JP4553227B2 - Heat treatment method - Google Patents

Heat treatment method Download PDF

Info

Publication number
JP4553227B2
JP4553227B2 JP2001040577A JP2001040577A JP4553227B2 JP 4553227 B2 JP4553227 B2 JP 4553227B2 JP 2001040577 A JP2001040577 A JP 2001040577A JP 2001040577 A JP2001040577 A JP 2001040577A JP 4553227 B2 JP4553227 B2 JP 4553227B2
Authority
JP
Japan
Prior art keywords
temperature
zone
wafer
film
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001040577A
Other languages
Japanese (ja)
Other versions
JP2001308085A (en
Inventor
富士雄 鈴木
浩一 坂本
文凌 王
もゆる 安原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2001040577A priority Critical patent/JP4553227B2/en
Publication of JP2001308085A publication Critical patent/JP2001308085A/en
Application granted granted Critical
Publication of JP4553227B2 publication Critical patent/JP4553227B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば半導体ウエハなどの基板に対して熱処理を行う熱処理方法に関する。
【0002】
【従来の技術】
半導体デバイスの製造プロセスである成膜プロセスの一つにCVD(Chemical Vapor Deposition)と呼ばれる処理がある。この手法は反応管内に処理ガスを導入して化学的気相反応により半導体ウエハ(以下「ウエハ」という)の表面に成膜するものである。このような成膜プロセスをバッチで行う装置の一つとして縦型熱処理装置がある。この装置は、筒状のマニホ−ルドの上に設けられた縦型の反応管と、この反応管を囲むように設けられたヒ−タと、マニホ−ルドを通じて突入されたガス導入管と、マニホ−ルドに接続された排気管とを備えて構成されており、このような装置ではウエハボ−トと呼ばれる保持具に多数枚のウエハを棚状に保持させてマニホ−ルドの下端の開口部から反応管内に搬入させて成膜処理が行われる。
【0003】
具体的には例えば層間絶縁膜である窒化シリコン膜を成膜する場合、0.1〜1Torr程度の真空雰囲気下、ウエハを処理温度例えば760℃まで加熱し、この加熱雰囲気を維持した状態で、成膜ガスであるアンモニア(NH3 )ガスとジクロルシラン(SiH2 Cl2 )ガスとを導入して成膜を行なっている。
【0004】
【発明が解決しようとする課題】
ところで上述の装置にて上述の条件でウエハの成膜を行うと、ウエハの中央部の膜厚が周縁部よりも薄くなる傾向がある。この理由については次のように考えられる。つまり上述のいわゆるバッチ炉と呼ばれる縦型熱処理装置では、ウエハを処理温度まで昇温させる過程では、ウエハの周囲側に位置するヒ−タにより加熱されることとなり、ウエハの周縁部における単位面積当たりの吸熱量が中央部よりも大きくなるので、ウエハの周縁部の温度の昇温速度が中央部よりも早くなり、この周縁部の温度が中央部よりも高くなる。また上述の装置では、成膜ガスはガス導入管により反応管内に導入され、ウエハボ−トに保持されているウエハには成膜ガスがウエハの周縁側から供給されることになるので、成膜ガスの濃度はウエハの周縁部の方が中央部よりも高くなってしまう。
【0005】
このようにウエハの周縁部と中央部との間に生じた温度差及び成膜ガスの濃度差により、温度及び成膜ガスの濃度の高いウエハの周縁部の方が中央部に対して成膜反応が促進され、ウエハの中央部の膜厚は周縁部よりも薄くなり、膜厚の面内均一性が悪化していると推察される。このような膜厚の面内均一性は、300mmウエハ等の大口径のウエハや、膜厚70nm以上の厚い膜を形成する場合により悪くなるので、問題となる。
【0006】
本発明はこのような事情の下になされたものであり、その目的は、基板を熱処理するにあたり、面内均一性の高い処理を行うことのできる熱処理方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、熱処理雰囲気が上下方向に3段以上のゾーンに分割された反応容器内の各ゾーンに基板を配置し、反応容器内に処理ガスを導入して熱処理を行う方法において、
複数の基板を基板保持具に棚状に配置して反応容器内に搬入する工程(1)と、
前記反応容器内における各ゾーンを加熱手段により加熱して各ゾーンを当該ゾーンに対応する第1のプロセス温度まで昇温する工程(2)と、
次いで、最上段のゾーンと、最上段のゾーン及び最下段のゾーンの間の中間ゾーンとについて、各ゾーンに対応する第1のプロセス温度から、ゾーンに対応する第2のプロセス温度まで降温させる工程(3)と、を備え、
前記工程(3)を行っているときに、反応容器内に処理ガスを導入して基板に対して熱処理を行い、
前記中間ゾーンにおける第1のプロセス温度と第2のプロセス温度との温度差は、前記最上段のゾーンにおける第1のプロセス温度と第2のプロセス温度との温度差よりも小さいことを特徴とする。
【0010】
ここでプロセス時の温度を一定にすると、例えば成膜処理であれば周縁部の膜厚が中央部よりも大きくなったりあるいは逆に小さくなったりし、その程度は反応容器内のゾーンに応じて変わることもある。一方反応容器内を昇温する工程においては、基板の周縁部における単位面積当たりの吸熱量が中央部よりも大きくなるので、周縁部の温度が中央部よりも高くなり、逆に降温工程では基板の周縁部における単位面積当たりの放熱量が中央部よりも大きくなるので、周縁部の温度が中央部よりも低くなる。そこで温度を移行させながら処理ガスを導入し、基板面内に温度分布を持たせて、その温度分布と、プロセス中の温度を一定にしたときの面内の例えば膜厚分布とが影響し合うようにすれば、結果として面内均一性の高い処理を行うことができる。
【0011】
【発明の実施の形態】
先ず図1により本発明方法を実施する縦型熱処理装置の一例について説明する。図1中1は、例えば石英で作られた内管1a及び外管1bよりなる二重管構造の反応管であり、反応管1の下部側には金属製の筒状のマニホ−ルド2が設けられている。
【0012】
前記内管1aは上端が開口されており、マニホ−ルド2の内方側にて支持されている。外管1bは上端が塞がれており、下端がマニホ−ルド3の上端に気密に接合されている。この例では、内管1a、外管1b及びマニホ−ルド2により反応容器が構成されている。21はベ−スプレ−トである。
【0013】
前記反応管1内には、例えば図2に示すように、多数枚例えば170枚程度の基板をなすウエハWが各々水平な状態で上下に間隔をおいて保持具であるウエハボ−ト11に棚状に載置されており、このウエハボ−ト11は蓋体12の上に保温筒(断熱体)13を介して保持されている。前記蓋体12は、ウエハボ−ト11を反応管1内に搬入、搬出するためのボ−トエレベ−タ14の上に搭載されており、上限位置にあるときにはマニホ−ルド2の下端開口部、即ち反応管1とマニホ−ルド2で構成される反応容器の下端開口部を閉塞する役割を持つものである。なお図2中15はウエハボ−ト11に対してウエハWの移載を行うための移載ア−ムである。
【0014】
マニホ−ルド2には、成膜ガス(処理ガス)及びパ−ジガスを内管1aの内方側に供給するためのガス導入管31,32が周方向に複数本配列して設けられており、成膜ガスが夫々のガス導入管31,32から反応容器内に導入されるようになっている。これらガス導入管31,32は例えば石英管よりなり、例えばガス導入管31は前記石英管をマニホ−ルド2の外部から内部に突入し、その先端部を上方に屈曲して構成され、ガス導入管32は前記石英管をマニホ−ルド2の外部から内部に突入して構成される。これらガス導入管31,32の内の1本あるいは2本以上はパ−ジガスとしての窒素ガス(N2 ガス)の導入管及び成膜ガスの導入管を共用するものである。なお処理ガスとして成膜ガスの他、酸素を内管1a内に導入してもよい。
【0015】
前記ガス導入管31,32は夫々開閉バルブV1,V2を介して成膜ガス例えばSiH2 Cl2 ガス及びNH3 ガスのガス供給源(図示せず)に接続されており、前記開閉バルブV1,V2は制御部5により、予め入力されている成膜処理時における成膜ガス導入のプログラムに基づいて開閉のタイミングが制御され、これにより成膜ガスの導入のタイミングが制御されるようになっている。また前記マニホ−ルド2には、内管1a及び外管1bの間に開口するように排気管22が接続されており、図示しない真空ポンプにより反応容器内が真空引きされるようになっている。
【0016】
前記反応管1の側周囲にはこれを取り囲むように加熱手段であるヒ−タ4が設けられている。このヒ−タ4は例えば発熱抵抗体により構成されており、前記制御部5により、予め入力されている成膜処理の温度プロファイルに基づいて温度制御が行われるようになっている。ところで反応管内の熱処理雰囲気は上から下に向かって複数例えば3個のゾーン(領域)6(6a,6b,6c)に分割されており(温度制御領域が分割されているという意味である)、またヒータ4についてもこれら3個のゾーンに対応してつまりこれらの3個のゾーン6a,6b,6cの温度制御を夫々行うように3個のヒータ4(4a,4b,4c)に分割されている。制御部5は図1では便宜上1個のブロックで記載してあるが、実際には各ヒータ4a,4b,4c毎に図示しない温度コントローラが設けられ、これら温度コントローラが各ゾーン6a,6b,6cに対応して設けられた図示しない温度検出部の温度検出信号に基づいて各ヒータ4a,4b,4cの供給電力を制御するように構成されている。
【0017】
次に上述の装置にて行われる本発明の熱処理方法について、窒化シリコン膜を成膜する場合を例にして図3に基づいて説明する。先ず例えば170枚の被処理体であるウエハWをウエハボ−ト11に搭載し、ボ−トエレベ−タ14を上昇させることにより、例えば600℃の加熱雰囲気の反応管1内に下端開口部より搬入し、蓋体12によりマニホ−ルド2の下端開口部つまり反応容器のウエハ搬入出口を気密に封止する(ロ−ド工程)。次いで例えば600℃の加熱雰囲気下で図示しない真空ポンプにより排気管22を通じて反応容器内を真空引きする(安定工程)。
【0018】
続いて反応管1内の各ゾーン6a,6b,6cの温度を夫々ヒータ4a,4b,4cにより一旦第1のプロセス温度例えば770℃程度の温度まで加熱した後(第1の昇温工程)、予め決定された温度プロファイルに基づいて温度制御を行いながら、成膜ガスとしてSiH2 Cl2 ガスとNH3 ガスとを夫々ガス導入管31,32から内管1a内に導入し、これにより圧力を0.25Torrとした状態でウエハWの表面に窒化シリコン膜を形成する(プロセス工程)。この際成膜ガスを内管1a内に導入し、外管1bの内部を排気管22にて排気することにより成膜ガスが反応管1内に行き渡り、ウエハボ−ト11に搭載されているウエハWの表面に満遍なく窒化シリコン膜が形成されることになる。
【0019】
ここで各ゾーン6a,6b,6cは、いずれも同様の温度制御がなされるが、後述のように相互に異なる温度制御を行ってもよい。
【0020】
本発明ではプロセス工程にてウエハWの温度制御を行うと共に、この温度制御に合わせて成膜ガスを間欠的に導入することに特徴があり、例えばプロセス工程では、各ゾーン6a,6b,6cの温度が第1のプロセス温度と第1のプロセス温度よりも低い第2のプロセス温度の間、具体的には760℃前後の温度例えば750℃〜770℃の範囲で昇温と降温とを繰り返すように温度制御がされており、降温時に成膜ガスが導入されるようになっている。
【0021】
具体的なプロセスとしては、例えば図4に示すように、各ヒータ4a,4b,4cにより加熱して昇温工程にて一旦各ゾーン6a,6b,6cを第1のプロセス温度である770℃程度まで昇温した後、第1のプロセス温度よりも低い第2のプロセス温度例えば750℃程度まで各ヒータ4a,4b,4cによる加熱を抑制して例えば23分程度で降温し、降温開始と同時に、SiH2 Cl2 ガス及びNH3 ガスを夫々100sccm,1000sccmの流量で導入し(温度以降工程)、次いでこれら成膜ガスの導入を停止した状態で、再び770℃程度まで例えば4分程度で昇温する(第2の昇温工程)。次に再び前記成膜ガスを導入しながら、750℃程度まで例えば23分程度で降温し、続いて前記成膜ガスの導入を停止した状態で、再び各ゾーン6a,6b,6cを770℃程度まで例えば4分程度で昇温する(追加の温度移行工程)。次に再び前記成膜ガスを導入しながら、各ゾーン6a,6b,6cを750℃程度まで例えば23分程度で降温し(温度移行工程)、続いて前記成膜ガスの導入を停止した状態で、再び各ゾーン6a,6b,6cを770℃程度まで例えば4分程度で昇温する(追加の温度移行工程)。そして再び前記成膜ガスを導入しながら、各ゾーン6a,6b,6cを750℃程度まで例えば23分で降温する。つまりこのプロセスでは、降温開始時に前記成膜ガスの導入を開始し、昇温開始時(降温終了時)に前記成膜ガスの導入を停止する。
【0022】
なおこの実施の形態では、各ゾーン6a,6b,6cはヒ−タ4により所定の温度まで加熱されるが、プロセス工程における所定の温度制御は、既述のように制御部5により、当該制御部5に入力されている温度プロファイルに基づいて、各ヒータ4a,4b,4cによる加熱温度を制御することにより行われる。また成膜ガスの導入開始及び導入停止は、開閉バルブVの開閉により行われ、この開閉バルブVの開閉制御は、既述のように制御部5により行われる。
【0023】
こうして所定の窒化シリコン膜の成膜が終了した後、前記成膜ガスの導入を停止して、各ゾーン6a,6b,6cの温度を600℃程度まで降温すると共に(降温工程)、成膜時に成膜ガスを導入していたガス導入管31,32の内の例えば2本からパ−ジガス例えばN2 ガスを導入し、反応容器内を常圧に戻す。そしてボ−トエレベ−タ14を降下させて反応容器の下端の搬入出口を開き、ウエハボ−ト11を反応容器から搬出する(アンロ−ド工程)。
【0024】
このような実施の形態によれば、プロセス工程にてウエハWの表面温度を、昇温と降温とを繰り返すように温度制御し、降温時に成膜ガスを導入しているので、形成される窒化シリコン膜の膜厚の面内均一性を高めることができる。
【0025】
つまり既述のように、ウエハWの昇温工程では、ウエハの周縁部における単位面積当たりの吸熱量が中央部よりも大きくなるので、ウエハの周縁部の温度が中央部よりも高くなる。ここで膜の成長速度は成膜時の温度が高い程早くなることから、ウエハWを所定の温度に昇温した後、直ちに成膜ガスを導入して成膜を行うと、既述の成膜ガスのウエハ面内における濃度分布と合わせると、例えば図5に示すようにウエハの中央部の膜厚は周縁部よりも薄くなってしまう。ここで図5は、前記縦型熱処理装置において、各ゾーン6a,6b,6cを所定の温度例えば760℃に昇温した後、直ちに成膜ガスを導入して、ウエハWの温度を前記温度に維持した状態で窒化シリコン膜の成膜を行った場合の、形成された窒化シリコン膜のウエハ面内の膜厚分布を示す特性図である。
【0026】
一方ウエハWの降温時では、ウエハの周縁部における単位面積当たりの放熱量が中央部よりも大きくなるので、ウエハの周縁部の温度の降温速度が中央部よりも早くなり、例えば図6(ウエハWを770℃程度から750℃程度まで降温させた場合の、ウエハ面内の温度分布)に示すように、周縁部の温度が中央部よりも低くなる。
【0027】
従って各ゾーン6a,6b,6cを第1のプロセス温度まで昇温させた後、第2のプロセス温度まで降温させ、この降温時に成膜ガスを導入して成膜を行えば、ウエハWの中央部より周縁部の方が温度が低いという降温工程におけるウエハWの温度分布と、ウエハWの中央部より周縁部の方が成膜ガスの濃度が高くなるという成膜ガスの濃度分布との影響により、例えば図7に示すように成膜された膜の膜厚はウエハWの面内においてほぼ均一になると推察される。ここで図7は、前記縦型熱処理装置において、各ゾーン6a,6b,6cを第1のプロセス温度に昇温した後、第2のプロセス温度まで降温させたときに成膜ガスを導入して、窒化シリコン膜の成膜を行った場合の、形成された窒化シリコン膜のウエハ面内の膜厚分布を示す特性図である。
【0028】
上述のように本実施の形態では、窒化シリコン膜を形成する場合、第1のプロセス温度を770℃、第2のプロセス温度を750℃とし、これらの温度差を20℃としたが、成膜温度は窒化シリコン膜の膜質に影響を与えるため成膜温度範囲には制限があるが、第1のプロセス温度と第2のプロセス温度の差は40℃程度以下に設定すれば支障はない。
【0029】
従って支障のない一定の成膜温度範囲で温度移行工程と追加の温度移行工程とを繰り返すことが望ましく、このようにして成膜を行なうと、必要な膜質特性を維持しながら、良好な膜厚の面内分布を得ることができる。このため本発明は例えば口径が300mmのウエハに対して成膜を行う場合や、70nm以上の厚さの膜を成膜する場合に特に有効であり、これらの場合においても膜厚の高い面内均一性を確保することができる。
【0030】
実際に本発明の効果を確認するために、ウエハボ−ト11に170枚の8インチサイズのウエハWを搭載し、上述の縦型熱処理装置にて上述のプロセスに従って窒化シリコン膜を形成したところ、図8及び図9に示す結果が得られた。成膜ガスとしてはSiH2 Cl2 ガスとNH3 ガスとを用い、図4に示す温度プロファイルに従って各ゾーン6a,6b,6cの温度を制御しながら、降温時にSiH2 Cl2 ガスを100sccm,NH3 ガスを1000sccmの流量で夫々導入し、0.25Torrのプロセス圧力の下、150nmの厚さを目標として窒化シリコン膜を形成し、窒化シリコン膜の膜厚の面内分布と、窒化シリコン膜の膜厚の面内均一性とを測定した。また上述の縦型熱処理装置にてウエハ表面の温度を760℃に維持した状態で成膜ガスを連続的に導入して窒化シリコン膜を形成した場合についても同様の実験を行った。この場合成膜ガスの流量は、SiH2 Cl2 ガス100sccm,NH3 ガス1000sccmとし、プロセス圧力は0.25Torrとした。
【0031】
この結果を図8及び図9に各々示す。窒化シリコン膜の膜厚のばらつき度は図8に、窒化シリコン膜の膜厚の面内分布は図9に夫々示す。温度制御を行った場合を□、温度制御を行わない場合を○として夫々示す。図8の窒化シリコン膜の膜厚のばらつき度では、ウエハボ−ト11の上から7番目,46番目、85番目、124番目、163番目のウエハWをサンプリングし、これらのウエハWに形成された窒化シリコン膜の膜厚の面内均一性を膜厚測定機(Ellipsometer)により測定した。
【0032】
この結果、温度制御を行った場合には、温度制御を行わない場合よりも膜厚のばらつき度の値が低く、当該値は低い方が面内均一性が高いことを示しているので、プロセス工程時に温度制御を行ない、降温時に成膜ガスを導入することにより形成される窒化シリコン膜の膜厚の面内均一性を高めることができることが確認された。
【0033】
また図9の窒化シリコン膜の膜厚の面内分布は、前記ウエハボ−ト11上の上から124番目のウエハWをサンプリングし、図10のウエハWの平面図に示すように、ウエハWの直径上の径方向の5か所の位置(A,B,C,D,E)の窒化シリコン膜の膜厚を測定した。ここでCはウエハWの中心、A及びEはウエハWの外縁から5mm内側の位置、B及びDはウエハWの外縁から52.5mm内側の位置とした。
【0034】
この結果、温度制御を行わない場合には窒化シリコン膜の膜厚は中央部において周縁部よりも2.91〜3.48nm程度薄くなることが認められたのに対し、温度制御を行った場合には窒化シリコン膜の膜厚は0.36nm程度のばらつきはあるもののほぼ一定であることが認められ、プロセス工程時に温度制御を行ない、降温時に成膜ガスを導入することにより、形成される窒化シリコン膜の膜厚の面内均一性を高めることができることが確認された。
【0035】
以上において本発明では、各ゾーン6a,6b,6cを第1のプロセス温度まで昇温する第1の昇温工程を行い、次いで第2のプロセス温度まで降温させながら成膜ガスを導入して成膜を行う降温工程を実施すればよく、必ずしも温度移行工程と追加の温度移行工程とを繰り返す必要はないが、温度移行工程と追加の温度移行工程と降温工程とを繰り返して行うと、より高い膜厚の均一性を確保することができる。
【0036】
さらに本発明では、窒化シリコン膜の成膜に限らず、ポリシリコン膜、TEOSによるシリコン酸化膜、HTO(High Temperature Oxide)膜等の成膜に適用することができる。また、CVD成膜プロセス以外のドライ酸化、ウェット酸化、HCl酸化等の酸化膜の成膜にも適用できる。
【0037】
なお上記の実施の形態において、反応管1内の各ゾーン6a,6b,6cに対して同様の温度制御を行う例を示したが、各ゾーン6a,6b,6cに対して各ヒータ4a,4b,4cにより各々異なる温度制御を行ってもよい。
【0038】
次に本発明の他の実施の形態について図11を参照しながら説明する。図11は成膜ガスとしてSiH2 Cl2 ガスとNH3 ガスとを用いてウエハW表面上に窒化シリコン膜を成膜する際の各ゾーン6a,6b,6c内の時間と温度との関係を示す図である。図11に示すように各ゾーン6a,6b,6cに割り当てられる第1のプロセス温度が互いに異なり、また各ゾーン6a,6b,6cに割り当てられる第2のプロセス温度も互いに異なるように制御部5における温度プロファイルが設定されている。例えば上段のゾーン6aにおける第1のプロセス温度及び第2のプロセス温度は夫々765℃及び732℃となっており、中段のゾーン6bにおける第1のプロセス温度及び第2のプロセス温度は夫々770℃及び757℃となっている。また下段のゾーン6cにおける第1のプロセス温度及び第2のプロセス温度は夫々800℃及び757℃となっている。
【0039】
いずれのゾーン6a,6b,6cにおいても、先ず第1のプロセス温度まで昇温され(昇温工程)、その後成膜ガスが導入される温度移行工程に入り第2のプロセス温度まで降温される。温度移行工程では、いずれのゾーン6a,6b,6cも降温され、この降温中に成膜ガスが導入されてウエハWの表面に均一な窒化シリコン膜が形成される。この場合更に続けて第2のプロセス温度から第1のプロセス温度まで更に温度を昇温させ(追加の温度移行工程)、その後第1のプロセス温度から第2のプロセスまで降温させてもよい。また中段ゾーン6bでは、温度を一定とした場合に、ウエハWの周縁部と中央部とにおいて成膜される膜の膜厚の差が非常に小さいので、温度移行工程における温度変化の傾斜(第1のプロセス温度と第2のプロセス温度との差)は、上段ゾーン6a及び下段ゾーン6bにおける温度変化の傾斜よりもかなり小さくなっている。
【0040】
このように各ゾーン6a,6b,6c間において互いに温度制御を行う場合、処理ガスは反応容器内にて下から上昇していくので上段のゾーン6aにおいては高温となっており、このため例えば上段のゾーン6aを比較的低温で温度制御し、下段のゾーン6cを比較的高温で温度制御している。そして温度を一定とした場合にウエハWの周縁部と中央部とにおいて成膜される膜の膜厚の差を予め把握しておき、膜厚の差に応じて温度変化の傾斜を決めているので、各ウエハW内での窒化シリコン膜の均一化を図ることができると共に各ゾーン6a,6b,6c間においてもウエハW表面に成膜される窒化シリコン膜の均一化を図ることができる。
【0041】
更に本発明の他の実施の形態について図12を参照しながら説明する。図12は、成膜ガスとしてTEOS(テトラエトキシシラン:Si(C2H5O)4)を用いてウエハW表面上にシリコン酸化膜を成膜する際の各ゾーン内の時間と温度との関係を示す図である。この方法においては、熱処理雰囲気を5段のゾーンに分割し、これに対応してヒータ4についても5段に分割し、分割されたヒータにより夫々各段のゾーンに対して異なる温度制御が行われている。なお説明の便宜上5段に分割された各ゾーンに対して上段側から順に6a,6ab、6b,6bc、6cを夫々割り当てることにする。
【0042】
各ゾーン6a,6ab、6b,6bc、6cの第1のプロセス温度及び第2のプロセス温度については、1段目のゾーン(最上段)6aの第1のプロセス温度及び第2のプロセス温度は夫々699℃及び672℃であり、2段目のゾーン6abの第1のプロセス温度及び第2のプロセス温度は夫々692℃及び674℃であり、3段目のゾーン6bの第1のプロセス温度及び第2のプロセス温度は夫々685℃及び673℃であり、4段目のゾーン6bcの第1のプロセス温度及び第2のプロセス温度は夫々675℃及び675℃であり、5段目のゾーン6cの第1のプロセス温度及び第2のプロセス温度は夫々662℃及び685℃である。このようにこの実施の形態では、第1のプロセス温度及び第2のプロセス温度は、各ゾーン6a,6ab、6b,6bc、6c間で互いに異なっている。
【0043】
図12に示すように、いずれのゾーン6a,6ab、6b,6bc、6cにおいても、先ず第1のプロセス温度まで昇温され(昇温工程)、その後TEOSが導入される温度移行工程に入る。この温度移行工程では、5段目のゾーン6cでは第1のプロセス温度から第2のプロセス温度まで昇温され、4段目のゾーン6bcでは第1のプロセス温度から第2のプロセス温度まで等温保持され、1〜3段目のゾーン6a,6ab、6bでは第1のプロセス温度から第2のプロセス温度まで降温される。
【0044】
この場合各ゾーン6a,6ab、6b,6bc、6cにおいて更に続けて第2のプロセス温度から第1のプロセス温度まで温度を移行させ(追加の温度移行工程)、その後第1のプロセス温度から第2のプロセス温度まで温度を移行させてもよい(温度移行工程)。その後各ゾーン6a,6ab、6b,6bc、6cは温度保持工程に入る。
【0045】
ここで最下段である5段目のゾーン6cでは、温度制御を行わない場合にはウエハの周縁部よりも中央部の方が成膜される膜の膜厚が高くなる傾向があるため、他のゾーン6a,6ab、6b,6bcにおける温度制御と異なり、温度移行工程では温度を上昇させている。また4段目のゾーン6bcでは、温度一定の場合にウエハWの周縁部と中央部において成膜される膜の膜厚の差が非常に小さいので、温度移行工程では等温保持している。
【0046】
このように各ゾーン6a,6ab、6b,6bc、6c間において互いに異なる温度制御を行うことにより、つまり各ゾーンに応じた適切な第1のプロセス温度及び第2のプロセス温度を設定することにより各ウエハWにおけるシリコン酸化膜の均一化を図ることができると共に各ゾーン6a,6ab、6b,6bc、6c間においてもウエハW表面に成膜されるシリコン酸化膜の均一化を図ることができる。
【0047】
【発明の効果】
以上のように本発明によれば、基板に成膜するにあたり、高い膜厚の面内均一性を確保することができる。
【図面の簡単な説明】
【図1】本発明方法を実施するための縦型熱処理装置の一例を示す縦断側面図である。
【図2】前記縦型熱処理装置の一部を示す斜視図である。
【図3】本発明方法にて窒化シリコン膜を形成するときの、温度と時間との関係を示す特性図である。
【図4】窒化シリコン膜成膜時の温度と時間との関係を示す特性図である。
【図5】窒化シリコン膜の膜厚とウエハ上の位置との関係を示す特性図である。
【図6】温度とウエハ上の位置との関係を示す特性図である。
【図7】窒化シリコン膜の膜厚とウエハ上の位置との関係を示す特性図である。
【図8】窒化シリコン膜の膜厚の面内ばらつき度とウエハボ−ト上のウエハの位置との関係を示す特性図である。
【図9】窒化シリコン膜の膜厚とウエハ上の位置との関係を示す特性図である。
【図10】ウエハ上のサンプリング箇所を説明するための平面図である。
【図11】窒化シリコン膜の成膜時の温度と時間との関係を示す特性図である。
【図12】シリコン酸化膜の成膜時の温度と時間との関係を示す特性図である。
【符号の説明】
W 半導体ウエハ
1 反応管
1a 内管
1b 外管
2 マニホ−ルド
3 ガス導入管
4(4a、4b、4c) ヒ−タ
5 制御部
V 開閉バルブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat treatment method for performing heat treatment on a substrate such as a semiconductor wafer.
[0002]
[Prior art]
One of the film forming processes that are semiconductor device manufacturing processes is a process called CVD (Chemical Vapor Deposition). In this method, a processing gas is introduced into a reaction tube and a film is formed on the surface of a semiconductor wafer (hereinafter referred to as “wafer”) by chemical vapor phase reaction. One type of apparatus that performs such a film forming process in batch is a vertical heat treatment apparatus. This apparatus includes a vertical reaction tube provided on a cylindrical manifold, a heater provided so as to surround the reaction tube, and a gas introduction tube rushed through the manifold. And an exhaust pipe connected to the manifold. In such an apparatus, a holder called a wafer boat holds a plurality of wafers in a shelf shape so that an opening at the lower end of the manifold is formed. Then, the film is carried into the reaction tube and film formation is performed.
[0003]
Specifically, for example, when forming a silicon nitride film as an interlayer insulating film, the wafer is heated to a processing temperature, for example, 760 ° C. in a vacuum atmosphere of about 0.1 to 1 Torr, and this heating atmosphere is maintained. Film formation is performed by introducing ammonia (NH3) gas and dichlorosilane (SiH2 Cl2) gas, which are film formation gases.
[0004]
[Problems to be solved by the invention]
By the way, when a wafer is formed by the above-described apparatus under the above-mentioned conditions, the film thickness at the central portion of the wafer tends to be thinner than the peripheral portion. The reason is considered as follows. That is, in the above-described vertical heat treatment apparatus called a batch furnace, in the process of raising the wafer to the processing temperature, it is heated by a heater located on the peripheral side of the wafer, and per unit area at the peripheral edge of the wafer. Therefore, the temperature rise rate of the peripheral portion of the wafer becomes faster than that of the central portion, and the temperature of the peripheral portion becomes higher than that of the central portion. In the above apparatus, the film forming gas is introduced into the reaction tube by the gas introduction pipe, and the film forming gas is supplied from the peripheral side of the wafer to the wafer held by the wafer boat. The gas concentration is higher at the periphery of the wafer than at the center.
[0005]
As described above, due to the temperature difference and the concentration difference of the deposition gas generated between the peripheral portion and the central portion of the wafer, the peripheral portion of the wafer having the higher temperature and the concentration of the deposition gas is formed on the central portion. It is presumed that the reaction is promoted, the film thickness at the center of the wafer is thinner than the peripheral edge, and the in-plane uniformity of the film thickness is deteriorated. Such in-plane uniformity of film thickness becomes a problem because it becomes worse when a large-diameter wafer such as a 300 mm wafer or a thick film having a film thickness of 70 nm or more is formed.
[0006]
The present invention has been made under such circumstances, and an object of the present invention is to provide a heat treatment method capable of performing treatment with high in-plane uniformity when heat treating a substrate.
[0007]
[Means for Solving the Problems]
    In the present invention, the heat treatment atmosphere isMore than 3 steps verticallyIn the method of performing a heat treatment by disposing a substrate in each zone in the reaction vessel divided into zones and introducing a processing gas into the reaction vessel,
  Multiple boardsPlace it in a shelf on the board holderProcess to carry into reaction container(1)When,
  Heating each zone in the reaction vessel by a heating means to raise the temperature of each zone to a first process temperature corresponding to the zone(2)When,
  Then, for the uppermost zone and the intermediate zone between the uppermost zone and the lowermost zone, corresponding to each zoneFrom the first process temperature,eachUp to the second process temperature corresponding to the zoneTemperature dropMakeStep (3)And comprising
  When performing the step (3),Introduce processing gas into the reaction vessel to heat-treat the substrateYes,
  The temperature difference between the first process temperature and the second process temperature in the intermediate zone is smaller than the temperature difference between the first process temperature and the second process temperature in the uppermost zone.It is characterized by that.
[0010]
Here, if the temperature during the process is kept constant, for example, in the case of a film forming process, the film thickness at the peripheral part becomes larger than the central part, or conversely, the degree depends on the zone in the reaction vessel. It may change. On the other hand, in the process of raising the temperature inside the reaction vessel, the endothermic amount per unit area in the peripheral part of the substrate is larger than that in the central part, so the temperature in the peripheral part is higher than in the central part. Since the amount of heat radiation per unit area at the peripheral edge of this is larger than that at the central part, the temperature at the peripheral part becomes lower than that at the central part. Therefore, the processing gas is introduced while the temperature is shifted, and the temperature distribution is given in the substrate surface, and the temperature distribution influences, for example, the film thickness distribution in the surface when the temperature during the process is constant. By doing so, processing with high in-plane uniformity can be performed as a result.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
First, an example of a vertical heat treatment apparatus for carrying out the method of the present invention will be described with reference to FIG. In FIG. 1, 1 is a reaction tube having a double tube structure made of, for example, quartz made of an inner tube 1a and an outer tube 1b, and a metallic cylindrical manifold 2 is formed on the lower side of the reaction tube 1. Is provided.
[0012]
The inner pipe 1 a has an upper end opened and is supported on the inner side of the manifold 2. The outer tube 1 b is closed at the upper end, and the lower end is airtightly joined to the upper end of the manifold 3. In this example, a reaction vessel is constituted by an inner tube 1a, an outer tube 1b, and a manifold 2. Reference numeral 21 denotes a base plate.
[0013]
In the reaction tube 1, for example, as shown in FIG. 2, a plurality of wafers, for example, about 170 wafers W are horizontally placed on a wafer boat 11 as a holder with a space in the vertical direction. The wafer boat 11 is held on a lid 12 via a heat insulating cylinder (heat insulator) 13. The lid 12 is mounted on a boat elevator 14 for loading and unloading the wafer boat 11 into and from the reaction tube 1. When the lid 12 is at the upper limit position, the lower end opening of the manifold 2 is mounted. That is, it has a role of closing the lower end opening of the reaction vessel composed of the reaction tube 1 and the manifold 2. In FIG. 2, reference numeral 15 denotes a transfer arm for transferring the wafer W to the wafer board 11.
[0014]
The manifold 2 is provided with a plurality of gas introduction pipes 31 and 32 arranged in the circumferential direction for supplying a film forming gas (processing gas) and a purge gas to the inner side of the inner pipe 1a. The film forming gas is introduced into the reaction vessel through the gas introduction pipes 31 and 32, respectively. These gas introduction pipes 31 and 32 are made of, for example, quartz pipes. For example, the gas introduction pipe 31 is configured by protruding the quartz pipe from the outside to the inside of the manifold 2 and bending the tip thereof upward. The tube 32 is configured by protruding the quartz tube from the outside of the manifold 2 into the inside. One or more of these gas introduction pipes 31 and 32 share a nitrogen gas (N2 gas) introduction pipe and a film formation gas introduction pipe as purge gas. In addition to the film forming gas, oxygen may be introduced into the inner tube 1a as the processing gas.
[0015]
The gas introduction pipes 31 and 32 are connected to gas supply sources (not shown) of film forming gas such as SiH2 Cl2 gas and NH3 gas via open / close valves V1 and V2, respectively. The open / close valves V1 and V2 are controlled. The opening / closing timing is controlled by the unit 5 based on a film-forming gas introduction program at the time of the film-forming process inputted in advance, thereby controlling the timing for introducing the film-forming gas. Further, an exhaust pipe 22 is connected to the manifold 2 so as to open between the inner pipe 1a and the outer pipe 1b, and the inside of the reaction vessel is evacuated by a vacuum pump (not shown). .
[0016]
A heater 4 serving as a heating means is provided around the reaction tube 1 so as to surround it. The heater 4 is composed of, for example, a heating resistor, and the controller 5 controls the temperature based on the temperature profile of the film forming process inputted in advance. By the way, the heat treatment atmosphere in the reaction tube is divided into a plurality of, for example, three zones (regions) 6 (6a, 6b, 6c) from the top to the bottom (meaning that the temperature control region is divided). The heater 4 is also divided into three heaters 4 (4a, 4b, 4c) corresponding to these three zones, that is, temperature control of these three zones 6a, 6b, 6c, respectively. Yes. Although the control unit 5 is shown as one block in FIG. 1 for convenience, a temperature controller (not shown) is actually provided for each heater 4a, 4b, 4c, and these temperature controllers are provided in the zones 6a, 6b, 6c. The power supply of each heater 4a, 4b, 4c is controlled based on the temperature detection signal of the temperature detection part which is provided corresponding to (not shown).
[0017]
Next, the heat treatment method of the present invention performed by the above-described apparatus will be described with reference to FIG. 3 taking a case of forming a silicon nitride film as an example. First, for example, 170 wafers W to be processed are mounted on the wafer boat 11 and the boat elevator 14 is lifted to carry the wafer W into the reaction tube 1 having a heating atmosphere of, for example, 600 ° C. from the lower end opening. Then, the lid 12 hermetically seals the lower end opening of the manifold 2, that is, the wafer loading / unloading port of the reaction vessel (loading process). Next, the inside of the reaction vessel is evacuated through the exhaust pipe 22 by a vacuum pump (not shown) in a heating atmosphere of 600 ° C. (stabilization process).
[0018]
Subsequently, after the temperature of each zone 6a, 6b, 6c in the reaction tube 1 is once heated to a first process temperature, for example, about 770 ° C. by the heaters 4a, 4b, 4c (first temperature raising step), While performing temperature control based on a predetermined temperature profile, SiH2 Cl2 gas and NH3 gas are introduced into the inner pipe 1a from the gas introduction pipes 31 and 32, respectively, as a film forming gas, whereby the pressure is 0.25 Torr. In this state, a silicon nitride film is formed on the surface of the wafer W (process step). At this time, the film forming gas is introduced into the inner tube 1 a and the inside of the outer tube 1 b is exhausted by the exhaust tube 22, so that the film forming gas spreads into the reaction tube 1 and is mounted on the wafer boat 11. A silicon nitride film is uniformly formed on the surface of W.
[0019]
Here, the zones 6a, 6b, and 6c are all subjected to the same temperature control. However, different temperature controls may be performed as described later.
[0020]
The present invention is characterized in that the temperature of the wafer W is controlled in the process step and the film forming gas is intermittently introduced in accordance with the temperature control. For example, in the process step, each zone 6a, 6b, 6c The temperature is raised and lowered repeatedly between the first process temperature and the second process temperature lower than the first process temperature, specifically at a temperature around 760 ° C., for example, in the range of 750 ° C. to 770 ° C. The temperature is controlled so that the film forming gas is introduced when the temperature is lowered.
[0021]
As a specific process, for example, as shown in FIG. 4, each zone 6a, 6b, 6c is temporarily heated to about 770 ° C., which is the first process temperature, by heating by the heaters 4a, 4b, 4c. After the temperature has been raised to, a second process temperature lower than the first process temperature, for example, about 750 ° C., the heating by each heater 4a, 4b, 4c is suppressed and the temperature is lowered in about 23 minutes, for example. SiH2 Cl2 gas and NH3 gas are introduced at flow rates of 100 sccm and 1000 sccm, respectively (steps after temperature), and then the temperature is raised again to about 770 ° C. in about 4 minutes, for example, with the introduction of these film forming gases stopped (first step). 2 temperature raising step). Next, while introducing the film forming gas again, the temperature is lowered to about 750 ° C. in about 23 minutes, for example, and then the introduction of the film forming gas is stopped, and the zones 6a, 6b, 6c are again set to about 770 ° C. For example, the temperature is raised in about 4 minutes (additional temperature transition step). Next, while introducing the film forming gas again, the temperature of each zone 6a, 6b, 6c is lowered to about 750 ° C. in about 23 minutes (temperature transition step), and then the introduction of the film forming gas is stopped. Then, the temperature of each zone 6a, 6b, 6c is raised again to about 770 ° C., for example, in about 4 minutes (additional temperature transition step). Then, the temperature of each zone 6a, 6b, 6c is lowered to about 750 ° C. in 23 minutes, for example, while introducing the film forming gas again. That is, in this process, the introduction of the film forming gas is started at the start of the temperature decrease, and the introduction of the film forming gas is stopped at the start of the temperature increase (at the end of the temperature decrease).
[0022]
In this embodiment, each zone 6a, 6b, 6c is heated to a predetermined temperature by the heater 4, but the predetermined temperature control in the process step is performed by the control unit 5 as described above. Based on the temperature profile input to the unit 5, the heating temperature by the heaters 4a, 4b, 4c is controlled. The start and stop of introduction of the film forming gas is performed by opening / closing the opening / closing valve V, and the opening / closing control of the opening / closing valve V is performed by the control unit 5 as described above.
[0023]
After the predetermined silicon nitride film is thus formed, the introduction of the film forming gas is stopped, and the temperature of each zone 6a, 6b, 6c is lowered to about 600 ° C. (temperature lowering step). A purge gas such as N2 gas is introduced from, for example, two of the gas introduction pipes 31 and 32 into which the film forming gas has been introduced, and the inside of the reaction vessel is returned to normal pressure. Then, the boat elevator 14 is lowered to open the loading / unloading port at the lower end of the reaction vessel, and the wafer boat 11 is unloaded from the reaction vessel (unloading process).
[0024]
According to such an embodiment, since the surface temperature of the wafer W is controlled in the process step so as to repeat the temperature increase and the temperature decrease, and the film forming gas is introduced at the time of the temperature decrease, the nitride formed In-plane uniformity of the thickness of the silicon film can be improved.
[0025]
That is, as described above, in the temperature raising process of the wafer W, the endothermic amount per unit area in the peripheral portion of the wafer is larger than that in the central portion, so that the temperature in the peripheral portion of the wafer is higher than that in the central portion. Here, since the film growth rate increases as the temperature at the time of film formation increases, if the film formation gas is introduced immediately after the wafer W is heated to a predetermined temperature, the film formation described above is performed. When combined with the concentration distribution of the film gas in the wafer surface, for example, as shown in FIG. 5, the film thickness at the center of the wafer becomes thinner than the peripheral edge. Here, FIG. 5 shows that in the vertical heat treatment apparatus, after each zone 6a, 6b, 6c is heated to a predetermined temperature, for example, 760 ° C., a film forming gas is immediately introduced to bring the temperature of the wafer W to the above temperature. FIG. 6 is a characteristic diagram showing a film thickness distribution in a wafer surface of a formed silicon nitride film when a silicon nitride film is formed in a maintained state.
[0026]
On the other hand, when the temperature of the wafer W is lowered, the heat radiation amount per unit area at the peripheral portion of the wafer is larger than that at the central portion, so that the temperature decreasing rate at the peripheral portion of the wafer is faster than that at the central portion. As shown in the temperature distribution in the wafer surface when W is lowered from about 770 ° C. to about 750 ° C., the temperature of the peripheral portion becomes lower than that of the central portion.
[0027]
Therefore, if each zone 6a, 6b, 6c is heated to the first process temperature, then the temperature is lowered to the second process temperature, and the film formation gas is introduced at the time of the temperature decrease, the film is formed in the center of the wafer W. Influence of the temperature distribution of the wafer W in the temperature lowering process in which the temperature at the peripheral portion is lower than that at the peripheral portion and the concentration distribution of the film forming gas in which the concentration at the peripheral portion is higher than that at the central portion of the wafer W Thus, for example, as shown in FIG. 7, it is assumed that the film thickness of the film formed is almost uniform in the plane of the wafer W. Here, FIG. 7 shows that in the vertical heat treatment apparatus, after each zone 6a, 6b, 6c is heated to the first process temperature, the film forming gas is introduced when the temperature is lowered to the second process temperature. FIG. 5 is a characteristic diagram showing a film thickness distribution in a wafer surface of a formed silicon nitride film when a silicon nitride film is formed.
[0028]
As described above, in this embodiment, when the silicon nitride film is formed, the first process temperature is 770 ° C., the second process temperature is 750 ° C., and the temperature difference is 20 ° C. Although the temperature affects the film quality of the silicon nitride film, the film forming temperature range is limited, but there is no problem if the difference between the first process temperature and the second process temperature is set to about 40 ° C. or less.
[0029]
Therefore, it is desirable to repeat the temperature transition process and the additional temperature transition process within a certain range of film formation temperature without any problem. When film formation is performed in this way, a good film thickness can be maintained while maintaining necessary film quality characteristics. Can be obtained. For this reason, the present invention is particularly effective when, for example, a film is formed on a wafer having a diameter of 300 mm, or when a film having a thickness of 70 nm or more is formed. Uniformity can be ensured.
[0030]
In order to actually confirm the effect of the present invention, 170 8-inch wafers W were mounted on the wafer boat 11 and a silicon nitride film was formed by the above-described vertical heat treatment apparatus according to the above-described process. The results shown in FIGS. 8 and 9 were obtained. As the film forming gas, SiH2 Cl2 gas and NH3 gas are used, and the temperature of each zone 6a, 6b, 6c is controlled according to the temperature profile shown in FIG. In each case, a silicon nitride film is formed with a process pressure of 0.25 Torr and a thickness of 150 nm as a target, and the in-plane distribution of the thickness of the silicon nitride film and the in-plane uniformity of the thickness of the silicon nitride film are formed. Was measured. A similar experiment was also performed in the case where a silicon nitride film was formed by continuously introducing a deposition gas while maintaining the temperature of the wafer surface at 760 ° C. with the above-described vertical heat treatment apparatus. In this case, the flow rate of the film forming gas was 100 sccm for SiH2 Cl2 gas and 1000 sccm for NH3 gas, and the process pressure was 0.25 Torr.
[0031]
The results are shown in FIGS. 8 and 9, respectively. The degree of variation in the thickness of the silicon nitride film is shown in FIG. 8, and the in-plane distribution of the thickness of the silicon nitride film is shown in FIG. The case where the temperature control is performed is indicated by □, and the case where the temperature control is not performed is indicated by ◯. 8, the seventh, 46th, 85th, 124th, and 163rd wafers W from the top of the wafer boat 11 were sampled and formed on these wafers W. In-plane uniformity of the film thickness of the silicon nitride film was measured with a film thickness measuring device (Ellipsometer).
[0032]
As a result, when temperature control is performed, the value of the degree of film thickness variation is lower than when temperature control is not performed, and the lower value indicates higher in-plane uniformity. It was confirmed that the in-plane uniformity of the thickness of the silicon nitride film formed can be enhanced by controlling the temperature during the process and introducing the film forming gas when the temperature is lowered.
[0033]
In addition, the in-plane distribution of the film thickness of the silicon nitride film in FIG. 9 is obtained by sampling the 124th wafer W from the top on the wafer board 11 and, as shown in the plan view of the wafer W in FIG. The film thickness of the silicon nitride film at five positions (A, B, C, D, E) in the radial direction on the diameter was measured. Here, C is the center of the wafer W, A and E are positions 5 mm inside from the outer edge of the wafer W, and B and D are positions 52.5 mm inside from the outer edge of the wafer W.
[0034]
As a result, when the temperature control is not performed, the thickness of the silicon nitride film is found to be about 2.91 to 3.48 nm thinner than the peripheral portion at the central portion, whereas when the temperature control is performed. In this case, the film thickness of the silicon nitride film is recognized to be almost constant although there is a variation of about 0.36 nm, and the nitride formed by performing temperature control during the process step and introducing a film forming gas when the temperature is lowered. It was confirmed that the in-plane uniformity of the thickness of the silicon film can be improved.
[0035]
As described above, in the present invention, the first temperature raising step for raising the temperature of each zone 6a, 6b, 6c to the first process temperature is performed, and then the film forming gas is introduced while the temperature is lowered to the second process temperature. It is only necessary to carry out a temperature lowering step for film formation, and it is not always necessary to repeat the temperature transition step and the additional temperature transition step, but if the temperature transition step, the additional temperature transition step and the temperature decrease step are repeated, the higher Uniformity of the film thickness can be ensured.
[0036]
Furthermore, the present invention can be applied not only to the formation of a silicon nitride film but also to the formation of a polysilicon film, a silicon oxide film by TEOS, an HTO (High Temperature Oxide) film, and the like. Further, the present invention can be applied to film formation of oxide films such as dry oxidation, wet oxidation, and HCl oxidation other than the CVD film formation process.
[0037]
In the above embodiment, an example in which the same temperature control is performed on the zones 6a, 6b, and 6c in the reaction tube 1 has been described. However, the heaters 4a and 4b are applied to the zones 6a, 6b, and 6c, respectively. , 4c may be used for different temperature control.
[0038]
Next, another embodiment of the present invention will be described with reference to FIG. FIG. 11 is a diagram showing the relationship between time and temperature in each of the zones 6a, 6b and 6c when a silicon nitride film is formed on the surface of the wafer W using SiH2 Cl2 gas and NH3 gas as film forming gases. is there. As shown in FIG. 11, in the control unit 5, the first process temperatures assigned to the zones 6a, 6b, 6c are different from each other, and the second process temperatures assigned to the zones 6a, 6b, 6c are also different from each other. A temperature profile is set. For example, the first process temperature and the second process temperature in the upper zone 6a are 765 ° C. and 732 ° C., respectively, and the first process temperature and the second process temperature in the middle zone 6b are 770 ° C. and It is 757 ° C. The first process temperature and the second process temperature in the lower zone 6c are 800 ° C. and 757 ° C., respectively.
[0039]
In any of the zones 6a, 6b, and 6c, the temperature is first raised to the first process temperature (temperature raising step), and then the temperature is changed to the second process temperature in the temperature transition step where the film forming gas is introduced. In the temperature transition process, the temperature of any of the zones 6a, 6b, and 6c is lowered, and a film forming gas is introduced during the temperature lowering to form a uniform silicon nitride film on the surface of the wafer W. In this case, the temperature may be further increased from the second process temperature to the first process temperature (additional temperature transition step), and then the temperature may be decreased from the first process temperature to the second process. In the middle zone 6b, when the temperature is constant, the difference in film thickness between the peripheral edge and the center of the wafer W is very small. The difference between the first process temperature and the second process temperature) is considerably smaller than the gradient of the temperature change in the upper zone 6a and the lower zone 6b.
[0040]
Thus, when performing temperature control mutually between each zone 6a, 6b, 6c, since process gas rises from the bottom within a reaction container, it is high temperature in the upper zone 6a. The temperature of the zone 6a is controlled at a relatively low temperature, and the temperature of the lower zone 6c is controlled at a relatively high temperature. When the temperature is constant, the difference in film thickness between the peripheral edge and the center of the wafer W is grasped in advance, and the gradient of the temperature change is determined according to the difference in film thickness. Therefore, the silicon nitride film in each wafer W can be made uniform, and the silicon nitride film formed on the surface of the wafer W can be made uniform between the zones 6a, 6b, 6c.
[0041]
Furthermore, another embodiment of the present invention will be described with reference to FIG. FIG. 12 is a diagram showing the relationship between time and temperature in each zone when a silicon oxide film is formed on the surface of the wafer W using TEOS (tetraethoxysilane: Si (C2H5O) 4) as a film forming gas. It is. In this method, the heat treatment atmosphere is divided into five zones, and the heater 4 is also divided into five zones correspondingly, and different temperature control is performed for each zone by the divided heaters. ing. For convenience of explanation, 6a, 6ab, 6b, 6bc, and 6c are assigned to each zone divided into five stages in order from the upper stage side.
[0042]
Regarding the first process temperature and the second process temperature in each of the zones 6a, 6ab, 6b, 6bc, and 6c, the first process temperature and the second process temperature in the first stage zone (top stage) 6a are respectively 699 ° C. and 672 ° C., and the first process temperature and the second process temperature of the second stage zone 6ab are 692 ° C. and 674 ° C., respectively, and the first process temperature and the second process temperature of the third stage zone 6b are The process temperature of No. 2 is 685 ° C. and 673 ° C., respectively, and the first process temperature and the second process temperature of the fourth stage zone 6bc are 675 ° C. and 675 ° C., respectively. The first process temperature and the second process temperature are 662 ° C. and 685 ° C., respectively. Thus, in this embodiment, the first process temperature and the second process temperature are different from each other between the zones 6a, 6ab, 6b, 6bc, and 6c.
[0043]
As shown in FIG. 12, in any of the zones 6a, 6ab, 6b, 6bc, 6c, first, the temperature is raised to the first process temperature (temperature raising step), and then a temperature transition step in which TEOS is introduced is entered. In this temperature transition step, the temperature is raised from the first process temperature to the second process temperature in the fifth zone 6c, and is kept isothermally from the first process temperature to the second process temperature in the fourth zone 6bc. Then, in the first to third zones 6a, 6ab, 6b, the temperature is lowered from the first process temperature to the second process temperature.
[0044]
In this case, in each zone 6a, 6ab, 6b, 6bc, 6c, the temperature is further transferred from the second process temperature to the first process temperature (additional temperature transition step), and then the first process temperature to the second The temperature may be shifted to the process temperature (temperature transition step). Thereafter, the zones 6a, 6ab, 6b, 6bc and 6c enter the temperature holding process.
[0045]
Here, in the zone 6c of the fifth stage, which is the lowest stage, the film thickness tends to be higher at the central part than at the peripheral part of the wafer when temperature control is not performed. Unlike the temperature control in the zones 6a, 6ab, 6b, 6bc, the temperature is raised in the temperature transition process. Further, in the fourth zone 6bc, the difference in film thickness between the peripheral edge and the central portion of the wafer W is very small when the temperature is constant, so that the temperature is kept isothermal in the temperature transition process.
[0046]
Thus, by performing different temperature control between the zones 6a, 6ab, 6b, 6bc and 6c, that is, by setting appropriate first process temperature and second process temperature according to each zone, The silicon oxide film on the wafer W can be made uniform, and the silicon oxide film formed on the surface of the wafer W can be made uniform between the zones 6a, 6ab, 6b, 6bc and 6c.
[0047]
【The invention's effect】
As described above, according to the present invention, in-plane uniformity with a high film thickness can be ensured when forming a film on a substrate.
[Brief description of the drawings]
FIG. 1 is a vertical side view showing an example of a vertical heat treatment apparatus for carrying out the method of the present invention.
FIG. 2 is a perspective view showing a part of the vertical heat treatment apparatus.
FIG. 3 is a characteristic diagram showing the relationship between temperature and time when a silicon nitride film is formed by the method of the present invention.
FIG. 4 is a characteristic diagram showing the relationship between temperature and time when forming a silicon nitride film.
FIG. 5 is a characteristic diagram showing the relationship between the thickness of the silicon nitride film and the position on the wafer.
FIG. 6 is a characteristic diagram showing a relationship between temperature and a position on a wafer.
FIG. 7 is a characteristic diagram showing the relationship between the thickness of the silicon nitride film and the position on the wafer.
FIG. 8 is a characteristic diagram showing the relationship between the in-plane variation of the film thickness of the silicon nitride film and the position of the wafer on the wafer board.
FIG. 9 is a characteristic diagram showing the relationship between the thickness of the silicon nitride film and the position on the wafer.
FIG. 10 is a plan view for explaining sampling locations on the wafer.
FIG. 11 is a characteristic diagram showing a relationship between temperature and time when a silicon nitride film is formed.
FIG. 12 is a characteristic diagram showing the relationship between temperature and time when a silicon oxide film is formed.
[Explanation of symbols]
W Semiconductor wafer
1 reaction tube
1a Inner pipe
1b Outer pipe
2 Manifold
3 Gas introduction pipe
4 (4a, 4b, 4c) Heater
5 Control unit
V open / close valve

Claims (2)

熱処理雰囲気が上下方向に3段以上のゾーンに分割された反応容器内の各ゾーンに基板を配置し、反応容器内に処理ガスを導入して熱処理を行う方法において、
複数の基板を基板保持具に棚状に配置して反応容器内に搬入する工程(1)と、
前記反応容器内における各ゾーンを加熱手段により加熱して各ゾーンを当該ゾーンに対応する第1のプロセス温度まで昇温する工程(2)と、
次いで、最上段のゾーンと、最上段のゾーン及び最下段のゾーンの間の中間ゾーンとについて、各ゾーンに対応する第1のプロセス温度から、ゾーンに対応する第2のプロセス温度まで降温させる工程(3)と、を備え、
前記工程(3)を行っているときに、反応容器内に処理ガスを導入して基板に対して熱処理を行い、
前記中間ゾーンにおける第1のプロセス温度と第2のプロセス温度との温度差は、前記最上段のゾーンにおける第1のプロセス温度と第2のプロセス温度との温度差よりも小さいことを特徴とする熱処理方法。
In a method in which a heat treatment atmosphere is arranged in each zone in a reaction vessel divided into three or more zones in the vertical direction, and a heat treatment is performed by introducing a processing gas into the reaction vessel.
A step (1) of arranging a plurality of substrates in a shelf shape on a substrate holder and carrying them into a reaction container;
A step (2) of heating each zone in the reaction vessel with a heating means to raise each zone to a first process temperature corresponding to the zone;
Next, the temperature of the uppermost zone and the intermediate zone between the uppermost zone and the lowermost zone are lowered from the first process temperature corresponding to each zone to the second process temperature corresponding to each zone. Step (3)
When performing the step (3), have a row to a heat treatment to the substrate by introducing a process gas into the reaction vessel,
The temperature difference between the first process temperature and the second process temperature in the intermediate zone is smaller than the temperature difference between the first process temperature and the second process temperature in the uppermost zone. Heat treatment method.
前記工程(3)において、前記中間ゾーンについては、第1のプロセス温度から、当該ゾーンに対応する第2のプロセス温度まで降温させることに代えて、第1のプロセス温度のまま温度が維持されることを特徴とする請求項1記載の熱処理方法。In the step (3), the temperature of the intermediate zone is maintained at the first process temperature instead of lowering from the first process temperature to the second process temperature corresponding to the zone. The heat treatment method according to claim 1.
JP2001040577A 2000-02-18 2001-02-16 Heat treatment method Expired - Lifetime JP4553227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001040577A JP4553227B2 (en) 2000-02-18 2001-02-16 Heat treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000041021 2000-02-18
JP2000-41021 2000-02-18
JP2001040577A JP4553227B2 (en) 2000-02-18 2001-02-16 Heat treatment method

Publications (2)

Publication Number Publication Date
JP2001308085A JP2001308085A (en) 2001-11-02
JP4553227B2 true JP4553227B2 (en) 2010-09-29

Family

ID=26585653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001040577A Expired - Lifetime JP4553227B2 (en) 2000-02-18 2001-02-16 Heat treatment method

Country Status (1)

Country Link
JP (1) JP4553227B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005008755A1 (en) * 2003-07-18 2006-09-07 株式会社日立国際電気 Temperature control method, substrate processing apparatus, and semiconductor manufacturing method
JP4610908B2 (en) * 2004-02-24 2011-01-12 株式会社日立国際電気 Substrate processing apparatus and semiconductor device manufacturing method
KR101003446B1 (en) 2006-03-07 2010-12-28 가부시키가이샤 히다치 고쿠사이 덴키 Substrate processing apparatus and substrate processing method
WO2014088026A1 (en) * 2012-12-07 2014-06-12 株式会社日立国際電気 Substrate treatment device, substrate treatment method, semiconductor-device manufacturing method, and control program
JP6358977B2 (en) * 2015-03-31 2018-07-18 東京エレクトロン株式会社 Heat treatment apparatus, heat treatment method, and program
CN112941489A (en) * 2021-01-27 2021-06-11 长鑫存储技术有限公司 Thin film deposition method and thin film deposition apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144746A (en) * 1991-11-20 1993-06-11 Nec Corp Low-pressure cvd apparatus
JPH06318551A (en) * 1993-05-10 1994-11-15 Toshiba Corp Formation of thin film and its apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144746A (en) * 1991-11-20 1993-06-11 Nec Corp Low-pressure cvd apparatus
JPH06318551A (en) * 1993-05-10 1994-11-15 Toshiba Corp Formation of thin film and its apparatus

Also Published As

Publication number Publication date
JP2001308085A (en) 2001-11-02

Similar Documents

Publication Publication Date Title
KR100960180B1 (en) Heat treatment method, heat treatment apparatus, control apparatus and computer readable recording medium storing control program therein
TWI443747B (en) Semiconductor device manufacturing method, and substrate processing method and apparatus
JP5902073B2 (en) Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
US20080226822A1 (en) Precoat film forming method, idling method of film forming device, loading table structure, film forming device and film forming method
KR20100110822A (en) Heat treatment apparatus, and method for controlling the same
JP4694209B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JPH10107018A (en) Semiconductor wafer heat treatment apparatus
JP2003037075A (en) Control method of transfer device and method and device for heat treatment
JP3667038B2 (en) CVD film forming method
US20020127828A1 (en) Method of processing wafer
JP4553227B2 (en) Heat treatment method
JP2001144033A (en) Forming method for precoat film, idling method for film forming device, mounting base structure and film forming device
KR102023434B1 (en) Film forming method, film forming system and surface processing method
JP2012186275A (en) Substrate processing apparatus and semiconductor device manufacturing method
JP3667535B2 (en) Deposition method
JP2002141347A (en) Method and device for batch heat treatment
US20080081112A1 (en) Batch reaction chamber employing separate zones for radiant heating and resistive heating
JP3901958B2 (en) Method for creating heat treatment apparatus set temperature, and heat treatment method
JP6630237B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP4610908B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
US20230104882A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US20230326742A1 (en) Deposition method and processing apparatus
JP3664193B2 (en) Heat treatment apparatus and heat treatment method
JP2017212320A (en) Method and system for forming titanium oxide film, and method for forming contact structure
JP2022186307A (en) Film deposition method and film deposition apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4553227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term