JP4552848B2 - Variable shape mirror and laser processing apparatus using the variable shape mirror - Google Patents

Variable shape mirror and laser processing apparatus using the variable shape mirror Download PDF

Info

Publication number
JP4552848B2
JP4552848B2 JP2005371168A JP2005371168A JP4552848B2 JP 4552848 B2 JP4552848 B2 JP 4552848B2 JP 2005371168 A JP2005371168 A JP 2005371168A JP 2005371168 A JP2005371168 A JP 2005371168A JP 4552848 B2 JP4552848 B2 JP 4552848B2
Authority
JP
Japan
Prior art keywords
axis
shaft member
mirror
reflecting mirror
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005371168A
Other languages
Japanese (ja)
Other versions
JP2007171703A (en
Inventor
信高 小林
祥瑞 竹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005371168A priority Critical patent/JP4552848B2/en
Priority to TW96109452A priority patent/TWI324693B/en
Publication of JP2007171703A publication Critical patent/JP2007171703A/en
Application granted granted Critical
Publication of JP4552848B2 publication Critical patent/JP4552848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、レーザビームなどの光波の波面歪み、特に非点収差を補正する形状可変鏡及び形状可変鏡を用いるレーザ加工装置に関するものである。   The present invention relates to a deformable mirror for correcting wavefront distortion of a light wave such as a laser beam, particularly astigmatism, and a laser processing apparatus using the deformable mirror.

形状可変鏡は光波の波面歪みを補正するもので、さまざまな光学製品で使用されている。例えば、天体望遠鏡では大気の揺らぎなどによる波面の歪み(収差)を補正し、像質を改善するために用いられる(例えば、特許文献1を参照)。また、CDやDVDなどの光ピックアップでは、光ディスク面の傾きやうねりなどによって発生する収差を補正するために用いられる(例えば、特許文献2を参照)。さらに、レーザ加工機では真円度が高くスポット径が小さいレーザビームを得ることができるように、レンズや反射鏡などの歪みによるレーザビームの波面歪みを補正するために用いられる(例えば、特許文献1を参照)。   The deformable mirror corrects wavefront distortion of light waves and is used in various optical products. For example, an astronomical telescope is used to correct wavefront distortion (aberration) due to atmospheric fluctuations and improve image quality (see, for example, Patent Document 1). In addition, optical pickups such as CDs and DVDs are used to correct aberrations that occur due to the tilt and waviness of the optical disk surface (see, for example, Patent Document 2). Further, the laser beam machine is used to correct the wavefront distortion of the laser beam due to distortion of a lens, a reflecting mirror, etc. so that a laser beam having a high roundness and a small spot diameter can be obtained (for example, patent document). 1).

形状可変鏡には一体鏡型のもの(例えば、特許文献1を参照)と分割鏡型のもの(例えば、特許文献3を参照)が有るが、いずれも多数の駆動素子例えばピエゾアクチュエータを駆動させて鏡面形状を変化させている。また、静電気力によって駆動する駆動素子を使用するものも報告されている(例えば、特許文献2参照)。これらは多数の駆動素子を持つため変形の自由度が高く、駆動素子数が十分に多ければ任意形状の反射面が作成でき、任意形状の波面歪みが補正可能である。
レーザビームの焦点距離などを調整するために、外周部が保持された板状の反射鏡に裏面から1個の駆動素子により力を加える形状可変鏡も報告されている(特許文献4を参照)。
There are two types of deformable mirrors, one is an integral mirror type (for example, see Patent Document 1) and the other is a split mirror type (for example, see Patent Document 3). The mirror shape is changed. In addition, a device using a drive element driven by electrostatic force has been reported (see, for example, Patent Document 2). Since these have a large number of drive elements, the degree of freedom of deformation is high. If the number of drive elements is sufficiently large, an arbitrarily shaped reflection surface can be created, and an arbitrarily shaped wavefront distortion can be corrected.
In order to adjust the focal length of the laser beam and the like, a deformable mirror has also been reported that applies force to the plate-like reflecting mirror holding the outer peripheral portion from the back surface by one drive element (see Patent Document 4). .

特開平7−66463号公報Japanese Patent Laid-Open No. 7-66463 特開平2005−122878号公報Japanese Patent Laid-Open No. 2005-122878 特開平5−136509号公報JP-A-5-136509 特開平9−293915号公報Japanese Patent Laid-Open No. 9-293915

多数の駆動素子を持つ形状可変鏡は変形力の加え方の自由度が高いため、任意形状の反射面作成が可能であり、波面歪みの補正の自由度が大きいという長所が有る。しかし、駆動素子数が多く構造が複雑である。分割鏡型の場合はミラーも多数必要であることから、さらに部品数が多く構造が複雑になる。多数の部品が必要で精密に製造する必要が有るので、多数の駆動素子を持つ形状可変鏡は高価なものとなる。   Since the deformable mirror having a large number of drive elements has a high degree of freedom in how to apply a deformation force, it can create a reflecting surface having an arbitrary shape and has the advantage of a large degree of freedom in correcting wavefront distortion. However, the number of drive elements is large and the structure is complicated. In the case of the split mirror type, since a large number of mirrors are required, the number of parts is further increased and the structure becomes complicated. Since a large number of parts are required and it is necessary to manufacture them precisely, a deformable mirror having a large number of drive elements becomes expensive.

用途によっては、波面歪みの補正の自由度が高い必要がなく、非点収差だけが補正できるだけでよい場合が有る。例えば、レーザビームによる切断、穴あけ、溶接などの加工において、レーザ発振器や加工点までの伝送光路を構成する反射鏡やレンズには、切削、研削、研磨などの製作工程で、アスと呼ばれる製造誤差が発生しやすい。アスとは、光軸に対し垂直な一軸方向をX方向、光軸とX方向双方に垂直な方向をY方向とした場合、X方向とY方向とで焦点距離が異なる誤差である。このアスにより非点収差が発生し、レーザ加工の品質が低下する場合が多い。非点収差の補正ができれば、レーザ加工における品質を向上させることができる。   Depending on the application, there is a case where it is not necessary to have a high degree of freedom in correcting wavefront distortion, and only astigmatism may be corrected. For example, in processing such as cutting, drilling, and welding with a laser beam, a laser oscillator or a reflector or lens that constitutes a transmission optical path to a processing point has a manufacturing error called ass in a manufacturing process such as cutting, grinding, or polishing. Is likely to occur. Asperity is an error in which the focal length differs between the X direction and the Y direction when the uniaxial direction perpendicular to the optical axis is the X direction and the direction perpendicular to both the optical axis and the X direction is the Y direction. Astigmatism is caused by this asphalt, and the quality of laser processing often decreases. If astigmatism can be corrected, the quality in laser processing can be improved.

1個の駆動素子により力を加える形状可変鏡は焦点距離などを変更するためのものしかなく、光波の非点収差を補正することを目的とした1個の駆動素子を用いた形状可変鏡は、これまでなかった。
本発明は、非点収差の補正が可能な形状可変鏡を得ることを目的とする。
The deformable mirror that applies a force by one drive element is only for changing the focal length and the like, and the deformable mirror using one drive element for the purpose of correcting the astigmatism of the light wave is Never before.
An object of the present invention is to obtain a deformable mirror capable of correcting astigmatism.

この発明に係る形状可変鏡は、片側に反射面を有する反射鏡と、該反射鏡の裏面に2箇所で固定された第1軸部材と、前記反射鏡の裏面に固定された2本の足を有し前記第1軸部材を跨ぐ第2軸部材と、該第2軸部材と前記第1軸部材の間の距離を変化させる距離変更機構とを備え、前記第1軸部材を固定する箇所を結ぶ線分と前記第2軸部材の前記足を固定する箇所を結ぶ線分とが交差することを特徴とするものである。   The deformable mirror according to the present invention includes a reflecting mirror having a reflecting surface on one side, a first shaft member fixed at two positions on the back surface of the reflecting mirror, and two legs fixed on the back surface of the reflecting mirror. And a second shaft member straddling the first shaft member, and a distance changing mechanism for changing a distance between the second shaft member and the first shaft member, and a portion for fixing the first shaft member And a line segment connecting a portion of the second shaft member where the foot is fixed intersects.

また、片側に反射面を有する反射鏡と、該反射鏡の裏面に2箇所で固定された第1軸部材と、該第1軸部材に一端が固定されもう一端が前記反射鏡の裏面に固定される第1及び第2の距離変更機構とを備え、前記第1軸部材を固定する箇所を結ぶ線分と前記第1及び第2の距離変更機構を固定する箇所を結ぶ線分とが交差することを特徴とするものである。   Also, a reflecting mirror having a reflecting surface on one side, a first shaft member fixed at two positions on the back surface of the reflecting mirror, one end fixed to the first shaft member, and the other end fixed to the back surface of the reflecting mirror The first and second distance changing mechanisms are connected, and a line segment connecting a portion fixing the first shaft member intersects with a line segment connecting the first and second distance changing mechanisms. It is characterized by doing.

この発明に係る形状可変鏡は、片側に反射面を有する反射鏡と、該反射鏡の裏面に2箇所で固定された第1軸部材と、前記反射鏡の裏面に固定された2本の足を有し前記第1軸部材を跨ぐ第2軸部材と、該第2軸部材と前記第1軸部材の間の距離を変化させる距離変更機構とを備え、前記第1軸部材を固定する箇所を結ぶ線分と前記第2軸部材の前記足を固定する箇所を結ぶ線分とが交差することを特徴とするものなので、反射鏡が反射する光の非点収差を補正できるという効果が有る。   The deformable mirror according to the present invention includes a reflecting mirror having a reflecting surface on one side, a first shaft member fixed at two positions on the back surface of the reflecting mirror, and two legs fixed on the back surface of the reflecting mirror. And a second shaft member straddling the first shaft member, and a distance changing mechanism for changing a distance between the second shaft member and the first shaft member, and a portion for fixing the first shaft member Since the line connecting the second shaft member and the line connecting the portion where the foot is fixed intersects, the astigmatism of the light reflected by the reflecting mirror can be corrected. .

また、片側に反射面を有する反射鏡と、該反射鏡の裏面に2箇所で固定された第1軸部材と、該第1軸部材に一端が固定されもう一端が前記反射鏡の裏面に固定される第1及び第2の距離変更機構とを備え、前記第1軸部材を固定する箇所を結ぶ線分と前記第1及び第2の距離変更機構を固定する箇所を結ぶ線分とが交差することを特徴とするものなので、反射鏡が反射する光の非点収差を補正できるという効果が有る。   Also, a reflecting mirror having a reflecting surface on one side, a first shaft member fixed at two positions on the back surface of the reflecting mirror, one end fixed to the first shaft member, and the other end fixed to the back surface of the reflecting mirror The first and second distance changing mechanisms are connected, and a line segment connecting a portion fixing the first shaft member intersects with a line segment connecting the first and second distance changing mechanisms. Therefore, the astigmatism of the light reflected by the reflecting mirror can be corrected.

実施の形態1.
図1に、本発明の実施の形態1における形状可変鏡の概念を説明する図を示す。反射鏡である円形反射鏡1は、光を反射する反射面であるミラー面1Aと裏面1Bが円形の互いに平行な平面である。裏面1B上で、外周円の中心を通る第1軸であるX軸とX軸に直角に外周円の中心で交差する第2軸であるY軸を定義する。裏面1Bの外周円とX軸との交点である2箇所のX軸交点1C付近で、裏面1Bに対して垂直に押す方向で荷重Aを加える。一方、裏面1Bの外周円とY軸との交点である2箇所のY軸交点1D付近では、裏面1Bに対して垂直に引く方向で荷重Bを加える。こうすると、円形反射鏡1のミラー面1AがX軸に平行な直線上では中央がへこんだ凹形であり、Y軸に平行な直線上では中央が出た凸形である鞍形に、ミラー面1Aが変形する。なお、荷重Aと荷重Bの大きさは同じであり、X軸上での凹形の曲線形状と、Y軸上での凸形の曲線形状とは、向きが反対で同じような形状になる。
Embodiment 1 FIG.
FIG. 1 is a diagram for explaining the concept of the deformable mirror according to Embodiment 1 of the present invention. The circular reflecting mirror 1 which is a reflecting mirror is a plane parallel to each other in which the mirror surface 1A and the back surface 1B which are reflecting surfaces for reflecting light are circular. On the back surface 1B, an X axis that is a first axis passing through the center of the outer circumference circle and a Y axis that is a second axis that intersects with the center of the outer circumference at right angles to the X axis are defined. A load A is applied in the direction of pushing perpendicularly to the back surface 1B in the vicinity of the two X-axis intersection points 1C, which are the intersection points of the outer periphery circle of the back surface 1B and the X axis. On the other hand, in the vicinity of the two Y-axis intersection points 1D that are the intersection points of the outer circumference circle of the back surface 1B and the Y-axis, the load B is applied in a direction that is perpendicular to the back surface 1B. In this way, the mirror surface 1A of the circular reflecting mirror 1 has a concave shape in which the center is recessed on a straight line parallel to the X axis, and a convex shape in which the center protrudes on a straight line parallel to the Y axis. The surface 1A is deformed. In addition, the magnitude | size of the load A and the load B is the same, and the concave curve shape on the X-axis and the convex curve shape on the Y-axis are opposite and have the same shape. .

円形反射鏡1で反射する光の焦点距離が短いすなわちパワーが強い方向をY軸に合わせると、Y軸では凸面なので反射する光の焦点距離が長くなり、X軸では凹面なので反射する光の焦点距離が短くなる。これは、X軸とY軸のパワーの差を減少させることを意味する。つまり、鞍形の変形の度合いを適切に調整すれば、X軸とY軸のパワーを同じにして非点収差を補正できることになる。円形反射鏡1の変形の度合いは、数10mmの直径の円形反射鏡1に対して、0.1〜10μ程度を想定している。なお、変形の度合いがこの想定よりも大きい場合も小さい場合にも、この発明を適用できる。また、X軸を凸にY軸を凹に変形させてもよい。   When the focal length of the light reflected by the circular reflecting mirror 1 is short, that is, the direction in which the power is strong is matched with the Y axis, the focal length of the reflected light becomes long because it is convex on the Y axis, and the focal point of the reflected light because it is concave on the X axis. The distance becomes shorter. This means that the difference in power between the X axis and the Y axis is reduced. In other words, astigmatism can be corrected with the X-axis and Y-axis powers made equal by appropriately adjusting the degree of deformation of the saddle shape. The degree of deformation of the circular reflecting mirror 1 is assumed to be about 0.1 to 10 μm with respect to the circular reflecting mirror 1 having a diameter of several tens of millimeters. Note that the present invention can be applied to cases where the degree of deformation is larger or smaller than this assumption. Alternatively, the X axis may be convex and the Y axis may be concave.

実施の形態1での形状可変鏡の構造を説明する組立図を、図2に示す。この実施の形態1での形状可変鏡は、ピエゾ逆圧電効果により電圧を印加することにより長さを正確に制御できる1個のピエゾアクチュエータ2により、図1に示す2箇所のX軸交点1C付近で円形反射鏡1を押す方向の荷重Aと、2箇所のY軸交点1D付近で円形反射鏡1を引く方向の荷重Bを発生できる。円形反射鏡1の裏面側には、円形反射鏡1のミラー面1Aを鞍形に変形させる力を発生させる変形力発生機構3がある。変形力発生機構3は、図1におけるX軸上のX軸交点1C付近に対応する位置の2箇所で円形反射鏡1の裏面1Bに固定される第1軸部材であるX軸部材4と、Y軸上のY軸交点1D付近に対応する位置の2箇所で円形反射鏡1の裏面1Bに固定されX軸部材4を跨いで配置される第2軸部材であるY軸部材5と、X軸部材4とY軸部材5との間に配置されその間の距離を変化させる距離変更機構であるピエゾアクチュエータ2とから構成される。このように、4点に力を加える簡易な構造の変形力発生機構3により、円形反射鏡1を鞍形に変形できる。   FIG. 2 shows an assembly diagram for explaining the structure of the deformable mirror in the first embodiment. The deformable mirror according to the first embodiment has two piezo actuators 2 capable of accurately controlling the length by applying a voltage by the piezo inverse piezoelectric effect, and the vicinity of two X-axis intersections 1C shown in FIG. The load A in the direction of pushing the circular reflecting mirror 1 and the load B in the direction of pulling the circular reflecting mirror 1 near the two Y-axis intersections 1D can be generated. On the back side of the circular reflecting mirror 1, there is a deformation force generating mechanism 3 that generates a force that deforms the mirror surface 1A of the circular reflecting mirror 1 into a bowl shape. The deformation force generating mechanism 3 includes an X-axis member 4 that is a first shaft member fixed to the back surface 1B of the circular reflecting mirror 1 at two positions corresponding to the vicinity of the X-axis intersection 1C on the X-axis in FIG. A Y-axis member 5 which is a second shaft member which is fixed to the back surface 1B of the circular reflecting mirror 1 at two positions corresponding to the vicinity of the Y-axis intersection 1D on the Y-axis and is disposed across the X-axis member 4; The piezoelectric actuator 2 is a distance changing mechanism that is disposed between the shaft member 4 and the Y-axis member 5 and changes the distance therebetween. Thus, the circular reflecting mirror 1 can be deformed into a bowl shape by the deformation force generating mechanism 3 having a simple structure that applies force to four points.

X軸部材4は、円形反射鏡1とほぼ同じ径の円形で所定の厚さのX軸裏板4Aと、X軸裏板4Aの円形反射鏡1側の面からX軸裏板4Aに垂直に立った角柱状の2本のX軸足4Bとから構成される。2本のX軸足4Bの長さは同じなので、円形反射鏡1に固定された状態ではX軸裏板4Aは円形反射鏡1と平行になる。X軸足4Bの長さ方向に垂直な断面での形状はほぼ正方形で、長さ方向に同じ断面形状とする。X軸足4Bの底面をX軸足底面4Cと呼ぶ。2本のX軸足4BはX軸裏板4Aの端部にあり、2個のX軸足底面4Cの中心を結ぶ線分はX軸裏板4Aの中心を通る。ここで、2個のX軸足底面4Cの中心を結ぶ直線がX軸になる。X軸裏板4Aの中心を通りX軸と直交するY軸と外周円との交点付近には、Y軸部材5を通すための切欠き4Dを設けてある。X軸裏板4AとX軸足4Bは一体に形成してもよいし、別部品として形成したものを接合したものでもよい。さらには、X軸部材4と円形反射鏡1とを同一材料から切削などにより形成してもよい。Y軸部材5に関しても同様である。
X軸足底面4Cは、X軸足4Bに対して垂直な平面でありほぼ正方形の形状である。2個のX軸足底面4Cは、円形反射鏡1の裏面1Bにネジ止め、ロウ付け、接着剤による接着などの適当な方法により、引っ張り力で固定面がはがれることが無いように固定される。他の箇所における固定方法でも同様な点に注意する。
The X-axis member 4 is a circular X-axis back plate 4A having the same diameter as the circular reflector 1 and having a predetermined thickness, and is perpendicular to the X-axis back plate 4A from the surface of the X-axis back plate 4A on the circular reflector 1 side. It is composed of two prismatic X-axis legs 4B standing upright. Since the lengths of the two X-axis legs 4B are the same, the X-axis back plate 4A is parallel to the circular reflecting mirror 1 when fixed to the circular reflecting mirror 1. The shape of the cross section perpendicular to the length direction of the X-axis foot 4B is substantially square, and has the same cross-sectional shape in the length direction. The bottom surface of the X-axis foot 4B is referred to as the X-axis foot bottom surface 4C. The two X-axis feet 4B are at the end of the X-axis back plate 4A, and a line segment connecting the centers of the two X-axis foot bottom surfaces 4C passes through the center of the X-axis back plate 4A. Here, a straight line connecting the centers of the two X-axis soles 4C becomes the X-axis. A notch 4D for passing the Y-axis member 5 is provided in the vicinity of the intersection of the Y-axis that passes through the center of the X-axis back plate 4A and is orthogonal to the X-axis and the outer circumference circle. The X-axis back plate 4A and the X-axis foot 4B may be integrally formed, or may be formed by joining those formed as separate parts. Further, the X-axis member 4 and the circular reflecting mirror 1 may be formed from the same material by cutting or the like. The same applies to the Y-axis member 5.
The X-axis foot bottom surface 4C is a plane perpendicular to the X-axis foot 4B and has a substantially square shape. The two X-axis foot bottom surfaces 4C are fixed to the back surface 1B of the circular reflecting mirror 1 by an appropriate method such as screwing, brazing, or bonding with an adhesive so that the fixing surface is not peeled off by a pulling force. . Pay attention to the same points in the fixing method in other places.

Y軸部材5はX軸部材4と同様な形状であり、Y軸裏板5Aと2本のY軸足5Bから構成される。Y軸部材5の2個のY軸足底面5Cは、円形反射鏡1の裏面1Bに固定する。Y軸部材5の形状がX軸部材4と異なる点は、以下の2点である。(1)Y軸足5Bの長さが、X軸足4Bよりも長い。(2)Y軸裏板5Aには切欠きが無い。2個のY軸足底面5Cの中心を結ぶ直線を、Y軸と呼ぶ。なお、X軸裏板4Aの2個の切欠き4Dの中心を結ぶ直線はX軸と直交するので、この2個の切欠き4Dにそれぞれ1個ずつ入る2個のY軸足5Bから規定されるY軸はX軸と直交することになる。   The Y-axis member 5 has the same shape as the X-axis member 4 and is composed of a Y-axis back plate 5A and two Y-axis legs 5B. Two Y-axis foot bottom surfaces 5 </ b> C of the Y-axis member 5 are fixed to the back surface 1 </ b> B of the circular reflecting mirror 1. The shape of the Y-axis member 5 is different from the X-axis member 4 in the following two points. (1) The length of the Y-axis foot 5B is longer than that of the X-axis foot 4B. (2) The Y-axis back plate 5A has no notch. A straight line connecting the centers of the two Y-axis soles 5C is referred to as a Y-axis. Since the straight line connecting the centers of the two notches 4D of the X-axis back plate 4A is orthogonal to the X-axis, it is defined by the two Y-axis legs 5B that respectively enter the two notches 4D. The Y axis is perpendicular to the X axis.

ここで、X軸裏板4AとY軸裏板5Aに関して、第1面と第2面を以下のように定義する。第1面とは、円形反射鏡1側とは反対側に有る面とする。第2面は、第1面の裏側に有る面とする。X軸裏板4Aの第1面のX軸裏板中心4E(図示せず)とY軸裏板5Aの第2面のY軸裏板中心5Eとには、ピエゾアクチュエータ2のそれぞれ一端を固定する。X軸裏板中心4EとY軸裏板中心5Eはともに、円形反射鏡1の中心を通り円形反射鏡1に垂直な直線上に有るので、ピエゾアクチュエータ2もこの直線上に有る。つまり、ピエゾアクチュエータ2は、円形反射鏡1に垂直な直線上でその両端の距離を変化させることになる。
X軸足4BとY軸足5Bの長さの差は、ピエゾアクチュエータ2の長さをその変化可能範囲のほぼ中間に有る時の長さと同じになるようにしておく。ピエゾアクチュエータ2に所定の電圧を印加しておき、ピエゾアクチュエータ2の長さがX軸足4BとY軸足5Bの長さの差と同じになる状態で、X軸足底面4CとY軸足底面5Cを円形反射鏡1の裏面1Bに固定する。こうすると、ピエゾアクチュエータ2の長さを長くするとX軸で凹かつY軸で凸にミラー面1Aが鞍形変形し、ピエゾアクチュエータ2の長さを短くするとX軸で凸かつY軸で凹にミラー面1Aが鞍形変形することになる。
Here, regarding the X-axis back plate 4A and the Y-axis back plate 5A, the first surface and the second surface are defined as follows. The first surface is a surface on the side opposite to the circular reflecting mirror 1 side. The second surface is a surface on the back side of the first surface. One end of the piezo actuator 2 is fixed to the X-axis back plate center 4E (not shown) of the first surface of the X-axis back plate 4A and the Y-axis back plate center 5E of the second surface of the Y-axis back plate 5A. To do. Since both the X-axis back plate center 4E and the Y-axis back plate center 5E are on a straight line passing through the center of the circular reflecting mirror 1 and perpendicular to the circular reflecting mirror 1, the piezo actuator 2 is also on this straight line. That is, the piezo actuator 2 changes the distance between both ends on a straight line perpendicular to the circular reflecting mirror 1.
The difference in length between the X-axis foot 4B and the Y-axis foot 5B is set to be the same as the length when the length of the piezo actuator 2 is approximately in the middle of the changeable range. A predetermined voltage is applied to the piezo actuator 2 and the length of the piezo actuator 2 is the same as the difference between the lengths of the X-axis foot 4B and the Y-axis foot 5B. The bottom surface 5 </ b> C is fixed to the back surface 1 </ b> B of the circular reflecting mirror 1. In this way, when the length of the piezo actuator 2 is increased, the mirror surface 1A is deformed in a bowl shape so as to be concave on the X axis and convex on the Y axis, and when the length of the piezo actuator 2 is shortened, it is convex on the X axis and concave on the Y axis. The mirror surface 1A is deformed in a bowl shape.

X軸足4Bの断面の形状及び大きさとX軸裏板4Aの厚さは、印加される力により破損しないような強度が得られるように適切に調整する。また、X軸足底面4Cの形状及び面積は、円形反射鏡1の裏面1Bへの固定が可能であり、かつ鞍形変形が適切に行え、かつ固定面での引っ張り力で固定面がはがれないように調整する。Y軸裏板5AとY軸足5Bに関しても、同様な点に注意して調整する。
円形反射鏡1、X軸部材4及びY軸部材5の剛性は、適度な変形が発生できるようにする。X軸部材4とY軸部材5の剛性を円形反射鏡1よりも小さくしてやれば、距離変更機構による距離の変化に対する円形反射鏡1の変形の比が小さくなり、円形反射鏡1の細かな変形の制御がしやすくなる。
The cross-sectional shape and size of the X-axis foot 4B and the thickness of the X-axis back plate 4A are appropriately adjusted so as to obtain a strength that does not damage the applied force. Further, the shape and area of the X-axis bottom surface 4C can be fixed to the back surface 1B of the circular reflecting mirror 1, can be appropriately deformed in a bowl shape, and the fixing surface cannot be peeled off by the pulling force on the fixing surface. Adjust as follows. The Y-axis back plate 5A and the Y-axis foot 5B are adjusted with attention to the same points.
The rigidity of the circular reflecting mirror 1, the X-axis member 4, and the Y-axis member 5 is such that appropriate deformation can occur. If the rigidity of the X-axis member 4 and the Y-axis member 5 is made smaller than that of the circular reflecting mirror 1, the ratio of the deformation of the circular reflecting mirror 1 to the change in distance by the distance changing mechanism becomes small, and the fine deformation of the circular reflecting mirror 1 is reduced. It becomes easy to control.

形状可変鏡は変形力発生機構3も含めて円柱状の形状であり、円筒形のミラーホルダー6(図示せず)の中にミラーホルダー6に対して回転可能に収納される。このため、任意の回転角で形状可変鏡を設置でき、より精度良く非点収差を補正できる。また、Y軸裏板5Aには、ピエゾアクチュエータ2を駆動する電気を送るための配線を通す穴(図示せず)を設けておく。   The deformable mirror has a cylindrical shape including the deformation force generating mechanism 3 and is accommodated in a cylindrical mirror holder 6 (not shown) so as to be rotatable with respect to the mirror holder 6. For this reason, the deformable mirror can be installed at an arbitrary rotation angle, and astigmatism can be corrected with higher accuracy. The Y-axis back plate 5A is provided with a hole (not shown) through which wiring for sending electricity for driving the piezoelectric actuator 2 is passed.

次に、レーザ加工装置のレーザビームの非点収差を形状可変鏡で補正する場合を例にして、動作を説明する。レーザ加工装置の構成は示さないが、レーザ発振器から加工点までの伝送光路の途中に、形状可変鏡が設置されているとする。なお、レーザ加工装置以外に適用する場合でも、同様な動作により非点収差を補正できる。
非点収差が有る場合には、レーザビーム形状が楕円になる。円柱状の形状可変鏡をミラーホルダー6の中で回転させて、レーザビーム形状の径が長い方向または径が短い方向と形状可変鏡のX軸またはY軸を一致させる。ピエゾアクチュエータ2の長さを長くまたは短くする方向に所定量だけ変化させる。所定量だけ変化させるとレーザビーム形状が楕円から真円に近くなれば、そのままピエゾアクチュエータ2の長さを同じ方向に変化させていき、レーザビーム形状が最も真円に近くなる長さに設定する。ピエゾアクチュエータ2の長さを所定量だけ変化させると、レーザビーム形状の扁平の度合いが大きくなる場合は、ピエゾアクチュエータ2の長さを反対方向に変化させて、レーザビーム形状が最も真円に近くなる長さに設定する。レーザ加工時に常にレーザビーム形状を監視し、真円からずれる場合は、ピエゾアクチュエータ2の長さを変化させて、最も真円に近くなるように補正する。なお、最も真円に近いというのは、最も真円に近い状態から所定の許容できる範囲の状態に有ることを意味する。
Next, the operation will be described by taking as an example a case where the astigmatism of the laser beam of the laser processing apparatus is corrected by the deformable mirror. Although the configuration of the laser processing apparatus is not shown, it is assumed that a deformable mirror is installed in the middle of the transmission optical path from the laser oscillator to the processing point. Note that astigmatism can be corrected by a similar operation even when the present invention is applied to a device other than a laser processing apparatus.
When there is astigmatism, the laser beam shape becomes an ellipse. A cylindrical deformable mirror is rotated in the mirror holder 6 so that the direction in which the diameter of the laser beam shape is long or the direction in which the diameter is short coincides with the X axis or Y axis of the shape deformable mirror. The length of the piezo actuator 2 is changed by a predetermined amount in the direction of increasing or decreasing the length. If the laser beam shape changes from an ellipse to a perfect circle when changed by a predetermined amount, the length of the piezo actuator 2 is changed in the same direction as it is, and the laser beam shape is set to a length that is closest to the true circle. . If the flatness of the laser beam shape increases when the length of the piezoelectric actuator 2 is changed by a predetermined amount, the length of the piezoelectric actuator 2 is changed in the opposite direction so that the laser beam shape is closest to a perfect circle. Set to a length of The laser beam shape is always monitored at the time of laser processing, and when it deviates from a perfect circle, the length of the piezo actuator 2 is changed and corrected so as to be closest to the perfect circle. Note that being closest to a perfect circle means being in a predetermined allowable range from the state closest to the perfect circle.

ピエゾアクチュエータ2の長さを初期状態から長くまたは短くの両方向に調整できることの効果を説明するために、ピエゾアクチュエータ2の長さを初期状態から長くまたは短くの1方向にしか変化できない場合の動作についても説明する。円柱状の形状可変鏡をミラーホルダー6の中で回転させて、レーザビーム形状の径が長い方向または径が短い方向と形状可変鏡のX軸またはY軸を一致させる。ピエゾアクチュエータ2の長さを変化できる方向に所定量だけ変化させるとレーザビーム形状が楕円から真円に近くなれば、そのままピエゾアクチュエータ2の長さを同じ方向に変化させていく。ピエゾアクチュエータ2の長さを所定量だけ変化させると、レーザビーム形状の扁平の度合いが大きくなる場合は、ミラーホルダー6内で形状可変鏡を90度回転させた後で長さを変化させていく。レーザビーム形状を監視しながらピエゾアクチュエータ2の長さを変化させて、レーザビーム形状が最も真円に近くなる長さに設定する。   In order to explain the effect of adjusting the length of the piezo actuator 2 in both the longer and shorter directions from the initial state, the operation in the case where the length of the piezo actuator 2 can be changed only in one direction longer or shorter from the initial state. Also explained. A cylindrical deformable mirror is rotated in the mirror holder 6 so that the direction in which the diameter of the laser beam shape is long or the direction in which the diameter is short coincides with the X axis or Y axis of the shape deformable mirror. When the length of the piezo actuator 2 is changed by a predetermined amount in the direction in which the length of the piezo actuator 2 can be changed, the length of the piezo actuator 2 is changed in the same direction as long as the laser beam shape changes from an ellipse to a perfect circle. When the length of the piezo actuator 2 is changed by a predetermined amount, if the degree of flatness of the laser beam shape increases, the length is changed after the variable shape mirror is rotated 90 degrees in the mirror holder 6. . The length of the piezo actuator 2 is changed while monitoring the laser beam shape, and the laser beam shape is set to a length that is closest to a perfect circle.

ピエゾアクチュエータ2の長さを初期状態から長くまたは短くの両方向に変化できるので、長くまたは短くの1方向にしか変化できない場合よりも、非点収差の補正のための形状可変鏡の操作が簡単になる。ピエゾアクチュエータ2の長さを初期状態から長くまたは短くの両方向に変化できようにするために、円形反射鏡1にピエゾアクチュエータ2および変形力発生機構3を接着させ、ピエゾアクチュエータ2に通電して調整可能範囲のほぼ中間の長さにした状態で、円形反射鏡1のミラー面1Aを平面に加工してもよい。   Since the length of the piezo actuator 2 can be changed in both the longer and shorter directions from the initial state, the operation of the deformable mirror for correcting astigmatism is easier than in the case where the length can be changed only in one long or short direction. Become. In order to be able to change the length of the piezo actuator 2 in both the long and short directions from the initial state, the piezo actuator 2 and the deformation force generating mechanism 3 are bonded to the circular reflecting mirror 1, and the piezo actuator 2 is energized and adjusted. The mirror surface 1A of the circular reflecting mirror 1 may be processed into a flat surface in a state where the length is substantially in the middle of the possible range.

ピエゾアクチュエータ2を用いることにより、非点収差の大きさが時間により変化する場合でも、ピエゾアクチュエータ2を連続的に制御でき、非点収差を補正できる。非点収差が時間によりほとんど変化しない場合は、ピエゾアクチュエータ2の替わりにネジなどの、長さの調整が可能であり、かつその長さを保持できる距離変更機構であれば、どのような機構を用いても非点収差を補正できる。
1個の距離変更機構を用いたが、2個以上の距離変更機構を用いてもよい。
ここでは、形状可変鏡を円形としたが、円形でなくてもよい。なお、円形の方が、形状可変鏡の形状が変形する2つの軸の何れかを焦点距離が最大または最小になる方向に合わせるために、形状可変鏡を容易に回転できるという利点が有る。
By using the piezo actuator 2, the piezo actuator 2 can be continuously controlled and the astigmatism can be corrected even when the magnitude of astigmatism changes with time. If the astigmatism hardly changes with time, any mechanism can be used as long as the distance can be adjusted and the distance can be maintained, such as a screw, instead of the piezoelectric actuator 2. Even when used, astigmatism can be corrected.
Although one distance changing mechanism is used, two or more distance changing mechanisms may be used.
Although the deformable mirror is circular here, it may not be circular. Note that the circular shape has an advantage that the deformable mirror can be easily rotated in order to match one of the two axes in which the shape of the deformable mirror is deformed to the direction in which the focal length is maximized or minimized.

形状可変鏡が変形する2つの軸を直交させるとしたが、必ずしも直交していなくてもよい。変形する2つの軸が直交していない場合でも、変形が凹に最大となる箇所と凸に最大になる箇所の角度差はほぼ90度になり、変形が凹に最大となる箇所を通る直線をX軸と考え、変形が凸に最大となる箇所を通る直線をY軸と考えて、X軸またはY軸のどちらかを光の形状の長さが長い方または短い方の方向と合わせて、形状可変鏡を変形させることにより非点収差を補正できる。
2個の第1軸部材の固定箇所を結ぶ線分と2個の第2軸部材の固定箇所を結ぶ線分との交点が、その線分の中間点に位置するようにしたが、少なくともどちらかの線分で中間点の位置に交点が無くてもよい。なお、第1軸部材の固定箇所を結ぶ線分において交点が中間点に無い場合は、この線分の両端に働く力は、交点の両側の回転モーメントが同じになるように交点からの距離の逆数に比例した大きさになる。第2軸部材の固定箇所に関しても同様である。力の釣り合いから、2個の第1軸部材の固定箇所に働く力の合計と、2個の第2軸部材の固定箇所に働く力の合計は同じになる。
Although the two axes on which the deformable mirror is deformed are orthogonal to each other, they are not necessarily orthogonal. Even when the two deforming axes are not orthogonal, the angle difference between the point where the deformation is maximum in the concave and the point where the maximum is convex is almost 90 degrees, and the straight line passing through the point where the deformation is maximum in the concave Considering the X axis, the straight line passing through the point where the deformation becomes maximum convexly is considered the Y axis, and aligning either the X axis or the Y axis with the longer or shorter direction of the light shape, Astigmatism can be corrected by deforming the deformable mirror.
The intersection of the line segment connecting the fixed locations of the two first shaft members and the line segment connecting the fixed locations of the two second shaft members is positioned at the midpoint of the line segment. There may be no intersection at the midpoint of the line segment. If there is no intersection point at the middle point in the line segment connecting the fixed parts of the first shaft member, the force acting on both ends of this line segment is the distance from the intersection point so that the rotational moments on both sides of the intersection point are the same. The size is proportional to the inverse. The same applies to the fixing position of the second shaft member. From the balance of forces, the sum of the forces acting on the fixing points of the two first shaft members and the sum of the forces acting on the fixing points of the two second shaft members are the same.

第1軸部材の固定箇所及び第2軸部材の固定箇所に働く力を、反射鏡に対して垂直に働くとしたので、不要な変形が発生する可能性が小さい。なお、不要な変形が発生しないように、反射鏡及び変形力発生機構の剛性を十分に大きくしてやれば、第1軸部材の固定箇所及び第2軸部材の固定箇所に働く力を、反射鏡に対して垂直にしなくてもよい。なお、形状可変鏡に望ましい変形を発生させるために垂直でない力の成分が有用であれば、垂直でない所定の方向に力を加えるようにしてもよい。   Since the force acting on the fixed portion of the first shaft member and the fixed portion of the second shaft member acts perpendicularly to the reflecting mirror, the possibility of unnecessary deformation is small. In addition, if the rigidity of the reflecting mirror and the deformation force generating mechanism is sufficiently increased so that unnecessary deformation does not occur, the force acting on the fixing portion of the first shaft member and the fixing portion of the second shaft member is applied to the reflecting mirror. However, it does not have to be vertical. If a non-vertical force component is useful for causing a desired deformation in the deformable mirror, the force may be applied in a predetermined direction that is not vertical.

ピエゾアクチュエータ2を円形反射鏡1に垂直でX軸とY軸の交点を通る直線上に配置したので、形状可変鏡を望ましい形に変形させるために不要または邪魔になる力を少なくできる。形状可変鏡を望ましい形に変形させるために不要または邪魔になる力を、何らかの手段により少なくまたは無害化できる場合は、ピエゾアクチュエータ2が距離を変化させるその両端の2点を通る直線が反射鏡に垂直でなかったり、X軸とY軸の交点を通らなかったりしてもよい。
第1軸部材及び第2軸部材として、裏板に2本の足を持つ形状のものを使用したが、これ以外の形状のものでもよい。第1軸部材は、ピエゾアクチュエータ2の一端が固定される箇所が第1軸部材の固定箇所に対して所定の位置に配置するものであればどのようなものでもよい。第2軸部材に関しても同様である。
反射鏡の反射面は、凸面や凹面などのような用途に適した所定の形状であってもよい。
以上のことは、他の実施の形態にもあてはまる。
Since the piezo actuator 2 is arranged on a straight line perpendicular to the circular reflecting mirror 1 and passing through the intersection point of the X axis and the Y axis, it is possible to reduce unnecessary or obstructive force for deforming the deformable mirror into a desired shape. If the unnecessary or disturbing force for deforming the deformable mirror into a desired shape can be reduced or made harmless by some means, a straight line passing through two points at both ends of the piezo actuator 2 that changes the distance is formed on the reflecting mirror. It may not be vertical or may not pass through the intersection of the X axis and the Y axis.
As the first shaft member and the second shaft member, those having a shape having two legs on the back plate are used, but shapes having other shapes may be used. The first shaft member may be any member as long as the portion where one end of the piezoelectric actuator 2 is fixed is disposed at a predetermined position with respect to the fixed portion of the first shaft member. The same applies to the second shaft member.
The reflecting surface of the reflecting mirror may have a predetermined shape suitable for an application such as a convex surface or a concave surface.
The above also applies to other embodiments.

実施の形態2.
この実施の形態2は、ピエゾアクチュエータの替わりにネジ部品を距離変更機構として使用するように、実施の形態1を変更した場合である。図3に、実施の形態2での形状可変鏡の構造を説明する組立図を示す。実施の形態1の場合での図2と比較して、異なる点だけを説明する。
1個のピエゾアクチュエータの替わりに、両端に異なるピッチの雄ネジを切った1個のネジ部品7が有る。
Embodiment 2. FIG.
The second embodiment is a case where the first embodiment is changed so that a screw component is used as a distance changing mechanism instead of the piezo actuator. FIG. 3 shows an assembly diagram for explaining the structure of the deformable mirror according to the second embodiment. Compared with FIG. 2 in the case of the first embodiment, only different points will be described.
Instead of a single piezo actuator, there is a single screw component 7 with male threads of different pitches cut at both ends.

X軸裏板4Aの第1面のX軸裏板中心4E(図示せず)には、ネジ部品7の片側のネジに螺合する雌ネジを有するネジ穴4Fが、その中心をX軸裏板中心4Eに合わせて設けてある。Y軸裏板5Aの第2面のY軸裏板中心5E(図示せず)には、ネジ部品7のもう一方の側のネジに螺合する雌ネジを有するネジ穴5Fが、その中心をY軸裏板中心5Eに合わせて設けてある。   In the X-axis back plate center 4E (not shown) of the first surface of the X-axis back plate 4A, a screw hole 4F having a female screw that engages with a screw on one side of the screw component 7 is centered at the center of the X-axis back plate 4A. It is provided in accordance with the plate center 4E. In the Y-axis back plate center 5E (not shown) of the second surface of the Y-axis back plate 5A, a screw hole 5F having a female screw that engages with a screw on the other side of the screw component 7 is centered. It is provided in accordance with the Y-axis back plate center 5E.

X軸部材4のネジ穴4Fにネジ部品7を捻じ込み、ネジ部品7の反対側をY軸部材5のネジ穴5Fに捻じ込み、ネジ部品7を所定の方向に回して、X軸足底面4CとY軸足底面5Cが同一平面上にあり、かつネジ部品7が両方向に必要なだけの回転ができる位置になるように調整する。このような調整ができるように、X軸足4BとY軸足5Bの長さの差と、ネジ部品7の両側に有るネジ部分の長さ、両側に有るネジのピッチの差、ネジ部品7の全体の長さなどを適切に製作しておく。このような状態で、X軸足底面4CとY軸足底面5Cを円形反射鏡1の裏面1Bに固定する。   The screw component 7 is screwed into the screw hole 4F of the X-axis member 4, the opposite side of the screw component 7 is screwed into the screw hole 5F of the Y-axis member 5, the screw component 7 is turned in a predetermined direction, and the X-axis foot bottom surface 4C and the Y-axis bottom 5C are on the same plane, and the screw component 7 is adjusted to a position where it can rotate as much as necessary in both directions. In order to enable such adjustment, the difference in length between the X-axis foot 4B and the Y-axis foot 5B, the length of the screw portion on both sides of the screw component 7, the difference in the pitch of the screws on both sides, the screw component 7 Properly manufacture the overall length of the. In such a state, the X-axis bottom surface 4C and the Y-axis bottom surface 5C are fixed to the back surface 1B of the circular reflecting mirror 1.

次に動作を説明する。実施の形態1と同様に、レーザビーム形状の径が長い方向または径が短い方向と形状可変鏡のX軸またはY軸を一致させる。ネジ部品7を所定量だけ回転させる。レーザビーム形状が楕円から真円に近くなれば、そのままネジ部品7を同じ方向に回転させていき、レーザビーム形状が最も真円に近くなる長さに設定する。ネジ部品7を所定量だけ回転させると、レーザビーム形状の扁平の度合いが大きくなる場合は、ネジ部品7を反対方向に回転させて、レーザビーム形状が最も真円に近くなる位置までネジ部品7を回転させる。   Next, the operation will be described. As in the first embodiment, the direction in which the diameter of the laser beam shape is long or the direction in which the diameter is short matches the X axis or Y axis of the deformable mirror. The screw component 7 is rotated by a predetermined amount. If the laser beam shape approaches from an ellipse to a perfect circle, the screw component 7 is rotated as it is in the same direction, and the laser beam shape is set to a length that is closest to the perfect circle. If the flatness of the laser beam shape is increased by rotating the screw component 7 by a predetermined amount, the screw component 7 is rotated in the opposite direction to the position where the laser beam shape is closest to a perfect circle. Rotate.

このように、ネジ部品を用いる場合でも、形状可変鏡を鞍形変形させることにより、形状可変鏡が反射する光の非点収差を補正できる。
ネジ部品を使用することにより、形状可変鏡の変形力発生機構の構造が簡単になる。なお、ネジ部品を使用するので、非点収差が時間によりほとんど変化しない対象に対して適用する必要が有る。
As described above, even when a screw component is used, astigmatism of light reflected by the deformable mirror can be corrected by deforming the deformable mirror into a saddle shape.
By using screw parts, the structure of the deformable force generating mechanism of the deformable mirror is simplified. In addition, since screw parts are used, it is necessary to apply to an object whose astigmatism hardly changes with time.

ネジ部品7の両側のネジは、所定のピッチの差があればよく、右ネジと左ネジとによりピッチの差を出してもよい。ピッチの差を小さくすれば、形状可変鏡の鞍形変形を微妙に調整することが容易になる。また、両側にピッチが異なるネジ穴を設けたネジ部品を使用し、X軸部材とY軸部材に雄ネジを設けた棒状の部分を設け、ネジ部品のネジ穴に挿入するようにしてもよい。
以上のことは、他の実施の形態にもあてはまる。
The screws on both sides of the screw component 7 need only have a predetermined pitch difference, and the pitch difference may be produced by a right screw and a left screw. If the pitch difference is reduced, it becomes easy to finely adjust the saddle shape deformation of the deformable mirror. Alternatively, screw parts having screw holes with different pitches on both sides may be used, and rod-like portions provided with male threads on the X-axis member and Y-axis member may be provided and inserted into the screw holes of the screw parts. .
The above also applies to other embodiments.

実施の形態3.
この実施の形態3は、通常のネジを距離変更機構として使用するように、実施の形態2を変更した場合である。図4に、実施の形態3での形状可変鏡の構造を説明する組立図を示す。実施の形態2の場合での図3と異なる点だけを説明する。
片側にネジが切られもう一方の側に頭が有る通常のネジ8を使用している。反射鏡から遠い方の部材であるY軸部材5には、ネジ穴5Fの替わりにネジ8の径よりも僅かに大きくネジ8の頭の径よりも小さい径の貫通穴5GをY軸裏板5Aの中心に設ける。X軸足底面4CとY軸足底面5Cを円形反射鏡1の裏面1Bに固定した状態で、ネジ8をこの貫通穴5Gを通して、X軸裏板4Aの中心に設けたネジ8の雄ネジと螺合する雌ネジを切ったネジ穴4Fに捻じ込む。ネジ8の頭の裏側をY軸裏板5Aに接触させ、さらにネジ部品7を捻じ込むと、円形反射鏡1が鞍形変形することになる。
ネジ8の頭の裏側とY軸裏板5Aが接触しなくなると、反射鏡を鞍形変形させる力を発生できないので、X軸が凸状になる方向でしか鞍形変形できない。
Embodiment 3 FIG.
The third embodiment is a case where the second embodiment is changed so that a normal screw is used as the distance changing mechanism. FIG. 4 is an assembly diagram for explaining the structure of the deformable mirror according to the third embodiment. Only differences from FIG. 3 in the second embodiment will be described.
A normal screw 8 with a screw on one side and a head on the other side is used. The Y-axis member 5 which is a member far from the reflecting mirror has a through-hole 5G having a diameter slightly larger than the diameter of the screw 8 and smaller than the diameter of the head of the screw 8 instead of the screw hole 5F. Provided at the center of 5A. With the X-axis bottom surface 4C and the Y-axis bottom surface 5C fixed to the back surface 1B of the circular reflecting mirror 1, the screw 8 passes through the through hole 5G and the male screw of the screw 8 provided at the center of the X-axis back plate 4A Screw the female screw to be screwed into the screw hole 4F. When the back side of the head of the screw 8 is brought into contact with the Y-axis back plate 5A and the screw component 7 is further screwed, the circular reflecting mirror 1 is deformed into a bowl shape.
If the back side of the head of the screw 8 and the Y-axis back plate 5A are not in contact with each other, a force for deforming the reflecting mirror in a saddle shape cannot be generated, so that the saddle shape can be deformed only in the direction in which the X axis becomes convex.

次に動作を説明する。実施の形態1と同様に、レーザビーム形状の径が長い方向または径が短い方向と形状可変鏡のX軸またはY軸を一致させる。ネジ8を所定量だけ回転させる。レーザビーム形状が楕円から真円に近くなれば、そのままネジ8を同じ方向に回転させていく。ネジ8を所定量だけ回転させるとレーザビーム形状の扁平の度合いが大きくなる場合は、ミラーホルダー6内で形状可変鏡を90度回転させた後で、同じ方向にネジ8を回転させていく。レーザビームの形状を監視しながらネジ8を回転させて、レーザビーム形状が最も真円に近くなる位置までネジ8を捻じ込む。   Next, the operation will be described. As in the first embodiment, the direction in which the diameter of the laser beam shape is long or the direction in which the diameter is short matches the X axis or Y axis of the deformable mirror. The screw 8 is rotated by a predetermined amount. If the laser beam shape changes from an ellipse to a perfect circle, the screw 8 is rotated in the same direction as it is. When the flatness of the laser beam shape increases when the screw 8 is rotated by a predetermined amount, the deformable mirror is rotated 90 degrees in the mirror holder 6 and then the screw 8 is rotated in the same direction. The screw 8 is rotated while monitoring the shape of the laser beam, and the screw 8 is screwed to a position where the laser beam shape is closest to a perfect circle.

このように、通常のネジを用いる場合でも、形状可変鏡を鞍形変形させることにより、形状可変鏡が反射する光の非点収差を補正できる。   Thus, even when a normal screw is used, the astigmatism of the light reflected by the deformable mirror can be corrected by deforming the deformable mirror into a saddle shape.

実施の形態4.
この実施の形態4は、2個のピエゾアクチュエータを使用した場合である。図5に、実施の形態4での形状可変鏡の構造を説明する組立図を示す。
円形反射鏡1は実施の形態1〜3までの場合と同じである。変形力発生機構3が、構造部材9と2個のピエゾアクチュエータ2から構成される。構造部材9の形状は、実施の形態1の場合でのX軸部材4の形状とほぼ同じであり、裏板9Aと2本の足9Bを有する。ただし、実施の形態1の場合でのX軸部材4にあった切欠き4Dは無く、切欠きがあった位置にはピエゾアクチュエータ2が固定される。2本の足9Bの長さは同じであり、ピエゾアクチュエータ2の長さが変化可能範囲のほぼ中間に有る時の長さに等しい。
Embodiment 4 FIG.
In the fourth embodiment, two piezo actuators are used. FIG. 5 shows an assembly diagram for explaining the structure of the deformable mirror according to the fourth embodiment.
The circular reflecting mirror 1 is the same as in the first to third embodiments. The deformation force generating mechanism 3 includes a structural member 9 and two piezo actuators 2. The shape of the structural member 9 is substantially the same as the shape of the X-axis member 4 in the case of Embodiment 1, and has a back plate 9A and two legs 9B. However, there is no notch 4D in the X-axis member 4 in the case of the first embodiment, and the piezo actuator 2 is fixed at the position where the notch is present. The lengths of the two legs 9B are the same, and are equal to the length when the length of the piezoelectric actuator 2 is approximately in the middle of the changeable range.

足9Bの底面を足底面9Cと呼ぶ。2個の足底面9Cの中心を結ぶ直線をX軸と呼び、X軸と裏板9Aの中心で直交する直線をY軸と呼ぶ。Y軸上に有る裏板9Aの両側の端部9Dには、それぞれ1個のピエゾアクチュエータ2の一端を固定する。ピエゾアクチュエータ2に通電させてピエゾアクチュエータ2の長さが足9Bと同じになった状態で、ピエゾアクチュエータ2のもう一端と足底面9Cを、円形反射鏡1の裏面1Bに固定する。なお、2本の足9Bの長さをピエゾアクチュエータ2が最短の時の長さと同じにしてもよい、そうすれば円形反射鏡1の裏面1Bとの固定時にピエゾアクチュエータ2を通電しなくてもよくなる。ただし、Y軸で中央部がへこむ鞍形変形しかできなくなるか、ピエゾアクチュエータ2を通電した状態でミラー面1Aを平面に研磨する必要が有る。   The bottom surface of the foot 9B is referred to as a foot bottom surface 9C. A straight line connecting the centers of the two bottom surfaces 9C is called an X axis, and a straight line orthogonal to the X axis and the center of the back plate 9A is called a Y axis. One end of one piezo actuator 2 is fixed to the end portions 9D on both sides of the back plate 9A on the Y axis. In the state where the piezo actuator 2 is energized and the length of the piezo actuator 2 is the same as that of the foot 9B, the other end of the piezo actuator 2 and the bottom surface 9C are fixed to the back surface 1B of the circular reflecting mirror 1. The lengths of the two legs 9B may be the same as the length when the piezo actuator 2 is shortest, so that the piezo actuator 2 is not energized when fixed to the back surface 1B of the circular reflecting mirror 1. Get better. However, the mirror surface 1A needs to be polished to a flat surface in a state where the piezo actuator 2 is energized, or only a saddle-shaped deformation in which the central portion is recessed along the Y axis is possible.

ここで、構造部材9が第1軸部材であり、ピエゾアクチュエータ2が第1及び第2の距離変更機構である。円形反射鏡1の裏面1Bにおいて、2本の足9Bを固定する箇所を結ぶ線分と2個のピエゾアクチュエータ2の一端が固定される箇所を結ぶ線分とは交差する。   Here, the structural member 9 is a first shaft member, and the piezo actuator 2 is a first and second distance changing mechanism. On the back surface 1B of the circular reflecting mirror 1, a line segment connecting the locations where the two legs 9B are fixed intersects with a line segment connecting the locations where the ends of the two piezoelectric actuators 2 are fixed.

次に動作を説明する。2個のピエゾアクチュエータ2の長さを同じにするという制約を守って長さを調整してやれば、形状可変鏡を鞍形変形できる。形状可変鏡の向きと非点収差が発生している向きとを合わせて、鞍形変形の度合いを適度に調整してやれば、非点収差を補正できる。
このように、2個のピエゾアクチュエータ2を用いて形状可変鏡を鞍形変形させることにより、形状可変鏡が反射する光の非点収差を補正できる。
Next, the operation will be described. If the lengths of the two piezo actuators 2 are adjusted to meet the same restriction, the deformable mirror can be deformed in a bowl shape. Astigmatism can be corrected if the direction of the deformable mirror and the direction in which astigmatism occurs are adjusted appropriately to adjust the degree of saddle deformation.
As described above, the astigmatism of the light reflected by the deformable mirror can be corrected by deforming the deformable mirror in a saddle shape using the two piezoelectric actuators 2.

ピエゾアクチュエータの替わりに、ネジ部品などを距離変更機構として使用してもよい。一端が第1軸部材に固定されもう一端が反射鏡の裏面に固定され、その長さを変更できる距離変更機構であれば、どのようなものでもよい。
以上のことは第1及び第2の距離変更機構を使用する他の実施の形態にもあてはまる。
Instead of the piezo actuator, a screw component or the like may be used as the distance changing mechanism. Any distance changing mechanism may be used as long as one end is fixed to the first shaft member and the other end is fixed to the back surface of the reflecting mirror and the length thereof can be changed.
The above also applies to other embodiments using the first and second distance changing mechanisms.

実施の形態5.
この実施の形態5は、形状可変鏡を鞍形ではなく蒲鉾形に変形させるように、実施の形態2を変更した場合である。図6に、実施の形態5での形状可変鏡の構造を説明する組立図を示す。実施の形態2の場合での図3と異なる点だけを説明する。また、図7は、実施の形態5での形状可変鏡の概念を説明するための図である。
X軸足4Bの横幅が長く、X軸上でネジ穴4Fでない部分にはすべてX軸足4Bを設けている。そのため、X軸上のほぼ全体に均等に荷重Aが加わるので、X軸に平行な直線上では変位が同じになり、形状可変鏡は鞍形ではなく図7に示すように蒲鉾形に変形することになる。なお、図7に示すようなY軸に平行な直線上で中央が出てX軸に平行な直線上では変位が同じになるような変形だけでなく、Y軸に平行な直線上で中央がへこみX軸に平行な直線上では変位が同じになるような変形(蒲鉾の表面を内側から見るような変形)も、蒲鉾形に変形すると呼ぶことにする。
X軸足4Bが横長なので、X軸上のネジ穴4F以外の箇所でX軸足4Bは円形反射鏡1の裏面1Bに固定されることになり、X軸足4Bの両端を結ぶ線分の中央のY軸との交点付近でも円形反射鏡1の裏面1BにX軸部材4は固定される。Y軸との交点付近にX軸部材4が固定されず鞍形に変形する場合は、Y軸足5Bの2箇所の固定箇所に働く荷重BによりY軸との交点付近が、両端と比較してX軸上では最も変位が大きくなる。これに対して、X軸上のY軸との交点付近にX軸部材4が固定されると、この固定箇所ではほとんど変位できなくなり、X軸上及びX軸に平行な直線上での変位は位置によらずほぼ同じになる。
Embodiment 5 FIG.
In the fifth embodiment, the second embodiment is changed so that the deformable mirror is deformed into a bowl shape instead of a bowl shape. FIG. 6 shows an assembly diagram for explaining the structure of the deformable mirror according to the fifth embodiment. Only differences from FIG. 3 in the second embodiment will be described. FIG. 7 is a diagram for explaining the concept of the deformable mirror in the fifth embodiment.
The X-axis foot 4B has a long lateral width, and the X-axis foot 4B is provided in all portions of the X-axis that are not the screw holes 4F. Therefore, since the load A is evenly applied to almost the entire X axis, the displacement is the same on a straight line parallel to the X axis, and the deformable mirror is deformed into a bowl shape as shown in FIG. 7 instead of a bowl shape. It will be. In addition to the deformation that the center appears on a straight line parallel to the Y-axis as shown in FIG. 7 and the displacement is the same on the straight line parallel to the X-axis, the center on the straight line parallel to the Y-axis A deformation that causes the same displacement on a straight line parallel to the dent X axis (a deformation that looks at the surface of the ridge from the inside) is also referred to as a ridge shape.
Since the X-axis foot 4B is horizontally long, the X-axis foot 4B is fixed to the back surface 1B of the circular reflector 1 at a place other than the screw hole 4F on the X-axis, and a line segment connecting both ends of the X-axis foot 4B. The X-axis member 4 is fixed to the back surface 1B of the circular reflecting mirror 1 even near the intersection with the central Y-axis. When the X-axis member 4 is not fixed near the intersection with the Y-axis and deforms into a bowl shape, the vicinity of the intersection with the Y-axis is compared with both ends by the load B acting on the two fixed positions of the Y-axis foot 5B. Therefore, the displacement is greatest on the X axis. On the other hand, when the X-axis member 4 is fixed in the vicinity of the intersection with the Y-axis on the X-axis, it is almost impossible to displace at this fixed position, and the displacement on the X-axis and a straight line parallel to the X-axis is It is almost the same regardless of the position.

蒲鉾形に変形させた円形反射鏡1で反射する光の焦点距離が短いすなわちパワーが強い方向をY軸に合わせると、Y軸では凸面なので反射する光の焦点距離が長くなり、X軸では直線なので反射する光の焦点距離は変化しない。これは、Y軸のパワーをX軸のパワーに近づかせパワーの差を減少させることを意味する。つまり、蒲鉾形の変形の度合いを適切に調整すれば、X軸とY軸のパワーを同じにして非点収差を補正できることになる。
この実施の形態5でも、形状可変鏡を鞍形ではなく蒲鉾形に変形させる点は異なるが、実施の形態2と同様に動作する。
When the focal length of the light reflected by the circular reflector 1 deformed into a bowl shape is short, that is, when the direction in which the power is strong is matched with the Y axis, the focal length of the reflected light becomes long because the Y axis is convex, and the X axis is linear. Therefore, the focal length of the reflected light does not change. This means that the power of the Y axis is made closer to the power of the X axis, and the difference in power is reduced. In other words, astigmatism can be corrected with the X-axis and Y-axis powers made equal by appropriately adjusting the degree of deformation of the saddle shape.
The fifth embodiment also operates in the same manner as the second embodiment, except that the deformable mirror is deformed into a bowl shape instead of a bowl shape.

このように、形状可変鏡を蒲鉾形に変形させることにより、形状可変鏡が反射する光の非点収差を補正できる。
なお、ネジ部品7の替わりにピエゾアクチュエータを用いてもよい。
X軸部材4が横長の2個のX軸足4Bを有し、ネジ穴4F以外のX軸上のほぼ全体に同じ方向の力を加えられるようにしたが、どちらか一方のX軸足4Bだけを横長にしてもよいし、X軸足4Bの数を増やして、X軸上の3箇所以上でX軸部材4を反射鏡の裏面に固定してもよい。なお、両端以外の少なくとも1箇所は、X軸上ではほとんど変位の差が発生しないように、両端のX軸足4Bを結ぶ線分の中央のY軸との交点付近すなわち鞍形変形の場合にX軸上で両端と比較して最も変位が大きくなる位置付近に配置する。また、ネジ穴4Fが不要の場合には、1個の線状のX軸足4Bにより、X軸上のほぼ全体でX軸部材4を反射鏡の裏面に固定してもよい。
以上のことは他の実施の形態でもあてはまる。
As described above, the astigmatism of the light reflected by the deformable mirror can be corrected by deforming the deformable mirror into a bowl shape.
A piezo actuator may be used instead of the screw component 7.
The X-axis member 4 has two horizontally long X-axis legs 4B, and the force in the same direction can be applied to almost the entire X-axis other than the screw holes 4F. The X-axis member 4 may be fixed to the back surface of the reflecting mirror at three or more locations on the X-axis by increasing the number of X-axis legs 4B. It should be noted that at least one place other than both ends is near the intersection with the center Y-axis of the line segment connecting the X-axis feet 4B at both ends, that is, in the case of saddle-shaped deformation so that a difference in displacement hardly occurs on the X-axis. On the X axis, it is arranged in the vicinity of the position where the displacement is the largest compared to both ends. When the screw hole 4F is not necessary, the X-axis member 4 may be fixed to the back surface of the reflecting mirror almost entirely on the X-axis by one linear X-axis foot 4B.
The above also applies to other embodiments.

実施の形態6.
この実施の形態6は、2個のピエゾアクチュエータを用いて形状可変鏡を蒲鉾形に変形させるように、実施の形態4を変更した場合である。図8に、実施の形態6での形状可変鏡の構造を説明する組立図を示す。実施の形態4の場合での図5と異なる点だけを説明する。
構造部材9の足9Bが3本であり、X軸上の両端以外に中央のY軸との交点付近でも足9Bが円形反射鏡1の裏面1Bに固定される。なお、足9Bの高さはすべて同じである。真中の足9Bがあるため、2個のピエゾアクチュエータ2の長さを変えても、X軸に平行な直線上では変位がほぼ同じになり、形状可変鏡は蒲鉾形に変形することになる。
Embodiment 6 FIG.
The sixth embodiment is a case where the fourth embodiment is changed so that the deformable mirror is deformed into a bowl shape using two piezoelectric actuators. FIG. 8 is an assembly diagram illustrating the structure of the deformable mirror according to the sixth embodiment. Only differences from FIG. 5 in the case of the fourth embodiment will be described.
There are three legs 9B of the structural member 9, and the legs 9B are fixed to the back surface 1B of the circular reflecting mirror 1 even in the vicinity of the intersection with the central Y axis in addition to both ends on the X axis. Note that the heights of the legs 9B are all the same. Since there is the middle leg 9B, even if the lengths of the two piezo actuators 2 are changed, the displacement is almost the same on a straight line parallel to the X axis, and the deformable mirror is deformed into a bowl shape.

この実施の形態6でも、2個のピエゾアクチュエータ2の長さを変えることにより、形状可変鏡を蒲鉾形に変形でき、蒲鉾形に変形することにより、形状可変鏡が反射する光の非点収差を補正できる。   Also in the sixth embodiment, the deformable mirror can be deformed into a bowl shape by changing the lengths of the two piezoelectric actuators 2, and the astigmatism of the light reflected by the deformable mirror is deformed into the bowl shape. Can be corrected.

実施の形態7.
この実施の形態7は、実施の形態1〜6の何れかの形状可変鏡をレーザ加工装置に適用した場合である。図9に、レーザ加工装置の構成図を示す。レーザ発振器50より出射されたレーザビーム51は、光路途中の反射鏡52等によって伝送され、2組のガルバノメータ53およびガルバノメータ53の回転により回転駆動されるガルバノスキャナミラー54で2次元スキャンされ、集光レンズ55によって被加工物56上に位置決め、照射される。被加工物56上の点線で囲んだ四角の範囲は、スキャン可能範囲57である。被加工物56はテーブル58に載せられ、テーブル58は2個のテーブル駆動機構59によって2次元に所定の範囲で移動可能である。
Embodiment 7 FIG.
The seventh embodiment is a case where any of the variable shape mirrors of the first to sixth embodiments is applied to a laser processing apparatus. FIG. 9 shows a configuration diagram of the laser processing apparatus. A laser beam 51 emitted from the laser oscillator 50 is transmitted by a reflecting mirror 52 or the like in the middle of the optical path, and is two-dimensionally scanned and condensed by two sets of galvanometers 53 and a galvanometer scanner mirror 54 that is rotationally driven by the rotation of the galvanometer 53. The lens 55 positions and irradiates the workpiece 56. A square range surrounded by a dotted line on the workpiece 56 is a scannable range 57. The workpiece 56 is placed on a table 58, and the table 58 can be moved two-dimensionally within a predetermined range by two table driving mechanisms 59.

図10に、非点収差の補正を行わない場合にレーザ加工装置により穴あけ加工された被加工物表面の写真を示す。図における上下方向に、焦点位置を光軸方向に等間隔で変化させながら(集光レンズ55もしくは被加工物56を光軸方向に沿って、等間隔で移動させながら)、穴あけ加工を行ったものである。1回だけだと加工精度のよしあしの判断が困難なので、同一条件で複数回実施している。そのため、図10には、複数列の穴あけ加工された穴が有る。図10ではレーザビームとして許容できるのは、上から4列目の1列だけである。レーザビームとして許容できかどうかは、あけられた穴の真円度が例えば90%以上であるなどの所定の基準で判断する。
焦点位置が変化するにつれ、加工穴形状が縦長楕円から横長楕円へと変化している。加工穴形状は、被加工物表面におけるレーザビームスポットの形を表している。すなわち、この加工光学系には無視できない非点収差が発生している。
FIG. 10 shows a photograph of the surface of a workpiece that has been drilled by a laser processing apparatus when astigmatism correction is not performed. Drilling was performed while changing the focal position in the optical axis direction at equal intervals in the vertical direction in the figure (moving the condenser lens 55 or the workpiece 56 at equal intervals along the optical axis direction). Is. If it is only once, it is difficult to judge whether the processing accuracy is good or not. Therefore, in FIG. 10, there are a plurality of rows of drilled holes. In FIG. 10, only one row, the fourth row from the top, is acceptable as a laser beam. Whether or not the laser beam is acceptable is determined based on a predetermined standard such that the roundness of the drilled hole is, for example, 90% or more.
As the focal position changes, the shape of the processed hole changes from a vertically long ellipse to a horizontally long ellipse. The processed hole shape represents the shape of a laser beam spot on the surface of the workpiece. That is, astigmatism that cannot be ignored occurs in this machining optical system.

この加工光学系に対し、実施の形態1〜6の何れかの形状可変鏡を反射鏡52として使用し、非点収差を補正する。図10に示した加工穴の楕円の長軸方向もしくは短軸方向に、前記形状可変鏡のX軸もしくはY軸を合わせるように形状可変鏡を設置し、楕円の加工穴が真円に近づくように形状可変鏡の変形量を、ピエゾアクチュエータの駆動電圧もしくはネジの回転量により制御する。このようにして非点収差を補正した後で図10と同じ条件で穴あけ加工を行って得られた被加工物表面の穴の写真を、図11に示す。図11ではレーザビームとして許容できるのは、上から3〜7列目の5列である。非点収差が減少し焦点深度が拡大していることが分かる。
焦点深度の拡大により、被加工物表面にうねりなどがあったとしても、安定したレーザ加工を実現できる。なお、反射鏡52以外の光路途中の鏡を形状可変鏡としてもよい。
For this processing optical system, the deformable mirror according to any one of the first to sixth embodiments is used as the reflecting mirror 52 to correct astigmatism. The deformable mirror is installed so that the X axis or Y axis of the deformable mirror is aligned with the major axis or minor axis direction of the ellipse of the machining hole shown in FIG. 10 so that the elliptical machining hole approaches a perfect circle. In addition, the deformation amount of the deformable mirror is controlled by the driving voltage of the piezo actuator or the rotation amount of the screw. FIG. 11 shows a photograph of the hole on the workpiece surface obtained by performing drilling under the same conditions as in FIG. 10 after correcting astigmatism in this way. In FIG. 11, the allowable laser beams are the fifth to third rows from the top to the seventh row. It can be seen that astigmatism decreases and the depth of focus increases.
By expanding the depth of focus, stable laser processing can be realized even if there is a undulation on the surface of the workpiece. A mirror in the middle of the optical path other than the reflecting mirror 52 may be a variable shape mirror.

この実施の形態7では、図9に示すようにレーザビーム51も、被加工物56を保持するテーブル58も2次元スキャンされるレーザ加工装置を用いたが、形状可変鏡を使用する効果は加工光学系の非点収差に対して作用するものであり、スキャンの方法に依存するものではない。すなわち、レーザビーム51、集光レンズ55、テーブル58のいずれが1次元、2次元もしくは3次元のスキャン、あるいはスキャンをしないレーザ加工装置においても、同様の効果が得られる。レーザビームは、単パルス、複数パルスあるいは連続発振の何れであってもよい。加工内容は、穴あけに限定されず、切断、変形、溶接、熱処理、あるいはマーキングなどのレーザにより加工可能なものであればどのようなものでもよい。また、被加工物には、燃焼、溶融、昇華あるいは変色などのレーザにより発生できる変化であればどのような変化を発生させてもよい。   In the seventh embodiment, as shown in FIG. 9, the laser beam 51 and the table 58 for holding the workpiece 56 are used in a two-dimensionally scanned laser processing apparatus, but the effect of using the deformable mirror is the processing. It acts on astigmatism of the optical system and does not depend on the scanning method. That is, the same effect can be obtained even in a laser processing apparatus in which any one of the laser beam 51, the condensing lens 55, and the table 58 performs one-dimensional, two-dimensional, or three-dimensional scanning or scanning. The laser beam may be a single pulse, a plurality of pulses, or continuous oscillation. The processing content is not limited to drilling, and any processing content can be used as long as it can be processed by laser such as cutting, deformation, welding, heat treatment, or marking. Further, any change may be generated in the workpiece as long as it can be generated by a laser such as combustion, melting, sublimation, or discoloration.

単パルス、複数パルスあるいは連続発振のレーザビームを被加工物面上で位置決め照射して、被加工物を燃焼、溶融、昇華あるいは変色させて、切断、穴あけ、変形、溶接、熱処理、あるいはマーキングなどの加工を行うレーザ加工装置において、反射面が鞍形または蒲鉾形になるように変形できる形状可変鏡を有する非点収差補正機構を備えるレーザ加工装置であれば、レーザビームの非点収差を補正でき、加工精度を向上できる。
また、単パルス、複数パルスあるいは連続発振のレーザビームを、被加工物面上で位置決め照射して、被加工物を燃焼、溶融、昇華あるいは変色させて、切断、穴あけ、変形、溶接、熱処理、あるいはマーキングなどの加工を行うレーザ加工方法において、伝送光路途中の反射鏡を反射面が鞍形または蒲鉾形になるように変形させることで、レーザビームの非点収差を補正するレーザ加工方法によれば、レーザビームの非点収差を補正でき、加工精度を向上できる。
Single-pulse, multi-pulse, or continuous-wave laser beams are positioned and irradiated on the workpiece surface, and the workpiece is burned, melted, sublimated, or discolored, and cut, drilled, deformed, welded, heat-treated, or marked. If the laser processing device has a astigmatism correction mechanism having a deformable mirror that can be deformed so that the reflecting surface has a saddle shape or a saddle shape, the astigmatism of the laser beam is corrected. This can improve the processing accuracy.
In addition, single-pulse, multiple-pulse or continuous-wave laser beams are positioned and irradiated on the workpiece surface, and the workpiece is burned, melted, sublimated or discolored, and cut, drilled, deformed, welded, heat-treated, Alternatively, in a laser processing method that performs processing such as marking, a laser beam processing method that corrects astigmatism of a laser beam by deforming a reflecting mirror in the middle of a transmission optical path so that the reflecting surface has a bowl shape or a bowl shape. For example, the astigmatism of the laser beam can be corrected and the processing accuracy can be improved.

この発明の実施の形態1での形状可変鏡の概念を説明するための図である。It is a figure for demonstrating the concept of the deformable mirror in Embodiment 1 of this invention. この発明の実施の形態1での形状可変鏡の構造を説明する組立図である。It is an assembly drawing explaining the structure of the variable shape mirror in Embodiment 1 of this invention. この発明の実施の形態2での形状可変鏡の構造を説明する組立図である。It is an assembly drawing explaining the structure of the variable shape mirror in Embodiment 2 of this invention. この発明の実施の形態3での形状可変鏡の構造を説明する組立図である。It is an assembly drawing explaining the structure of the variable shape mirror in Embodiment 3 of this invention. この発明の実施の形態4での形状可変鏡の構造を説明する組立図である。It is an assembly drawing explaining the structure of the variable shape mirror in Embodiment 4 of this invention. この発明の実施の形態5での形状可変鏡の構造を説明する組立図である。It is an assembly drawing explaining the structure of the variable shape mirror in Embodiment 5 of this invention. この発明の実施の形態5での形状可変鏡の概念を説明するための図である。It is a figure for demonstrating the concept of the deformable mirror in Embodiment 5 of this invention. この発明の実施の形態6での形状可変鏡の構造を説明する組立図である。It is an assembly drawing explaining the structure of the variable shape mirror in Embodiment 6 of this invention. この発明の実施の形態7でのレーザ加工装置の構成図である。It is a block diagram of the laser processing apparatus in Embodiment 7 of this invention. この発明の実施の形態7での非点収差の補正を行わない場合にレーザ加工装置により穴あけ加工された被加工物表面の写真である。It is a photograph of the surface of the workpiece drilled by the laser processing apparatus when the astigmatism correction in the seventh embodiment of the present invention is not performed. この発明の実施の形態7での形状可変鏡の変形による非点収差の補正を行う場合にレーザ加工装置により穴あけ加工された被加工物表面の写真である。It is a photograph of the surface of the workpiece drilled by the laser processing apparatus when correcting astigmatism due to deformation of the deformable mirror in Embodiment 7 of the present invention.

符号の説明Explanation of symbols

1 :円形反射鏡(反射鏡)
1A:ミラー面(反射面)
1B:裏面
1C:裏面1Bの外周円とX軸との交点(X軸交点)
1D:裏面1Bの外周円とY軸との交点(Y軸交点)
2 :ピエゾアクチュエータ(距離変更機構)
3 :変形力発生機構
4 :X軸部材(第1軸部材)
4A:X軸裏板
4B:X軸足
4C:X軸足底面
4D:切欠き
4E:X軸裏板中心
4F:ネジ穴
5 :Y軸部材(第2軸部材)
5A:Y軸裏板
5B:Y軸足
5C:Y軸足底面
5E:Y軸裏板中心
5F:ネジ穴
5G:貫通穴
6 :ミラーホルダー
7 :ネジ部品(距離変更機構)
8 :ネジ(距離変更機構)
9 :構造部材(第1軸部材)
9A:裏板
9B:足
9C:足底面
9D:Y軸上の端部
50 :レーザ発振器
51 :レーザビーム
52 :反射鏡(形状可変鏡)
53 :ガルバノメータ
54 :ガルバノスキャナミラー
55 :集光レンズ
56 :被加工物
57 :スキャン可能範囲
58 :テーブル
59 :テーブル駆動機構
A :荷重
B :荷重
1: Circular reflector (reflector)
1A: Mirror surface (reflection surface)
1B: Back surface 1C: Intersection of outer periphery circle of back surface 1B and X axis (X axis intersection)
1D: Intersection of the outer circumference of the back surface 1B and the Y axis (Y axis intersection)
2: Piezo actuator (distance changing mechanism)
3: Deformation force generating mechanism 4: X-axis member (first shaft member)
4A: X-axis back plate 4B: X-axis foot 4C: X-axis foot bottom surface 4D: Notch 4E: X-axis back plate center 4F: Screw hole 5: Y-axis member (second shaft member)
5A: Y-axis back plate 5B: Y-axis foot 5C: Y-axis foot bottom 5E: Y-axis back plate center 5F: Screw hole 5G: Through hole 6: Mirror holder 7: Screw component (distance changing mechanism)
8: Screw (distance changing mechanism)
9: Structural member (first shaft member)
9A: Back plate 9B: Foot 9C: Bottom of foot 9D: End 50 on Y axis: Laser oscillator 51: Laser beam 52: Reflective mirror (variable shape mirror)
53: Galvanometer 54: Galvano scanner mirror 55: Condensing lens 56: Work piece 57: Scanable range 58: Table 59: Table drive mechanism A: Load B: Load

Claims (10)

片側に反射面を有する反射鏡と、該反射鏡の裏面に2箇所で固定された第1軸部材と、前記反射鏡の裏面に固定された2本の足を有し前記第1軸部材を跨ぐ第2軸部材と、該第2軸部材と前記第1軸部材の間の距離を変化させる距離変更機構とを備え、前記第1軸部材を固定する箇所を結ぶ線分と前記第2軸部材の前記足を固定する箇所を結ぶ線分とが交差することを特徴とする形状可変鏡。 A reflecting mirror having a reflecting surface on one side, a first shaft member fixed at two positions on the back surface of the reflecting mirror, and two legs fixed on the back surface of the reflecting mirror; A second shaft member straddling, a distance changing mechanism for changing a distance between the second shaft member and the first shaft member, and a line segment connecting a portion for fixing the first shaft member and the second shaft A deformable mirror characterized in that a line segment connecting the portions of the member fixing the legs intersects. 片側に反射面を有する反射鏡と、該反射鏡の裏面に2箇所で固定された第1軸部材と、該第1軸部材に一端が固定されもう一端が前記反射鏡の裏面に固定される第1及び第2の距離変更機構とを備え、前記第1軸部材を固定する箇所を結ぶ線分と前記第1及び第2の距離変更機構を固定する箇所を結ぶ線分とが交差することを特徴とする形状可変鏡。 A reflecting mirror having a reflecting surface on one side, a first shaft member fixed at two positions on the back surface of the reflecting mirror, one end fixed to the first shaft member, and the other end fixed to the back surface of the reflecting mirror A line segment that includes a first and a second distance changing mechanism, and a line segment that connects a portion that fixes the first shaft member intersects a line segment that connects the location that fixes the first and second distance change mechanisms. A deformable mirror characterized by 片側に反射面を有する反射鏡と、該反射鏡の裏面に線状に固定された第1軸部材と、前記反射鏡の裏面に固定された2本の足を有し前記第1軸部材を跨ぐ第2軸部材と、該第2軸部材と前記第1軸部材の間の距離を変化させる距離変更機構とを備え、前記第1軸部材を固定する箇所の線分と前記第2軸部材の前記足を固定する箇所を結ぶ線分とが交差することを特徴とする形状可変鏡。 A reflecting mirror having a reflecting surface on one side; a first shaft member linearly fixed to the back surface of the reflecting mirror; and two legs fixed to the back surface of the reflecting mirror. A second shaft member straddling; a distance changing mechanism for changing a distance between the second shaft member and the first shaft member; and a line segment of a portion for fixing the first shaft member and the second shaft member A deformable mirror characterized in that a line segment connecting portions where the legs are fixed intersects. 片側に反射面を有する反射鏡と、該反射鏡の裏面に線状に固定された第1軸部材と、該第1軸部材に一端が固定されもう一端が前記反射鏡の裏面に固定される第1及び第2の距離変更機構とを備え、前記第1軸部材を固定する箇所の線分と前記第1及び第2の距離変更機構を固定する箇所を結ぶ線分とが交差することを特徴とする形状可変鏡。 A reflecting mirror having a reflecting surface on one side, a first shaft member linearly fixed to the back surface of the reflecting mirror, one end fixed to the first shaft member, and the other end fixed to the back surface of the reflecting mirror A first and second distance changing mechanism, and a line segment that fixes the first shaft member intersects a line segment that connects the first and second distance changing mechanisms. A variable shape mirror. 前記第1軸部材を固定する箇所を結ぶ線分上の前記第2軸部材の前記足を固定する箇所を結ぶ線分との交点付近でも前記第1軸部材を前記反射鏡の裏面に固定することを特徴とする請求項1に記載の形状可変鏡。 The first shaft member is fixed to the back surface of the reflecting mirror even in the vicinity of the intersection of the second shaft member and the line connecting the portion where the foot is fixed on the line connecting the portion where the first shaft member is fixed. The deformable mirror according to claim 1. 前記第1軸部材を固定する箇所を結ぶ線分上の前記第1及び第2の距離変更機構を固定する箇所を結ぶ線分との交点付近でも前記第1軸部材を前記反射鏡の裏面に固定することを特徴とする請求項2に記載の形状可変鏡。 The first shaft member is placed on the back surface of the reflecting mirror even in the vicinity of the intersection with the line segment that connects the first and second distance changing mechanisms on the line segment that connects the portion that fixes the first shaft member. The deformable mirror according to claim 2, wherein the deformable mirror is fixed. 前記距離変更機構にピエゾアクチュエータを用いることを特徴とする請求項1〜請求項6の何れかに記載の形状可変鏡。 The variable shape mirror according to any one of claims 1 to 6, wherein a piezo actuator is used for the distance changing mechanism. 前記距離変更機構にネジを用いることを特徴とする請求項1〜請求項6の何れかに記載の形状可変鏡。 The variable shape mirror according to claim 1, wherein a screw is used for the distance changing mechanism. 前記距離変更機構に両側にピッチが異なるネジを設けたネジ部品を用いることを特徴とする請求項1〜請求項6の何れかに記載の形状可変鏡。 The variable shape mirror according to any one of claims 1 to 6, wherein a screw component having screws with different pitches on both sides is used for the distance changing mechanism. レーザビームを発振するレーザ発振器と、前記レーザ発振器から被加工物にレーザビームを伝送する加工光学系とを有するレーザ加工装置において、請求項1〜請求項9の何れかに記載の形状可変鏡を前記加工光学系に有することを特徴とするレーザ加工装置。 A laser processing apparatus comprising: a laser oscillator that oscillates a laser beam; and a processing optical system that transmits the laser beam from the laser oscillator to a workpiece. The variable shape mirror according to any one of claims 1 to 9 A laser processing apparatus having the processing optical system.
JP2005371168A 2005-12-23 2005-12-23 Variable shape mirror and laser processing apparatus using the variable shape mirror Active JP4552848B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005371168A JP4552848B2 (en) 2005-12-23 2005-12-23 Variable shape mirror and laser processing apparatus using the variable shape mirror
TW96109452A TWI324693B (en) 2005-12-23 2007-03-20 Geometrically variable mirror and laser processing apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005371168A JP4552848B2 (en) 2005-12-23 2005-12-23 Variable shape mirror and laser processing apparatus using the variable shape mirror

Publications (2)

Publication Number Publication Date
JP2007171703A JP2007171703A (en) 2007-07-05
JP4552848B2 true JP4552848B2 (en) 2010-09-29

Family

ID=38298326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005371168A Active JP4552848B2 (en) 2005-12-23 2005-12-23 Variable shape mirror and laser processing apparatus using the variable shape mirror

Country Status (2)

Country Link
JP (1) JP4552848B2 (en)
TW (1) TWI324693B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063887A (en) * 2007-09-07 2009-03-26 Mitsubishi Electric Corp Variable curvature mirror, and optical device using the same
JP4401410B2 (en) * 2007-11-21 2010-01-20 三菱電機株式会社 Laser processing equipment
JP2014137528A (en) * 2013-01-18 2014-07-28 Mitsubishi Electric Corp Laser processing device and curvature variable reflection mirror unit
JP6345064B2 (en) * 2013-11-22 2018-06-20 三菱電機株式会社 Deformable mirror and laser processing apparatus
KR101607776B1 (en) * 2013-11-22 2016-03-30 미쓰비시덴키 가부시키가이샤 Shape variable mirror and laser processing apparatus
KR102263215B1 (en) 2016-12-16 2021-06-09 미쓰비시덴키 가부시키가이샤 Shape change and laser processing equipment
WO2023135994A1 (en) * 2022-01-11 2023-07-20 三菱電機株式会社 Shape-changeable mirror, laser processing device, and method for manufacturing shape-changeable mirror
WO2023135995A1 (en) * 2022-01-11 2023-07-20 三菱電機株式会社 Shape-variable mirror, laser processing device, and method for manufacturing shape-variable mirror

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001042281A (en) * 1999-07-29 2001-02-16 Nittetsu Yahata Eng Kk Mirror device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001042281A (en) * 1999-07-29 2001-02-16 Nittetsu Yahata Eng Kk Mirror device

Also Published As

Publication number Publication date
TWI324693B (en) 2010-05-11
TW200839307A (en) 2008-10-01
JP2007171703A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
JP4552848B2 (en) Variable shape mirror and laser processing apparatus using the variable shape mirror
JP5039122B2 (en) Variable curvature mirror and optical apparatus using the same
KR100955150B1 (en) Laser processing apparatus
JP5670647B2 (en) Processing object cutting method
JP2014138956A (en) Laser beam machining method and method for manufacturing semiconductor device
CN1617784A (en) Laser machining device
BR102016001021A2 (en) method and system for laser machining a workpiece
CN100595627C (en) Deformable lens and laser machining apparatus adopting same
KR101607776B1 (en) Shape variable mirror and laser processing apparatus
JP6345064B2 (en) Deformable mirror and laser processing apparatus
US20180257173A1 (en) Optical processing apparatus, method for optical processed object
TW202135965A (en) Laser processing device and method for laser-processing a workpiece
KR100942085B1 (en) Shape variable mirror and laser processing apparatus using a shape variable mirror
JP2009063887A (en) Variable curvature mirror, and optical device using the same
JPH01113192A (en) Converging device for laser beam machine
JP2009229686A (en) Variable shape mirror and laser beam machining apparatus using variable shape mirror
JPH11267873A (en) Scan optical system of laser light and laser processing device
CN110073251B (en) Shape-variable mirror and laser processing device
JP5063402B2 (en) Laser processing equipment
JP2004361862A (en) Condenser lens system, laser beam machining device, and method for adjusting condenser lens
JP6949472B2 (en) Objective lens drive device
Koch Positioning and Scanning Systems
TW202322952A (en) Laser processing apparatus, probe card production method, and laser processing method
JP2020163472A (en) Aberration adjustment method and aberration control method of laser processing apparatus
Böttnera et al. Active mirrors for plane field correction in laser material processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4552848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250