electric discharge sintering apparatus compresses the powder to form a green compact, and applies a pulse voltage to the green compact to reduce the Joule heat generated in the powder and the electric field diffusion effect generated between the powder particles. It is used to promote sintering.

本発明の記載の放射性元素含有廃棄物の固定化法における加圧条件は5MPa以上10
0MPa以下であることが好ましい。更に好ましくは10以上80MPa以下である。5
MPa以下では緻密な焼結体が得られず、固化剤粒子間に隙間や空孔が形成される場合が
あり、100MPa以上では吸着剤粒子などへ応力が集中することにより焼結体が破損す
る虞がある。
The pressurizing condition in the method for immobilizing radioactive element-containing waste described in the present invention is 5 MPa or more and 10
It is preferably 0 MPa or less. More preferably, it is 10 or more and 80 MPa or less. 5
If the pressure is less than MPa, a dense sintered body cannot be obtained, and gaps and voids may be formed between the solidifying agent particles. If the pressure is 100 MPa or more, the sintered body breaks due to stress concentration on the adsorbent particles. There is a fear.

本発明の記載の放射性元素含有廃棄物の固定化法における加熱条件は焼結温度が700
℃以上1200℃以下である。更に好ましくは800℃以上1000℃以下である。70
0℃未満では固定化剤(B)の焼結が不十分で放射性元素含有廃棄物を長時間安定的に固
定化できなくなり、1200℃を超えると2成分の加熱過程で放射性元素を分解放出して
しまう虞がある。なお、圧粉体の焼結時の酸化を防止するため、焼結雰囲気を真空とする
か、真空の代わりにアルゴン雰囲気等としても良い。
The heating condition in the method for immobilizing radioactive element-containing waste described in the present invention is a sintering temperature of 700.
It is at least 1200 ° C and at most 1200 ° C. More preferably, it is 800 degreeC or more and 1000 degrees C or less. 70
If the temperature is less than 0 ° C, the immobilizing agent (B) is not sufficiently sintered, and the radioactive element-containing waste cannot be stably immobilized for a long time. If the temperature exceeds 1200 ° C, the radioactive element is decomposed and released in the heating process of two components. There is a risk that. In order to prevent oxidation during sintering of the green compact, the sintering atmosphere may be a vacuum, or an argon atmosphere or the like may be used instead of the vacuum.

以下、本発明を実施例により詳細に説明するが、本発明はこれら実施例によりなんら限
定されるものではない。尚、球状金属水酸化物及びフッ素アパタイト(FAp)は、粉末
X線回折測定(理学電機(株)製、RINT2200を用い、40kV/40mAで発生
させたCuKα線を使用し、発散スリット角1度、発散縦制限スリット10mm、散乱ス
リット1.25mm、受光スリット0.3mm、スキャンスピード2度/分、サンプリン
グ幅0.02度で測定した)と形態観察(電界放出型走査型電子顕微鏡 HITACHI
S−5000、加速電圧10kV)を行った。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by these Examples. In addition, spherical metal hydroxide and fluorapatite (FAp) use CuKα rays generated at 40 kV / 40 mA using a RINT2200 by X-ray powder diffraction (manufactured by Rigaku Corporation), and a divergence slit angle is 1 degree. , Divergence length limiting slit 10mm, scattering slit 1.25mm, light receiving slit 0.3mm, scan speed 2 ° / min, sampling width 0.02 °) and morphological observation (field emission scanning electron microscope HITACHI
S-5000, acceleration voltage 10 kV).

吸着剤としての金属水酸化物としては、ベーマイトα−AlO(OH)を調製した。ベ
ーマイトの調製には、塩化アルミニウム六水和物 (AlCl3・6H2O)試薬特級和光純
薬工業株式会社製、水酸化ナトリウム (NaOH) 試薬特級 和光純薬工業株式会社製を
使用した。FAp調製には炭酸カルシウム試薬(99.99%) 和光純薬工業株式会社
製、リン酸試薬 和光純薬工業株式会社製、フッ酸試薬 和光純薬工業株式会社製を使用
した。
Boehmite α-AlO (OH) was prepared as a metal hydroxide as an adsorbent. For the preparation of boehmite, aluminum chloride hexahydrate (AlCl 3 .6H 2 O) reagent special grade Wako Pure Chemical Industries, Ltd. and sodium hydroxide (NaOH) reagent special grade Wako Pure Chemical Industries, Ltd. were used. For the preparation of FAp, calcium carbonate reagent (99.99%) manufactured by Wako Pure Chemical Industries, Ltd., phosphate reagent manufactured by Wako Pure Chemical Industries, Ltd., and hydrofluoric acid reagent manufactured by Wako Pure Chemical Industries, Ltd. were used.

球状ベーマイト(α−AlO(OH))粉末吸着剤の合成
0.02MのAlCl2水溶液を常温で攪拌しながら、0.1M NaOHを滴下速度1
.7mL/分で滴下してゲル化させ、該ゲル試料を蒸留水で洗浄した後に100℃、24時
間の水熱処理を行った。得られた試料はベーマイト(α−AlO(OH))であった。図
1にベーマイトのXRDパターンを示す。ベーマイトのみの回折ピークを示し、不純物は
みられなかった。
Synthesis of Spherical Boehmite (α-AlO (OH)) Powder Adsorbent While stirring 0.02M AlCl 2 aqueous solution at room temperature, 0.1M NaOH was added dropwise at a rate of 1
. The gel sample was dropped at 7 mL / min to gel, and the gel sample was washed with distilled water and then hydrothermally treated at 100 ° C. for 24 hours. The obtained sample was boehmite (α-AlO (OH)). FIG. 1 shows an XRD pattern of boehmite. A diffraction peak of only boehmite was shown, and no impurities were observed.

5.7重量%の濃度のベーマイト懸濁液を攪拌しながらスプレードライヤー(DL−4
1、ヤマト科学)にて乾燥温度180℃、噴霧圧0.16MPa、噴霧速度 約150m
L/minで噴霧乾燥により球状粒子を得た。ベーマイト真球状粉末の走査型電子顕微鏡
(SEM)による観察像の結果を図2に示す。2〜10μmの粒子径のベーマイトの真球
状粉末が得られた。得られた写真像から代表的な粒子100個を選んで、スケールを用い
て粒子像の直径から求めた平均粒子径は4.1μmであった。
Spray dryer (DL-4) while stirring boehmite suspension having a concentration of 5.7% by weight.
1, Yamato Science) drying temperature 180 ° C, spraying pressure 0.16MPa, spraying speed about 150m
Spherical particles were obtained by spray drying at L / min. The result of the observation image of boehmite true spherical powder by a scanning electron microscope (SEM) is shown in FIG. Boehmite true spherical powder having a particle size of 2 to 10 μm was obtained. 100 average particles were selected from the obtained photographic image, and the average particle size obtained from the diameter of the particle image using a scale was 4.1 μm.

この球状ベーマイト(5g)をヨウ素の吸着剤として、内径15mmΦ、長さ200m
mの石英管に下部よりシリカウールで区分して、I2(3g)/吸着剤(5g)を充填しカ
ラムを作成した。ヨウ素の吸着条件は、Heガスを流速1cc/minで流してヨウ素を担
持剤側に供給し、室温で72時間反応させた。過剰ヨウ素はエタノールを複数連結したト
ラップに捕集した。吸着剤中のヨウ素はアルカリ溶解後、イオンクロマトグラフ法で定量
した結果、吸着剤1gに対して2.06mmol/g吸着していた。
Using this spherical boehmite (5 g) as an iodine adsorbent, an inner diameter of 15 mmΦ and a length of 200 m
A column was prepared by separating the silica tube from m at the bottom with silica wool and packed with I 2 (3 g) / adsorbent (5 g). The iodine adsorption condition was that He gas was flowed at a flow rate of 1 cc / min, iodine was supplied to the support agent side, and reacted at room temperature for 72 hours. Excess iodine was collected in a trap connected with multiple ethanol. Iodine in the adsorbent was adsorbed to 2.06 mmol / g with respect to 1 g of the adsorbent as a result of quantification by ion chromatography after alkali dissolution.

(比較例1)
比較試料としてCa型ゼオライトA(Ca−LTA)で同様の条件でヨウ素の吸着実験を
試みた結果、ヨウ素の吸着量は0.35mmol/gであった。Ca−LTAはNa型ゼ
オライトA(試薬 和光純薬株式会社)をCaClでイオン交換して調製した。
(Comparative Example 1)
As a result of an experiment of iodine adsorption under the same conditions using Ca-type zeolite A (Ca-LTA) as a comparative sample, the iodine adsorption amount was 0.35 mmol / g. Ca-LTA was prepared by ion-exchange Na zeolite A (reagent manufactured by Wako Pure Chemical Industries, Ltd.) in CaCl 2.

固化剤として用いるフッ素アパタイト(FAp)粉末を下記のとおり合成した。
炭酸カルシウム粉末を1050℃で3時間加熱後、280℃まで冷却、蒸留水で加水消
化し、水酸化カルシウム水溶液を調製した。24時間窒素バブリングした後にリン酸とフ
ッ酸との混合溶液を徐々に滴下しつつ、アンモニア水を加えてpHを7.5以上に保持し
た。得られたFApの懸濁液をろ過洗浄し、再び蒸留水に分散(FAp/水=3重量%)
し、製造例1と同様噴霧乾燥法により球状粒子とした。その後3時間800℃で仮焼した
ものを複合焼結用マトリックス粉末として用いた。
Fluoroapatite (FAp) powder used as a solidifying agent was synthesized as follows.
The calcium carbonate powder was heated at 1050 ° C. for 3 hours, cooled to 280 ° C., and hydrolyzed with distilled water to prepare an aqueous calcium hydroxide solution. After bubbling with nitrogen for 24 hours, a mixed solution of phosphoric acid and hydrofluoric acid was gradually added dropwise, and ammonia water was added to maintain the pH at 7.5 or higher. The obtained suspension of FAp was filtered and washed, and again dispersed in distilled water (FAp / water = 3% by weight).
In the same manner as in Production Example 1, spherical particles were obtained by spray drying. After that, calcined at 800 ° C. for 3 hours was used as a matrix powder for composite sintering.

図3に、1200℃で焼成したFApのXRDパターンを示す。FApのみの回折ピー
クを示し、不純物はみられなかった。図4に、噴霧乾燥後800℃で仮焼した球状FAp
粉末のSEM像を示す。長径約100nm、短径約20nmの針状結晶で構成された直径
5〜20μmの球状二次粒子が観察された。
FIG. 3 shows an XRD pattern of FAp fired at 1200 ° C. A diffraction peak of only FAp was shown, and no impurity was observed. FIG. 4 shows spherical FAp calcined at 800 ° C. after spray drying.
The SEM image of powder is shown. Spherical secondary particles having a diameter of 5 to 20 μm composed of needle-like crystals having a major axis of about 100 nm and a minor axis of about 20 nm were observed.

実施例1で合成しヨウ素を吸着させた球状ベーマイトと上記の球状FApを質量比 1
5:85(質量%)で混合し、外形70mmΦ、内径20mmΦ、厚み10mmのカーボ
ンダイス(住友石炭株式会社製)に充填した。パルス通電加圧装置(SPS−1030、
住友石炭株式会社製)にて圧力50MPa、温度1000℃、保持時間10分の条件で焼
結体を作成した。その結果、焼結体は亀裂やひび割れはなく均一な固化体が得られた。
Spherical boehmite synthesized in Example 1 and adsorbed with iodine and the above spherical FAp in a mass ratio of 1
The mixture was mixed at 5:85 (mass%) and filled into a carbon die (manufactured by Sumitomo Co., Ltd.) having an outer diameter of 70 mmΦ, an inner diameter of 20 mmΦ, and a thickness of 10 mm. Pulse energizing pressurizer (SPS-1030,
A sintered body was produced under the conditions of a pressure of 50 MPa, a temperature of 1000 ° C., and a holding time of 10 minutes. As a result, the sintered body was free from cracks and cracks, and a uniform solidified body was obtained.

実施例1で合成しヨウ素を吸着させた球状ベーマイトと上記の球状FApを質量比 3
0:70(質量%)で混合した以外は実施例1同様に焼結体を作成した。その結果、焼結
体は亀裂やひび割れはなく均一な固化体が得られた。
Spherical boehmite synthesized in Example 1 and adsorbed with iodine and the above spherical FAp in a mass ratio of 3
A sintered body was prepared in the same manner as in Example 1 except that mixing was performed at 0:70 (mass%). As a result, the sintered body was free from cracks and cracks, and a uniform solidified body was obtained.

(比較例2)
実施例1の合成工程中の噴霧乾燥前のベーマイト粉をヨウ素を吸着させずそのまま使用した以外は実施例2同様に焼結体を作成した。その結果、得られた焼結体はひび割れが生じた。
(Comparative Example 2)
A sintered body was prepared in the same manner as in Example 2 except that the boehmite powder before spray drying in the synthesis step of Example 1 was used as it was without adsorbing iodine. As a result, the obtained sintered body was cracked.

本発明は、ヨウ素や陰イオン性の放射性元素含有廃棄物の吸着、捕集に優れた球状の金
属水酸化物と該放射性元素の固定化法に関するものである。球状の金属水酸化物は気体中
のヨウ素や水中の他の低レベル放射性陰イオンの吸着、捕集剤に適しており、また、リン
酸カルシウム系マトリックスと混合し、圧縮、加熱処理することによって、該放射性元素
含有廃棄物を吸着した吸着体を長期安定状態で廃棄処理することが可能となる。
The present invention relates to a spherical metal hydroxide excellent in adsorption and collection of iodine or anionic radioactive element-containing waste and a method for immobilizing the radioactive element. Spherical metal hydroxide is suitable for adsorption and collection of iodine in gas and other low-level radioactive anions in water, and it is mixed with calcium phosphate matrix, compressed, and heat treated. The adsorbent adsorbing the radioactive element-containing waste can be disposed of in a long-term stable state.

ベーマイトのX線回折パターン。X-ray diffraction pattern of boehmite. 噴霧乾燥した球状ベーマイト粉末の図面代用SEM像。SEM image substituted for drawing of spray-dried spherical boehmite powder. 1200℃で焼成したFApのX線回折パターン。X-ray diffraction pattern of FAp baked at 1200 ° C. 噴霧乾燥、800℃で仮焼したFAp粉末の図面代用SEM像。SEM image substituted for drawing of FAp powder calcined at 800 ° C. by spray drying.

Claims (14)

ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム、スカンジウム、イットリウム、ランタノイド、アクチノイド、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、銅、金、亜鉛、カドミウム、アルミニウム、ガリウム、インジウム、タリウム、マンガン、鉄、コバルト、ニッケル、鉛、及びビスマスからなる金属原子の群より選ばれる金属含有の球状金属水酸化物からなる放射性元素含有廃棄物の吸着剤。 Beryllium, magnesium, calcium, strontium, barium, radium, scandium, yttrium, lanthanoid, actinoid, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, copper, gold, zinc, cadmium, aluminum, gallium, A radioactive element-containing waste adsorbent comprising a metal-containing spherical metal hydroxide selected from the group of metal atoms comprising indium, thallium, manganese, iron, cobalt, nickel, lead, and bismuth . 前記金属水酸化物が、水酸化アルミニウム、水酸化マグネシウム、水酸化鉄(II)、酸化水酸化鉄(III)、水酸化鉄(III)、であることを特徴とする請求項1記載の球状金属水酸化物からなる放射性元素含有廃棄物の吸着剤。 The spherical shape according to claim 1, wherein the metal hydroxide is aluminum hydroxide, magnesium hydroxide, iron hydroxide (II), iron oxide hydroxide (III), or iron hydroxide (III). Radioactive element-containing waste adsorbent made of metal hydroxide. 請求項1又は2において、球状金属水酸化物の平均粒子径が1.0μm〜200μmであることを特徴とする球状金属水酸化物からなる放射性元素含有廃棄物の吸着剤。 3. The radioactive element-containing waste adsorbent according to claim 1, wherein the spherical metal hydroxide has an average particle size of 1.0 to 200 [mu] m. 前記球状金属水酸化物の表面が疎水化処理されていることを特徴とする請求項1から3のいずれかに記載の球状金属水酸化物からなる放射性元素含有廃棄物の吸着剤。 The radioactive element-containing waste adsorbent comprising the spherical metal hydroxide according to any one of claims 1 to 3, wherein the surface of the spherical metal hydroxide is subjected to a hydrophobic treatment. 請求項4記載の疎水化処理がシラン化剤により行なわれることを特徴とする球状金属水酸化物からなる放射性元素含有廃棄物の吸着剤。 A radioactive element-containing waste adsorbent comprising spherical metal hydroxides, wherein the hydrophobizing treatment according to claim 4 is performed with a silanizing agent. 請求項5記載の放射性元素含有廃棄物吸着剤において、前記シラン化剤が下記一般式(c)で表されることを特徴とする球状金属水酸化物からなる放射性元素含有廃棄物の吸着剤。
4-nSiXnn=1,2,3
(ここで、Rは炭素数が1〜32の炭化水素基であるか、その水素原子の一部又は全部がフッ素原子に置換されているものである。ただし、炭素数が1でn=1のものは除く。Xはアルコキシ基、水素原子、水酸基、フェノキシ基、又はジエチルアミノ基である。)
The radioactive element-containing waste adsorbent according to claim 5, wherein the silanizing agent is represented by the following general formula (c).
R 4-n SiX n n = 1, 2, 3
(Here, R is a hydrocarbon group having 1 to 32 carbon atoms, or a part or all of the hydrogen atoms are substituted with fluorine atoms. Provided that the number of carbon atoms is 1 and n = 1. X is an alkoxy group, a hydrogen atom, a hydroxyl group, a phenoxy group, or a diethylamino group.)
前記球状金属水酸化物に放射性元素を吸着させ、放射性元素を吸着した前記球状金属水酸化物粉末(A)と固定化剤(B)からなる複合粉末を加圧成型した後、所定温度で焼成することを特徴とする、請求項1から6のいずれかに記載の吸着剤を使用した放射性元素の固定化方法。 The spherical metal hydroxide is adsorbed with a radioactive element, the composite powder composed of the spherical metal hydroxide powder (A) and the fixing agent (B) adsorbed with the radioactive element is pressure-molded, and then fired at a predetermined temperature. A method for immobilizing a radioactive element using the adsorbent according to any one of claims 1 to 6, wherein: 前記複合粉末の組成が、放射性元素を吸着した前記球状金属水酸化物粉末(A)と前記固定化剤(B)の配合量が質量比で(A):(B)=5:95〜60:40であることを特徴とする請求項7記載の放射性元素の固定化方法。 The composition of the composite powder is such that the blending amount of the spherical metal hydroxide powder (A) adsorbed with the radioactive element and the immobilizing agent (B) is (A) :( B) = 5: 95-60 The method for immobilizing a radioactive element according to claim 7, wherein: 請求項7又は8に記載の放射性元素含有廃棄物の固定化方法において、加圧成型した圧粉体を、マイクロ波処理することにより焼結体を得ることを特徴とする放射性元素の固定化方法。 The method for immobilizing radioactive element-containing waste according to claim 7 or 8, wherein the sintered compact is obtained by subjecting the pressure-molded green compact to microwave treatment. . 請求項7又は8に記載の放射性元素含有廃棄物の固定化方法において、放射性元素を吸着した前記球状金属水酸化物粉末(A)と前記固定化剤(B)からなる前記複合粉末を、所定の押圧力で圧縮して圧粉体とすると共に、該圧粉体にパルス状電圧を印加することにより所定温度に加熱することを特徴とする放射性元素の固定化方法。 The method for immobilizing radioactive element-containing waste according to claim 7 or 8, wherein the composite powder comprising the spherical metal hydroxide powder (A) adsorbed with the radioactive element and the immobilizing agent (B) is predetermined. A method of immobilizing a radioactive element, comprising: compressing with a pressing force of 1 to form a green compact, and applying a pulse voltage to the green compact to heat to a predetermined temperature. 請求項7から10のいずれかに記載の固定化剤が燐酸カルシウム系セラミックスであることを特徴とする放射性元素の固定化方法。 A method for immobilizing a radioactive element, wherein the immobilizing agent according to any one of claims 7 to 10 is a calcium phosphate ceramic. 請求項11記載のリン酸カルシウム系セラミックスがハイドロキシアパタイト及び/又はフッ素アパタイトであることを特徴とする放射性元素の固定化方法。 The method for immobilizing a radioactive element, wherein the calcium phosphate ceramic according to claim 11 is hydroxyapatite and / or fluorapatite. 前記複合粉体に加圧する所定の押圧力が5MPa以上100MPa以下であることを特徴とする請求項7から12のいずれかに記載の放射性元素の固定化方法。 The method for immobilizing a radioactive element according to any one of claims 7 to 12, wherein a predetermined pressing force applied to the composite powder is 5 MPa or more and 100 MPa or less. 前記複合粉体の焼結温度が700℃以上1200℃以下であることを特徴とする請求項7から13のいずれかに記載の放射性元素の固定化方法。
The method for immobilizing a radioactive element according to any one of claims 7 to 13, wherein the sintering temperature of the composite powder is 700 ° C or higher and 1200 ° C or lower.
JP2004169137A 2004-06-07 2004-06-07 Radioactive element-containing waste adsorbent and radioactive element immobilization method Expired - Fee Related JP4556007B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004169137A JP4556007B2 (en) 2004-06-07 2004-06-07 Radioactive element-containing waste adsorbent and radioactive element immobilization method
US11/628,787 US8207391B2 (en) 2004-06-07 2005-06-07 Adsorbent for radioelement-containing waste and method for fixing radioelement
PCT/JP2005/010414 WO2005120699A1 (en) 2004-06-07 2005-06-07 Adsorbent for radioelement-containing waste and method for fixing radioelement
EP09000877.2A EP2045007B1 (en) 2004-06-07 2005-06-07 Adsorbent for radioelement-containing waste and method for fixing radioelement
EP05749075.7A EP1785186B1 (en) 2004-06-07 2005-06-07 Adsorbent for radioelement-containing waste and method for fixing radioelement
US12/708,735 US20100191033A1 (en) 2004-06-07 2010-02-19 Adsorbent for radioelement-containing waste and method for fixing radioelement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004169137A JP4556007B2 (en) 2004-06-07 2004-06-07 Radioactive element-containing waste adsorbent and radioactive element immobilization method

Publications (2)

Publication Number Publication Date
JP2005345449A JP2005345449A (en) 2005-12-15
JP4556007B2 true JP4556007B2 (en) 2010-10-06

Family

ID=35497957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004169137A Expired - Fee Related JP4556007B2 (en) 2004-06-07 2004-06-07 Radioactive element-containing waste adsorbent and radioactive element immobilization method

Country Status (1)

Country Link
JP (1) JP4556007B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345448A (en) * 2004-06-07 2005-12-15 National Institute For Materials Science Adsorbent for radioactive element-containing waste, and method of immobilizing radioactive element
FR2937634B1 (en) * 2008-10-27 2011-09-30 Commissariat Energie Atomique METHOD FOR DECONTAMINATING A LIQUID EFFLUENT COMPRISING ONE OR MORE RADIOACTIVE CHEMICAL ELEMENTS BY FLUIDIZED BED TREATMENT
JP5988706B2 (en) * 2012-06-04 2016-09-07 吉澤石灰工業株式会社 Cesium capturing material and method for producing the same
JP5985313B2 (en) * 2012-08-31 2016-09-06 株式会社東芝 Production method of solidified radioactive waste
JP6067497B2 (en) * 2013-07-05 2017-01-25 株式会社東芝 Production method of solidified radioactive waste
JP2016099264A (en) * 2014-11-25 2016-05-30 有限会社パールハート Radioactive substance adsorption ceramic for disposing of radioactive substance safely
JP6960817B2 (en) * 2017-09-29 2021-11-05 日鉄ケミカル&マテリアル株式会社 Metal collecting material for valuable metal recovery, its manufacturing method and valuable metal recovery method
CN111403072B (en) * 2020-03-21 2022-12-13 哈尔滨工程大学 Method for curing iodine-containing zeolite by using phosphate adhesive
CN113956020A (en) * 2021-10-28 2022-01-21 南华大学 Preparation method of radioactive solid waste fluorapatite solidified body
CN115155531B (en) * 2022-06-09 2024-04-09 陶玉仑 polyaniline/Fe 3 O 4 CuO fiber and preparation method and application thereof
CN116444248B (en) * 2023-05-15 2024-04-16 广东特地陶瓷有限公司 Substrate for measuring external irradiation dose of ceramic tile and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161744A (en) * 1984-01-30 1985-08-23 Kyowa Chem Ind Co Ltd Purification agent and method for cooling water of atomic power plant
JP2000056089A (en) * 1998-08-12 2000-02-25 Hitachi Ltd Disposing method for nitrate-asphalt mixed waste
JP2001091694A (en) * 1999-09-20 2001-04-06 Mitsubishi Heavy Ind Ltd Fixing method for radioactive element
JP2005345448A (en) * 2004-06-07 2005-12-15 National Institute For Materials Science Adsorbent for radioactive element-containing waste, and method of immobilizing radioactive element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161744A (en) * 1984-01-30 1985-08-23 Kyowa Chem Ind Co Ltd Purification agent and method for cooling water of atomic power plant
JP2000056089A (en) * 1998-08-12 2000-02-25 Hitachi Ltd Disposing method for nitrate-asphalt mixed waste
JP2001091694A (en) * 1999-09-20 2001-04-06 Mitsubishi Heavy Ind Ltd Fixing method for radioactive element
JP2005345448A (en) * 2004-06-07 2005-12-15 National Institute For Materials Science Adsorbent for radioactive element-containing waste, and method of immobilizing radioactive element

Also Published As

Publication number Publication date
JP2005345449A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
EP2045007B1 (en) Adsorbent for radioelement-containing waste and method for fixing radioelement
Wang et al. One-pot preparation of NaA zeolite microspheres for highly selective and continuous removal of Sr (II) from aqueous solution
JP4556007B2 (en) Radioactive element-containing waste adsorbent and radioactive element immobilization method
El-Din et al. Decontamination of radioactive cesium ions using ordered mesoporous monetite
JP2005345448A (en) Adsorbent for radioactive element-containing waste, and method of immobilizing radioactive element
Dwivedi et al. Preparation and characterization of potassium nickel hexacyanoferrate-loaded hydrogel beads for the removal of cesium ions
Abdel-Galil et al. Facile fabrication of a novel silico vanadate ion exchanger: evaluation of its sorption behavior towards europium and terbium ions
JP7129989B2 (en) Compositions for the treatment of hazardous sludges and ion exchange media
Nenadović et al. Natural diatomite (Rudovci, Serbia) as adsorbent for removal Cs from radioactive waste liquids
US9480965B2 (en) Method for preparing granulated inorganic adsorbent for radionuclides
Chen et al. Uranium stabilization in red mud by sintering: Mechanism and leachability
Ding et al. Sr2+ adsorbents produced by microfluidics
JP6279539B2 (en) Method for treating radioactive liquid waste containing radioactive cesium and radioactive strontium
JP6586487B2 (en) Volume reduction treatment method for uranium waste catalyst
JP6708663B2 (en) Method for treating radioactive liquid waste containing radioactive cesium and radioactive strontium
Shichalin et al. Calcium silicate solid-state matrices from boric acid production waste for 60Co removal and immobilization by spark plasma sintering
JP6470354B2 (en) Silicotitanate molded body and method for producing the same, cesium or strontium adsorbent containing silicotitanate molded body, and decontamination method of radioactive liquid waste using the adsorbent
Van Dat et al. Synthesis of calcium-deficient carbonated hydroxyapatite as promising sorbent for removal of lead ions
JP4189652B2 (en) Adsorbent
JP5099349B2 (en) Adsorbent
BR112017016340B1 (en) SINTERIZED RARE EARTH METAL OXIDE TARGET TO PRODUCE A RADIOISOTOPE, METHOD FOR PREPARING SAID TARGET AND USE OF SAID TARGET TO PRODUCE A RADIOISOTOPE
Sadeghi et al. Synthesis of novel MnCo 2 O 4/NaY zeolite nanocomposite adsorbent and its performance for Sr 2+ ions removal from drinking water
JP5099348B2 (en) Adsorbent
JP6807374B2 (en) Treatment method for radioactive iodine-containing fluid
Taira et al. Ion-exchange properties of zeolite/glass hybrid materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees