JP4554006B2 - Frequency error detection method and frequency error detection apparatus - Google Patents

Frequency error detection method and frequency error detection apparatus Download PDF

Info

Publication number
JP4554006B2
JP4554006B2 JP19355799A JP19355799A JP4554006B2 JP 4554006 B2 JP4554006 B2 JP 4554006B2 JP 19355799 A JP19355799 A JP 19355799A JP 19355799 A JP19355799 A JP 19355799A JP 4554006 B2 JP4554006 B2 JP 4554006B2
Authority
JP
Japan
Prior art keywords
frequency
input signal
filter
frequency error
error detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19355799A
Other languages
Japanese (ja)
Other versions
JP2001021595A (en
Inventor
隆 渡部
潤一 浮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP19355799A priority Critical patent/JP4554006B2/en
Publication of JP2001021595A publication Critical patent/JP2001021595A/en
Application granted granted Critical
Publication of JP4554006B2 publication Critical patent/JP4554006B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Channel Selection Circuits, Automatic Tuning Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、周波数を自動的に補正する自動周波数補正回路等に用いられる、入力信号の周波数の誤差を検出する周波数誤差検出方法及び周波数誤差検出装置に関する。
【0002】
【従来の技術】
電気信号の周波数の誤差を検出する従来の周波数誤差検出器として、特開平9−200279号公報に記載されたクロスプロダクト型の周波数誤差検出器が知られている。従来のクロスプロダクト型の周波数誤差検出器を図3に示す。
【0003】
この周波数誤差検出器は、受信信号の同相成分を入力する入力端子102と、受信信号の直交成分を入力する入力端子104とを備えている。更に、入力端子102から入力された信号を時間τ1だけ遅延させる遅延素子106と、入力端子102から入力された信号を時間τ2だけ遅延させる遅延素子108と、遅延素子106の出力と入力端子104から入力された信号とを乗算する乗算器110と、遅延素子108の出力と入力端子102から入力された信号とを乗算する乗算器112と、乗算器110の出力と乗算器112の出力との差を求めて出力する減算器114とを有している。減算器114の出力である周波数誤差成分は出力端子116から出力される。
【0004】
受信信号の同相成分をsin(Δωt+θ)、直交成分をcos(Δωt+θ)とすると、減算器114の出力はsin(Δωτ1)となる。周波数誤差が十分小さいときにはsin(Δωτ1)≒Δωτ1という関係式が成立し、周波数誤差検出器の出力を周波数誤差として近似することができる。
【0005】
【発明が解決しようとする課題】
しかしながら、周波数誤差が大きくなると、上述した近似が成立しなくなり検出誤差が大きくなってしまう。このため広帯域な周波数誤差を補正することが困難であった。
【0006】
本発明の目的は、広帯域な周波数誤差を検出することができる周波数誤差検出方法及び周波数誤差検出装置を提供することにある。
【0007】
【課題を解決するための手段】
上記目的は、入力信号の周波数の誤差を検出する周波数誤差検出方法において、前記入力信号の周波数を計数し、前記入力信号の周波数変動を振幅変動に変換するフィルタの特性を、前記計数された入力信号の周波数に基づいて、前記周波数近傍においてゲインが変化するように制御し、前記フィルタにより、前記入力信号の周波数変動を振幅変動に変換し、前記フィルタにより変換された振幅変動に基づいて前記入力信号の周波数の誤差を検出することを特徴とする周波数誤差検出方法によって達成される。
【0008】
上記目的は、入力信号の周波数の誤差を検出する周波数誤差検出装置において、前記入力信号の周波数変動を振幅変動に変換するフィルタと、前記入力信号の周波数を計数する手段と、前記計数する手段により計数された前記入力信号の周波数に基づいて、前記周波数近傍においてゲインが変化するように前記フィルタの特性を制御する手段と、前記フィルタにより変換された振幅変動に基づいて前記入力信号の周波数の誤差を検出する検出手段とを有することを特徴とする周波数誤差検出装置によって達成される。
【0009】
【発明の実施の形態】
本発明の一実施形態による周波数誤差検出装置を図1及び図2を用いて説明する。図1は本実施形態の周波数誤差検出装置の回路図であり、図2は本実施形態の周波数誤差検出装置におけるフィルタの特性を示すグラフである。
【0010】
本実施形態の周波数誤差検出装置において、入力信号はYIG同調フィルタ10に入力される。一方、入力信号は、周波数係数手段16にも入力され、入力信号の周波数が計数される。フィルタ周波数制御手段18は、周波数計数手段16により計数された周波数値に基づいて、YIG同調フィルタ10の減衰特性、例えばカットオフ周波数を変更して、入力信号の周波数に応じた最適な周波数特性となるようにする。
【0011】
例えば、入力信号の周波数が1〜1.5GHzであれば、図2(a)に示すようなカットオフ周波数が1GHzとし、入力信号の周波数が1.5〜2GGHzであれば、図2(b)に示すようなカットオフ周波数が1.5GHzの減衰特性とするように、YIG同調フィルタ10の減衰特性を変更する。これにより、YIG同調フィルタ10は、入力信号の周波数fの近傍でほぼ直線的に減衰するような特性となる。このYIG同調フィルタ10の減衰特性により、入力信号の周波数変動を出力信号の振幅変動に変換することができる。
【0012】
YIG同調フィルタ10からの出力信号は検波器12に入力され、その振幅振動が検出される。検波器12の出力信号は差動増幅器14に入力される。差動増幅器14には所定のオフセット電圧が入力されており、差動増幅器14からは検波器12からの出力信号と所定のオフセット電圧との差が出力される。この出力信号が周波数誤差となる。
【0013】
本実施形態の周波数誤差検出装置の動作について式を用いて説明する。入力信号の振幅をA、周波数をfとすると、入力信号はA・sin(2πft)と表される。
【0014】
YIG同調フィルタ10の特性が、周波数fのときのゲインがG、周波数f近傍での減衰特性の傾きがK(=ΔG/Δf)であると、YIG同調フィルタ10の出力信号はA・G・sin(2πft)となる。このとき検波器12の出力はA・Gとなる。差動増幅器14にはオフセット電圧としてA・Gが入力されているので差動増幅器14の出力信号は0となる。
【0015】
入力信号の周波数fがΔfだけ変動すると、入力信号はA・sin(2π(f+Δf)t)となる。このときのフィルタ10の出力信号は、図2に示すような減衰特性により、
A・(G+ΔG)・sin(2π(f+Δf)t)
=A・(G+K・Δf)・sin(2π(f+Δf)t)
となる。このときの検波器12の出力信号は、A・(G+K・Δf)となる。このとき差動増幅器14からは、
A・(G+K・Δf)−A・G=A・K・Δf
なる信号が出力される。この出力信号A・K・Δfにおいて、Aは入力信号の振幅で、KはYIG同調フィルタ10の減衰特性の傾きであるので、周波数の変動量Δfに比例した値となる。
【0016】
このように本実施形態によれば、検出結果は周波数の変動量Δfのみに依存し、周波数変動の比(Δf/f)には依存しないので、フィルタの傾きKの減衰特性の範囲内である限り、広帯域での周波数誤差を検出して、その検出結果に基づいて広帯域な周波数補正が可能である。更に、入力信号の周波数帯が大きく異なっても、フィルタの特性を入力信号の周波数帯に適した最適なものに自動的に変換することができるので、更なる広帯域での周波数補正が可能である。
【0017】
本発明による周波数誤差検出装置の応用例について説明する。
【0018】
スペクトラムアナライザにおいて被測定信号の周波数が変動するとき、本発明による周波数誤差検出装置を用いて被測定信号の周波数を一定にすることができる。本発明による周波数誤差検出装置により被測定信号の周波数変動を検出し、その検出結果をフィードバックすることにより、被測定信号の周波数を一定にする。このようにすれば、PLLのように被測定信号に影響を及ぼすことなく、周波数を一定にすることができる。
【0019】
高周波の入力信号に対する周波数誤差検出方法について説明する。特に高周波の入力信号の場合、その周波数における減衰特性の傾きが大きいフィルタが用意できないことが考えられる。そのような場合には高周波の入力信号を低い周波数の信号に変換し、この低い周波数において減衰特性の傾きの大きいフィルタを用いて周波数の誤差を検出する。例えば、4GHzの入力信号を100MHzの信号に変換し、100MHzにおいて減衰特性の傾きが大きなフィルタを用いて、100MHzの信号の周波数の誤差を検出する。
【0020】
本発明は上記実施形態に限らず種々の変形が可能である。例えば、上記実施形態ではフィルタのゲインが減衰する減衰特性を利用して周波数変動を振幅変動に変換したが、フィルタのゲインが増加する特性を利用して周波数変動を振幅変動に変換してもよい。
【0021】
また、フィルタにより入力信号の周波数変動を振幅変動に変換して、その振幅変動に基づいて入力信号の周波数の誤差を検出するものであれば、上記実施形態の具体的な構成に限定されるものではない。
【0022】
【発明の効果】
以上の通り、本発明によれば、検出結果は周波数の変動量のみに依存しているので、広帯域で周波数誤差を検出して、その検出結果に基づいて広帯域な周波数補正が可能である。更に、入力信号の周波数帯が大きく異なっても、フィルタの特性を入力信号の周波数帯に適した最適なものに自動的に変換することができるので、更なる広帯域での周波数補正が可能である。
【図面の簡単な説明】
【図1】本発明の一実施形態による周波数誤差検出装置の回路図である。
【図2】本発明の一実施形態の周波数誤差検出装置におけるYIG同調フィルタの特性を示すグラフである。
【図3】従来のクロスプロダクト型の周波数誤差検出器の回路図である。
【符号の説明】
10…YIG同調フィルタ
12…検波器
14…差動増幅器
16…マイクロ波カウンタ
18…定電流源
102、104…入力端子
106、108…遅延素子
110、112…乗算器
114…減算器
116…出力端子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a frequency error detection method and a frequency error detection device for detecting an error in the frequency of an input signal used in an automatic frequency correction circuit or the like that automatically corrects the frequency.
[0002]
[Prior art]
As a conventional frequency error detector for detecting an error in the frequency of an electric signal, a cross product type frequency error detector described in Japanese Patent Laid-Open No. 9-200209 is known. A conventional cross product type frequency error detector is shown in FIG.
[0003]
This frequency error detector includes an input terminal 102 for inputting an in-phase component of a received signal and an input terminal 104 for inputting a quadrature component of the received signal. Further, the delay element 106 that delays the signal input from the input terminal 102 by time τ 1, the delay element 108 that delays the signal input from the input terminal 102 by time τ 2, the output of the delay element 106, and the input terminal 104 A multiplier 110 that multiplies the input signal, a multiplier 112 that multiplies the output of the delay element 108 and the signal input from the input terminal 102, and the difference between the output of the multiplier 110 and the output of the multiplier 112. And a subtractor 114 for obtaining and outputting. The frequency error component that is the output of the subtracter 114 is output from the output terminal 116.
[0004]
If the in-phase component of the received signal is sin (Δωt + θ) and the quadrature component is cos (Δωt + θ), the output of the subtractor 114 is sin (Δωτ1). When the frequency error is sufficiently small, the relational expression sin (Δωτ1) ≈Δωτ1 is established, and the output of the frequency error detector can be approximated as a frequency error.
[0005]
[Problems to be solved by the invention]
However, when the frequency error increases, the above approximation is not established and the detection error increases. For this reason, it has been difficult to correct a wideband frequency error.
[0006]
An object of the present invention is to provide a frequency error detection method and a frequency error detection apparatus capable of detecting a wideband frequency error.
[0007]
[Means for Solving the Problems]
In the frequency error detection method for detecting an error in the frequency of an input signal, the object is to count the frequency of the input signal, and to convert the frequency variation of the input signal into an amplitude variation. based on the frequency of the signal, the control Gyoshi such gain is changed at a frequency near, by the filter, and converts the frequency variation of the input signal amplitude variations, on the basis of the converted amplitude variations by the filter This is achieved by a frequency error detection method characterized by detecting an error in the frequency of the input signal.
[0008]
The object is to provide a frequency error detecting device for detecting an error in the frequency of an input signal, a filter for converting the frequency fluctuation of the input signal into an amplitude fluctuation, means for counting the frequency of the input signal, and means for counting. Based on the counted frequency of the input signal, means for controlling the characteristics of the filter so that the gain changes in the vicinity of the frequency, and an error in the frequency of the input signal based on the amplitude fluctuation converted by the filter It is achieved by a frequency error detecting device characterized by having a detecting means for detecting.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
A frequency error detection apparatus according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a circuit diagram of a frequency error detection device according to the present embodiment, and FIG. 2 is a graph showing filter characteristics in the frequency error detection device according to the present embodiment.
[0010]
In the frequency error detection device of this embodiment, the input signal is input to the YIG tuning filter 10. On the other hand, the input signal is also input to the frequency coefficient means 16 and the frequency of the input signal is counted. Based on the frequency value counted by the frequency counting unit 16, the filter frequency control unit 18 changes the attenuation characteristic of the YIG tuning filter 10, for example, the cut-off frequency, so that the optimum frequency characteristic according to the frequency of the input signal is obtained. To be.
[0011]
For example, if the frequency of the input signal is 1 to 1.5 GHz, the cutoff frequency as shown in FIG. 2A is 1 GHz, and if the frequency of the input signal is 1.5 to 2 GHz, FIG. The attenuation characteristic of the YIG tuning filter 10 is changed so that the cutoff frequency as shown in FIG. Thereby, the YIG tuning filter 10 has a characteristic that attenuates substantially linearly in the vicinity of the frequency f of the input signal. Due to the attenuation characteristics of the YIG tuning filter 10, the frequency fluctuation of the input signal can be converted into the amplitude fluctuation of the output signal.
[0012]
The output signal from the YIG tuning filter 10 is input to the detector 12, and its amplitude vibration is detected. The output signal of the detector 12 is input to the differential amplifier 14. A predetermined offset voltage is input to the differential amplifier 14, and the difference between the output signal from the detector 12 and the predetermined offset voltage is output from the differential amplifier 14. This output signal becomes a frequency error.
[0013]
The operation of the frequency error detection device of this embodiment will be described using equations. When the amplitude of the input signal is A and the frequency is f, the input signal is expressed as A · sin (2πft).
[0014]
When the characteristic of the YIG tuning filter 10 is G when the gain is G and the slope of the attenuation characteristic near the frequency f is K (= ΔG / Δf), the output signal of the YIG tuning filter 10 is A · G · sin (2πft). At this time, the output of the detector 12 is A · G. Since A · G is input to the differential amplifier 14 as an offset voltage, the output signal of the differential amplifier 14 becomes zero.
[0015]
When the frequency f of the input signal varies by Δf, the input signal becomes A · sin (2π (f + Δf) t). The output signal of the filter 10 at this time has an attenuation characteristic as shown in FIG.
A · (G + ΔG) · sin (2π (f + Δf) t)
= A · (G + K · Δf) · sin (2π (f + Δf) t)
It becomes. The output signal of the detector 12 at this time is A · (G + K · Δf). At this time, from the differential amplifier 14,
A · (G + K · Δf) −A · G = A · K · Δf
Is output. In the output signals A, K, and Δf, A is the amplitude of the input signal, and K is the slope of the attenuation characteristic of the YIG tuning filter 10, and therefore is a value proportional to the frequency variation Δf.
[0016]
As described above, according to the present embodiment, the detection result depends only on the frequency fluctuation amount Δf and not on the frequency fluctuation ratio (Δf / f), and thus falls within the range of the attenuation characteristic of the filter inclination K. As long as it is possible to detect a frequency error in a wide band, it is possible to perform frequency correction in a wide band based on the detection result. Furthermore, even if the frequency band of the input signal is greatly different, the filter characteristics can be automatically converted to an optimum one suitable for the frequency band of the input signal, so that further wideband frequency correction is possible. .
[0017]
An application example of the frequency error detection apparatus according to the present invention will be described.
[0018]
When the frequency of the signal under measurement fluctuates in the spectrum analyzer, the frequency of the signal under measurement can be made constant by using the frequency error detection device according to the present invention. The frequency error of the signal under measurement is detected by the frequency error detection device according to the present invention, and the detection result is fed back to make the frequency of the signal under measurement constant. In this way, it is possible to make the frequency constant without affecting the signal under measurement unlike the PLL.
[0019]
A frequency error detection method for a high frequency input signal will be described. In particular, in the case of a high-frequency input signal, it is conceivable that a filter having a large slope of attenuation characteristics at that frequency cannot be prepared. In such a case, a high frequency input signal is converted into a low frequency signal, and a frequency error is detected using a filter having a large slope of attenuation characteristics at the low frequency. For example, a 4 GHz input signal is converted into a 100 MHz signal, and an error in the frequency of the 100 MHz signal is detected using a filter having a large slope of the attenuation characteristic at 100 MHz.
[0020]
The present invention is not limited to the above embodiment, and various modifications can be made. For example, in the above-described embodiment, the frequency fluctuation is converted into the amplitude fluctuation using the attenuation characteristic in which the gain of the filter attenuates. However, the frequency fluctuation may be converted into the amplitude fluctuation using the characteristic in which the gain of the filter increases. .
[0021]
In addition, if the frequency variation of the input signal is converted into the amplitude variation by the filter and the frequency error of the input signal is detected based on the amplitude variation, the configuration is limited to the specific configuration of the above embodiment. is not.
[0022]
【The invention's effect】
As described above, according to the present invention, since the detection result depends only on the amount of frequency fluctuation, it is possible to detect a frequency error in a wide band and perform wideband frequency correction based on the detection result. Furthermore, even if the frequency band of the input signal is greatly different, the filter characteristics can be automatically converted to an optimum one suitable for the frequency band of the input signal, so that further wideband frequency correction is possible. .
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a frequency error detection apparatus according to an embodiment of the present invention.
FIG. 2 is a graph showing characteristics of a YIG tuning filter in the frequency error detection device of one embodiment of the present invention.
FIG. 3 is a circuit diagram of a conventional cross-product type frequency error detector.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... YIG tuning filter 12 ... Detector 14 ... Differential amplifier 16 ... Microwave counter 18 ... Constant current source 102, 104 ... Input terminal 106, 108 ... Delay element 110, 112 ... Multiplier 114 ... Subtractor 116 ... Output terminal

Claims (2)

入力信号の周波数の誤差を検出する周波数誤差検出方法において、
前記入力信号の周波数を計数し、
前記入力信号の周波数変動を振幅変動に変換するフィルタの特性を、前記計数された入力信号の周波数に基づいて、前記周波数近傍においてゲインが変化するように制御し、
前記フィルタにより、前記入力信号の周波数変動を振幅変動に変換し、
前記フィルタにより変換された振幅変動に基づいて前記入力信号の周波数の誤差を検出する
ことを特徴とする周波数誤差検出方法。
In the frequency error detection method for detecting the frequency error of the input signal,
Count the frequency of the input signal,
The characteristics of the filter for converting a frequency variation of the input signal amplitude variations, on the basis of the frequency of the counted input signal, Gyoshi control so that the gain is changed at the frequency near,
The filter converts the frequency fluctuation of the input signal into an amplitude fluctuation,
An error in frequency of the input signal is detected based on the amplitude fluctuation converted by the filter.
入力信号の周波数の誤差を検出する周波数誤差検出装置において、
前記入力信号の周波数変動を振幅変動に変換するフィルタと、
前記入力信号の周波数を計数する手段と、
前記計数する手段により計数された前記入力信号の周波数に基づいて、前記周波数近傍においてゲインが変化するように前記フィルタの特性を制御する手段と、
前記フィルタにより変換された振幅変動に基づいて前記入力信号の周波数の誤差を検出する検出手段と
を有することを特徴とする周波数誤差検出装置。
In the frequency error detection device for detecting the frequency error of the input signal,
A filter that converts frequency fluctuations of the input signal into amplitude fluctuations;
Means for counting the frequency of the input signal;
Means for controlling the characteristics of the filter so that the gain changes in the vicinity of the frequency based on the frequency of the input signal counted by the means for counting ;
A frequency error detection apparatus comprising: a detecting unit that detects an error in the frequency of the input signal based on the amplitude fluctuation converted by the filter.
JP19355799A 1999-07-07 1999-07-07 Frequency error detection method and frequency error detection apparatus Expired - Fee Related JP4554006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19355799A JP4554006B2 (en) 1999-07-07 1999-07-07 Frequency error detection method and frequency error detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19355799A JP4554006B2 (en) 1999-07-07 1999-07-07 Frequency error detection method and frequency error detection apparatus

Publications (2)

Publication Number Publication Date
JP2001021595A JP2001021595A (en) 2001-01-26
JP4554006B2 true JP4554006B2 (en) 2010-09-29

Family

ID=16310035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19355799A Expired - Fee Related JP4554006B2 (en) 1999-07-07 1999-07-07 Frequency error detection method and frequency error detection apparatus

Country Status (1)

Country Link
JP (1) JP4554006B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078360A (en) * 1973-11-08 1975-06-26
JPS63167513A (en) * 1986-12-27 1988-07-11 Sony Corp Filter adjusting device
JPH06152578A (en) * 1992-10-29 1994-05-31 Anritsu Corp Filter and clock regenerating circuit
JPH09181538A (en) * 1995-12-25 1997-07-11 Matsushita Electric Ind Co Ltd Band amplifier
JPH11118848A (en) * 1997-10-14 1999-04-30 Advantest Corp Spectrum analyzer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078360A (en) * 1973-11-08 1975-06-26
JPS63167513A (en) * 1986-12-27 1988-07-11 Sony Corp Filter adjusting device
JPH06152578A (en) * 1992-10-29 1994-05-31 Anritsu Corp Filter and clock regenerating circuit
JPH09181538A (en) * 1995-12-25 1997-07-11 Matsushita Electric Ind Co Ltd Band amplifier
JPH11118848A (en) * 1997-10-14 1999-04-30 Advantest Corp Spectrum analyzer

Also Published As

Publication number Publication date
JP2001021595A (en) 2001-01-26

Similar Documents

Publication Publication Date Title
EP0609435B1 (en) Apparatus for compensating of phase rotation in a final amplifier stage
US5455537A (en) Feed forward amplifier
EP0847619B1 (en) Circuit arrangement comprising a cartesian amplifier
US7620380B2 (en) Adjustable automatic gain control
JP2002529747A (en) Method for detecting and correcting nonlinearity of high frequency voltage controlled oscillator
WO2001067597A1 (en) Preamplifier
EP0863623A2 (en) Device and method for controlling frequency characteristic of a filter
EP0877945B1 (en) A receiver for spectrum analysis
CN1116736C (en) Double-side band pilot technology using for distorted control system generated from reducing circuit
US4785236A (en) Device for measuring voltage by scanning
US5991609A (en) Low cost digital automatic alignment method and apparatus
EP1145030A2 (en) Multi-conversion radar detector having increased tuning range and self-calibrating function
CN1250254A (en) Scanning pilot technology using for distorted control system generated by reducing circuit
JP4554006B2 (en) Frequency error detection method and frequency error detection apparatus
EP0638992B1 (en) Frequency demodulation circuit
US4198633A (en) Electronic signal processing system
JPH0879013A (en) Switched capacitor band-pass filter for pilotsignal detection
US6972617B2 (en) FM demodulator including a DC offset detector
JP2508338B2 (en) Squelch signal generation circuit
JPS5814064A (en) S/n ratio measuring circuit
JPS627727B2 (en)
CA1052870A (en) Electronic signal processing system
RU2251120C1 (en) Unit for measuring fluctuations in high-frequency devices
JP2543990B2 (en) C / N stabilizer
JPH0441641Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees