JP4553231B2 - Method for producing dimethyl ether - Google Patents

Method for producing dimethyl ether Download PDF

Info

Publication number
JP4553231B2
JP4553231B2 JP2002329321A JP2002329321A JP4553231B2 JP 4553231 B2 JP4553231 B2 JP 4553231B2 JP 2002329321 A JP2002329321 A JP 2002329321A JP 2002329321 A JP2002329321 A JP 2002329321A JP 4553231 B2 JP4553231 B2 JP 4553231B2
Authority
JP
Japan
Prior art keywords
dimethyl ether
methanol
distillation column
water
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002329321A
Other languages
Japanese (ja)
Other versions
JP2004161673A (en
Inventor
伸康 近松
洋 海野
浩平 内田
靖史 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Mitsubishi Gas Chemical Co Inc
Original Assignee
JGC Corp
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Mitsubishi Gas Chemical Co Inc filed Critical JGC Corp
Priority to JP2002329321A priority Critical patent/JP4553231B2/en
Publication of JP2004161673A publication Critical patent/JP2004161673A/en
Application granted granted Critical
Publication of JP4553231B2 publication Critical patent/JP4553231B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
メタノールの気相反応によりジメチルエーテル(以下DMEと記すこともある)を合成するジメチルエーテルの製造方法に関する。
【0002】
【従来の技術】
従来、メタノールを気相反応により脱水してジメチルエーテルを製造する方法は、不純物をほとんど含まないメタノールを蒸発器にて加熱・気化し、このメタノールガスを原料ガスとして、ジメチルエーテル合成反応を促進させる触媒が充填されている例えば連続流通式の反応塔に供給することにより、当該触媒の活性領域において反応式(1)に示すジメチルエーテルの合成反応を進行させる手法が用いられている(例えば特許文献1参照。)。
2CH3OH → CH3OCH3 + H2O ΔH=-23.4kJ/mol ・・・(1)
【0003】
前記の手法を含むジメチルエーテルの製造システムの一例としては、図5に示すシステムが知られている。このシステムでは、先ず原料である不純物をほとんど含まない液体メタノールは気化器10に供給されて気化され、予熱器11にて所定の温度に加熱されて原料ガスとなる。当該原料ガスは反応塔1に供給され、上述の反応式(1)の反応が進行してジメチルエーテルが生成する。この反応塔1から留出されるジメチルエーテルには、未反応のメタノール、反応式(1)の反応によりジメチルエーテルと共に生成する水が含まれるので、当該ジメチルエーテルは蒸留して純度の高いジメチルエーテルにするための蒸留塔12に供給され、ジメチルエーテルと他の成分とが分離される。こうして分離されたジメチルエーテルは蒸留塔12の上部から留出され、未反応のメタノールと水とを含んだ液体は蒸留塔12の底部から排出されて後段の蒸留塔13に供給される。当該蒸留塔13にて前記未反応のメタノールと水とが分離され、メタノールは蒸留塔13の上部から留出され、液体状態で気化器10に戻される。一方、水は蒸留塔13の塔底から排出されて図示しない処理設備に送られる。
【0004】
しかしながら、上述のように不純物の少ない高純度のメタノールを用いる手法は原料が高価であるという欠点がある。そこで水を含んだ安価な未精製のメタノール混合物(粗メタノール)を原料として合成反応を行うことが考えられる。この場合、合成反応の抑制の要因となる水を蒸留処理によって分離し、合成反応に適した組成のメタノールを得て反応塔1に供給することが望ましい。このため図6に示すように気化器10の前段に蒸留塔14が設けられ、粗メタノールをある程度精製して原料とする手法が考えられる。この場合、先ず粗メタノールは蒸留塔14に供給されて蒸留によりメタノールと水とが分離され、蒸留塔14の上部から水が分離されたメタノールに富む液体を得る。この液体メタノールは気化器10にて気化された後、予熱器11にて所定の温度に調整されて反応器1に供給される。一方、前記分離された他の成分は、塔底から排出されて図示しない処理設備に送られる。
【0005】
【特許文献1】
特開昭59−199648号公報
【0006】
【発明が解決しようとする課題】
ところで上述のジメチルエーテルの製造システムの場合、原料に安価な粗メタノールを用いることにより原料コストを抑えることができるが、この粗メタノールを蒸留処理する蒸留設備を設けるために設備コストおよび当該蒸留設備の運転コストとが必要となる。このためシステム全体としての製造コストは同じか僅かに低減される程度であり、大きな低コスト化には至らない。
【0007】
本発明はこのような事情に基づいてなされたものであり、その目的は水を含んだ純度の低いメタノールを原料に用いて安価にジメチルエーテルを製造することのできる技術を提供することにある。
【0008】
【課題を解決するための手段】
メタノールを気相反応により脱水してジメチルエーテルを製造する方法において、
(1)外部から持ち込まれる原料である水を含んだ液体メタノールと下記工程(3)のジメチルエーテル精製工程で分離された未反応メタノールおよび水とを同一の蒸留塔に供給して、メタノールに富んだガスと、水に富んだ液体とに分離する原料精製工程と、
(2)前記蒸留塔から得られたメタノールに富んだガスを気体状態のままで反応器に供給してジメチルエーテルを合成するジメチルエーテル合成工程と、
(3)この工程(2)で合成されたジメチルエーテルをジメチルエーテル精製塔に供給してジメチルエーテルと未反応メタノールおよび水とを分離するジメチルエーテル精製工程と、を含み、
前記蒸留塔からのメタノールに富んだガスを反応器に自然供給できるように、蒸留塔内の圧力を反応器内よりも高く設定し、
前記反応器からのジメチルエーテルを含む生成ガスをジメチルエーテル精製塔に自然供給できるように、反応器内の圧力をジメチルエーテル精製塔内の圧力よりも高く設定し、
前記蒸留塔内の圧力は2.1〜3MPaであり、前記反応器内の圧力は2.09〜3MPaであり、前記ジメチルエーテル精製塔内の圧力は、2.06〜2.5MPaであることを特徴とする。
【0010】
本発明によれば、原料である、水を含んだ液体メタノールの蒸留精製、原料ガスの調製(液体メタノールを気化して気相のメタノールを得ること)、および後段の反応器から留出される未反応メタノールの回収を、共通の蒸留塔にて行うことができる。このため蒸留塔および気化器などの設備を統合することができるので、メタノールの気化に消費する熱量を低減し運転コストを低減することができると供に設備コストを低くすることができる。即ち、水を含んだ安価なメタノールを原料としてジメチルエーテルを製造することができると共に、設備および運転の低コスト化を図ることができる。
【0011】
【発明の実施の形態】
本発明方法の実施の形態について説明する前に、本発明方法を用いたジメチルエーテルの製造システム全体構成について図1を用いて簡単に述べておく。このシステムは、メタノール中の水を分離するための蒸留装置2、ジメチルエーテル合成反応を行うための反応塔60、ジメチルエーテルの純度を上げるためのジメチルエーテル精製塔70を備えている。
【0012】
続いて前記蒸留装置2の一例について図2を用いて説明する。蒸留装置2は、縦型の円筒状の蒸留塔20、凝縮器30および再沸器40を備えている。
【0013】
前記蒸留塔20には、原料である粗メタノールを供給するための粗メタノール供給口24およびジメチルエーテル精製塔70から送られてくる未反応メタノールを供給するための未反応メタノール供給口25が夫々設けられている。また蒸留塔20の頂部にはメタノールガスを留出するための留出口26が設けられ、蒸留塔20の側壁部であって例えば多数の充填物からなる充填物層21の上部には凝縮器30から送られてくる還流液を供給するための還流液供給管27が設けられている。更に蒸留塔20の底部には水を排出するための排出口28が設けられている。
【0014】
前記凝縮器30は例えば多管式の熱交換器が用いられる。
【0015】
更にまた前記再沸器40は例えば多管式の熱交換器が用いられる。
【0016】
続いて本発明方法を用いたジメチルエーテルの製造方法の工程について、説明を図1に戻して述べていく。粗メタノール(液体メタノール)は例えばメタノールを60〜95重量%、水を5〜40重量%、その他の不純物として例えばエタノールやパラフィン類を僅かに含む。この粗メタノールは、ポンプP1を介して粗メタノール供給口24を介して蒸留塔20に供給される。前記蒸留塔20内は、後段の反応塔60より高い圧力、例えば圧力0.5〜3MPaに設定されるが、この圧力は後段の反応塔60より例えば0.01〜0.05MPa高い圧力であることが好ましい。ここで後段の反応塔60より高い圧力に設定した理由は、後段の反応塔60に圧縮手段例えばコンプレッサーを設けずに反応塔60に気相状態でメタノールを供給するためである。後段の反応塔60に対する蒸留塔20の圧力差は、それらの間に設けられる配管や熱交換器による圧力損失を考慮し原料の自然供給が可能な範囲で設定される。蒸留塔20の好ましい圧力は1.0〜2.5MPaである。
【0017】
このとき沸点の低いメタノールに富んだガスが蒸留塔20の頂部に設けられた留出口から排出される。こうして得られるメタノールに富んだガス、例えばメタノールを85〜99重量%、水分を1〜15重量%含み、ガス温度が例えば120〜200℃のガスは、後段の予熱器60aに供給されて所定の温度例えば250〜350℃に加熱された後に原料ガスとして反応塔60に供給されるが、頂部のガスの一部は凝縮器30に供給される。この供給されたガスは、凝縮器30にて液化されて還流液として蒸留塔20に戻される。ここで還流比は、例えば1〜5に設定しておくのが好ましい。
【0018】
水に富んだ液体は蒸留塔20の底部から排出される。この水に富んだ液体には、高沸点成分が少量含まれている。この液体は排出されて図示しない処理設備に送られる。
【0019】
続いて例えば断熱型の流通式の反応塔60に供給された前記原料ガスは、反応塔60内にて上記で述べた如く蒸留塔20の圧力より例えば0.01〜0.05MPa低い、0.5〜3MPa、好ましくは1.0〜2.5MPaのプロセス条件でジメチルエーテルの合成反応が行われる。即ち反応塔60に設けられた触媒層において「従来の技術」に記載の反応式(1)で示される反応が進行し、ジメチルエーテル、水蒸気および未反応メタノールを含む生成ガスとなる。この生成ガス中の水(水蒸気)濃度は例えば15〜35重量%である。しかる後冷却器60bで所定の温度に冷却されてジメチルエーテル精製塔70に供給される。
【0020】
続いてジメチルエーテル精製塔70にて、ジメチルエーテルを精製する。即ち、前記反応塔60で合成されたジメチルエーテルを含む生成ガスをジメチルエーテル精製塔70で蒸留することによりジメチルエーテルと他の成分、例えば未反応メタノール、水および微量の軽質ガスが分離され、ジメチルエーテル精製塔70の上段部からは所望する純度のジメチルエーテルが製品として得られる。こうして分離された未反応メタノールおよび水を含む液体、例えばメタノールを25〜75重量%含むメタノール混合物はジメチルエーテル精製塔70の塔底から排出された後、未反応メタノール供給口25を介して蒸留塔20に供給される。当該液体メタノールは、既述の粗メタノールの場合と同様にメタノールと水が蒸留により分離され、メタノールは原料ガスの一部となり水は塔底より排出されて処理される。
ここで、ジメチルエーテル精製塔70内の圧力は、前段の反応塔60の出口圧力より例えば0.01〜0.05MPa低い、0.5〜3MPa、好ましくは1.0〜2.5MPaの圧力下で運転することが好ましい。この圧力下でジメチルエーテル精製塔60を運転することにより分離されたジメチルエーテルを容易に液化でき、最終製品の貯蔵、運搬までのエネルギーコストの観点で極めて有利となる。
【0021】
このような実施の形態においては、蒸留塔20により、粗メタノール中の水を分離してメタノールに富んだガスを得て、後段の反応塔60にて反応の抑制を起こさずにジメチルエーテルを合成することができ、更に反応塔60において反応しなかった未反応メタノールから水を分離してメタノールを回収し、再度原料とすることができる。この実施の形態の要部は、「従来の技術」に記載の製造システムにおいては、反応塔の上流側に設けられる蒸留塔と下流側に設けられる蒸留塔とが、主としてメタノールと水とを分離する共通の用途に用いられていること、またシステム全体でみると再沸器、凝縮器および気化器の複数の設備にてメタノールの気化および液化が行われ熱を消費していることに着目し、従来の反応塔の下流側に設けられ、未反応メタノールを回収して原料のロスを抑える役割が割り当てられた蒸留塔(図6の蒸留塔13)に対して、粗メタノールを蒸留精製する役割(図6の蒸留塔14の役割)と、従来気化器で行っていた原料メタノールを気化する役割(図6の気化器10の役割)を更に割り当てることにより設備の統合化、即ち運転および設備の低コスト化を実現したことにある。
【0022】
つまり蒸留塔20のプロセス条件を高圧にすることによって、1基の蒸留塔により粗メタノールの蒸留精製、原料ガスの調製(粗メタノールを気化して気相のメタノールを得ること)および未反応メタノールの回収をすることができるのでシステム全体でのメタノールの気化および液化に消費する熱量について、単に設備数を減少させたことのみならず後述する実施例からも明らかなように低減することができる。更には2基目の蒸留塔および気化器を設ける必要がなく、これに伴い配管や計装機器も少なくて済むので設備コストを抑えることができる。即ち、不純物を含む安価な未精製メタノールを原料に用いてジメチルエーテルを製造できると供に、運転および設備の低コスト化を図ることができる。
また、蒸留塔の圧力より反応器の圧力を低くして原料を圧力差で反応器に供給することができるので運転コストを低減でき、さらに反応器の圧力よりジメチルエーテル精製塔の圧力を低くすることにより、連続的に蒸留塔から反応器、反応器からジメチルエーテル精製塔への供給を圧力差で供給することができるので運転コストを低減できる。
【0023】
【実施例】
続いて本発明の効果を確認するために図1のシステムを用いて行った実施例について説明する。
(実施例1)
本例は、本発明のジメチルエーテル製造方法を用いた実施例1である。図2に示すように、上述のメタノールを水から分離するための蒸留塔20は、理論段30段相当のポールリングを充填した塔を使用した。この蒸留塔20に供給する流体は、ジメチルエーテルを合成するための原料であり、不純物を含むメタノール混合物(粗メタノール)およびジメチルエーテルを合成してジメチルエーテルを分離した後に得られる主に未反応分のメタノールと水から成る混合物である。蒸留塔20における粗メタノールの供給段は塔頂側から数えて11段目相当とし、未反応分のメタノールと水の混合物の供給段は18段目相当とした。粗メタノールの供給流量は50kg/hrであり、その組成はメタノール74.9重量%、水25.0重量%、その他不純物500ppmからなっていた。また未反応分のメタノールと水の混合物の供給流量は28kg/hrであり、その組成はメタノール52.1重量%、水47.8重量%、その他不純物500ppmからなっていた。
【0024】
a.先ず蒸留塔20の凝縮器30の圧力を2.1MPaとして蒸留操作を行い、メタノールに富んだガスを得た。
b.この蒸留塔20の還流比を1.0とした場合、塔頂温度は170℃となり、気相で得られるメタノールの純度は94.9重量%、蒸留塔20の塔底から液体で得られる水の純度は99.9重量%であり、再沸器40の熱量は、供給したスチーム量から計算して、28900kcal/hrであった。
c.気相で得た170℃のメタノールをジメチルエーテル合成反応に用いるため予熱器60aで280℃まで加熱して蒸留塔20より0.01MPa圧力が低い反応塔60に圧力差で供給した。このときの加熱量は3200kcalであった。前記再沸器40と合わせると総熱量は32100kcal/hrとなる。なお図3には、実施の結果についても併せて示す。
d.反応塔60で得られた生成物を冷却器60bで140℃に冷却して反応塔より0.03MPa圧力が低いジメチルエーテル精製塔70に圧力差で供給した。
ジメチルエーテル精製塔70では、純度99.5%のジメチルエーテルが27kg/hrで得られ、塔底からは上記で示したように未反応メタノールと水の混合物28kg/hrを得た。塔底液は前記蒸留塔20に供給した。
【0025】
(比較例1)
本例は圧力を大気圧付近に設定した蒸留塔20の凝縮器30から液体状態で原料メタノールを得て、このメタノールを気化してジメチルエーテルを製造した比較例1である。図4に示すように、実施例1と同じくメタノールを水や高沸点成分から分離するための蒸留塔20は理論段30段相当のポールリングを充填した塔を使用した。粗メタノールの供給段は11段目相当とし、未反応分のメタノールと水の混合物の供給段は18段目相当とした。粗メタノールの供給流量と組成は実施例1と同様で50kg/hrであり、その組成はメタノール74.9重量%、水25.0重量%、その他不純物500ppmからなっていた。また未反応分のメタノールと水の混合物の供給流量と組成も実施例1と同様で28kg/hrであり、その組成はメタノール52.1重量%、水47.8重量%、その他不純物500ppmからなっていた。
【0026】
a.蒸留塔20の凝縮器30部の圧力を0.13MPaとして蒸留操作を行った。
b.この蒸留塔20の還流比を0.4とした場合、プロセス側の凝縮器30出口温度は72℃となり、凝縮器30の出口から液体で得られるメタノールの純度は94.9重量%、蒸留塔20の塔底から液体で得られる水の純度は99.9重量%であり、再沸器40の熱量は19700kcal/hrであった。
c.凝縮器30の出口から液体で得た原料メタノールはジメチルエーテル合成反応に用いるためポンプで2.1MPaまで加圧した後に気化器で気化すると供に、280℃まで加熱した。このときの加熱量は19900kcal/hrであった。前記再沸器40と合わせると総熱量は39600kcal/hrとなる。なお、図4には、実施の結果についても併せて示す。
【0027】
(実施例1、比較例1の考察)
実施例1、比較例1から明らかなように、同様の原料を用いて同様の理論段数相当の蒸留塔20で分離精製を行い、反応器に供給するため蒸留塔20の塔頂から得られたメタノールの純度及び蒸留塔20の塔底から得られた水の純度も同様であった。実施例1は比較例1に比べると蒸留塔20の運転圧力を高くしたために分離効率が低下し、再沸器40の熱量が大きくなっている。しかしメタノールを気相で得ており、280℃まで加熱して原料ガスを調製するための熱量が少なくてよいことから、比較対象となった加熱量合計としては実施例1の方は比較例1の81%相当の熱量でよいことがわかる。よって蒸留塔20の運転圧力を反応塔60に供給するために十分な圧力としメタノールを気相で得ることによって熱量(加熱量)を低減出来ることが確認された。これに伴い凝縮器30の熱量(冷却量)も低減される。
【0028】
【発明の効果】
以上のように本発明によれば、メタノールを気相反応により合成してジメチルエーテルを製造する方法において、純度の低いメタノールを原料に用いて安価にジメチルエーテルを製造することができる。
【図面の簡単な説明】
【図1】本発明方法を備えた蒸留装置を組み込んだジメチルエーテル製造システムの全体構成を示す説明図である。
【図2】本発明方法を備えた蒸留装置の一例を示す縦断面図である。
【図3】本発明の効果を確認するために行った実施例を示す特性図である。
【図4】本発明の効果を確認するために行った比較例を示す特性図である。
【図5】従来の技術によるジメチルエーテル製造システムを示す説明図である。
【図6】従来の技術によるジメチルエーテル製造システムを示す説明図である。
【符号の説明】
2 蒸留装置
20 蒸留塔
21 充填物層
24 粗メタノール供給口
25 回収メタノール供給口
27 還流液供給管
60 反応塔
61 触媒層
70 ジメチルエーテル精製塔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing dimethyl ether, which synthesizes dimethyl ether (hereinafter sometimes referred to as DME) by gas phase reaction of methanol.
[0002]
[Prior art]
Conventionally, a process for producing dimethyl ether by dehydrating methanol by a gas phase reaction is a catalyst that heats and vaporizes methanol containing almost no impurities in an evaporator and uses this methanol gas as a raw material gas to promote a dimethyl ether synthesis reaction. For example, a method of advancing the synthesis reaction of dimethyl ether shown in the reaction formula (1) in the active region of the catalyst by supplying to a packed continuous-flow reaction tower is used (see, for example, Patent Document 1). ).
2CH 3 OH → CH 3 OCH 3 + H 2 O ΔH = -23.4kJ / mol (1)
[0003]
As an example of a dimethyl ether production system including the above-described method, a system shown in FIG. 5 is known. In this system, first, liquid methanol containing almost no impurities as a raw material is supplied to the vaporizer 10 and vaporized, and heated to a predetermined temperature by the preheater 11 to become a raw material gas. The source gas is supplied to the reaction tower 1, and the reaction of the above reaction formula (1) proceeds to produce dimethyl ether. The dimethyl ether distilled from the reaction tower 1 contains unreacted methanol and water produced together with dimethyl ether by the reaction of the reaction formula (1), so that the dimethyl ether is distilled to form a highly pure dimethyl ether. It is supplied to the distillation column 12 to separate dimethyl ether and other components. The dimethyl ether thus separated is distilled from the upper part of the distillation column 12, and the liquid containing unreacted methanol and water is discharged from the bottom of the distillation column 12 and supplied to the subsequent distillation column 13. The unreacted methanol and water are separated in the distillation column 13, and the methanol is distilled from the upper portion of the distillation column 13 and returned to the vaporizer 10 in a liquid state. On the other hand, water is discharged from the bottom of the distillation column 13 and sent to a processing facility (not shown).
[0004]
However, the method using high-purity methanol with few impurities as described above has a drawback that the raw material is expensive. Therefore, it is conceivable to carry out a synthesis reaction using an inexpensive unpurified methanol mixture (crude methanol) containing water as a raw material. In this case, it is desirable to separate the water that causes the suppression of the synthesis reaction by distillation to obtain methanol having a composition suitable for the synthesis reaction and supply it to the reaction tower 1. For this reason, as shown in FIG. 6, a distillation column 14 is provided at the front stage of the vaporizer 10, and a method of refining crude methanol to a raw material to some extent can be considered. In this case, first, crude methanol is supplied to the distillation column 14, and methanol and water are separated by distillation, and a methanol-rich liquid from which water is separated is obtained from the upper portion of the distillation column 14. The liquid methanol is vaporized by the vaporizer 10, adjusted to a predetermined temperature by the preheater 11, and supplied to the reactor 1. On the other hand, the other separated components are discharged from the tower bottom and sent to a processing facility (not shown).
[0005]
[Patent Document 1]
JP 59-199648 A
[Problems to be solved by the invention]
By the way, in the case of the above-mentioned dimethyl ether production system, the raw material cost can be suppressed by using inexpensive crude methanol as a raw material. However, the equipment cost and the operation of the distillation equipment are provided in order to provide a distillation facility for distillation treatment of the crude methanol. Cost. For this reason, the manufacturing cost of the entire system is the same or slightly reduced, and the cost is not greatly reduced.
[0007]
The present invention has been made based on such circumstances, and an object of the present invention is to provide a technique capable of producing dimethyl ether at low cost using low-purity methanol containing water as a raw material.
[0008]
[Means for Solving the Problems]
In a method for producing dimethyl ether by dehydrating methanol by a gas phase reaction,
(1) Liquid methanol containing water, which is a raw material brought in from the outside, and unreacted methanol and water separated in the dimethyl ether purification step of the following step (3) are supplied to the same distillation column, and are rich in methanol. A raw material refining process that separates the gas into a liquid rich in water;
(2) a dimethyl ether synthesis step of synthesizing dimethyl ether by supplying the gas rich in methanol obtained from the distillation column to the reactor in a gaseous state;
(3) a dimethyl ether purification step of supplying the dimethyl ether synthesized in this step (2) to a dimethyl ether purification tower to separate dimethyl ether from unreacted methanol and water,
The pressure in the distillation column is set higher than in the reactor so that the gas rich in methanol from the distillation column can be naturally supplied to the reactor,
The pressure in the reactor is set higher than the pressure in the dimethyl ether purification tower so that the product gas containing dimethyl ether from the reactor can be naturally supplied to the dimethyl ether purification tower,
The pressure in the distillation tower is 2.1 to 3 MPa , the pressure in the reactor is 2.09 to 3 MPa, and the pressure in the dimethyl ether purification tower is 2.06 to 2.5 MPa. Features.
[0010]
According to the present invention, distillation purification of liquid methanol containing water, which is a raw material, preparation of raw material gas (vaporization of liquid methanol to obtain vapor phase methanol), and distillation from a downstream reactor Unreacted methanol can be recovered in a common distillation column. For this reason, since facilities such as a distillation column and a vaporizer can be integrated, the amount of heat consumed for the vaporization of methanol can be reduced and the operation cost can be reduced, and the equipment cost can be lowered. That is, dimethyl ether can be produced using inexpensive methanol containing water as a raw material, and the cost of equipment and operation can be reduced.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Before describing the embodiment of the method of the present invention, the overall configuration of a dimethyl ether production system using the method of the present invention will be briefly described with reference to FIG. This system includes a distillation apparatus 2 for separating water in methanol, a reaction tower 60 for performing a dimethyl ether synthesis reaction, and a dimethyl ether purification tower 70 for increasing the purity of dimethyl ether.
[0012]
Next, an example of the distillation apparatus 2 will be described with reference to FIG. The distillation apparatus 2 includes a vertical cylindrical distillation column 20, a condenser 30, and a reboiler 40.
[0013]
The distillation column 20 is provided with a crude methanol supply port 24 for supplying crude methanol as a raw material and an unreacted methanol supply port 25 for supplying unreacted methanol sent from the dimethyl ether purification tower 70. ing. A distillation outlet 26 for distilling methanol gas is provided at the top of the distillation column 20, and a condenser 30 is provided on the side wall of the distillation column 20, for example, above the packed bed 21 made of a large number of packings. A reflux liquid supply pipe 27 is provided for supplying the reflux liquid sent from. Further, a discharge port 28 for discharging water is provided at the bottom of the distillation column 20.
[0014]
The condenser 30 is, for example, a multi-tube heat exchanger.
[0015]
The reboiler 40 may be a multi-tube heat exchanger, for example.
[0016]
Next, the process of the method for producing dimethyl ether using the method of the present invention will be described with reference back to FIG. Crude methanol (liquid methanol) contains, for example, 60 to 95% by weight of methanol, 5 to 40% by weight of water, and slightly contains, for example, ethanol and paraffins as other impurities. This crude methanol is supplied to the distillation column 20 via the crude methanol supply port 24 via the pump P1. The inside of the distillation column 20 is set to a pressure higher than that of the subsequent reaction column 60, for example, a pressure of 0.5 to 3 MPa, and this pressure is, for example, 0.01 to 0.05 MPa higher than that of the subsequent reaction column 60. It is preferable. Here, the reason why the pressure is set higher than that of the reaction column 60 in the subsequent stage is that methanol is supplied to the reaction column 60 in a gas phase state without providing a compression means such as a compressor in the reaction column 60 in the subsequent stage. The pressure difference of the distillation column 20 with respect to the reaction column 60 in the subsequent stage is set within a range in which the raw material can be naturally supplied in consideration of pressure loss due to the piping and heat exchanger provided therebetween. A preferable pressure of the distillation column 20 is 1.0 to 2.5 MPa.
[0017]
At this time, a gas having a low boiling point and rich in methanol is discharged from a distillation outlet provided at the top of the distillation column 20. The methanol-rich gas thus obtained, for example, a gas containing 85 to 99% by weight of methanol and 1 to 15% by weight of water and having a gas temperature of, for example, 120 to 200 ° C. is supplied to the preheater 60a in the subsequent stage and After being heated to a temperature, for example, 250 to 350 ° C., the raw material gas is supplied to the reaction tower 60, and a part of the top gas is supplied to the condenser 30. The supplied gas is liquefied by the condenser 30 and returned to the distillation column 20 as a reflux liquid. Here, the reflux ratio is preferably set to 1 to 5, for example.
[0018]
The liquid rich in water is discharged from the bottom of the distillation column 20. This liquid rich in water contains a small amount of high-boiling components. This liquid is discharged and sent to a processing facility (not shown).
[0019]
Subsequently, for example, the raw material gas supplied to the adiabatic flow-type reaction tower 60 is, for example, 0.01 to 0.05 MPa lower than the pressure of the distillation tower 20 in the reaction tower 60 as described above. The synthesis reaction of dimethyl ether is carried out under process conditions of 5 to 3 MPa, preferably 1.0 to 2.5 MPa. That is, in the catalyst layer provided in the reaction tower 60, the reaction represented by the reaction formula (1) described in “Prior Art” proceeds to be a product gas containing dimethyl ether, water vapor, and unreacted methanol. The concentration of water (water vapor) in the generated gas is, for example, 15 to 35% by weight. Thereafter, it is cooled to a predetermined temperature by the cooler 60 b and supplied to the dimethyl ether purification tower 70.
[0020]
Subsequently, dimethyl ether is purified in the dimethyl ether purification tower 70. That is, by distilling the product gas containing dimethyl ether synthesized in the reaction tower 60 in the dimethyl ether purification tower 70, dimethyl ether and other components such as unreacted methanol, water and a small amount of light gas are separated, and the dimethyl ether purification tower 70 is separated. From the upper stage, dimethyl ether having a desired purity is obtained as a product. The liquid containing the unreacted methanol and water thus separated, for example, a methanol mixture containing 25 to 75% by weight of methanol is discharged from the bottom of the dimethyl ether purification tower 70, and then the distillation tower 20 through the unreacted methanol supply port 25. To be supplied. In the liquid methanol, methanol and water are separated by distillation as in the case of the crude methanol described above, and the methanol becomes a part of the raw material gas and the water is discharged from the bottom of the column and processed.
Here, the pressure in the dimethyl ether purification tower 70 is, for example, 0.01 to 0.05 MPa lower than the outlet pressure of the preceding reaction tower 60, 0.5 to 3 MPa, preferably 1.0 to 2.5 MPa. It is preferable to drive. By operating the dimethyl ether purification tower 60 under this pressure, the dimethyl ether separated can be easily liquefied, which is extremely advantageous from the viewpoint of energy costs for storage and transportation of the final product.
[0021]
In such an embodiment, the distillation column 20 separates water in the crude methanol to obtain a gas rich in methanol, and synthesizes dimethyl ether in the subsequent reaction column 60 without suppressing the reaction. Further, water can be separated from unreacted methanol that has not reacted in the reaction tower 60 to recover the methanol, which can be used again as a raw material. The main part of this embodiment is that, in the production system described in “Prior Art”, the distillation tower provided upstream of the reaction tower and the distillation tower provided downstream of the reaction tower mainly separate methanol and water. Focusing on the fact that it is used for common applications, and that the entire system consumes heat by vaporizing and liquefying methanol in multiple facilities of reboiler, condenser and vaporizer. The role of distilling and purifying crude methanol with respect to the distillation tower (distillation tower 13 in FIG. 6) provided downstream of the conventional reaction tower and assigned the role of recovering unreacted methanol and suppressing the loss of raw materials. (Role of the distillation column 14 in FIG. 6) and the role of vaporizing the raw material methanol (role of the vaporizer 10 in FIG. 6), which has been performed in the conventional vaporizer, are further assigned to integrate the equipment, that is, the operation and equipment. low cost It lies in the fact that achieves.
[0022]
That is, by making the process conditions of the distillation column 20 high, distillation purification of crude methanol by one distillation column, preparation of raw material gas (vaporization of crude methanol to obtain vapor phase methanol), and unreacted methanol Since it can be recovered, the amount of heat consumed for the vaporization and liquefaction of methanol in the entire system can be reduced not only by reducing the number of facilities but also from the examples described later. Furthermore, it is not necessary to provide a second distillation column and vaporizer, and as a result, the number of piping and instrumentation equipment can be reduced, so that the equipment cost can be reduced. That is, it is possible to produce dimethyl ether using cheap unpurified methanol containing impurities as a raw material, and to reduce the cost of operation and equipment.
In addition, since the pressure of the reactor can be made lower than the pressure of the distillation column and the raw material can be supplied to the reactor with a pressure difference, the operating cost can be reduced, and the pressure of the dimethyl ether purification column can be made lower than the pressure of the reactor. As a result, the supply from the distillation column to the reactor and the reactor to the dimethyl ether purification column can be continuously supplied by a pressure difference, so that the operating cost can be reduced.
[0023]
【Example】
Next, in order to confirm the effect of the present invention, an embodiment performed using the system of FIG. 1 will be described.
Example 1
This example is Example 1 using the dimethyl ether production method of the present invention. As shown in FIG. 2, a distillation column 20 for separating the above methanol from water was a column packed with pole rings corresponding to 30 theoretical plates. The fluid supplied to the distillation column 20 is a raw material for synthesizing dimethyl ether, and is mainly composed of unreacted methanol obtained after synthesizing a methanol mixture containing impurities (crude methanol) and dimethyl ether to separate dimethyl ether. A mixture of water. The supply stage of crude methanol in the distillation column 20 was equivalent to the 11th stage counted from the top of the tower, and the supply stage of a mixture of unreacted methanol and water was equivalent to the 18th stage. The supply flow rate of crude methanol was 50 kg / hr, and its composition consisted of 74.9% by weight of methanol, 25.0% by weight of water, and 500 ppm of other impurities. The supply flow rate of a mixture of unreacted methanol and water was 28 kg / hr, and its composition consisted of 52.1% by weight of methanol, 47.8% by weight of water, and 500 ppm of other impurities.
[0024]
a. First, distillation operation was performed with the pressure of the condenser 30 of the distillation column 20 being 2.1 MPa to obtain a gas rich in methanol.
b. When the reflux ratio of the distillation column 20 is 1.0, the column top temperature is 170 ° C., the purity of methanol obtained in the gas phase is 94.9% by weight, and it is obtained from the bottom of the distillation column 20 as a liquid. The purity of the water obtained was 99.9% by weight, and the amount of heat of the reboiler 40 was 28900 kcal / hr calculated from the amount of steam supplied.
c. Methanol at 170 ° C. obtained in the gas phase was heated to 280 ° C. in the preheater 60 a and used for the dimethyl ether synthesis reaction, and supplied to the reaction column 60 having a pressure of 0.01 MPa lower than that of the distillation column 20 by a pressure difference. The heating amount at this time was 3200 kcal. When combined with the reboiler 40, the total amount of heat is 32100 kcal / hr. FIG. 3 also shows the results of the implementation.
d. The product obtained in the reaction tower 60 was cooled to 140 ° C. by the cooler 60 b and supplied to the dimethyl ether purification tower 70 having a pressure of 0.03 MPa lower than that of the reaction tower by a pressure difference.
In the dimethyl ether purification tower 70, 99.5% purity dimethyl ether was obtained at 27 kg / hr, and as shown above, a mixture of unreacted methanol and water 28 kg / hr was obtained from the bottom of the tower. The column bottom liquid was supplied to the distillation column 20.
[0025]
(Comparative Example 1)
This example is a comparative example 1 in which raw material methanol was obtained in a liquid state from the condenser 30 of the distillation column 20 whose pressure was set near atmospheric pressure, and this methanol was vaporized to produce dimethyl ether. As shown in FIG. 4, as in Example 1, a distillation column 20 for separating methanol from water and high-boiling components was a column packed with pole rings corresponding to 30 theoretical plates. The supply stage for crude methanol was equivalent to the 11th stage, and the supply stage for the mixture of unreacted methanol and water was equivalent to the 18th stage. The supply flow rate and composition of the crude methanol were 50 kg / hr as in Example 1, and the composition consisted of 74.9% by weight of methanol, 25.0% by weight of water, and 500 ppm of other impurities. Further, the supply flow rate and composition of the unreacted methanol and water mixture were 28 kg / hr as in Example 1, and the composition was composed of 52.1% by weight of methanol, 47.8% by weight of water, and 500 ppm of other impurities. It was.
[0026]
a. Distillation operation was performed at a pressure of 30 parts of the condenser of the distillation column 20 being 0.13 MPa.
b. When the reflux ratio of the distillation column 20 is 0.4, the outlet temperature of the condenser 30 on the process side is 72 ° C., and the purity of methanol obtained as a liquid from the outlet of the condenser 30 is 94.9% by weight, The purity of water obtained as a liquid from the bottom of the distillation column 20 was 99.9% by weight, and the calorific value of the reboiler 40 was 19700 kcal / hr.
c. The raw material methanol obtained as a liquid from the outlet of the condenser 30 was heated to 280 ° C. while being pressurized to 2.1 MPa with a pump and vaporized with a vaporizer for use in a dimethyl ether synthesis reaction. The heating amount at this time was 19900 kcal / hr. When combined with the reboiler 40, the total heat amount is 39600 kcal / hr. FIG. 4 also shows the results of the implementation.
[0027]
(Consideration of Example 1 and Comparative Example 1)
As is clear from Example 1 and Comparative Example 1, the same raw material was used for separation and purification in the distillation column 20 corresponding to the same number of theoretical plates, and the product was obtained from the top of the distillation column 20 to be supplied to the reactor. The purity of methanol and the purity of water obtained from the bottom of the distillation column 20 were the same. In Example 1, compared with Comparative Example 1, since the operating pressure of the distillation column 20 was increased, the separation efficiency was lowered and the amount of heat of the reboiler 40 was increased. However, since methanol is obtained in the gas phase and the amount of heat for preparing the raw material gas by heating to 280 ° C. may be small, Example 1 is the comparative example 1 as the total heating amount to be compared. It can be seen that a heat quantity equivalent to 81% of the above is sufficient. Therefore, it was confirmed that the amount of heat (amount of heating) can be reduced by setting the operating pressure of the distillation column 20 to a sufficient pressure to supply the reaction column 60 to the methanol in the gas phase. Accordingly, the amount of heat (cooling amount) of the condenser 30 is also reduced.
[0028]
【The invention's effect】
As described above, according to the present invention, in a method for producing dimethyl ether by synthesizing methanol by a gas phase reaction, dimethyl ether can be produced at low cost by using methanol having a low purity as a raw material.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the overall configuration of a dimethyl ether production system incorporating a distillation apparatus equipped with the method of the present invention.
FIG. 2 is a longitudinal sectional view showing an example of a distillation apparatus equipped with the method of the present invention.
FIG. 3 is a characteristic diagram showing an example carried out to confirm the effect of the present invention.
FIG. 4 is a characteristic diagram showing a comparative example performed to confirm the effect of the present invention.
FIG. 5 is an explanatory diagram showing a conventional dimethyl ether production system.
FIG. 6 is an explanatory diagram showing a conventional dimethyl ether production system.
[Explanation of symbols]
2 Distillation apparatus 20 Distillation tower 21 Packing layer 24 Crude methanol supply port 25 Recovered methanol supply port 27 Reflux supply pipe 60 Reaction tower 61 Catalyst layer 70 Dimethyl ether purification tower

Claims (2)

メタノールを気相反応により脱水してジメチルエーテルを製造する方法において、
(1)外部から持ち込まれる原料である水を含んだ液体メタノールと下記工程(3)のジメチルエーテル精製工程で分離された未反応メタノールおよび水とを同一の蒸留塔に供給して、メタノールに富んだガスと、水に富んだ液体とに分離する原料精製工程と、
(2)前記蒸留塔から得られたメタノールに富んだガスを気体状態のままで反応器に供給してジメチルエーテルを合成するジメチルエーテル合成工程と、
(3)この工程(2)で合成されたジメチルエーテルをジメチルエーテル精製塔に供給してジメチルエーテルと未反応メタノールおよび水とを分離するジメチルエーテル精製工程と、を含み、
前記蒸留塔からのメタノールに富んだガスを反応器に自然供給できるように、蒸留塔内の圧力を反応器内よりも高く設定し、
前記反応器からのジメチルエーテルを含む生成ガスをジメチルエーテル精製塔に自然供給できるように、反応器内の圧力をジメチルエーテル精製塔内の圧力よりも高く設定し、
前記蒸留塔内の圧力は2.1〜3MPaであり、前記反応器内の圧力は2.09〜3MPaであり、前記ジメチルエーテル精製塔内の圧力は、2.06〜2.5MPaであることを特徴とするジメチルエーテルの製造方法。
In a method for producing dimethyl ether by dehydrating methanol by a gas phase reaction,
(1) Liquid methanol containing water, which is a raw material brought in from the outside, and unreacted methanol and water separated in the dimethyl ether purification step of the following step (3) are supplied to the same distillation column, and are rich in methanol. A raw material refining process that separates the gas into a liquid rich in water;
(2) a dimethyl ether synthesis step of synthesizing dimethyl ether by supplying the gas rich in methanol obtained from the distillation column to the reactor in a gaseous state;
(3) a dimethyl ether purification step of supplying the dimethyl ether synthesized in this step (2) to a dimethyl ether purification tower to separate dimethyl ether from unreacted methanol and water,
The pressure in the distillation column is set higher than in the reactor so that the gas rich in methanol from the distillation column can be naturally supplied to the reactor,
The pressure in the reactor is set higher than the pressure in the dimethyl ether purification tower so that the product gas containing dimethyl ether from the reactor can be naturally supplied to the dimethyl ether purification tower,
The pressure in the distillation tower is 2.1 to 3 MPa , the pressure in the reactor is 2.09 to 3 MPa, and the pressure in the dimethyl ether purification tower is 2.06 to 2.5 MPa. A method for producing dimethyl ether, which is characterized.
原料に含まれる水分濃度は、5重量%〜40重量%であることを特徴とする請求項1記載のジメチルエーテルの製造方法。  2. The method for producing dimethyl ether according to claim 1, wherein the concentration of water contained in the raw material is 5% by weight to 40% by weight.
JP2002329321A 2002-11-13 2002-11-13 Method for producing dimethyl ether Expired - Lifetime JP4553231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002329321A JP4553231B2 (en) 2002-11-13 2002-11-13 Method for producing dimethyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002329321A JP4553231B2 (en) 2002-11-13 2002-11-13 Method for producing dimethyl ether

Publications (2)

Publication Number Publication Date
JP2004161673A JP2004161673A (en) 2004-06-10
JP4553231B2 true JP4553231B2 (en) 2010-09-29

Family

ID=32807353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002329321A Expired - Lifetime JP4553231B2 (en) 2002-11-13 2002-11-13 Method for producing dimethyl ether

Country Status (1)

Country Link
JP (1) JP4553231B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101195561B (en) * 2007-12-26 2010-04-14 成都天成碳一化工有限公司 Method for producing dimethyl ether with methanol gas-phase dehydration
CN101219936B (en) * 2008-01-17 2010-06-02 宁波远东化工集团有限公司 Process for producing dimethyl ether from methanol by dewatering
WO2009117851A1 (en) 2008-03-26 2009-10-01 中国石油化工股份有限公司 A process for producing dimethyl ether from methanol
DE102008058931B4 (en) 2008-11-25 2010-12-30 Lurgi Gmbh Process and apparatus for producing dimethyl ether from methanol
CN101768054B (en) * 2009-01-06 2013-10-16 华东理工大学 Method and device for producing dimethyl ether by gaseous phase dehydration of methanol under pressurized conditions
DE102009031636B4 (en) * 2009-07-03 2011-07-07 Lurgi GmbH, 60439 Process and plant for the production of methanol and dimethyl ether
KR20140052923A (en) 2010-11-02 2014-05-07 사우디 베이식 인더스트리즈 코포레이션 Process for producing light olefins by using a zsm-5-based catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199648A (en) * 1983-04-27 1984-11-12 Mitsubishi Chem Ind Ltd Production of dimethyl ether
JPH03505588A (en) * 1989-04-24 1991-12-05 モービル・オイル・コーポレイション Conversion of alcohol to ether-rich gasoline
CN1125216A (en) * 1995-10-13 1996-06-26 化学工业部西南化工研究院 Method for producing dimethyl ether from methyl alcohol
JPH11502522A (en) * 1995-03-15 1999-03-02 スターケム テクノロジーズ インコーポレイテッド Formation of dimethyl ether and recovery from methanol
JP2002193864A (en) * 2000-12-25 2002-07-10 Mitsubishi Gas Chem Co Inc Method for producing dimethyl ether
JP2004161672A (en) * 2002-11-13 2004-06-10 Jgc Corp Method for producing dimethyl ether

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199648A (en) * 1983-04-27 1984-11-12 Mitsubishi Chem Ind Ltd Production of dimethyl ether
JPH03505588A (en) * 1989-04-24 1991-12-05 モービル・オイル・コーポレイション Conversion of alcohol to ether-rich gasoline
JPH11502522A (en) * 1995-03-15 1999-03-02 スターケム テクノロジーズ インコーポレイテッド Formation of dimethyl ether and recovery from methanol
CN1125216A (en) * 1995-10-13 1996-06-26 化学工业部西南化工研究院 Method for producing dimethyl ether from methyl alcohol
JP2002193864A (en) * 2000-12-25 2002-07-10 Mitsubishi Gas Chem Co Inc Method for producing dimethyl ether
JP2004161672A (en) * 2002-11-13 2004-06-10 Jgc Corp Method for producing dimethyl ether

Also Published As

Publication number Publication date
JP2004161673A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
JP2002526518A (en) process
EP2831025B1 (en) Continuous process for the preparation of methanol by hydrogenation of carbon dioxide
US3983180A (en) Process for preparing methyl chloride
AU2012367104A1 (en) Process and plant for distillation of methanol with heat recuperation
CN114380692B (en) Preparation method of energy-saving electronic grade carbonic ester
JP4553231B2 (en) Method for producing dimethyl ether
JPH0463110A (en) Separation purification method of alcohol-containing reaction liquid
EP2665678A1 (en) Process and apparatus for production of ammonia synthesis gas and pure methane by cryogenic separation
US5843286A (en) Process for the preparation and fractionation of a mixture of dimethyl ether and chloromethane with water as extractant
CN102471194A (en) Method and system for producing methanol and dimethyl ether
US5158652A (en) Process for the separation of tert. butyl ethyl ether from mixtures
JP4391816B2 (en) Method for producing ether, typically THF
KR102304228B1 (en) Separation processing method for a product stream of a dimethyl ether reactor
US5998489A (en) Methanol preparation process
JP4708017B2 (en) Plant unit and method for fractionating and purifying synthesis gas
JP4414645B2 (en) Method for producing dimethyl ether
WO2006109999A1 (en) Recovering method of acetic acid from effluent of terephthalic acid production process
JPH1059877A (en) Production and fractionation of mixture of dimethyl ether and chloromethane with methanol as extractant
JPS6261006B2 (en)
JP2004323371A (en) Method for producing dialkyl carbonate
TW202219021A (en) Method and plant for preparing dimethyl ether
JPH0261448B2 (en)
JP2000086592A (en) Purification of carbonic acid diester and purification apparatus therefor
JP6407797B2 (en) Process for producing dialkyl carbonate
JPS6141497B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4553231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term