JP4554447B2 - Ion movement recognition method - Google Patents

Ion movement recognition method Download PDF

Info

Publication number
JP4554447B2
JP4554447B2 JP2005180775A JP2005180775A JP4554447B2 JP 4554447 B2 JP4554447 B2 JP 4554447B2 JP 2005180775 A JP2005180775 A JP 2005180775A JP 2005180775 A JP2005180775 A JP 2005180775A JP 4554447 B2 JP4554447 B2 JP 4554447B2
Authority
JP
Japan
Prior art keywords
current
time
limiting element
current limiting
resistance leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005180775A
Other languages
Japanese (ja)
Other versions
JP2007005383A5 (en
JP2007005383A (en
Inventor
利春 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2005180775A priority Critical patent/JP4554447B2/en
Publication of JP2007005383A publication Critical patent/JP2007005383A/en
Publication of JP2007005383A5 publication Critical patent/JP2007005383A5/ja
Application granted granted Critical
Publication of JP4554447B2 publication Critical patent/JP4554447B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Thermistors And Varistors (AREA)

Description

本発明は、例えば、酸化亜鉛を主成分とする限流素子で構成された避雷器に対して、経時的な劣化の程度により現出した漏れ電流の変化に基づいて限流素子内部でのイオン移動状況を把握するイオン移動の認識方法に関する。   The present invention, for example, for a lightning arrester composed of a current limiting element mainly composed of zinc oxide, moves ions inside the current limiting element based on the change in leakage current that appears due to the degree of deterioration over time. The present invention relates to a method of recognizing ion movement for grasping the situation.

例えば変電所などに設置される避雷器は、落雷による雷サージや、開閉器、遮断器などの入り切りによる開閉サージに起因して異常電圧が発生した際にその周辺設備をサージから保護するものである。   For example, lightning arresters installed in substations, etc., protect the peripheral equipment from surges when abnormal voltages occur due to lightning surges caused by lightning strikes or switching surges caused by turning on / off switches, breakers, etc. .

この避雷器は、サージ電圧に対しては低抵抗、通常の対地電圧に対しては高抵抗を示す非直線性の電流電圧特性を有する酸化亜鉛(ZnO)を主成分とする複数の限流素子を積層し、その積層体の外周面に、弾性を有するポリマーやEPDM等の絶縁外被体を被着した構造を有する。   This lightning arrester includes a plurality of current limiting elements mainly composed of zinc oxide (ZnO) having non-linear current-voltage characteristics that exhibit low resistance to surge voltage and high resistance to normal ground voltage. The laminated body has a structure in which an insulating outer body such as an elastic polymer or EPDM is attached to the outer peripheral surface of the laminated body.

雷サージや開閉サージによる異常電圧が発生すると、サージ電流が限流素子を介して大地へ流れる。このとき、異常電圧に対して限流素子が低抵抗値となってこれを瞬時に大地に逃がし、その異常電圧が消滅すれば、限流素子が高抵抗値となって通常の対地電圧を遮断する。この弁作用により、変電所に設置された避雷器の周辺設備を保護している。   When an abnormal voltage occurs due to lightning surge or switching surge, surge current flows to the ground via the current limiting element. At this time, the current limiting element has a low resistance value with respect to the abnormal voltage and immediately escapes to the ground. If the abnormal voltage disappears, the current limiting element has a high resistance value and cuts off the normal ground voltage. To do. This valve action protects the peripheral equipment of the lightning arrestor installed in the substation.

この避雷器では、課電時の初期において、抵抗漏れ電流が一旦減少し、その課電時間の経過と共に増大する性質を有する。この課電初期において、抵抗漏れ電流が減少するのは、限流素子内部に存在する酸素イオンが課電中に拡散して外部へ放出されるためである。なお、この酸素イオンは、無課電中に外部から限流素子内部に吸収される。この酸素イオンが拡散して外部へ放出されることにより、抵抗漏れ電流は、課電時間と共に指数関数的に減少する。一方、課電時間の経過と共に抵抗漏れ電流が増大するのは、限流素子内部の亜鉛イオンがその濃度勾配に比例して拡散するためである。この亜鉛イオンが拡散することにより、抵抗漏れ電流は、課電時間と共にその課電時間の平方根に比例して増大する。   This lightning arrester has the property that the resistance leakage current once decreases at the initial stage of power application and increases with the lapse of the power application time. The reason why the resistance leakage current decreases in the initial stage of the voltage application is that oxygen ions existing inside the current limiting element are diffused during the voltage application and released to the outside. The oxygen ions are absorbed from the outside into the current limiting element during no electric charge. As the oxygen ions diffuse and are released to the outside, the resistance leakage current decreases exponentially with the application time. On the other hand, the reason why the resistance leakage current increases with the lapse of the charging time is that zinc ions inside the current limiting element diffuse in proportion to the concentration gradient. As the zinc ions diffuse, the resistance leakage current increases in proportion to the square root of the charging time along with the charging time.

前述したように、この避雷器では、課電初期において、限流素子内部に存在する酸素イオンが拡散して外部へ放出されることにより、抵抗漏れ電流が指数関数的に一旦減少し、その課電時間の経過と共に、限流素子内部の亜鉛イオンがその濃度勾配に比例して拡散することにより、抵抗漏れ電流が課電時間の平方根に比例して増大する。   As described above, in this lightning arrester, in the initial stage of voltage application, oxygen ions existing inside the current limiting element diffuse and are released to the outside, so that the resistance leakage current once decreases exponentially, As time elapses, zinc ions inside the current limiting element diffuse in proportion to the concentration gradient, so that the resistance leakage current increases in proportion to the square root of the charging time.

このように限流素子の内部では、課電中に酸素イオンや亜鉛イオンが移動するが、このイオン移動状況を把握するためには、従来、電子顕微鏡などにより限流素子の素材の組成変化を観察したり、あるいは、エックス線アナライザーなどによって素材からの反射信号を解析して組成変化を観察したりする手段が講じられていた。   In this way, oxygen ions and zinc ions move during current application inside the current limiting element, but in order to grasp the state of this ion movement, the composition of the material of the current limiting element has conventionally been changed using an electron microscope or the like. There has been a means of observing or analyzing a reflected signal from a material by an X-ray analyzer or the like to observe a composition change.

しかしながら、限流素子内部のイオン移動状況を把握するために、高額な電子顕微鏡やエックス線アナライザーを使用しなければならず、専門的な解析技術を必要とする。また、無課電状態における限流素子内部のイオン移動状況を把握することが困難であった。   However, in order to grasp the state of ion movement inside the current limiting element, an expensive electron microscope or X-ray analyzer must be used, and specialized analysis techniques are required. In addition, it is difficult to grasp the state of ion movement inside the current limiting element in the no-voltage state.

そこで、本発明は、前述の問題点に鑑みて提案されたもので、その目的とするところは、高額な電子顕微鏡やエックス線アナライザーを使用することなく、簡便な手段により、無課電状態における素子内部のイオン移動状況を把握し得るイオン移動の認識方法を提供することにある。   Therefore, the present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is to provide an element in an uncharged state by a simple means without using an expensive electron microscope or X-ray analyzer. An object of the present invention is to provide a method of recognizing ion movement that can grasp the state of ion movement inside.

前述の目的を達成するための技術的手段として、本発明は、特性パラメータとしての所定電流が劣化により経時的に変化する素子について、その素子温度を一定に保持した状態で、前記素子への課電と無課電をその無課電時間を異ならせながら繰り返し、その課電時に素子に流れる前記所定電流の変化を測定することにより、各無課電時間が異なることによって現出した所定電流の変化に基づいて無課電時の素子内部におけるイオン移動の状況を把握することを特徴とする。   As a technical means for achieving the above-described object, the present invention is directed to an element in which a predetermined current as a characteristic parameter changes over time due to deterioration while the element temperature is kept constant. By repeating the non-electricity and non-electricity while changing the non-electricity time, and measuring the change of the predetermined current flowing through the element during the electric power application, It is characterized by grasping the state of ion movement inside the element when no power is applied based on the change.

ここで、素子としては、例えば酸化亜鉛を主成分とする限流素子が適用可能であり、その限流素子で構成された避雷器を、イオン移動状況を把握するための対象物とする。この避雷器の限流素子を使用する場合、特性パラメータとしての所定電流を抵抗漏れ電流とすればよい。なお、この抵抗漏れ電流は、容量漏れ電流を加えることにより全漏れ電流となることから、この全漏れ電流は抵抗漏れ電流に比例するため、抵抗漏れ電流の代わりに全漏れ電流を特性パラメータとしての所定電流とすることも可能である。また、第一世代と称される避雷器においては、抵抗漏れ電流が課電時間と共に増大する特性を有するが、第二世代と称される避雷器においては、抵抗漏れ電流が課電時間と共に減衰する特性を有する。本発明は、第一世代あるいは第二世代のいずれの避雷器においても適用可能である。   Here, as the element, for example, a current limiting element mainly composed of zinc oxide is applicable, and a lightning arrester constituted by the current limiting element is used as an object for grasping the ion movement state. When using the current limiting element of the lightning arrester, a predetermined current as a characteristic parameter may be used as a resistance leakage current. Since this resistance leakage current becomes total leakage current by adding capacitance leakage current, since this total leakage current is proportional to the resistance leakage current, the total leakage current is used as a characteristic parameter instead of the resistance leakage current. It is also possible to set a predetermined current. In addition, in the lightning arrester called the first generation, the resistance leakage current has a characteristic that increases with the charging time, but in the lightning arrester called the second generation, the characteristic that the resistance leakage current attenuates with the charging time. Have The present invention can be applied to any first generation or second generation lightning arrester.

本発明を、限流素子を具備した避雷器に適用した場合、まず、密閉性の高い恒温槽内に限流素子を設置することによりその限流素子温度を一定に保持する。この状態で限流素子への課電と無課電を繰り返す。つまり、限流素子に所定の電圧を印加すると、無課電で平衡状態にあった素子内部が不平衡状態となってその素子内部でイオン移動が発生し、次に、限流素子への電圧印加を停止すると、素子内部でのイオンが元の平衡状態に戻ろうとする。   When the present invention is applied to a lightning arrester equipped with a current limiting element, first, the current limiting element temperature is kept constant by installing the current limiting element in a thermostat having a high hermeticity. In this state, power application to the current limiting element and no power application are repeated. In other words, when a predetermined voltage is applied to the current limiting element, the inside of the element that is in an equilibrium state with no voltage applied becomes unbalanced and ion migration occurs inside the element, and then the voltage to the current limiting element When the application is stopped, ions inside the device try to return to the original equilibrium state.

このようにして限流素子への課電と無課電を繰り返すに際して、無課電時間を異ならせることにより、課電時に限流素子に流れる抵抗漏れ電流が変化する。この抵抗漏れ電流を測定することにより、各無課電時間が異なることにより現出した抵抗漏れ電流の変化に基づいて、無課電時にイオン移動がどのような状況で発生しているかを把握することができる。なお、課電時におけるイオン移動については、その課電時での抵抗漏れ電流の増減から直接的に把握することが可能である。   In this way, when repeating the application of current to the current limiting element and the application of no power to the current limiting element, the resistance leakage current flowing through the current limiting element changes when the power is applied by changing the non-application time. By measuring this resistance leakage current, based on the change in resistance leakage current that appears due to the difference in each no-charge time, it is possible to understand under what circumstances ion migration occurs during no charge. be able to. In addition, about the ion movement at the time of charging, it is possible to grasp | ascertain directly from the increase / decrease in the resistance leakage current at the time of the charging.

本発明は、前述したように避雷器を構成する限流素子に適用する以外に、電子部品であるダイオードにも適用可能であり、この場合、特性パラメータとしての所定電流を逆電流とすればよい。   The present invention can be applied not only to the current limiting element constituting the lightning arrester as described above, but also to a diode which is an electronic component. In this case, a predetermined current as a characteristic parameter may be a reverse current.

本発明によれば、特性パラメータとしての所定電流が劣化により経時的に変化する素子について、その素子温度を一定に保持した状態で、前記素子への課電と無課電をその無課電時間を異ならせながら繰り返し、その課電時に素子に流れる前記所定電流の変化を測定することにより、各無課電時間が異なることによって現出した所定電流の変化に基づいて無課電時の素子内部におけるイオン移動の状況を把握するので、高額な電子顕微鏡やエックス線アナライザーを使用することなく、簡便な手段により、無課電状態における素子内部のイオン移動状況を把握することができ、その実用的価値は大きい。   According to the present invention, with respect to an element in which a predetermined current as a characteristic parameter changes with time due to deterioration, in the state where the element temperature is kept constant, the electric power is applied to the element and the electric power is not applied to the electric power. By measuring the change in the predetermined current that flows through the element when the power is applied, based on the change in the predetermined current that appears due to the difference in each non-electricity time. Because it is possible to grasp the state of ion movement in the device without using an expensive electron microscope or X-ray analyzer, it is possible to grasp the state of ion movement inside the device in an uncharged state by using simple means. Is big.

本発明の実施形態を詳述する。以下の実施形態では、特性パラメータとしての所定電流が劣化により経時的に変化する素子として、酸化亜鉛を主成分とする限流素子を適用し、その限流素子で構成された避雷器を、イオン移動状況を把握するための対象物とする。この場合、特性パラメータとしての所定電流を抵抗漏れ電流とする。また、この実施形態では、抵抗漏れ電流が課電時間と共に増加する限流素子で構成された避雷器(第一世代)を対象とする。   An embodiment of the present invention will be described in detail. In the following embodiments, a current limiting element mainly composed of zinc oxide is applied as an element whose predetermined current as a characteristic parameter changes over time, and a lightning arrester configured by the current limiting element is ion-transferred. It is an object for grasping the situation. In this case, a predetermined current as a characteristic parameter is set as a resistance leakage current. Further, in this embodiment, a lightning arrester (first generation) composed of a current limiting element in which the resistance leakage current increases with the application time is targeted.

この実施形態で使用する避雷器1は、図1(a)に示すようにサージ電圧に対しては低抵抗、通常の対地電圧に対しては高抵抗を示す非直線性の電流電圧特性を有する酸化亜鉛(ZnO)を主成分とする複数の限流素子2を積層し、その積層体〔同図(b)参照〕の外周面を、弾性を有するポリマーやEPDM等の絶縁外被体3で被覆した構造を有する。   As shown in FIG. 1A, the lightning arrester 1 used in this embodiment is an oxidation having a non-linear current-voltage characteristic showing a low resistance against a surge voltage and a high resistance against a normal ground voltage. A plurality of current limiting elements 2 mainly composed of zinc (ZnO) are laminated, and the outer peripheral surface of the laminated body (see FIG. 5B) is covered with an insulating outer covering 3 such as an elastic polymer or EPDM. Has the structure.

この避雷器1では、雷サージや開閉サージによる異常電圧が発生すると、サージ電流が限流素子2を介して大地へ流れる。このとき、異常電圧に対して限流素子2が低抵抗値となってこれを瞬時に大地に逃がし、その異常電圧が消滅すれば、限流素子2が高抵抗値となって通常の対地電圧を遮断する。この弁作用により、変電所に設置された避雷器1の周辺設備を保護している。   In the lightning arrester 1, when an abnormal voltage is generated due to a lightning surge or an opening / closing surge, a surge current flows to the ground through the current limiting element 2. At this time, if the current limiting element 2 has a low resistance value with respect to the abnormal voltage and immediately escapes to the ground, and the abnormal voltage disappears, the current limiting element 2 becomes a high resistance value and the normal ground voltage Shut off. This valve action protects the peripheral equipment of the lightning arrester 1 installed in the substation.

図2に示すように、この避雷器1の限流素子2を密閉性の高い恒温槽4内に設置することによりその限流素子温度を一定(例えば65℃)に保持する。この状態で加速寿命試験により限流素子2への課電と無課電を繰り返す。この加速寿命試験では、恒温槽4内に設置された限流素子2について、その両端に取り付けれた電極5を介して、課電装置6内の交流定電圧源7から例えば3kVの電圧を限流素子2に印加し、その課電中に発生した抵抗漏れ電流を課電装置6内の計測器8により測定する。   As shown in FIG. 2, by installing the current limiting element 2 of the lightning arrester 1 in a thermostat 4 having a high sealing property, the current limiting element temperature is kept constant (for example, 65 ° C.). In this state, the application of electric power to the current limiting element 2 and no electric power are repeated by the accelerated life test. In this accelerated life test, a voltage of, for example, 3 kV is applied to the current limiting element 2 installed in the thermostatic chamber 4 from the AC constant voltage source 7 in the voltage applying device 6 via the electrodes 5 attached to both ends thereof. The resistance leakage current generated during the application of voltage to the element 2 is measured by the measuring instrument 8 in the voltage applying device 6.

限流素子2への課電と無課電を繰り返すことにより、その限流素子2に流れる抵抗漏れ電流の特性を図3に示す。図3では、横軸を時間t、縦軸を抵抗漏れ電流irとし、無課電時間tr1,tr2,tr3については、実際上、時間幅を有するが、抵抗漏れ電流irが流れないことから、都合上、時間幅がない状態で表している。また、課電終了時、つまり無課電開始直前時の抵抗漏れ電流ir を一定にして課電と無課電を繰り返している。 FIG. 3 shows the characteristics of the resistance leakage current that flows through the current limiting element 2 by repeating the application of current to the current limiting element 2 and the non-application of current. In FIG. 3, the horizontal axis is time t, the vertical axis is resistance leakage current ir, and the no-charge time t r1 , tr 2 , tr 3 has a time width in practice, but the resistance leakage current ir does not flow. Therefore, for convenience, it is shown in a state where there is no time width. In addition, at the end of power application, that is, immediately before the start of no power application, the resistance leakage current ir p is kept constant, and power application and no power application are repeated.

この限流素子2への課電と無課電の繰り返しにおいて、課電装置6の交流定電圧源7により恒温槽4内の限流素子2に所定電圧を印加すると、無課電で平衡状態にあった素子内部が不平衡状態となってその素子内部でイオン移動が発生し、次に、限流素子2への電圧印加を停止すると、素子内部でのイオンが元の平衡状態に戻ろうとする。つまり、図3に示すように課電時の初期において、抵抗漏れ電流irが一旦減少し、その課電時間tの経過と共に増大する。   When a predetermined voltage is applied to the current limiting element 2 in the thermostatic chamber 4 by the AC constant voltage source 7 of the voltage applying device 6 in the repetition of the voltage application to the current limiting element 2 and no voltage application, no equilibrium is applied to the current limiting element 2. When the voltage applied to the current limiting element 2 is stopped, the ions inside the element will return to the original equilibrium state. To do. That is, as shown in FIG. 3, the resistance leakage current ir once decreases at the initial stage of power application, and increases as the power application time t elapses.

ここで、図4は課電中における限流素子内部の電位障壁の模式図であり、図5は無課電中における限流素子内部の電位障壁の模式図である。限流素子内部は、空乏層となるZnO粒子とBi23からなる粒界層で構成されている。 Here, FIG. 4 is a schematic diagram of the potential barrier inside the current limiting element during power application, and FIG. 5 is a schematic diagram of the potential barrier inside the current limiting element during no voltage application. The inside of the current limiting element is composed of a grain boundary layer made of ZnO particles serving as a depletion layer and Bi 2 O 3 .

この課電初期において、抵抗漏れ電流irが減少するのは、図4に示すように限流素子2の内部に存在する酸素イオンが拡散して強制的に粒界層の界面に沿って外部へ放出されるためである。なお、酸素イオンは、無課電中に外部から限流素子2の内部に吸収される(図5参照)。この酸素イオンは、その反応速度が濃度に比例しながら放出あるいは吸収される。このように課電中に酸素イオンが拡散して外部へ放出されることにより、抵抗漏れ電流irは、課電時間tと共に指数関数的に減少する。つまり、この酸素イオンが拡散して放出されることによる抵抗漏れ電流irは、その初期値をirdn、課電時間をtとすると、ir=irdn・e-Htの関係式(Hは係数、n=0,1,2,‥)を満足するように課電時間tと共に減少する。 In the initial stage of voltage application, the resistance leakage current ir decreases because, as shown in FIG. 4, oxygen ions existing inside the current limiting element 2 diffuse and are forced to the outside along the interface of the grain boundary layer. This is because it is released. Oxygen ions are absorbed into the current limiting element 2 from the outside during no charge (see FIG. 5). The oxygen ions are released or absorbed while the reaction rate is proportional to the concentration. As described above, the oxygen ions are diffused and released to the outside during the voltage application, so that the resistance leakage current ir decreases exponentially with the voltage application time t. In other words, the resistance leakage current ir due to the diffusion and release of oxygen ions is assumed to have an initial value of ir dn and a charging time t of ir = ir dn · e −H · t (H Decreases with the power application time t so as to satisfy the coefficient n = 0, 1, 2,.

一方、課電時間tの経過と共に抵抗漏れ電流irが増大するのは、図4に示すように限流素子内部の亜鉛イオンが強制的に粒界層の界面方向へ拡散するためである。なお、亜鉛イオンは、無課電中に粒界層の界面方向と反対方向へ拡散して元の状態に戻る。このように課電中に亜鉛イオンが粒界層の界面方向へ拡散することにより、抵抗漏れ電流irは、課電時間tと共にその課電時間tの平方根に比例して増大する。つまり、この亜鉛イオンが拡散することによる抵抗漏れ電流irは、その初期値をir0n、課電時間をtとすると、抵抗漏れ電流irは、ir=ir0n(1+h√t)の関係式(hは係数,n=0,1,2,‥)を満足するように課電時間tと共に上昇する。 On the other hand, the reason why the resistance leakage current ir increases with the lapse of the charging time t is that zinc ions inside the current limiting element are forcibly diffused toward the interface of the grain boundary layer as shown in FIG. In addition, zinc ion diffuses in the direction opposite to the interface direction of the grain boundary layer and returns to the original state during no charge. As described above, the zinc ions diffuse in the interface direction of the grain boundary layer during voltage application, so that the resistance leakage current ir increases in proportion to the square root of the voltage application time t together with the voltage application time t. In other words, the resistance leakage current ir due to the diffusion of zinc ions has an initial value of ir 0n , and the charging time is t. The resistance leakage current ir is expressed by a relational expression of ir = ir 0n (1 + h√t) ( h increases with the application time t so as to satisfy the coefficient, n = 0, 1, 2,.

このようにして限流素子2への課電と無課電を繰り返すに際して、無課電時間tr1,tr2,tr3を異ならせることにより、課電時に限流素子2に流れる抵抗漏れ電流irが変化する。この抵抗漏れ電流irを課電装置6内の計測器8で測定することにより、各無課電時間tr1,tr2,tr3が異なることにより現出した抵抗漏れ電流irの変化に基づいて、無課電時にイオン移動がどのような状況で発生しているかを把握することができる。 In this way, the repeated voltage application and no voltage application to the current limiting element 2, by varying the non-voltage application time t r1, t r2, t r3 , resistance leakage current flowing when the voltage application to the current limiting element 2 ir changes. By measuring this resistance leakage current ir with the measuring instrument 8 in the power application device 6, based on the change in the resistance leakage current ir that appears due to the difference of the non-electricity-applying times tr1 , tr2 , and tr3. It is possible to grasp the situation in which ion migration occurs when no power is applied.

つまり、各無課電時間tr1,tr2,tr3が異なることにより変化する抵抗漏れ電流ir01,ir02,ir03に基づく無課電時におけるイオン移動状況を図6に示す。図6では、横軸を無課電時間trの平方根とし、縦軸を抵抗漏れ電流irとする。図6に示すように抵抗漏れ電流ir01,ir02,ir03が減少する傾向にあり、この場合、限流素子2の内部において亜鉛イオンが拡散して元の状態へ戻る状況を把握することができる。 That is, it shows an ion moving situation in suck conductive time based on the resistance leakage current ir 01, ir 02, ir 03 each unsubstituted Division charging time t r1, t r2, t r3 is changed by different in FIG. In Figure 6, the horizontal axis represents the square root of the non-voltage application time t r, the vertical axis represents the resistance leakage current ir. As shown in FIG. 6, the resistance leakage currents ir 01 , ir 02 , ir 03 tend to decrease, and in this case, grasp the situation where zinc ions diffuse inside the current limiting element 2 and return to the original state. Can do.

また、各無課電時間tr1,tr2,tr3が異なることにより変化する抵抗漏れ電流ird1,ird2,ird3に基づく無課電時におけるイオン移動状況を図7に示す。図7では、横軸を無課電時間trとし、縦軸を抵抗漏れ電流irとする。図7に示すように抵抗漏れ電流ird1,ird2,ird3が増加する傾向にあり、この場合、酸素イオンが限流素子2の外部から内部へ吸収される状況を把握することができる。 Also, shows an ion moving situation in suck conductive time based on the resistance leakage current ir d1, ir d2, ir d3 of each non-Division charging time t r1, t r2, t r3 is changed by different in FIG. In FIG. 7, the horizontal axis is the no-charge time tr , and the vertical axis is the resistance leakage current ir. As shown in FIG. 7, the resistance leakage currents ir d1 , ir d2 , ir d3 tend to increase, and in this case, it is possible to grasp the situation in which oxygen ions are absorbed from the outside of the current limiting element 2 to the inside.

前述した抵抗漏れ電流ir01,ir02,ir03およびird1,ird2,ird3は、図3に示すように抵抗漏れ電流ir1,ir2,ir3を課電装置6内の計測器8により実際に測定し、その抵抗漏れ電流ir1,ir2,ir3から割り出すことにより求められる。つまり、抵抗漏れ電流ir01,ir02,ir03については、ir=ir0n(1+h√t)の関係式において課電時間t=0の時の値として求められ、抵抗漏れ電流ird1,ird2,ird3については、測定値である抵抗漏れ電流ir1,ir2,ir3と前述の抵抗漏れ電流ir01,ir02,ir03との差として求められる(図3参照)。 The above-described resistance leakage currents ir 01 , ir 02 , ir 03 and ir d1 , ir d2 , ir d3 are the resistance leakage currents ir 1 , ir 2 , ir 3 as shown in FIG. 8 is actually measured and is calculated from the resistance leakage currents ir 1 , ir 2 , ir 3 . That is, the resistance leakage currents ir 01 , ir 02 , ir 03 are obtained as values when the charging time t = 0 in the relational expression ir = ir 0n (1 + h√t), and the resistance leakage currents ir d1 , ir d2 and ir d3 are obtained as differences between the measured resistance leakage currents ir 1 , ir 2 and ir 3 and the aforementioned resistance leakage currents ir 01 , ir 02 and ir 03 (see FIG. 3).

なお、課電時におけるイオン移動については、その課電時での抵抗漏れ電流irの増減から直接的に把握することが可能である。つまり、前述したように抵抗漏れ電流irが減少する場合には、酸素イオンが外部へ放出する状態にあり、抵抗漏れ電流irが増加する場合には、亜鉛イオンが拡散する状態にある。   In addition, about the ion movement at the time of charging, it is possible to grasp | ascertain directly from the increase / decrease in the resistance leakage current ir at the time of the charging. That is, as described above, when the resistance leakage current ir decreases, oxygen ions are released to the outside, and when the resistance leakage current ir increases, zinc ions are diffused.

(a)は避雷器を示す一部断面を含む正面図、(b)は避雷器に内蔵された複数の限流素子を積層した状態を示す正面図である。(A) is a front view including a partial cross section showing a lightning arrester, (b) is a front view showing a state in which a plurality of current limiting elements built in the lightning arrester are stacked. 加速寿命試験において課電と無課電を繰り返す装置設備を示す概略構成図である。It is a schematic block diagram which shows the apparatus equipment which repeats an electricity application and a no-electricity in an accelerated life test. 限流素子への課電と無課電を繰り返すことにより、その限流素子に流れる抵抗漏れ電流を示す特性図である。It is a characteristic view which shows the resistance leakage current which flows into the current limiting element by repeating the application of electric power to the current limiting element and no electric power application. 課電中における限流素子内部の電位障壁を示す模式図である。It is a schematic diagram which shows the electric potential barrier inside a current limiting element during electric power application. 無課電中における限流素子内部の電位障壁を示す模式図である。It is a schematic diagram which shows the electric potential barrier inside a current limiting element in the time of no electricity. 各無課電時間が異なることにより変化する抵抗漏れ電流ir01,ir02,ir03に基づく無課電時におけるイオン移動状況を示す特性図である。Each non-Division charging time is a characteristic diagram showing the ion transfer conditions at the time of suck conductive based on resistive leakage current ir 01, ir 02, ir 03 that varies by different. 各無課電時間が異なることにより変化する抵抗漏れ電流ird1,ird2,ird3に基づく無課電時におけるイオン移動状況を示す特性図である。It is a characteristic view which shows the ion movement state at the time of no electricity based on the resistance leakage currents ir d1 , ir d2 , ir d3 which change by each electricity-free time.

符号の説明Explanation of symbols

1 避雷器
2 限流素子
ir 抵抗漏れ電流
1 lightning arrester 2 current limiting element ir resistance leakage current

Claims (3)

特性パラメータとしての所定電流が劣化により経時的に変化する素子について、その素子温度を一定に保持した状態で、前記素子への課電と無課電をその無課電時間を異ならせながら繰り返し、その課電時に素子に流れる前記所定電流の変化を測定することにより、各無課電時間が異なることによって現出した所定電流の変化に基づいて無課電時の素子内部におけるイオン移動の状況を把握することを特徴とするイオン移動の認識方法。   With respect to an element in which a predetermined current as a characteristic parameter changes over time due to deterioration, in a state in which the element temperature is kept constant, charging and no charging to the element are repeated while varying the non-charging time, By measuring the change in the predetermined current flowing through the element at the time of power application, the state of ion movement inside the element at the time of no electric power application based on the change in the predetermined current that appears due to the difference in each non-electricity time. An ion movement recognition method characterized by grasping. 前記素子は酸化亜鉛を主成分とする限流素子で、特性パラメータとしての所定電流を抵抗漏れ電流とした請求項1に記載のイオン移動の認識方法。   2. The ion movement recognition method according to claim 1, wherein the element is a current limiting element mainly composed of zinc oxide, and a predetermined current as a characteristic parameter is a resistance leakage current. 前記素子は、抵抗漏れ電流が経時的に増大する特性を有する限流素子である請求項2に記載のイオン移動の認識方法。   The method for recognizing ion movement according to claim 2, wherein the element is a current limiting element having a characteristic that a resistance leakage current increases with time.
JP2005180775A 2005-06-21 2005-06-21 Ion movement recognition method Expired - Fee Related JP4554447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005180775A JP4554447B2 (en) 2005-06-21 2005-06-21 Ion movement recognition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005180775A JP4554447B2 (en) 2005-06-21 2005-06-21 Ion movement recognition method

Publications (3)

Publication Number Publication Date
JP2007005383A JP2007005383A (en) 2007-01-11
JP2007005383A5 JP2007005383A5 (en) 2008-03-13
JP4554447B2 true JP4554447B2 (en) 2010-09-29

Family

ID=37690736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005180775A Expired - Fee Related JP4554447B2 (en) 2005-06-21 2005-06-21 Ion movement recognition method

Country Status (1)

Country Link
JP (1) JP4554447B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015903A (en) * 2005-07-11 2007-01-25 Kansai Electric Power Co Inc:The Oxygen occlusion alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4683570B2 (en) * 2007-03-14 2011-05-18 関西電力株式会社 Nonlinear resistance element for lightning arrester

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117601A (en) * 1983-11-30 1985-06-25 株式会社東芝 Method of detecting deterioration of impression of voltage nonlinear resistor
JPS61164205A (en) * 1985-01-16 1986-07-24 株式会社明電舎 Ac imposition life measurement for zno element
JPH0927404A (en) * 1995-07-13 1997-01-28 Toshiba Corp Nonlinear resistor, and life evaluation thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117601A (en) * 1983-11-30 1985-06-25 株式会社東芝 Method of detecting deterioration of impression of voltage nonlinear resistor
JPS61164205A (en) * 1985-01-16 1986-07-24 株式会社明電舎 Ac imposition life measurement for zno element
JPH0927404A (en) * 1995-07-13 1997-01-28 Toshiba Corp Nonlinear resistor, and life evaluation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015903A (en) * 2005-07-11 2007-01-25 Kansai Electric Power Co Inc:The Oxygen occlusion alloy

Also Published As

Publication number Publication date
JP2007005383A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
Chrzan et al. Concentrated discharges and dry bands on polluted outdoor insulators
Da Silva et al. Reliability of directly-molded polymer surge arresters: Degradation by immersion test versus electrical performance
Debus et al. Investigation of composite insulators with microvaristor filled silicone rubber components
JP4554447B2 (en) Ion movement recognition method
Ahmad et al. Electrical characterisation of ZnO microvaristor materials and compounds
Bokoro et al. Degradation assessment of metal oxide varistors using a statistical experimental design
Shreyas Multistress Ageing Studies on Polymeric Housed Surge Arresters
JP4481785B2 (en) Degradation diagnosis method for lightning arresters
JP4633513B2 (en) Degradation diagnosis method for lightning arresters
Silva et al. Polymer surge arresters: Degradation versus electrical performance
Lee et al. A monitoring device of leakage currents flowing through zno surge arresters
Da Silva et al. Partial discharge activity in distribution MOSAs due to internal moisture
Reddy A review on the condition monitoring of HVDC polymeric housed surge arresters
Mobedjina et al. Design and testing of polymer-housed surge arresters
Bokoro et al. The impact of harmonics on the V− I characteristic of ZnO varistors
Qian et al. Study on space charge characteristics during aging process of DC ZnO varistors
JP4455889B2 (en) Arrestor deterioration diagnosis device and deterioration diagnosis method
Muremi et al. Assessing the significance of electro-thermal stress on varistor arresters using Kruskal-Wallis H-test
Kannus et al. Aspects of the performance of metal oxide surge arresters in different environmental conditions
Velani A comparative analysis of metal-oxide surge arrester
Thipprasert et al. Metal Oxide Surge Arresters Modelling in Temporary Overvoltage Conditions
JP4298549B2 (en) Lightning arrester evaluation method
Dolník Investigation of electrical properties of ZnO varistors stressed by current pulses
Pająk et al. Influence of environmental exposures on electrical parameters of low voltage surge arresters
JP4381854B2 (en) Lightning arrester evaluation method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees