JP4546600B2 - Construction method of steel structure large space roof structure and steel structure large space roof structure - Google Patents

Construction method of steel structure large space roof structure and steel structure large space roof structure Download PDF

Info

Publication number
JP4546600B2
JP4546600B2 JP2000033952A JP2000033952A JP4546600B2 JP 4546600 B2 JP4546600 B2 JP 4546600B2 JP 2000033952 A JP2000033952 A JP 2000033952A JP 2000033952 A JP2000033952 A JP 2000033952A JP 4546600 B2 JP4546600 B2 JP 4546600B2
Authority
JP
Japan
Prior art keywords
steel
circumferential
large space
roof structure
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000033952A
Other languages
Japanese (ja)
Other versions
JP2001220819A (en
Inventor
章 梅国
日出夫 岡
賢一 宮崎
淳道 櫛部
孝寿 小川
俊夫 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2000033952A priority Critical patent/JP4546600B2/en
Publication of JP2001220819A publication Critical patent/JP2001220819A/en
Application granted granted Critical
Publication of JP4546600B2 publication Critical patent/JP4546600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、鉄骨造の大空間屋根構造の構築構法及び鉄骨造の大空間屋根構造の技術分野に属し、更に云えば、屋根鉄骨総重量の軽量化を図ることができ、それに伴い下部躯体の構造部材の軽量化をも図ることができる鉄骨造の大空間屋根構造の構築構法及び鉄骨造の大空間屋根構造に関する。
【0002】
【従来の技術】
鉄骨造の大空間屋根構造は一般的に、特開平6−288008号公報、特開平8−144371号公報、特開平11−1989号公報等にも開示されているように、半径方向部材と、同心円状に配置された円周方向部材とから構成されている。
【0003】
ところで、屋根鉄骨総重量の軽量化を図るには、半径方向部材と円周方向部材にそれぞれ高強度の高張力鋼による部材を配設することにより各部材の断面積を低減させて実施することが有効とされている。
【0004】
【本発明が解決しようとする課題】
しかしながら、実際、半径方向部材に高張力鋼を配設した場合、通常ほとんどの半径方向部材は圧縮による座屈荷重が支配的となるため、ヤング率や座屈耐力が軟鋼と同等程度しかない高張力鋼を配設する意味はあまりない。一方、円周方向部材、特に最外周に配設される円周方向部材(テンションリング)は引張りのみの荷重が作用するため高張力鋼による部材を配設する利点がある。
そこで、前記テンションリングのみを通常の2倍の強度を有する高張力鋼による部材で実施すると、テンションリングの断面積は略1/2の大きさで略同様に実施できるので、屋根鉄骨総重量の軽量化を図れるように見える。
【0005】
しかし、構造力学上、テンションリングの軸剛性が1/2となり、屋根構造における半径方向の剛性が急変することより隣り合う一つ内側の円周方向部材の引っ張り応力が増加することとなる。そのため、該円周方向部材は断面積を増加させる必要が生じ、実質上、屋根鉄骨総重量の軽量化を図れているとは云えない。
また、一般に、円周方向部材は、最外周付近に配設される円周方向部材のみに応力が作用しがちで、その内側部分の円周方向部材は有効に活用されていない場合が多く、不経済な設計となっていた。
【0006】
したがって、本発明の目的は、構造力学的にも支障なく屋根鉄骨総重量の軽量化を図ることができ、それに伴い下部躯体の構造部材の軽量化も図ることができ、その結果、大幅なコストダウンを達成することができる鉄骨造の大空間屋根構造の構築構法及び鉄骨造の大空間屋根構造を提供することにある。
本発明の次の目的は、最外周付近のみならずその内側部分の円周方向部材にも荷重をバランス良く負担させることができる鉄骨造の大空間屋根構造の構築構法及び鉄骨造の大空間屋根構造を提供することにある。
【0007】
上記従来技術の課題を解決するための手段として、請求項1に記載した発明に係る鉄骨造の大空間屋根構造の構築構法は、
半径方向部材と、同心円状に配置された円周方向部材とで構成される鉄骨造の大空間屋根構造の構築構法において、
前記円周方向部材のうち最外周の円周方向部材高張力鋼などによるもっとも高強度の鋼種で構成し、その内側の複数の円周方向部材それぞれ、半径方向の内方に向かって強度を段階的に小さくした鋼種で構成し、且つ、半径方向の内方に向かって段階的に各円周方向部材の剛性を変化させて、前記各円周方向部材の長期許容応力度に対する軸応力度の比率のばらつきを小さくすることにより、屋根構造の荷重を各円周方向部材にバランス良く負担させる構造に構築することを特徴とする。
【0008】
請求項2に記載した発明に係る鉄骨造の大空間屋根構造は、
半径方向部材と、同心円状に配置された円周方向部材とで構成される鉄骨造の大空間屋根構造において、
前記円周方向部材のうち最外周の円周方向部材高張力鋼などによるもっとも高強度の鋼種で構成され、その内側の複数の円周方向部材それぞれ、半径方向の内方に向かって強度を段階的に小さくした鋼種で構成され且つ、半径方向の内方に向かって段階的に各円周方向部材の剛性を変化させて、前記各円周方向部材の長期許容応力度に対する軸応力度の比率のばらつきを小さくすることにより、屋根構造の荷重を各円周方向部材にバランス良く負担させた構造に構築されていることを特徴とする。
【0010】
図1A、Bは、請求項1と請求項2に記載した鉄骨造の大空間屋根構造の構築構法及び鉄骨造の大空間屋根構造を概略的に示している。
請求項1に記載した、半径方向部材2と、同心円状に配置された円周方向部材3とで構成される鉄骨造の大空間屋根構造1の構築構法は、前記円周方向部材3のうち最外周の円周方向部材3a高張力鋼などによるもっとも高強度の鋼(テンションリング)で構成し、その内側の複数の円周方向部材3b、3c、3d、3e…それぞれ、半径方向の内方に向かって強度を段階的に小さくした鋼種で構成し且つ、半径方向の内方に向かって段階的に各円周方向部材の剛性を変化させて、前記各円周方向部材の長期許容応力度に対する軸応力度の比率のばらつき(変化率)を小さくすることにより、屋根構造の荷重を各円周方向部材にバランス良く負担させる構造に構築することを特徴とする(以上、請求項1記載の発明)。
【0011】
前記構築構法により構築された鉄骨造の大空間屋根構造1は、円周方向部材3のうち最外周の第1の円周方向部材3aには高張力鋼などによるもっとも高強度の鋼材による部材(テンションリング)が配設され、その一つ内側の第2の円周方向部材3bには前記第1の円周方向部材3aより強度が低い鋼材による部材が配設され、更にその内側の第3以降の円周方向部材3c,3d,3e…には前記第2の円周方向部材3bより強度が低い鋼材による部材が配設されている。
【0012】
更に、前記円周方向部材3をすべて同一強度の鋼種で構成して安定した鉄骨造の大空間屋根構造を設計したモデルと比して、それぞれ対応する円周方向部材3の断面低減率について、前記第1の円周方向部材3aの断面低減率は略50%とされ、第2の円周方向部材3bの断面低減率は前記第1の円周方向部材3aの断面低減率と比して減少され、第3以降の円周方向部材3c、3d、3e…の断面低減率は前記第2の円周方向部材3bの断面低減率と比して同一若しくは減少されている。
【0013】
以下、具体的な実施例1〜3に基づき、前記構築構法により構築された鉄骨造の大空間屋根構造1の作用効果を検討する。ちなみに、実施例1は円周方向部材3をすべて同一強度の鋼種で構成して構築したモデルを示し、実施例2は実施例1と比して最外周の円周方向部材のみ2倍の強度を有する鋼種で構成して構築した場合を示し、実施例3は実施例2と比して最外周より内側部分の円周方向部材に、剛性を半径方向の内方に向かって小さくした鋼種で構成して構築した場合の一例を示している。
【0014】
<実施例1(原設計)>
図2A〜Cは、直径200m、高さ32mで、すべての円周方向部材3a,3b,3c…が同一強度(鋼材種類:SM490(図5参照))で設計された鉄骨造の大空間屋根構造について示している。荷重は、構造部材で107.8kN/m、仕上げ材で735N/mとし、自重の合計は約6.44×10kNとした。この設計で、最外周の円周方向部材(テンションリング)3aは、外径800mm、肉厚45mmで、その他の部材はすべて上下弦材にH鋼(300mm×300mm×10mm×15mm)を配した高さ2mのトラスとした。
図2Aは前記屋根構造の半径方向の断面での各部材軸力をton表示で示し、円周方向部材3a、3b、3cの軸応力度と、長期許容応力度(ft)に対する軸応力度の比率(以下適宜「比率」と略称する)を示した。前記軸応力度及び比率は、円周方向部材3a,3b,3cについてそれぞれ約、101N/mm及び0.47,62N/mm及び0.29,20N/mm及び0.09である。図2Bは同様にモーメントを示した。図2Cは変形を示しており、鉛直方向に中心位置で11.4cm自重により変形し、半径方向に最外周で4.9cm変形している。
【0015】
<実施例2>
図3A〜Cに示した実施例2は、上記実施例1と比して、最外周の円周方向部材(テンションリング)3aに前記鋼種:SM490の2倍の強度を有する鋼種:HT780(図5参照)を適用したことのみ相違する。この鋼種:HT780を使用することより部材断面積を略半分の外径800mm、肉厚21.8mmとすることができ、よって円周方向部材3aのみについては軽量化を図ることができる。
【0016】
図3Aに示したように、テンションリング3aの部材の軸応力度(N/mm)は前記実施例1と比して174/101=1.72倍程度で、比率は前記実施例1の0.47よりも小さく約0.40となる。しかし、隣り合う内側の円周方向部材3b,3cの軸応力度はそれぞれ、111/62=1.79倍程度、45/20=2.25倍となり、安定した屋根構造とするためには断面積の増加を強いられ、全体として屋根鉄骨総重量の軽量化を図れない。
【0017】
これは、実施例1に対する剛性の急激な変化により最外周のテンションリング3aに作用した応力が円周方向部材3b,3cに流れてきたことによると考えられる。また、円周方向部材3bについては、比率が約0.51となり、部材の安全性についてもやや欠ける。ちなみに、変形については、図3Cに示したように鉛直方向に中心位置で17.2cm自重により変形し、半径方向に最外周で8.5cm変形し、構造力学的に許容範囲内であり問題ない。
【0018】
<実施例3>
図4A〜Cに示した実施例3は、請求項3に記載した鉄骨造の大空間屋根構造の一例を示しており、上記実施例2と比して、最外周の円周方向部材3aより内側の円周方向部材3b,3c…に、図5に示した数種類の異なる強度を有する鋼材を使用していることのみ相違する。具体的には、第1の円周方向部材3aにHT780、第2の円周方向部材3bにSA440、第3の円周方向部材3cにSM520、第4以降の円周方向部材にSM490と、最外周から半径方向の内方に向かって鋼材の種類を低強度のものに変化させるとともに、実施例1の円周方向部材と対応する円周方向部材3a,3b,3c,3d…の断面低減率はそれぞれ、50%、47%、47%、0%としている。ここに、安定した鉄骨造の大空間屋根構造とするべく、長期許容引張応力度(ft)に対する作用応力度の比率を0.5以下にすることを条件とする。
【0019】
その結果、上記実施例1と比して、前記比率は、0.47に対して約0.42とほとんど変わらない。しかし、円周方向部材3b、3cではそれぞれ0.29に対して約0.44、0.09に対して約0.26と大きくなるとともに、半径方向の内方に向かって変化率(ばらつき)が小さくなっており、部材の高強度化と内側部分の円周方向部材を有効に活用することができ、屋根鉄骨総重量を上記実施例1(原設計)に対し約11%低減させることができた。また、円周方向部材の剛性を徐々に変化させることにより急激に応力が変化する円周方向部材もなく、最外周付近のみならずその内側部分の円周方向部材にも荷重をバランス良く負担させることができた。ちなみに、変形については、図4Cに示したように鉛直方向に中心位置で18.6cm自重により変形し、半径方向に最外周で8.9cm変形し、構造力学的に許容範囲内であり問題ない。
【0020】
以上の結果、大規模な構造や特殊な構造などテンションリングに大きな力が作用する場合には、さらに大きな低減効果を得ることができることも容易に予測される。
なお、上記実施例3では、第4以降の円周方向部材は全て同一強度の鋼材(SM490)を配設して鉄骨造の大空間屋根構造を構築しているがこれに限定されず、更に段階的に剛性を小さくした鋼材による部材を配設して実施しても良い(請求項2記載の発明)。また、断面低減率についても、第4以降の円周方向部材はすべてモデルと比して同一面積で実施しているがこれに限定されず、半径方向の内方に向かって段階的に減少させて実施しても良い。
【0021】
請求項1および請求項2に記載した鉄骨造の大空間屋根構造の構築工法及び鉄骨造の大空間屋根構造は、上記実施例3に特に記載したとおり、構造力学的にも支障なく屋根鉄骨総重量の軽量化を図ることができ、それに伴い下部躯体の構造部材の軽量化を図ることができ、その結果、大幅なコストダウンを達成することができる。また、最外周付近のみならずその内側部分の円周方向部材にも荷重をバランス良く負担させることができるので、経済的な設計が可能となる。
【図面の簡単な説明】
【図1】Aは、本発明に係る鉄骨造の大空間屋根構造を概略的に示した平面図であり、Bは、同正面図である。
【図2】Aは、実施例1に係る鉄骨造の大空間屋根構造を平面的に見た状態で、半径方向のある断面での各部材の軸力をton表示で示し、且つ、図中に円周方向部材3a,3b,3cの軸応力度と、長期許容応力度に対する軸応力度の比率を示している。Bは、実施例1に係る鉄骨造の大空間屋根構造を平面的に見た状態で、半径方向のある断面での各部材のモーメントを示している。Cは、実施例1に係る鉄骨造の大空間屋根構造の変形状態を示している。
【図3】Aは、実施例2に係る鉄骨造の大空間屋根構造を平面的に見た状態で、半径方向のある断面での各部材の軸力をton表示で示し、且つ、図中に円周方向部材3a,3b,3cの軸応力度と、長期許容応力度に対する軸応力度の比率を示している。Bは、実施例2に係る鉄骨造の大空間屋根構造を平面的に見た状態で、半径方向のある断面での各部材のモーメントを示している。Cは、実施例2に係る鉄骨造の大空間屋根構造の変形状態を示している。
【図4】Aは、実施例3(本発明)に係る鉄骨造の大空間屋根構造を平面的に見た状態で、半径方向のある断面での各部材の軸力をton表示で示し、且つ、図中に円周方向部材3a,3b,3cの軸応力度、長期許容応力度に対する軸応力度の比率を示している。Bは、実施例3に係る鉄骨造の大空間屋根構造を平面的に見た状態で、半径方向のある断面での各部材のモーメントを示している。Cは、実施例3に係る鉄骨造の大空間屋根構造の変形状態を示している。
【図5】各鋼材の種類と許容応力度を示している。
【符号の説明】
1 鉄骨造の大空間屋根構造
2 半径方向部材
3,3a,3b,3c,3d,3e 円周方向部材
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of a construction method of a steel structure large space roof structure and a steel structure large space roof structure, and more specifically, the weight of the roof steel frame can be reduced, and accordingly, the lower casing The present invention relates to a construction method of a steel-framed large space roof structure and a steel-framed large space roof structure capable of reducing the weight of a structural member.
[0002]
[Prior art]
A steel structure large space roof structure is generally disclosed in JP-A-6-288008, JP-A-8-144371, JP-A-11-1989, etc. It is comprised from the circumferential direction member arrange | positioned concentrically.
[0003]
By the way, in order to reduce the total weight of the roof steel frame, it is necessary to reduce the cross-sectional area of each member by disposing members made of high-strength high-strength steel in each of the radial member and the circumferential member. Is valid.
[0004]
[Problems to be solved by the present invention]
However, in fact, when high-strength steel is installed in the radial member, usually the buckling load due to compression is dominant in most radial members, so the Young's modulus and buckling strength are only as high as those of mild steel. There is not much meaning to arrange the tensile steel. On the other hand, a circumferential member, particularly a circumferential member (tension ring) disposed on the outermost periphery has an advantage of disposing a member made of high-strength steel because only a tensile load acts.
Therefore, if only the tension ring is implemented with a member made of high-strength steel having twice the normal strength, the cross-sectional area of the tension ring can be implemented in substantially the same way with a size of about 1/2, so that the total weight of the roof steel frame It seems to be able to reduce the weight.
[0005]
However, in terms of structural mechanics, the axial rigidity of the tension ring is halved, and the radial rigidity in the roof structure is suddenly changed, so that the tensile stress of one adjacent circumferential member increases. Therefore, it is necessary to increase the cross-sectional area of the circumferential member, and it cannot be said that the total weight of the roof steel frame is substantially reduced.
In general, the circumferential member tends to act only on the circumferential member disposed near the outermost periphery, and the circumferential member on the inner part is often not effectively utilized. It was an uneconomic design.
[0006]
Therefore, the object of the present invention is to reduce the total weight of the roof steel frame without any trouble in structural mechanics. Accordingly, it is possible to reduce the weight of the structural member of the lower housing, resulting in a significant cost. An object of the present invention is to provide a construction method for a steel-framed large space roof structure and a steel-framed large space roof structure capable of achieving down.
The next object of the present invention is to construct a steel-structured large space roof structure that can load a load in a balanced manner not only in the vicinity of the outermost periphery but also in the circumferential member of the inner portion thereof, and a steel-structured large space roof To provide a structure.
[0007]
As a means for solving the above-mentioned problems of the prior art, a construction method of a steel structure large space roof structure according to the invention described in claim 1 is:
In the construction method of a steel structure large space roof structure composed of radial members and circumferential members arranged concentrically,
Of the circumferential members, the outermost circumferential member is composed of the highest strength steel grade such as high-tensile steel, and the plurality of circumferential members on the inner side are each strength inward in the radial direction. The axial stress with respect to the long-term allowable stress of each circumferential member is configured by gradually reducing the stiffness of each circumferential member inward in the radial direction. It is characterized by constructing a structure in which the load of the roof structure is borne in a balanced manner on each circumferential member by reducing the variation in the degree ratio .
[0008]
Steel structure large space roof structure according to the invention described in claim 2,
In the steel structure large space roof structure composed of radial members and circumferential members arranged concentrically,
Among the circumferential members, the outermost circumferential member is composed of the highest strength steel grade such as high-tensile steel, and the plurality of circumferential members on its inner side are each strength inward in the radial direction. The axial stress relative to the long-term allowable stress of each circumferential member is configured by gradually reducing the rigidity of each circumferential member inwardly in the radial direction. By reducing the variation in the ratio of degrees, it is constructed in a structure in which the load of the roof structure is borne in a balanced manner on each circumferential member .
[0010]
1A and 1B schematically show a construction method of a steel structure large space roof structure and a steel structure large space roof structure according to claims 1 and 2 .
The construction method of the steel-structured large space roof structure 1 composed of the radial member 2 and the circumferential member 3 arranged concentrically as described in claim 1 outermost circumferential member 3a constitute the most high strength steels due high tensile steel (tension ring), a plurality of circumferential members 3b of the inner, 3c, 3d, 3e ... respectively, radially of strength constituted by stepwise smaller the steels inwardly, and, step by step toward the inside in the radial direction by varying the stiffness of the circumferential member, each of said circumferential member It is characterized by constructing a structure in which the load of the roof structure is borne in a balanced manner on each circumferential member by reducing the variation (change rate) of the ratio of the axial stress to the long-term allowable stress of (Invention of Claim 1)
[0011]
The steel-structured large space roof structure 1 constructed by the construction method described above includes a member made of the highest strength steel material such as high-strength steel in the outermost first circumferential member 3a of the circumferential members 3 ( A tension ring is provided, and a member made of a steel material having a lower strength than the first circumferential member 3a is arranged on the second circumferential member 3b on the inner side thereof, and a third member on the inner side thereof is further provided. Subsequent circumferential members 3c, 3d, 3e, ... are provided with steel members having lower strength than the second circumferential member 3b.
[0012]
Furthermore, compared with the model which comprised the said circumferential direction member 3 by all the steel grades of the same intensity | strength, and designed the stable large-sized steel roof structure, about the cross-section reduction rate of the corresponding circumferential direction member 3, respectively. The cross-sectional reduction rate of the first circumferential member 3a is approximately 50%, and the cross-sectional reduction rate of the second circumferential member 3b is compared with the cross-sectional reduction rate of the first circumferential member 3a. reduced Te, third and subsequent circumferential member 3c, 3d, 3e ... sectional reduction rate of that is the same or reduced compared to the cross-sectional reduction ratio of the second circumferential member 3b.
[0013]
Hereinafter, based on the concrete Examples 1-3, the effect of the steel structure large space roof structure 1 constructed | assembled by the said construction method is examined. Incidentally, Example 1 shows a model constructed by constructing all the circumferential members 3 with the same strength steel type, and Example 2 is twice the outermost circumferential member only as compared with Example 1. Example 3 shows a case where it is constructed with a steel type having strength, and in Example 3, compared with Example 2, the rigidity is reduced toward the inner member in the circumferential direction from the outermost periphery toward the inner side in the radial direction. It shows an example of a case constructed and composed steels.
[0014]
<Example 1 (original design)>
FIGS. 2A to C show a steel structure large space roof having a diameter of 200 m and a height of 32 m, and all the circumferential members 3a, 3b, 3c... Designed with the same strength (steel material type: SM490 (see FIG. 5)). It shows the structure. The load was 107.8 kN / m 3 for the structural member, 735 N / m 2 for the finishing material, and the total weight was about 6.44 × 10 4 kN. In this design, the outermost circumferential member (tension ring) 3a has an outer diameter of 800 mm and a wall thickness of 45 mm, and all other members are made of H steel (300 mm × 300 mm × 10 mm × 15 mm) on the upper and lower chords. The truss was 2m high.
FIG. 2A shows the axial force of each member in the radial cross section of the roof structure in ton, and the axial stress degree of the circumferential members 3a, 3b, 3c and the axial stress degree with respect to the long-term allowable stress degree (ft). The ratio (hereinafter referred to as “ratio” where appropriate) is shown. The shaft stresses and ratios about each circumferential members 3a, 3b, for 3c, is 101N / mm 2 and 0.47,62N / mm 2 and 0.29,20N / mm 2 and 0.09. FIG. 2B similarly showed the moment. FIG. 2C shows the deformation, which is deformed by a weight of 11.4 cm at the center position in the vertical direction and deformed by 4.9 cm at the outermost periphery in the radial direction.
[0015]
<Example 2>
Example 2 shown in FIGS. 3A to 3C has a steel type HT780 having a strength twice that of the steel type SM490 in the outermost circumferential member (tension ring) 3a as compared with Example 1 described above. The only difference is that 5) is applied. By using this steel type: HT780, the cross-sectional area of the member can be reduced to substantially half the outer diameter of 800 mm and the wall thickness of 21.8 mm. Therefore, only the circumferential member 3a can be reduced in weight.
[0016]
As shown in FIG. 3A, the axial stress degree (N / mm 2 ) of the member of the tension ring 3a is about 174/101 = 1.72 times that of the first embodiment, and the ratio is that of the first embodiment. It is smaller than 0.47 and becomes about 0.40. However, the axial stresses of the adjacent inner circumferential members 3b and 3c are 111/62 = 1.79 times and 45/20 = 2.25 times, respectively. The area is forced to increase, and the overall weight of the roof steel frame cannot be reduced as a whole.
[0017]
This is considered to be due to the stress acting on the outermost tension ring 3a flowing in the circumferential members 3b and 3c due to the sudden change in rigidity with respect to Example 1. Further, the ratio of the circumferential member 3b is about 0.51, and the safety of the member is somewhat lacking. Incidentally, as shown in FIG. 3C, the deformation is deformed by the weight of 17.2 cm at the center position in the vertical direction, and deformed by 8.5 cm at the outermost periphery in the radial direction. .
[0018]
<Example 3>
Example 3 shown in FIGS. 4A to 4C shows an example of a steel-framed large space roof structure described in claim 3, as compared with Example 2 above, from the outermost circumferential member 3 a. The only difference is that steel materials having several different strengths shown in FIG. 5 are used for the inner circumferential members 3b, 3c. Specifically, the first circumferential member 3a is HT780, the second circumferential member 3b is SA440, the third circumferential member 3c is SM520, the fourth and subsequent circumferential members are SM490, While changing the kind of steel material to a low intensity | strength toward inner side of radial direction from outermost periphery, the cross-sectional reduction of the circumferential direction members 3a, 3b, 3c, 3d ... corresponding to the circumferential direction member of Example 1 is carried out. The rates are 50%, 47%, 47%, and 0%, respectively. Here, in order to obtain a stable steel frame large space roof structure, the ratio of the acting stress to the long-term allowable tensile stress (ft) is set to 0.5 or less.
[0019]
As a result, compared with Example 1 above, the ratio is almost unchanged from 0.47 to about 0.42. However, in the circumferential members 3b and 3c, they are about 0.44 with respect to 0.29 and about 0.26 with respect to 0.09, respectively, and the rate of change (variation) inward in the radial direction. Is reduced, the strength of the member can be increased and the circumferential member of the inner part can be effectively used, and the total weight of the roof steel frame can be reduced by about 11% compared to Example 1 (original design). did it. Further, there is no circumferential member whose stress changes suddenly by gradually changing the rigidity of the circumferential member, and the load is applied to the circumferential member not only near the outermost periphery but also in the inner portion thereof in a well-balanced manner. I was able to. Incidentally, as shown in FIG. 4C, the deformation is deformed by the weight of 18.6 cm at the center position in the vertical direction and deformed by 8.9 cm at the outermost periphery in the radial direction, which is within the allowable range in terms of structural mechanics. .
[0020]
As a result, when a large force acts on the tension ring such as a large-scale structure or a special structure, it can be easily predicted that a greater reduction effect can be obtained.
In Example 3 described above, the steel members (SM490) having the same strength are all arranged in the fourth and subsequent circumferential members to construct a steel structure large space roof structure. A member made of steel whose rigidity is gradually reduced may be arranged and carried out (invention according to claim 2). In addition, the cross-section reduction rate is all the same for the fourth and subsequent circumferential members as compared with the model, but is not limited to this, and is gradually reduced inward in the radial direction. May be implemented.
[0021]
The construction method of the steel structure large space roof structure described in claim 1 and claim 2 and the steel structure large space roof structure are the same as described in Example 3 above. The weight can be reduced, and accordingly, the structural member of the lower casing can be reduced, and as a result, a significant cost reduction can be achieved. Moreover, since the load can be borne not only in the vicinity of the outermost periphery but also in the circumferential member in the inner portion thereof in a balanced manner, an economical design is possible.
[Brief description of the drawings]
FIG. 1A is a plan view schematically showing a steel structure large space roof structure according to the present invention, and B is a front view thereof. FIG.
FIG. 2A shows the axial force of each member in a radial cross-section in a state viewed in a plan view of the steel-structured large space roof structure according to Example 1, and in FIG. 3 shows the ratio of the axial stress degree of the circumferential members 3a, 3b, and 3c to the long-term allowable stress degree. B shows the moment of each member in the cross section with a radial direction in the state which looked at the steel frame large space roof structure concerning Example 1 planarly. C has shown the deformation state of the steel structure large space roof structure which concerns on Example 1. FIG.
FIG. 3A is a view showing the axial force of each member in a radial cross section in a ton display in a state where the steel structure large space roof structure according to the second embodiment is viewed in a plan view; 3 shows the ratio of the axial stress degree of the circumferential members 3a, 3b, and 3c to the long-term allowable stress degree. B shows the moment of each member in a certain cross section in the radial direction in a state where the steel structure large space roof structure according to the second embodiment is viewed in a plane. C has shown the deformation | transformation state of the steel structure large space roof structure which concerns on Example 2. FIG.
FIG. 4A is a view showing the axial force of each member in a radial cross section in a ton display in a state where the steel structure large space roof structure according to Example 3 (the present invention) is viewed in a plane. Moreover, the ratio of the axial stress degree to the axial stress degree of the circumferential members 3a, 3b, 3c and the long-term allowable stress degree is shown in the figure. B shows the moment of each member in a cross section with a radial direction in the state which looked at the steel frame large space roof structure concerning Example 3 planarly. C shows a deformed state of the steel structure large space roof structure according to the third embodiment.
FIG. 5 shows the types and allowable stresses of each steel material.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steel structure large space roof structure 2 Radial direction member 3, 3a, 3b, 3c, 3d, 3e Circumferential direction member

Claims (2)

半径方向部材と、同心円状に配置された円周方向部材とで構成される鉄骨造の大空間屋根構造の構築構法において、
前記円周方向部材のうち最外周の円周方向部材高張力鋼などによるもっとも高強度の鋼種で構成し、その内側の複数の円周方向部材それぞれ、半径方向の内方に向かって強度を段階的に小さくした鋼種で構成し、且つ、半径方向の内方に向かって段階的に各円周方向部材の剛性を変化させて、前記各円周方向部材の長期許容応力度に対する軸応力度の比率のばらつきを小さくすることにより、屋根構造の荷重を各円周方向部材にバランス良く負担させる構造に構築することを特徴とする、鉄骨造の大空間屋根構造の構築構法。
In the construction method of a steel structure large space roof structure composed of radial members and circumferential members arranged concentrically,
Of the circumferential members, the outermost circumferential member is composed of the highest strength steel grade such as high-tensile steel, and the plurality of circumferential members on the inner side are each strength inward in the radial direction. The axial stress with respect to the long-term allowable stress of each circumferential member is configured by gradually reducing the stiffness of each circumferential member inward in the radial direction. A construction method for a steel-structured large space roof structure, characterized in that it is constructed in a structure that balances the load of the roof structure on each circumferential member by reducing the variation in the ratio of degrees .
半径方向部材と、同心円状に配置された円周方向部材とで構成される鉄骨造の大空間屋根構造において、
前記円周方向部材のうち最外周の円周方向部材高張力鋼などによるもっとも高強度の鋼種で構成され、その内側の複数の円周方向部材それぞれ、半径方向の内方に向かって強度を段階的に小さくした鋼種で構成され且つ、半径方向の内方に向かって段階的に各円周方向部材の剛性を変化させて、前記各円周方向部材の長期許容応力度に対する軸応力度の比率のばらつきを小さくすることにより、屋根構造の荷重を各円周方向部材にバランス良く負担させた構造に構築されていることを特徴とする、鉄骨造の大空間屋根構造。
In the steel structure large space roof structure composed of radial members and circumferential members arranged concentrically,
Among the circumferential members, the outermost circumferential member is composed of the highest strength steel grade such as high-tensile steel, and the plurality of circumferential members on its inner side are each strength inward in the radial direction. The axial stress relative to the long-term allowable stress of each circumferential member is configured by gradually reducing the rigidity of each circumferential member inwardly in the radial direction. A steel-structured large space roof structure characterized by being constructed in a structure in which the load of the roof structure is borne in a balanced manner on each circumferential member by reducing the variation in the ratio of degrees .
JP2000033952A 2000-02-10 2000-02-10 Construction method of steel structure large space roof structure and steel structure large space roof structure Expired - Fee Related JP4546600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000033952A JP4546600B2 (en) 2000-02-10 2000-02-10 Construction method of steel structure large space roof structure and steel structure large space roof structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000033952A JP4546600B2 (en) 2000-02-10 2000-02-10 Construction method of steel structure large space roof structure and steel structure large space roof structure

Publications (2)

Publication Number Publication Date
JP2001220819A JP2001220819A (en) 2001-08-17
JP4546600B2 true JP4546600B2 (en) 2010-09-15

Family

ID=18558364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000033952A Expired - Fee Related JP4546600B2 (en) 2000-02-10 2000-02-10 Construction method of steel structure large space roof structure and steel structure large space roof structure

Country Status (1)

Country Link
JP (1) JP4546600B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147802U (en) * 1985-03-06 1986-09-11
JPH05321337A (en) * 1992-05-27 1993-12-07 Shimizu Corp Domed roof and construction method for domed roof
JPH108626A (en) * 1996-06-26 1998-01-13 Mitsubishi Heavy Ind Ltd Construction method of roof dome

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147802U (en) * 1985-03-06 1986-09-11
JPH05321337A (en) * 1992-05-27 1993-12-07 Shimizu Corp Domed roof and construction method for domed roof
JPH108626A (en) * 1996-06-26 1998-01-13 Mitsubishi Heavy Ind Ltd Construction method of roof dome

Also Published As

Publication number Publication date
JP2001220819A (en) 2001-08-17

Similar Documents

Publication Publication Date Title
KR101364922B1 (en) Buckling-Restrained Braces
CN107268791A (en) A kind of combined tension force dome structure of rigid roofing
JPH02304136A (en) Top part structure for dome frame
KR101364787B1 (en) Buckling-Restrained Braces
US20100031600A1 (en) Load Bearing Frame
CA2266843A1 (en) Door beam of aluminum alloy
JP4546600B2 (en) Construction method of steel structure large space roof structure and steel structure large space roof structure
JP2006342604A (en) Through-hole reinforcing structure of steel beam and through-hole reinforcing tool used therefor
JP2019127800A (en) Truss beam
JP4418269B2 (en) Primary lining body of concrete-filled steel segment and tunnel
JPH0813691A (en) Steel pipe column with box section
JP2008157021A (en) Earthquake-damping brace damper
JP4637465B2 (en) Rectangular cross section shield tunnel
JPH08120781A (en) Tube structure of reinforced concrete construction
US157908A (en) Improvement in iron columns
CN219753464U (en) Steel column reducing node with small bottom and large top
KR102615212B1 (en) Reinforcement assembly and roof structure including the same
JP2020012329A (en) Beam joint structure
JPH0544299A (en) Reinforcing structure of structural steel reinforced concrete structure column member
JP6591110B1 (en) Roof and structure
CN207714120U (en) A kind of branched block node of large span curved shape overpass list bridge pier
JP4801471B2 (en) Single layer lattice dome structure
KR100391970B1 (en) groud bridge
JPH01137035A (en) Multiple type radiation type beam chord stretching structure
JP6826410B2 (en) Steel brace and building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees