JP4555699B2 - Leading vehicle recognition device - Google Patents

Leading vehicle recognition device Download PDF

Info

Publication number
JP4555699B2
JP4555699B2 JP2005024804A JP2005024804A JP4555699B2 JP 4555699 B2 JP4555699 B2 JP 4555699B2 JP 2005024804 A JP2005024804 A JP 2005024804A JP 2005024804 A JP2005024804 A JP 2005024804A JP 4555699 B2 JP4555699 B2 JP 4555699B2
Authority
JP
Japan
Prior art keywords
vehicle
predicted trajectory
vehicles
determination reference
yaw rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005024804A
Other languages
Japanese (ja)
Other versions
JP2006213073A (en
Inventor
隼人 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005024804A priority Critical patent/JP4555699B2/en
Publication of JP2006213073A publication Critical patent/JP2006213073A/en
Application granted granted Critical
Publication of JP4555699B2 publication Critical patent/JP4555699B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

本発明は、自車進行方向の物体を検知する物体検知手段と、自車のヨーレートを検出するヨーレートセンサと、自車の車速を検出する車速センサと、ヨーレートセンサで検出したヨーレートおよび車速センサで検出した車速に基づいて自車の予測軌跡を推定する予測軌跡推定手段と、物体検知手段の検知結果および予測軌跡推定手段の推定結果に基づいて先行車を認識する先行車認識手段とを備えた先行車認識装置に関する。   The present invention includes an object detection means for detecting an object in the traveling direction of the own vehicle, a yaw rate sensor for detecting the yaw rate of the own vehicle, a vehicle speed sensor for detecting the vehicle speed of the own vehicle, and a yaw rate and a vehicle speed sensor detected by the yaw rate sensor. Predicted trajectory estimating means for estimating the predicted trajectory of the own vehicle based on the detected vehicle speed, and preceding vehicle recognition means for recognizing the preceding vehicle based on the detection result of the object detecting means and the estimated result of the predicted trajectory estimating means. The present invention relates to a preceding vehicle recognition device.

ACC(アダプティブ・クルーズ・コントロール)システム等において、自車の将来の予測軌跡の左右両側に所定幅を持つ制御対象領域を設定し、この制御対象領域に存在する先行車を自車が追従走行すべき制御対象として認識している。この制御対象領域は、自車の車速およびヨーレートから自車の将来の予測軌跡を推定し、この予測軌跡の左右両側に所定幅を加えた帯状の領域として設定される。   In an ACC (Adaptive Cruise Control) system or the like, a control target area having a predetermined width is set on both the left and right sides of the future predicted trajectory of the host vehicle, and the host vehicle follows the preceding vehicle existing in the control target area. It is recognized as a control target. This control target region is set as a belt-like region in which a future predicted trajectory of the host vehicle is estimated from the vehicle speed and yaw rate of the host vehicle, and a predetermined width is added to both the left and right sides of the predicted trajectory.

また下記特許文献1には、ヨーレートセンサの出力を所定時間に亘って検出した平均値を用いることで、ヨーレートセンサの出力を補正して車両の直進走行時に正しいニュートラル値を出力させるものが記載されている。
特許第3164672号公報
Japanese Patent Application Laid-Open No. 2004-228561 describes a technique that corrects the output of the yaw rate sensor and outputs a correct neutral value when the vehicle is traveling straight by using an average value obtained by detecting the output of the yaw rate sensor over a predetermined time. ing.
Japanese Patent No. 3164672

ところで、ヨーレートセンサで検出したヨーレートはノイズや温度ドリフトの影響を受けることが避けられず、車両が直進走行しているにも関わらず、図9に示すようにヨーレートが誤検出されてしまう場合がある。その結果、図10(A)に示すように自車が直線走行していて予測軌跡も直線であるべきところ、図10(B)に示すようにヨーレートの誤検出によって予測軌跡がカーブしてしまい、本来の制御対象である自車線の先行車の代わりに、隣車線の先行車を制御対象として誤検出してしまう可能性があった。   Incidentally, the yaw rate detected by the yaw rate sensor is inevitably affected by noise and temperature drift, and the yaw rate may be erroneously detected as shown in FIG. 9 even though the vehicle is traveling straight ahead. is there. As a result, as shown in FIG. 10 (A), the vehicle is traveling in a straight line and the predicted trajectory should be a straight line. However, as shown in FIG. 10 (B), the predicted trajectory is curved due to erroneous detection of the yaw rate. There is a possibility that the preceding vehicle in the adjacent lane may be erroneously detected as the control object instead of the preceding vehicle in the own lane that is the original control target.

また上記特許文献1に記載されたものは、ヨーレートセンサの出力を補正するためにヨーレートの時間平均値を算出する必要があるため、補正に所定の時間を要するという問題があった。   Further, the device described in Patent Document 1 has a problem that a predetermined time is required for correction because it is necessary to calculate the time average value of the yaw rate in order to correct the output of the yaw rate sensor.

本発明は前述の事情に鑑みてなされたもので、ヨーレートセンサの出力誤差を補償して自車の将来の予測軌跡を補正することで、制御対象となる先行車を的確に認識できるようにすることを目的とする。   The present invention has been made in view of the above-described circumstances. By correcting the future predicted trajectory of the own vehicle by compensating for the output error of the yaw rate sensor, the preceding vehicle to be controlled can be accurately recognized. For the purpose.

上記目的を達成するために、請求項1に記載された発明によれば、自車進行方向の物体を検知する物体検知手段と、自車のヨーレートを検出するヨーレートセンサと、自車の車速を検出する車速センサと、ヨーレートセンサで検出したヨーレートおよび車速センサで検出した車速に基づいて自車の予測軌跡を推定する予測軌跡推定手段と、物体検知手段の検知結果および予測軌跡推定手段の推定結果に基づいて先行車を認識する先行車認識手段とを備えた先行車認識装置において、前記先行車認識手段が認識した複数の先行車の位置および前記予測軌跡推定手段の推定結果に基づいて自車の予測軌跡を補正する予測軌跡補正定手段を備え、前記先行車認識手段は、物体検知手段により検知された複数の先行車のうち、前記予測軌跡推定手段により推定された自車の予測軌跡から左右方向に所定距離内の先行車を認識するとともに、前記予測軌跡補正手段は、認識された先行車のうちの少なくとも2台を判定基準車両として選択し、これらの判定基準車両の自車位置に対する左右方向位置の偏差量に基づいて各判定基準車両が隣り合う車線を走行していると判定した場合には、前記各判定基準車両の左右方向位置と自車からの相対距離とに基づいて前記各判定基準車両の中間位置を算出し、自車の予測軌跡と前記中間位置との比較により自車の予測軌跡が前記中間位置のどちら側にあるかを判定し、その判定された側に前記中間位置から所定距離だけ移動した点を通るように自車の予測軌跡を補正することを特徴とする先行車認識装置が提案される。 In order to achieve the above object, according to the first aspect of the present invention, an object detecting means for detecting an object in the traveling direction of the own vehicle, a yaw rate sensor for detecting the yaw rate of the own vehicle, and the vehicle speed of the own vehicle are obtained. A vehicle speed sensor to detect, a prediction trajectory estimation means for estimating a predicted trajectory of the host vehicle based on a yaw rate detected by the yaw rate sensor and a vehicle speed detected by the vehicle speed sensor, a detection result of the object detection means, and an estimation result of the prediction trajectory estimation means A preceding vehicle recognition device comprising a preceding vehicle recognition means for recognizing a preceding vehicle based on the position of the plurality of preceding vehicles recognized by the preceding vehicle recognition means and the estimation result of the prediction trajectory estimation means. comprising the predicted trajectory compensation constant means for correcting the estimated track of the preceding vehicle detection means, among the plurality of the preceding vehicle detected by the object detecting means, to the prediction locus estimator Recognizing a preceding vehicle within a predetermined distance in the left-right direction from the estimated trajectory of the own vehicle, and the predicted trajectory correcting means selects at least two of the recognized preceding vehicles as determination reference vehicles, When it is determined that each determination reference vehicle is traveling in an adjacent lane based on the deviation amount of the left-right direction position of the determination reference vehicle with respect to the own vehicle position, Based on the relative distance from the vehicle, the intermediate position of each judgment reference vehicle is calculated, and by comparing the predicted trajectory of the own vehicle with the intermediate position, which side of the intermediate position the predicted trajectory of the own vehicle is located is determined. A preceding vehicle recognition device is proposed that makes a determination and corrects the predicted trajectory of the host vehicle so as to pass a point that has moved a predetermined distance from the intermediate position to the determined side .

また請求項に記載された発明によれば、自車進行方向の物体を検知する物体検知手段と、自車のヨーレートを検出するヨーレートセンサと、自車の車速を検出する車速センサと、ヨーレートセンサで検出したヨーレートおよび車速センサで検出した車速に基づいて自車の予測軌跡を推定する予測軌跡推定手段と、物体検知手段の検知結果および予測軌跡推定手段の推定結果に基づいて先行車を認識する先行車認識手段とを備えた先行車認識装置において、前記先行車認識手段が認識した複数の先行車の位置および前記予測軌跡推定手段の推定結果に基づいて自車の予測軌跡を補正する予測軌跡補正定手段を備え、前記先行車認識手段は、物体検知手段により検知された複数の先行車のうち、前記予測軌跡推定手段により推定された自車の予測軌跡から左右方向に所定距離内の先行車を認識するとともに、前記予測軌跡補正手段は、認識された先行車のうちの少なくとも2台を判定基準車両として選択し、これらの判定基準車両の自車位置に対する左右方向位置の偏差量に基づいて各判定基準車両が自車走行車線を挟んだ車線を走行していると判定した場合には、前記各判定基準車両の左右方向位置と自車からの相対距離とに基づいて前記各判定基準車両の中間位置を算出し、その中間位置を通るように自車の予測軌跡を補正することを特徴とする先行車認識装置が提案される。 According to the invention described in claim 2 , the object detecting means for detecting an object in the traveling direction of the own vehicle, the yaw rate sensor for detecting the yaw rate of the own vehicle, the vehicle speed sensor for detecting the vehicle speed of the own vehicle, and the yaw rate Predicted trajectory estimation means for estimating the predicted trajectory of the host vehicle based on the yaw rate detected by the sensor and the vehicle speed detected by the vehicle speed sensor, and the preceding vehicle is recognized based on the detection result of the object detection means and the estimation result of the predicted trajectory estimation means In the preceding vehicle recognition device comprising the preceding vehicle recognition means, the prediction for correcting the predicted trajectory of the own vehicle based on the positions of the plurality of preceding vehicles recognized by the preceding vehicle recognition means and the estimation result of the predicted trajectory estimation means. comprising a trajectory correction constant means, the preceding vehicle detection means, among the plurality of the preceding vehicle detected by the object detecting means, the vehicle of the pre-estimated by the anticipated course estimation means While recognizing a preceding vehicle within a predetermined distance in the left-right direction from the trajectory, the predicted trajectory correcting means selects at least two of the recognized preceding vehicles as determination reference vehicles, and own vehicles of these determination reference vehicles When it is determined that each determination reference vehicle is traveling in a lane that sandwiches the own vehicle travel lane based on the deviation amount of the left and right direction position relative to the position, the left and right position of each determination reference vehicle A preceding vehicle recognition device is proposed , which calculates an intermediate position of each determination reference vehicle based on the relative distance and corrects the predicted trajectory of the own vehicle so as to pass through the intermediate position .

また請求項に記載された発明によれば、請求項または請求項の構成に加えて、前記予測軌跡補正手段は、前記選択された複数の判定基準車両の左右方向位置の偏差量に基づいて各判定基準車両が同一車線を走行していると判定した場合には、自車に最も近い車両を判定基準車両から除外した後に、再度前記複数の判定基準車両を選択することを特徴とする先行車認識装置が提案される。 According to the invention described in claim 3 , in addition to the configuration of claim 1 or claim 2 , the predicted trajectory correction unit is configured to adjust the deviation amount of the selected horizontal position of the plurality of determination reference vehicles. When it is determined that each determination reference vehicle is traveling in the same lane, the vehicle closest to the host vehicle is excluded from the determination reference vehicle, and then the plurality of determination reference vehicles are selected again. A preceding vehicle recognition device is proposed.

また請求項に記載された発明によれば、請求項または請求項の構成に加えて、前記先行車認識手段が先行車を認識する前記左右方向の所定距離は、車線幅を略1.5倍した幅であることを特徴とする先行車認識装置が提案される。 According to the invention described in claim 4 , in addition to the configuration of claim 1 or claim 2 , the predetermined distance in the left-right direction in which the preceding vehicle recognition means recognizes the preceding vehicle has a lane width of approximately 1. A preceding vehicle recognition device is proposed that is characterized by a width that is five times larger.

また請求項に記載された発明によれば、請求項〜請求項の何れか1項の構成に加えて、前記予測軌跡補正手段は、認識された先行車のうち、自車からの相対距離が所定値以内の少なくとも2台の車両を前記判定基準車両として選択することを特徴とする先行車認識装置が提案される。
また請求項に記載された発明によれば、請求項〜請求項の何れか1項の構成に加えて、前記予測軌跡補正手段は、認識された先行車のうち自車からの相対距離が最も小さい2台を前記判定基準車両として選択することを特徴とする先行車認識装置が提案される。
According to the invention described in claim 5, in addition to any of item 1 arrangement of claims 1 to 4, wherein the predicted trajectory correction means, among the recognized preceding vehicle, from the vehicle A preceding vehicle recognition device is proposed, wherein at least two vehicles having a relative distance within a predetermined value are selected as the determination reference vehicles.
According to the invention described in claim 6, in addition to any one of claims 1 to 4, wherein the predicted trajectory correction means relative to the vehicle among the recognized preceding vehicle A preceding vehicle recognition device is proposed in which two vehicles having the smallest distance are selected as the determination reference vehicles.

尚、実施例のレーダー装置14は本発明の物体検知手段に対応する。   The radar device 14 of the embodiment corresponds to the object detection means of the present invention.

請求項1の構成によれば、ヨーレートセンサで検出したヨーレートおよび車速センサで検出した車速に基づいて予測軌跡推定手段が自車の予測軌跡を推定し、物体検知手段の検知結果および予測軌跡推定手段の推定結果に基づいて先行車認識手段が複数の先行車を認識し、それら複数の先行車の位置および予測軌跡推定手段の推定結果に基づいて予測軌跡補正手段が自車の予測軌跡を補正するので、ヨーレートセンサの出力誤差によって予測軌跡が誤って推定されても、その予測軌跡を正しい方向に補正することで制御対象となる先行車を正しく認識することができる。   According to the configuration of the first aspect, the predicted trajectory estimation unit estimates the predicted trajectory of the own vehicle based on the yaw rate detected by the yaw rate sensor and the vehicle speed detected by the vehicle speed sensor, and the detection result of the object detection unit and the predicted trajectory estimation unit Based on the estimation result, the preceding vehicle recognition means recognizes a plurality of preceding vehicles, and the predicted trajectory correction means corrects the predicted trajectory of the own vehicle based on the positions of the plurality of preceding vehicles and the estimation result of the prediction trajectory estimation means. Therefore, even if the predicted locus is erroneously estimated due to the output error of the yaw rate sensor, the preceding vehicle to be controlled can be correctly recognized by correcting the predicted locus in the correct direction.

しかも、少なくとも2台の判定基準車両の自車位置に対する左右方向位置の偏差量に基づいて各判定基準車両が隣り合う車線を走行していると判定した場合に、各判定基準車両の左右方向位置と自車からの相対距離とに基づいて該判定基準車両の中間位置(つまり、隣り合う車線の境界位置)を算出し、自車の予測軌跡と前記中間位置との比較により自車の予測軌跡が前記中間位置のどちら側にあるかを判定し、その判定された側に前記中間位置から所定距離(例えば車線幅の半分)だけ移動した点を通るように自車の予測軌跡を補正するので、ヨーレートセンサの出力誤差によって予測軌跡が誤って推定されても、その予測軌跡を精度良く補正することができる。In addition, when it is determined that each determination reference vehicle is traveling in an adjacent lane based on the deviation amount of the left-right position with respect to the own vehicle position of at least two determination reference vehicles, the left-right position of each determination reference vehicle Based on the vehicle and the relative distance from the host vehicle, the intermediate position of the determination reference vehicle (that is, the boundary position between adjacent lanes) is calculated, and the predicted track of the host vehicle is compared with the predicted track of the host vehicle and the intermediate position. Is determined to be on the intermediate position, and the predicted trajectory of the vehicle is corrected so as to pass through a point that has moved from the intermediate position by a predetermined distance (for example, half of the lane width) to the determined side. Even if the predicted trajectory is erroneously estimated due to the output error of the yaw rate sensor, the predicted trajectory can be corrected with high accuracy.

請求項の構成によれば、ヨーレートセンサで検出したヨーレートおよび車速センサで検出した車速に基づいて予測軌跡推定手段が自車の予測軌跡を推定し、物体検知手段の検知結果および予測軌跡推定手段の推定結果に基づいて先行車認識手段が複数の先行車を認識し、それら複数の先行車の位置および予測軌跡推定手段の推定結果に基づいて予測軌跡補正手段が自車の予測軌跡を補正するので、ヨーレートセンサの出力誤差によって予測軌跡が誤って推定されても、その予測軌跡を正しい方向に補正することで制御対象となる先行車を正しく認識することができる。 According to the configuration of claim 2 , the predicted trajectory estimation means estimates the predicted trajectory of the own vehicle based on the yaw rate detected by the yaw rate sensor and the vehicle speed detected by the vehicle speed sensor, and the detection result of the object detection means and the predicted trajectory estimation means Based on the estimation result, the preceding vehicle recognition means recognizes a plurality of preceding vehicles, and the predicted trajectory correction means corrects the predicted trajectory of the own vehicle based on the positions of the plurality of preceding vehicles and the estimation result of the prediction trajectory estimation means. Therefore, even if the predicted locus is erroneously estimated due to the output error of the yaw rate sensor, the preceding vehicle to be controlled can be correctly recognized by correcting the predicted locus in the correct direction.

しかも、少なくとも2台を判定基準車両の自車位置に対する左右方向位置の偏差量に基づいて各判定基準車両が自車走行車線を挟んだ車線を走行していると判定した場合に、各判定基準車両の左右方向位置と自車からの相対距離とに基づいて該各判定基準車両の中間位置(つまり、自車走行車線の中央位置)を算出し、その中間位置を通るように自車の予測軌跡を補正するので、ヨーレートセンサの出力誤差によって予測軌跡が誤って推定されても、その予測軌跡を精度良く補正することができる。In addition, if it is determined that each determination reference vehicle is traveling in a lane that sandwiches the own vehicle travel lane based on the deviation amount of the lateral position relative to the own vehicle position of the determination reference vehicle, Based on the position in the left-right direction of the vehicle and the relative distance from the own vehicle, the intermediate position of each judgment reference vehicle (that is, the center position of the vehicle lane) is calculated, and the own vehicle is predicted to pass through the intermediate position. Since the trajectory is corrected, even if the predicted trajectory is erroneously estimated due to the output error of the yaw rate sensor, the predicted trajectory can be accurately corrected.

請求項の構成によれば、複数の判定基準車両が同一車線を走行していると判定した場合には、それらの判定基準車両の中間位置を算出しても隣り合う車線の境界位置を算出することはできないが、自車に最も近い車両を判定基準車両から除外した後に再度複数の判定基準車両を選択することにより、上述した不具合を解消して自車の予測軌跡を精度良く補正することができる。 According to the configuration of claim 3 , when it is determined that a plurality of determination reference vehicles are traveling in the same lane, the boundary position between adjacent lanes is calculated even if the intermediate position of the determination reference vehicles is calculated. It is not possible to correct the predicted trajectory of the own vehicle by eliminating the above-mentioned problems by selecting a plurality of judgment reference vehicles again after excluding the vehicle closest to the own vehicle from the reference vehicle. Can do.

請求項の構成によれば、先行車認識手段が先行車を認識する左右方向の所定距離を車線幅を略1.5倍した幅に設定したので、自車走行車線を含めて3車線を認識することができる。 According to the configuration of the fourth aspect , since the predetermined distance in the left-right direction in which the preceding vehicle recognition means recognizes the preceding vehicle is set to a width that is approximately 1.5 times the lane width, three lanes including the own vehicle traveling lane are selected. Can be recognized.

請求項の構成によれば、認識された先行車のうち、自車からの相対距離が所定値以内の少なくとも2台の車両を判定基準車両として選択するので、自車に近くて物体検知手段による検知精度が高い判定基準車両を選択して自車の予測軌跡を精度良く補正することができる。 According to the configuration of the fifth aspect , among the recognized preceding vehicles, at least two vehicles having a relative distance from the own vehicle within a predetermined value are selected as the determination reference vehicles. It is possible to select a determination reference vehicle having a high detection accuracy by and to accurately correct the predicted trajectory of the own vehicle.

請求項の構成によれば、認識された先行車のうち自車からの相対距離が最も小さい2台を判定基準車両として選択するので、自車に近くて物体検知手段による検知精度が最も高い判定基準車両を選択して自車の予測軌跡を更に精度良く補正することができる。 According to the configuration of the sixth aspect , since two of the recognized preceding vehicles having the smallest relative distance from the own vehicle are selected as the determination reference vehicles, the detection accuracy by the object detection means is the highest near the own vehicle. By selecting the determination reference vehicle, the predicted trajectory of the host vehicle can be corrected with higher accuracy.

以下、本発明の実施の形態を、添付の図面に示した本発明の実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples of the present invention shown in the accompanying drawings.

図1〜図8は本発明の一実施例を示すもので、図1はACCシステムの制御系のブロック図、図2〜図4は作用を説明するフローチャートの第1〜第3分図、図5〜図8は作用説明図の第1〜第4分図である。   1 to 8 show an embodiment of the present invention. FIG. 1 is a block diagram of a control system of an ACC system. FIGS. 5 to 8 are first to fourth partial views of the operation explanatory diagram.

図1に示すように、先行車が存在するときには予め設定した車間距離を保持して前記先行車に追従走行し、先行車が存在しないときには予め設定した車速で定速走行するACC(アダプティブ・クルーズ・コントロール)システムは、予測軌跡推定手段M1と、制御対象領域設定手段M2と、先行車認識手段M3と、予測軌跡補正手段M4と、制御目標値決定手段M5と、車両制御手段M6とを備える。   As shown in FIG. 1, an ACC (adaptive cruise) that keeps a preset inter-vehicle distance and follows the preceding vehicle when there is a preceding vehicle, and runs at a constant speed at a preset vehicle speed when there is no preceding vehicle. The control system includes a predicted trajectory estimation unit M1, a control target area setting unit M2, a preceding vehicle recognition unit M3, a predicted trajectory correction unit M4, a control target value determination unit M5, and a vehicle control unit M6. .

予測軌跡推定手段M1には車速センサ11およびヨーレートセンサ12が接続され、先行車認識手段M3にはレーダー装置14が接続され、車両制御手段M6にはディスプレイ15、減速アクチュエータ16および加速アクチュエータ17が接続される。   A vehicle speed sensor 11 and a yaw rate sensor 12 are connected to the predicted trajectory estimation means M1, a radar device 14 is connected to the preceding vehicle recognition means M3, and a display 15, a deceleration actuator 16 and an acceleration actuator 17 are connected to the vehicle control means M6. Is done.

予測軌跡推定手段M1は、車速センサ11で検出した自車の車速とヨーレートセンサ12で検出した自車のヨーレートとに基づいて自車の将来の予測軌跡を推定する。即ち、現在の車速およびヨーレートから自車の旋回半径を算出し、この旋回半径の円弧を現在の自車の進行方向に連ねることで、自車の将来の予測軌跡を推定することができる。   The predicted trajectory estimation means M1 estimates the future predicted trajectory of the host vehicle based on the vehicle speed detected by the vehicle speed sensor 11 and the yaw rate of the host vehicle detected by the yaw rate sensor 12. That is, by calculating the turning radius of the host vehicle from the current vehicle speed and yaw rate, and connecting the arc of the turning radius with the current traveling direction of the host vehicle, a future predicted trajectory of the host vehicle can be estimated.

制御対象領域設定手段M2は、予測軌跡推定手段M1で推定した自車の将来の予測軌跡の左右両側にそれぞれ所定幅(実施例では5.4m)を加えた幅を持ち、かつ自車の前方の所定距離(実施例では100m)までの長さを持つ帯状の制御対象領域を設定する。前記所定幅の5.4mは、車線幅の3.6mに1.5倍に当たり、従って制御対象領域の幅は3車線の幅に相当することになる。また前記所定距離の100mは、レーダー装置14が先行車を確実に検知できる距離に相当する。   The control target area setting unit M2 has a width obtained by adding a predetermined width (5.4 m in the embodiment) to the left and right sides of the future predicted trajectory of the host vehicle estimated by the predicted trajectory estimating unit M1, and the front of the host vehicle. A belt-like control target region having a length up to a predetermined distance (100 m in the embodiment) is set. The predetermined width of 5.4 m corresponds to 1.5 times the lane width of 3.6 m, and thus the width of the control target area corresponds to the width of the three lanes. The predetermined distance of 100 m corresponds to a distance at which the radar device 14 can reliably detect the preceding vehicle.

先行車認識手段M3は、レーダー装置14で検知した複数の先行車のうち、制御対象領域設定手段M2で設定した制御対象領域に存在する何れかの先行車を制御対象として判定する。   The preceding vehicle recognition unit M3 determines, as a control target, any preceding vehicle that exists in the control target region set by the control target region setting unit M2 among the plurality of preceding vehicles detected by the radar device 14.

予測軌跡補正手段M4は、ヨーレートセンサ12で検出したヨーレートの誤差に起因する予測軌跡の推定誤差を補正するためのもので、判定基準車両選択部、判定基準車両の左右方向位置および距離データ算出部、中間位置算出部、位置比較部および補正値出力部を備えている。この予測軌跡補正手段M4の機能は、後から詳述する。   The predicted trajectory correction means M4 is for correcting the estimation error of the predicted trajectory caused by the error in the yaw rate detected by the yaw rate sensor 12, and includes a determination reference vehicle selection unit, a right and left position of the determination reference vehicle, and a distance data calculation unit. , An intermediate position calculation unit, a position comparison unit, and a correction value output unit. The function of the predicted trajectory correction unit M4 will be described in detail later.

制御目標値決定手段M5は、制御対象となった先行車に自車を追従走行させるためのパラメータである目標車速、目標加減速度、目標車間距離等を決定する。そして車両制御手段M6は、制御目標値決定手段M5で決定した制御目標値に基づいて減速アクチュエータ16や加速アクチュエータ17を駆動し、スロットルバルブを開閉したりブレーキ装置を作動させたりして追従走行制御や定速走行制御を実行するとともに、ディスプレイ15に現在の車両の制御状態を表示してドライバーに報知する。   The control target value determining means M5 determines a target vehicle speed, a target acceleration / deceleration, a target inter-vehicle distance, etc., which are parameters for causing the host vehicle to follow the controlled vehicle. Then, the vehicle control means M6 drives the deceleration actuator 16 and the acceleration actuator 17 based on the control target value determined by the control target value determination means M5, and opens and closes the throttle valve or operates the brake device to follow the traveling control. In addition to executing the constant speed running control, the current control state of the vehicle is displayed on the display 15 to notify the driver.

次に、予測軌跡補正手段M4の機能を、図2〜図4のフローチャートと、図5〜図8の作用説明図とに基づいて説明する。   Next, the function of the predicted trajectory correction means M4 will be described based on the flowcharts of FIGS. 2 to 4 and the operation explanatory diagrams of FIGS.

先ずステップS1でレーダー装置14によりターゲット(先行車)を検知し、ステップS2でヨーレートおよび車速から自車の将来の予測軌跡を推定する(図5(A)参照)。続くステップS3で予測軌跡の左右両側にそれぞれ5.4mの幅を有し、かつ自車から前方に100mまでの制御対象領域を設定し、その制御対象領域内に2台以上の先行車が存在するか否かを判定する。このステップS3で制御対象領域内に2台以上の先行車が存在しない場合には、ステップS4で予測軌跡の左右両側にそれぞれ1.8mの幅を有する車線幅相当の先行車認識範囲内に存在する先行車(もしも存在すれば)を制御対象先行車とし、ステップS5でその制御対象先行車の情報(制御目標値設定手段M5で設定した情報)を車両制御手段M6に出力する。   First, a target (preceding vehicle) is detected by the radar device 14 in step S1, and a future predicted trajectory of the own vehicle is estimated from the yaw rate and vehicle speed in step S2 (see FIG. 5A). In the following step S3, a control target area having a width of 5.4 m is set on each of the left and right sides of the predicted trajectory and 100 m ahead of the own vehicle, and two or more preceding vehicles exist in the control target area. It is determined whether or not to do. If two or more preceding vehicles do not exist in the control target area in step S3, they exist in the preceding vehicle recognition range corresponding to the lane width having a width of 1.8 m on each of the left and right sides of the predicted trajectory in step S4. The preceding vehicle to be controlled (if present) is set as the control target preceding vehicle, and information on the control target preceding vehicle (information set by the control target value setting means M5) is output to the vehicle control means M6 in step S5.

前記ステップS3で制御対象領域内に2台以上の先行車が存在する場合、例えば図5(B)に示すように、制御対象領域内に3台の先行車A,B,Cが存在する場合、ステップS6で3台の先行車A,B,Cのうち、自車に近い側から2台の先行車A,Bを判定基準車両として選択する。尚、判定基準車両A,Bの選択は予測軌跡補正手段M4の判定基準車両選択部において行われ、また2台の判定基準車両A,Bの位置データおよび距離データの算出は、予測軌跡補正手段M4の判定基準車両の位置データおよび距離データ算出部において行われる。   When there are two or more preceding vehicles in the control target area in step S3, for example, as shown in FIG. 5B, there are three preceding cars A, B, and C in the control target area. In step S6, among the three preceding vehicles A, B, and C, the two preceding vehicles A and B are selected as the determination reference vehicles from the side closer to the own vehicle. The selection of the determination reference vehicles A and B is performed by the determination reference vehicle selection unit of the predicted trajectory correction means M4, and the position data and distance data of the two determination reference vehicles A and B are calculated by the predicted trajectory correction means. This is performed in the position data and distance data calculation unit of the determination reference vehicle of M4.

このように、制御対象領域内に存在する複数の先行車のうちから、自車からの相対距離が所定値以内であり、かつ自車に最も近い2台を判定基準車両A,Bとして選択するので、それら2台を判定基準車両A,Bの位置等をレーダー装置14により精度良く検知し、後述する予測軌跡の補正を精度良く行うことができる。   In this way, among the plurality of preceding vehicles existing in the control target area, the two vehicles whose relative distance from the own vehicle is within a predetermined value and closest to the own vehicle are selected as the determination reference vehicles A and B. Therefore, it is possible to accurately detect the positions of the determination reference vehicles A and B by the radar device 14 and correct the predicted trajectory described later with high accuracy.

続くステップS7で2台の判定基準車両A,Bの左右方向の位置差が2.8m以下であれば、ステップS8で前記2台の判定基準車両A,Bは同一車線を走行していると判断し、ステップS9で前記2台の判定基準車両A,Bのうち自車に最も近い先行車Aを判定基準車両から削除した後、前記ステップS3にリターンする。   In the following step S7, if the position difference in the left-right direction between the two determination reference vehicles A and B is 2.8 m or less, the two determination reference vehicles A and B are traveling in the same lane in step S8. In step S9, the preceding vehicle A closest to the host vehicle is deleted from the determination reference vehicle among the two determination reference vehicles A and B, and the process returns to step S3.

このように、2台の判定基準車両A,Bが同一車線を走行している場合には、それら2台の判定基準車両A,Bの中間位置(後から詳述する)を算出しても、隣接する車線との間の白線位置を検出できないため、予測軌跡の補正に役立てることができない。そこで自車に最も近い判定基準車両を削除して異なる車線に存在する新たな2台の判定基準車両A,Bを選択することで、後述する予測軌跡の補正を精度良く行うことができる。   In this way, when the two determination reference vehicles A and B are traveling in the same lane, the intermediate position (detailed later) of the two determination reference vehicles A and B is calculated. Since the position of the white line between the adjacent lanes cannot be detected, it cannot be used for correcting the predicted trajectory. Therefore, the prediction trajectory described later can be corrected with high accuracy by deleting the determination reference vehicle closest to the own vehicle and selecting two new determination reference vehicles A and B existing in different lanes.

また2台の判定基準車両A,Bの中間位置を算出する際に、それら2台の判定基準車両A,B間の前後方向の距離は小さい方(並走状態が最も望ましい)が算出精度が高くなるが、上述したように、自車に最も近い判定基準車両を削除して異なる車線に存在する新たな2台の判定基準車両A,Bを選択することで、新たな2台の判定基準車両A,B間の前後方向の距離が小さくなる可能性を高くすることができる。   When calculating the intermediate position between the two judgment reference vehicles A and B, the smaller the distance in the front-rear direction between the two judgment reference vehicles A and B (the parallel running state is most desirable), the calculation accuracy is higher. However, as described above, by deleting the determination reference vehicle closest to the host vehicle and selecting two new determination reference vehicles A and B existing in different lanes, two new determination criteria The possibility that the distance in the front-rear direction between the vehicles A and B is reduced can be increased.

前記ステップS7で2台の判定基準車両A,Bの左右方向の位置差が2.8mを超えており、かつステップS10で2台の判定基準車両A,Bの左右方向の位置差が6.0m以下であれば、ステップS11で前記2台の判定基準車両A,Bは隣り合う車線を走行していると判断する(図5(C)参照)。   In step S7, the position difference in the left-right direction of the two determination reference vehicles A and B exceeds 2.8 m, and in step S10, the position difference in the left-right direction of the two determination reference vehicles A and B is 6. If it is 0 m or less, it is determined in step S11 that the two determination reference vehicles A and B are traveling in adjacent lanes (see FIG. 5C).

続くステップS12で前記2台の判定基準車両A,Bの中間位置を算出し(図6(D)参照)、ステップS13で予測軌跡が中間位置の右側にあれば(図6(E)参照)、ステップS14で前記中間位置と同距離データの上の予測軌跡の左右位置を、中間位置から右側に1.8m(車線幅の半分)補正する(図6(F)参照)。逆に、前記ステップS13で予測軌跡が中間位置の左側にあれば、ステップS15で前記中間位置と同距離データの上の予測軌跡の左右位置を、中間位置から左側に1.8m(車線幅の半分)補正する。   In the subsequent step S12, the intermediate position of the two determination reference vehicles A and B is calculated (see FIG. 6D), and if the predicted locus is on the right side of the intermediate position in step S13 (see FIG. 6E). In step S14, the left and right positions of the predicted trajectory on the same distance data as the intermediate position are corrected by 1.8 m (half the lane width) to the right from the intermediate position (see FIG. 6F). Conversely, if the predicted trajectory is on the left side of the intermediate position in step S13, the left and right positions of the predicted trajectory on the same distance data as the intermediate position are set to 1.8 m (lane width) from the intermediate position to the left side in step S15. Half) Correct.

そしてステップS16で前記補正した予測軌跡の左右位置を通るように、新たな予測軌跡を算出し(図7(G)参照)、ステップS17でこの新たな予測軌跡の左右両側にそれぞれ1.8mの幅を有する車線幅相当の先行車認識範囲内に存在する先行車(もしも存在すれば)を制御対象先行車とし(図7(H)参照)、ステップS18でその制御対象先行車の情報を出力する。   In step S16, a new predicted trajectory is calculated so as to pass through the right and left positions of the corrected predicted trajectory (see FIG. 7G). In step S17, 1.8 m is added to each of the left and right sides of the new predicted trajectory. A preceding vehicle (if any) present in the preceding vehicle recognition range corresponding to the width of the lane having the width is set as the preceding vehicle to be controlled (see FIG. 7H), and information on the preceding vehicle to be controlled is output in step S18. To do.

このようにして予測軌跡を補正できるには、以下の理由による。即ち、隣り合う車線を走行する2台の判定基準車両A,Bの中間位置は、それら隣り合う車線の境界の白線位置となるが、自車の予測軌跡を前記白線の位置から車線幅3.6mの半分の1.8mだけ補正することで、予測軌跡を自車の走行車線に沿うように補正してヨーレートセンサ12の出力誤差を補償することができるからである。   The predicted trajectory can be corrected in this way for the following reason. That is, the intermediate position between the two judgment reference vehicles A and B traveling in adjacent lanes becomes the white line position at the boundary between the adjacent lanes, but the predicted trajectory of the own vehicle is changed from the position of the white line to the lane width 3. This is because by correcting by 1.8 m which is half of 6 m, the predicted trajectory can be corrected along the traveling lane of the own vehicle and the output error of the yaw rate sensor 12 can be compensated.

一方、前記ステップS10で2台の判定基準車両A,Bの左右方向の位置差が6.0mを超えていれば、ステップS19で前記2台の判定基準車両A,Bは自車の車線を挟む両側の車線を走行していると判断する。そしてステップS20で前記2台の判定基準車両A,Bの中間位置を算出し、ステップS21で中間位置と同距離データの上の予測軌跡の左右位置を中間位置に補正する(図8(I)参照)。続くステップS22で前記補正した予測軌跡の左右位置を通るように、新たな予測軌跡を算出し、ステップS23でこの新たな予測軌跡の左右両側にそれぞれ1.8mの幅を有する車線幅相当の先行車認識範囲内に存在する先行車(もしも存在すれば)を制御対象先行車とし、ステップS24でその制御対象先行車の情報を出力する。   On the other hand, if the position difference in the left-right direction of the two determination reference vehicles A and B exceeds 6.0 m in step S10, the two determination reference vehicles A and B change their lanes in step S19. It is determined that the vehicle is traveling on both lanes. In step S20, an intermediate position between the two determination reference vehicles A and B is calculated, and in step S21, the left and right positions of the predicted locus on the same distance data as the intermediate position are corrected to the intermediate position (FIG. 8I). reference). In a subsequent step S22, a new predicted trajectory is calculated so as to pass through the left and right positions of the corrected predicted trajectory, and in step S23, a preceding lane width equivalent having a width of 1.8 m on each of the left and right sides of the new predicted trajectory. The preceding vehicle existing in the vehicle recognition range (if present) is set as the preceding vehicle to be controlled, and information on the preceding vehicle to be controlled is output in step S24.

このようにして予測軌跡を補正できるには、以下の理由による。即ち、自車の車線を挟む左右両側の車線を走行する2台の判定基準車両A,Bの中間位置は、とりもなおさず自車の車線の中央位置になるため、予測軌跡が2台の判定基準車両A,Bの中間位置を通るように補正することで、ヨーレートセンサ12の出力誤差を補償することができるからである。   The predicted trajectory can be corrected in this way for the following reason. That is, the intermediate position of the two judgment reference vehicles A and B traveling on both the left and right lanes sandwiching the lane of the own vehicle will be the center position of the lane of the own vehicle, so the predicted trajectory is two. This is because the output error of the yaw rate sensor 12 can be compensated by correcting the vehicle so that it passes through an intermediate position between the determination reference vehicles A and B.

尚、前記中間位置の算出は予測軌跡補正手段M4の中間位置算出部において行われ、中間位置と予測軌跡との位置比較は予測軌跡補正手段M4の位置比較算出部において行われ、また予測軌跡の左右位置の補正値の出力は予測軌跡補正手段M4の補正値出力部において行われる。   The calculation of the intermediate position is performed in the intermediate position calculation unit of the predicted trajectory correction unit M4, the position comparison between the intermediate position and the predicted trajectory is performed in the position comparison calculation unit of the predicted trajectory correction unit M4, and Output of the correction values for the left and right positions is performed in the correction value output unit of the predicted trajectory correction means M4.

本実施例によれば、上述した効果に加えて、次のような付加的効果を得ることができる。即ち、図8(J)に示すように、自車がコーナーに進入する直前の直線走行時にはヨーレートが検出されないために予測軌跡は直線状になるが、自車前方の道路はカーブしているために予測軌跡がコーナー上の実際の走行軌跡と不一致になる可能性がある。しかしながら、判定基準車両A,Bと予測軌跡との位置関係が上述した図6(E)と同様の関係になるため、予測軌跡がコーナーの方向に沿うように補正されて自車線に存在する判定基準車両Bを確実に制御対象先行車と判定することが可能となる。   According to the present embodiment, in addition to the above-described effects, the following additional effects can be obtained. That is, as shown in FIG. 8 (J), the yaw rate is not detected during straight running immediately before the host vehicle enters the corner, so the predicted trajectory is linear, but the road ahead of the host vehicle is curved. In addition, the predicted trajectory may become inconsistent with the actual travel trajectory on the corner. However, since the positional relationship between the determination reference vehicles A and B and the predicted trajectory is the same as that in FIG. 6E described above, the determination that the predicted trajectory is corrected along the direction of the corner and is present in the own lane. It is possible to reliably determine the reference vehicle B as the control subject preceding vehicle.

以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   Although the embodiments of the present invention have been described above, various design changes can be made without departing from the scope of the present invention.

例えば、実施例ではACCシステムについて説明したが、本発明はACCシステム以外の任意の用途の車両用先行車認識装置に対して適用することができる。   For example, although the ACC system has been described in the embodiment, the present invention can be applied to a preceding vehicle recognition device for a vehicle for any use other than the ACC system.

ACCシステムの制御系のブロック図ACC system control system block diagram 作用を説明するフローチャートの第1分図First part of the flowchart explaining the operation 作用を説明するフローチャートの第2分図Second part of the flowchart explaining the operation 作用を説明するフローチャートの第3分図Third part of the flowchart explaining the operation 作用説明図の第1分図First part of the action diagram 作用説明図の第2分図Second diagram of action explanatory diagram 作用説明図の第3分図3rd partial diagram of action explanation 作用説明図の第4分図4th figure of action explanation 車両の直線走行時におけるヨーレートセンサの出力を示すグラフGraph showing the output of the yaw rate sensor when the vehicle is running straight ヨーレートセンサの出力誤差の影響を説明する図The figure explaining the influence of the output error of the yaw rate sensor

11 車速センサ
12 ヨーレートセンサ
14 レーダー装置(物体検知手段)
M1 予測軌跡推定手段
M3 先行車認識手段
M4 予測軌跡補正定手段
11 Vehicle speed sensor 12 Yaw rate sensor 14 Radar device (object detection means)
M1 Predicted trajectory estimating means M3 Preceding vehicle recognizing means M4 Predicted trajectory correction determining means

Claims (6)

自車進行方向の物体を検知する物体検知手段(14)と、
自車のヨーレートを検出するヨーレートセンサ(12)と、
自車の車速を検出する車速センサ(11)と、
ヨーレートセンサ(12)で検出したヨーレートおよび車速センサ(11)で検出した車速に基づいて自車の予測軌跡を推定する予測軌跡推定手段(M1)と、
物体検知手段(14)の検知結果および予測軌跡推定手段(M1)の推定結果に基づいて先行車を認識する先行車認識手段(M3)と、
を備えた先行車認識装置において、
前記先行車認識手段(M3)が認識した複数の先行車の位置および前記予測軌跡推定手段(M1)の推定結果に基づいて自車の予測軌跡を補正する予測軌跡補正手段(M4)を備え
前記先行車認識手段(M3)は、物体検知手段(14)により検知された複数の先行車のうち、前記予測軌跡推定手段(M1)により推定された自車の予測軌跡から左右方向に所定距離内の先行車を認識するとともに、
前記予測軌跡補正手段(M4)は、認識された先行車のうちの少なくとも2台を判定基準車両として選択し、これらの判定基準車両の自車位置に対する左右方向位置の偏差量に基づいて各判定基準車両が隣り合う車線を走行していると判定した場合には、前記各判定基準車両の左右方向位置と自車からの相対距離とに基づいて前記各判定基準車両の中間位置を算出し、自車の予測軌跡と前記中間位置との比較により自車の予測軌跡が前記中間位置のどちら側にあるかを判定し、その判定された側に前記中間位置から所定距離だけ移動した点を通るように自車の予測軌跡を補正することを特徴とする先行車認識装置。
Object detection means (14) for detecting an object in the traveling direction of the vehicle;
A yaw rate sensor (12) for detecting the yaw rate of the vehicle;
A vehicle speed sensor (11) for detecting the speed of the host vehicle;
A predicted trajectory estimating means (M1) for estimating a predicted trajectory of the host vehicle based on the yaw rate detected by the yaw rate sensor (12) and the vehicle speed detected by the vehicle speed sensor (11);
Preceding vehicle recognition means (M3) for recognizing a preceding vehicle based on the detection result of the object detection means (14) and the estimation result of the predicted trajectory estimation means (M1);
In the preceding vehicle recognition device equipped with
Provided with a predicted trajectory correcting means (M4) for correcting the predicted trajectory of the own vehicle based on the positions of the plurality of preceding vehicles recognized by the preceding vehicle recognizing means (M3) and the estimation result of the predicted trajectory estimating means (M1) ;
The preceding vehicle recognition means (M3) is a predetermined distance in the left-right direction from the predicted trajectory of the host vehicle estimated by the predicted trajectory estimation means (M1) among the plurality of preceding vehicles detected by the object detection means (14). While recognizing the preceding car inside,
The predicted trajectory correction means (M4) selects at least two of the recognized preceding vehicles as the determination reference vehicles, and makes each determination based on the deviation amount of the left and right direction positions of these determination reference vehicles with respect to the own vehicle position. When it is determined that the reference vehicle is traveling in an adjacent lane, the intermediate position of each determination reference vehicle is calculated based on the horizontal position of each determination reference vehicle and the relative distance from the host vehicle, By comparing the predicted trajectory of the host vehicle and the intermediate position, it is determined which side of the predicted trajectory of the host vehicle is located at the intermediate position, and a point moved by a predetermined distance from the intermediate position is passed to the determined side. A preceding vehicle recognition device characterized by correcting the predicted trajectory of the vehicle.
車進行方向の物体を検知する物体検知手段(14)と、
自車のヨーレートを検出するヨーレートセンサ(12)と、
自車の車速を検出する車速センサ(11)と、
ヨーレートセンサ(12)で検出したヨーレートおよび車速センサ(11)で検出した車速に基づいて自車の予測軌跡を推定する予測軌跡推定手段(M1)と、
物体検知手段(14)の検知結果および予測軌跡推定手段(M1)の推定結果に基づいて先行車を認識する先行車認識手段(M3)と、
を備えた先行車認識装置において、
前記先行車認識手段(M3)が認識した複数の先行車の位置および前記予測軌跡推定手段(M1)の推定結果に基づいて自車の予測軌跡を補正する予測軌跡補正手段(M4)を備え
前記先行車認識手段(M3)は、物体検知手段(14)により検知された複数の先行車のうち、前記予測軌跡推定手段(M1)により推定された自車の予測軌跡から左右方向に所定距離内の先行車を認識するとともに、
前記予測軌跡補正手段(M4)は、認識された先行車のうちの少なくとも2台を判定基準車両として選択し、これらの判定基準車両の自車位置に対する左右方向位置の偏差量に基づいて各判定基準車両が自車走行車線を挟んだ車線を走行していると判定した場合には、前記各判定基準車両の左右方向位置と自車からの相対距離とに基づいて前記各判定基準車両の中間位置を算出し、その中間位置を通るように自車の予測軌跡を補正することを特徴とする先行車認識装置。
And object detecting means (14) for detecting an object in the vehicle traveling direction,
A yaw rate sensor (12) for detecting the yaw rate of the vehicle;
A vehicle speed sensor (11) for detecting the speed of the host vehicle;
A predicted trajectory estimating means (M1) for estimating a predicted trajectory of the host vehicle based on the yaw rate detected by the yaw rate sensor (12) and the vehicle speed detected by the vehicle speed sensor (11);
Preceding vehicle recognition means (M3) for recognizing a preceding vehicle based on the detection result of the object detection means (14) and the estimation result of the predicted trajectory estimation means (M1);
In the preceding vehicle recognition device equipped with
Provided with a predicted trajectory correcting means (M4) for correcting the predicted trajectory of the own vehicle based on the positions of the plurality of preceding vehicles recognized by the preceding vehicle recognizing means (M3) and the estimation result of the predicted trajectory estimating means (M1) ;
The preceding vehicle recognition means (M3) is a predetermined distance in the left-right direction from the predicted trajectory of the host vehicle estimated by the predicted trajectory estimation means (M1) among the plurality of preceding vehicles detected by the object detection means (14). While recognizing the preceding car inside,
The predicted trajectory correction means (M4) selects at least two of the recognized preceding vehicles as the determination reference vehicles, and makes each determination based on the deviation amount of the left and right direction positions of these determination reference vehicles with respect to the own vehicle position. When it is determined that the reference vehicle is traveling in a lane with the own vehicle lane in between, the intermediate position of each determination reference vehicle is determined based on the lateral position of each determination reference vehicle and the relative distance from the own vehicle. A preceding vehicle recognition apparatus characterized by calculating a position and correcting a predicted trajectory of the own vehicle so as to pass through the intermediate position .
記予測軌跡補正手段(M4)は、前記選択された複数の判定基準車両の左右方向位置の偏差量に基づいて各判定基準車両が同一車線を走行していると判定した場合には、自車に最も近い車両を判定基準車両から除外した後に、再度前記複数の判定基準車両を選択することを特徴とする、請求項または請求項に記載の先行車認識装置。 Before SL predicted trajectory correction means (M4), when the criterion vehicle based on the deviation of the position in the lateral direction of the plurality of decision reference vehicle said selected is determined to be traveling on the same lane, the own The preceding vehicle recognition apparatus according to claim 1 or 2 , wherein the plurality of determination reference vehicles are selected again after the vehicle closest to the vehicle is excluded from the determination reference vehicles. 記先行車認識手段(M3)が先行車を認識する前記左右方向の所定距離は、車線幅を略1.5倍した幅であることを特徴とする、請求項または請求項に記載の先行車認識装置。 Predetermined length of the front SL preceding vehicle recognizing means (M3) is the lateral direction recognizes the preceding vehicle is characterized in that the width was about 1.5 times the lane width, according to claim 1 or claim 2 Preceding vehicle recognition device. 記予測軌跡補正手段(M4)は、認識された先行車のうち、自車からの相対距離が所定値以内の少なくとも2台の車両を前記判定基準車両として選択することを特徴とする、請求項〜請求項の何れか1項に記載の先行車認識装置。 Before SL predicted trajectory correction means (M4), of the recognized preceding vehicle, characterized in that the relative distance from the vehicle to select at least two vehicles within a predetermined value as the criterion vehicle, wherein preceding vehicle detection device according to any one of claims 1 to claim 4. 記予測軌跡補正手段(M4)は、認識された先行車のうち自車からの相対距離が最も小さい2台を前記判定基準車両として選択することを特徴とする、請求項〜請求項の何れか1項に記載の先行車認識装置。 Before SL predicted trajectory correction means (M4) is characterized in that the relative distance from the vehicle among the recognized preceding vehicle selects the smallest two as the criterion vehicle, claims 1 to 4 The preceding vehicle recognition apparatus of any one of these.
JP2005024804A 2005-02-01 2005-02-01 Leading vehicle recognition device Expired - Fee Related JP4555699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005024804A JP4555699B2 (en) 2005-02-01 2005-02-01 Leading vehicle recognition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005024804A JP4555699B2 (en) 2005-02-01 2005-02-01 Leading vehicle recognition device

Publications (2)

Publication Number Publication Date
JP2006213073A JP2006213073A (en) 2006-08-17
JP4555699B2 true JP4555699B2 (en) 2010-10-06

Family

ID=36976659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005024804A Expired - Fee Related JP4555699B2 (en) 2005-02-01 2005-02-01 Leading vehicle recognition device

Country Status (1)

Country Link
JP (1) JP4555699B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101826628B1 (en) * 2017-04-03 2018-02-08 현대오트론 주식회사 Preceding vehicle recognizing method and apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4767930B2 (en) * 2007-09-12 2011-09-07 本田技研工業株式会社 Vehicle travel safety device
JP4971222B2 (en) * 2008-03-05 2012-07-11 本田技研工業株式会社 Vehicle safety device
JP5309764B2 (en) * 2008-07-29 2013-10-09 日産自動車株式会社 Side obstacle avoidance device and side obstacle avoidance method
JP5645103B2 (en) * 2010-05-17 2014-12-24 いすゞ自動車株式会社 Leading vehicle detector
KR102044192B1 (en) * 2012-12-14 2019-12-02 현대모비스 주식회사 Apparatus and Method for Correcting Lane Width and Vehicle Smart Cruise Control System Using the Same
JP5821917B2 (en) * 2013-09-20 2015-11-24 トヨタ自動車株式会社 Driving assistance device
JP6011522B2 (en) * 2013-12-25 2016-10-19 トヨタ自動車株式会社 Driving assistance device
JP6536064B2 (en) * 2015-02-10 2019-07-03 株式会社デンソー Travel locus selection device, travel locus selection method
JP6477377B2 (en) * 2015-09-15 2019-03-06 株式会社デンソー Vehicle control apparatus and vehicle control method
CN110940981B (en) * 2019-11-29 2024-02-20 径卫视觉科技(上海)有限公司 Method for judging whether position of object in front of vehicle is in own lane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11345394A (en) * 1998-06-03 1999-12-14 Mitsubishi Electric Corp Ambient monitoring device for vehicle
JP2002131432A (en) * 2000-10-24 2002-05-09 Honda Motor Co Ltd Advancing locus estimating device for vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11345394A (en) * 1998-06-03 1999-12-14 Mitsubishi Electric Corp Ambient monitoring device for vehicle
JP2002131432A (en) * 2000-10-24 2002-05-09 Honda Motor Co Ltd Advancing locus estimating device for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101826628B1 (en) * 2017-04-03 2018-02-08 현대오트론 주식회사 Preceding vehicle recognizing method and apparatus

Also Published As

Publication number Publication date
JP2006213073A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
JP4555699B2 (en) Leading vehicle recognition device
US8170739B2 (en) Path generation algorithm for automated lane centering and lane changing control system
JP4005597B2 (en) Side guide support method and apparatus for vehicle
US9227632B1 (en) Method of path planning for evasive steering maneuver
US9751529B2 (en) Lane sensing through lane marker identification for lane centering/keeping
JP6696593B2 (en) Travel history storage method, travel locus model generation method, self-position estimation method, and travel history storage device
US20190389464A1 (en) Driving Assistance Method and Driving Assistance Device
US10532736B2 (en) Vehicle travel control device
US20150149036A1 (en) Apparatus and method for controlling lane keeping of vehicle
US20040064241A1 (en) Vehicle surroundings monitoring apparatus and traveling control system incorporating the apparatus
JPS63314618A (en) Controller for self-traveling vehicle
JP6573769B2 (en) Vehicle travel control device
KR20100005362A (en) Aytomomous travelling controll system
US7974778B2 (en) Vehicular control object determination system and vehicular travel locus estimation system
JP4767930B2 (en) Vehicle travel safety device
US7493218B2 (en) Vehicular control object determination system
JPH0816998A (en) Judging device for traveling state of automobile
JP4999762B2 (en) Vehicle contact avoidance support device
JP5189316B2 (en) Yaw rate sensor output determination device and following vehicle determination device
US7966129B2 (en) Vehicular control object determination system
JP2006258545A (en) Preceding vehicle recognition apparatus
JP4239809B2 (en) Vehicle driving support device
JP4615954B2 (en) Vehicle control object determination device
JP4046742B2 (en) Road shape estimation device
JP5047052B2 (en) Vehicle travel control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees