JP4543779B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP4543779B2
JP4543779B2 JP2004187135A JP2004187135A JP4543779B2 JP 4543779 B2 JP4543779 B2 JP 4543779B2 JP 2004187135 A JP2004187135 A JP 2004187135A JP 2004187135 A JP2004187135 A JP 2004187135A JP 4543779 B2 JP4543779 B2 JP 4543779B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting diode
light guide
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004187135A
Other languages
Japanese (ja)
Other versions
JP2006013087A (en
Inventor
英士 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2004187135A priority Critical patent/JP4543779B2/en
Publication of JP2006013087A publication Critical patent/JP2006013087A/en
Application granted granted Critical
Publication of JP4543779B2 publication Critical patent/JP4543779B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

本発明は照光式スイッチ、液晶のバックライト、各種照明などに利用される半導体発光装置にかかわり、特に、信頼性高く高出力の発光を行う半導体発光装置を提供することにある。   The present invention relates to a semiconductor light emitting device used for an illumination type switch, a liquid crystal backlight, various illuminations, etc., and particularly to provide a semiconductor light emitting device that emits light with high reliability and high output.

今日、小型化、低消費電力、振動などに強い利点を活かして液晶のバックライトなどに発光ダイオード(以下、LEDとも呼ぶ)を利用した面状光源などの半導体発光装置が利用されている。特に、フルカラー液晶に利用可能な1チップ2端子で白色を含む系統色名(JIS Z 8701)が発光可能なLEDが開発されたことから携帯電話や車載用光源として急速に浸透している。   Nowadays, semiconductor light-emitting devices such as planar light sources using light-emitting diodes (hereinafter also referred to as LEDs) for liquid crystal backlights and the like have been used by taking advantage of strong advantages in downsizing, low power consumption, vibration, and the like. In particular, LEDs that can emit a system color name including white (JIS Z 8701) that can be used for full-color liquid crystal with one chip and two terminals have been developed and are rapidly spreading as light sources for mobile phones and vehicles.

このような光半導体装置の一例として、特開2002−26394号公報に開示される、以下の構成のものが挙げられる。発光ダイオードからの光を導光板である板状透光性部材に導入すべく表面実装型発光ダイオードの発光面を導光体の端部と当接させる。このように、発光ダイオードの発光面と、導光体の端部とを当接させることにより、発光ダイオードからの光を漏れなく、導光体に入射することができる。また、発光ダイオードが当接される端面及び発光観測面となる主面を除いて、導光体及び実装基板上に配置された発光ダイオードごと、アルミニウムや白色顔料が添加された樹脂からなる反射板となる筐体で覆い面状光源を構成する。   As an example of such an optical semiconductor device, one having the following configuration disclosed in Japanese Patent Application Laid-Open No. 2002-26394 can be given. In order to introduce light from the light emitting diode into a plate-shaped light-transmitting member that is a light guide plate, the light emitting surface of the surface mount type light emitting diode is brought into contact with the end portion of the light guide. In this way, by bringing the light emitting surface of the light emitting diode into contact with the end of the light guide, light from the light emitting diode can be incident on the light guide without leakage. A reflector made of a resin to which aluminum or a white pigment is added, together with the light-emitting diodes arranged on the light guide and the mounting substrate, excluding the end surface on which the light-emitting diodes abut and the main surface that becomes the light-emission observation surface The covering surface light source is configured by the casing.

導光板の形状や大きさに合わせて複数の発光ダイオードが導光体に当接される。このような半導体発光装置の発光ダイオードに電流を流すことにより、点光源として機能する発光ダイオードからの混色光を導光体を介して面状など所望の形状に発光させ信頼性、省スペース及び低消費電力な半導体発光装置とすることができる。特に、青色LEDチップと、青色LEDチップから放出された青色光を吸収して、黄色に変換する蛍光体などとを組み合わせて白色系などの混色光が発光可能な発光ダイオードを光源として利用することにより、種々の発光色が発光可能な半導体発光装置として利用することができる。このような半導体発光装置は携帯電話の液晶バックライトなどとして急速に普及し始めている。   A plurality of light emitting diodes are brought into contact with the light guide according to the shape and size of the light guide plate. By supplying a current to the light emitting diode of such a semiconductor light emitting device, the mixed color light from the light emitting diode functioning as a point light source is emitted through a light guide to a desired shape such as a planar shape, thereby reducing reliability, space saving, and low A semiconductor light emitting device with low power consumption can be obtained. In particular, a light emitting diode capable of emitting mixed color light such as white light by combining a blue LED chip and a phosphor that absorbs blue light emitted from the blue LED chip and converts it into yellow is used as a light source. Therefore, it can be used as a semiconductor light emitting device capable of emitting various emission colors. Such semiconductor light emitting devices are rapidly spreading as liquid crystal backlights for mobile phones.

特開2002−26394号公報。JP 2002-26394 A.

しかしながら、上述の面状光源を高出力発光させるに伴い、発光ダイオードの発光面側の発熱が無視できなくなる。すなわち、発光ダイオードの発熱は、発光ダイオードの実装基板側から主に放熱されるが、高出力発光により発光ダイオードの外殻となるハウジングも強く発熱する。そして、ハウジングからの放熱が、実装基板方向からの放熱だけでは十分でなくなる。その一方、導光体は、光透過性が高く、成型し易い透光性樹脂を材料としており、その導光体の光入射面に当接された発光ダイオードの発熱により溶ける危険性が高まる。仮に、高出力、長時間の使用により導光体の光入射面が熱による損傷を受けると、色ズレや色ムラの発生など、面状光源の光学特性に悪影響を及ぼし、信頼性の高い半導体発光装置とすることができない。   However, as the above-described planar light source emits light with high output, heat generation on the light emitting surface side of the light emitting diode cannot be ignored. That is, the heat generation of the light emitting diode is mainly radiated from the mounting substrate side of the light emitting diode, but the housing which is the outer shell of the light emitting diode strongly generates heat due to the high output light emission. And it is not sufficient for the heat radiation from the housing to be only from the mounting substrate direction. On the other hand, the light guide is made of a light-transmitting resin that is highly light transmissive and easy to mold, and there is an increased risk of melting due to the heat generated by the light emitting diodes in contact with the light incident surface of the light guide. If the light incident surface of the light guide is damaged by heat due to high output and long-term use, it will adversely affect the optical characteristics of the planar light source, such as color misregistration and color unevenness, and a highly reliable semiconductor A light-emitting device cannot be obtained.

そこで、本発明は、信頼性高く高出力な発光を行うことが可能な半導体発光装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a semiconductor light emitting device capable of emitting light with high reliability and high output.

以上の目的を達成するために本発明に係る半導体発光装置は、発光ダイオードと、該発光ダイオードからの光が入射される光入射面を有する導光体と、前記発光ダイオード及び導光体とを保持する筐体とを有する半導体発光装置であって、上記導光体の光入射面側の端部に当接されたスペーサーにより、上記発光ダイオードの発光面と、上記光入射面とが所定の間隔を有するように対向されていることを特徴とする。   In order to achieve the above object, a semiconductor light emitting device according to the present invention includes a light emitting diode, a light guide having a light incident surface on which light from the light emitting diode is incident, and the light emitting diode and the light guide. A light emitting surface of the light emitting diode and a light incident surface of the semiconductor light emitting device, wherein the light emitting surface and the light incident surface of the light guide are in contact with each other. It is characterized by facing each other with a gap.

これにより、高出力発光させる面状光源においても、発光ダイオードからの熱が導光体に直接伝わることがなくなるため、信頼性の高い半導体発光装置とすることができる。   As a result, even in a planar light source that emits light with high output, heat from the light emitting diode is not directly transmitted to the light guide, so that a highly reliable semiconductor light emitting device can be obtained.

また、スペーサーは、上記発光ダイオードが収納される貫通孔を有することが好ましい。これにより、発光ダイオードと導光体の光入射面との間に間隔を設けることが容易にできる。   The spacer preferably has a through hole in which the light emitting diode is accommodated. Thereby, a space can be easily provided between the light emitting diode and the light incident surface of the light guide.

また、上記スペーサーは、上記導光体の端部が嵌合する凹部を有することが好ましい。これにより、振動を受ける使用状態においても、導光体とスペーサーとの装着性が高まり、信頼性の高い半導体装置とすることができる。   Moreover, it is preferable that the said spacer has a recessed part which the edge part of the said light guide fits. Thereby, even in a use state where vibration is applied, the mounting property between the light guide and the spacer is improved, and a highly reliable semiconductor device can be obtained.

また、上記スペーサーは、上記導光体の光入射面に隣接する面側を覆う側壁を有することが好ましい。これにより、上記導光体の光入射面に隣接する面から漏れ出した光は、スペーサーの側壁にて導光体の方向に反射され、導光体に再度入射される。したがって、導光体の光入射面側の端部に当接されたスペーサーにより、発光ダイオードの発光面および光入射面が所定の間隔を有するように対向されている半導体発光装置においても、発光出力を低下させることなく、高出力発光可能な半導体発光装置とすることができる。   Moreover, it is preferable that the said spacer has a side wall which covers the surface side adjacent to the light-incidence surface of the said light guide. Thereby, the light leaking from the surface adjacent to the light incident surface of the light guide is reflected in the direction of the light guide by the side wall of the spacer and is incident on the light guide again. Therefore, even in the semiconductor light emitting device in which the light emitting surface of the light emitting diode and the light incident surface are opposed to each other with a predetermined interval by the spacer in contact with the light incident surface end of the light guide, the light emission output It is possible to obtain a semiconductor light emitting device that can emit light at a high output without lowering.

また、上記筐体は上記スペーサーと導光体の端部とを押圧する弾性部材を有することが好ましい。これにより、スペーサーと導光体の端部とが強固に当接され、振動を受ける使用状態においても、導光体とスペーサーとの装着性が高まり、信頼性の高い半導体装置とすることができる。また、弾性部材により、基板が筐体に加圧される。この圧力により基板と筐体の接触部分の熱抵抗が下がる。したがって、発光ダイオードから基板を経由して筐体方向への熱移動が円滑に行われるため、発光ダイオードの発熱を効率よく抑えることができる。   Moreover, it is preferable that the said housing | casing has an elastic member which presses the said spacer and the edge part of a light guide. As a result, the spacer and the end of the light guide are firmly in contact with each other, and even in a usage state where vibration is applied, the mounting property between the light guide and the spacer is improved, and a highly reliable semiconductor device can be obtained. . Further, the substrate is pressed against the casing by the elastic member. This pressure lowers the thermal resistance of the contact portion between the substrate and the housing. Therefore, heat transfer from the light emitting diode toward the housing through the substrate is performed smoothly, so that heat generation of the light emitting diode can be efficiently suppressed.

また、上記発光ダイオードは、底部にLEDチップが配置されるハウジングを有することが好ましい。これにより、LEDチップを外部環境から保護し、ハウジングの外殻形状によりスペーサーと当接することが容易にできる。   The light emitting diode preferably has a housing in which the LED chip is disposed at the bottom. Accordingly, the LED chip can be protected from the external environment, and can easily come into contact with the spacer due to the outer shell shape of the housing.

また、上記発光ダイオードは、実装基板上に配置され、その実装面と略垂直方向に発光面を有するSMD型発光ダイオードとすることが好ましい。これにより、実装基板方向への放熱性を向上させ、薄型の半導体発光装置とすることができる。また、導光体と実装基板を互いに反対側となるように、離して配置することができるため、導光体が実装基板の発熱による悪影響を受けることがなくなり、信頼性の高い半導体発光装置とすることができる。   The light emitting diode is preferably an SMD type light emitting diode which is disposed on a mounting substrate and has a light emitting surface in a direction substantially perpendicular to the mounting surface. Thereby, the heat dissipation toward the mounting substrate can be improved, and a thin semiconductor light emitting device can be obtained. Further, since the light guide and the mounting substrate can be arranged so as to be opposite to each other, the light guide is not adversely affected by the heat generated by the mounting substrate, and a highly reliable semiconductor light emitting device and can do.

また、発光ダイオードは、LEDチップからの光を波長変換する蛍光物質を有することができる。さらに、上記発光ダイオードは、LEDチップからの光と、蛍光物質からの光の混色光が発光可能である。これにより、高輝度および高出力な半導体発光装置とすることができる。   The light emitting diode may have a fluorescent material that converts the wavelength of light from the LED chip. Furthermore, the light emitting diode can emit mixed color light of light from the LED chip and light from the fluorescent material. As a result, a semiconductor light emitting device with high luminance and high output can be obtained.

また、ハウジングは光散乱剤が含有された樹脂からなることが好ましい。これにより、LEDチップからの光は、ハウジングにより吸収されることなく、効率よく取り出すことができる。   The housing is preferably made of a resin containing a light scattering agent. Thereby, the light from the LED chip can be efficiently extracted without being absorbed by the housing.

また、上記筐体は発光面と略垂直方向に弾性部材を有することが好ましい。さらに、弾性部材は、筐体の一部をバネ片としたものであることが好ましい。これにより、簡易な構成で、スペーサーと導光体との強固な装着性を実現することができる。   The casing preferably has an elastic member in a direction substantially perpendicular to the light emitting surface. Furthermore, it is preferable that the elastic member has a part of the casing as a spring piece. Thereby, it is possible to realize a strong mounting property between the spacer and the light guide with a simple configuration.

本発明は、高出力発光させる面状光源においても、発光ダイオードからの熱が導光体に直接伝わることがなくなるため、信頼性の高い半導体発光装置とすることができる。   The present invention can provide a highly reliable semiconductor light-emitting device because heat from a light-emitting diode is not directly transmitted to a light guide even in a planar light source that emits high output light.

本発明を実施するための最良の形態を、以下に図面を参照しながら説明する。ただし、以下に示す形態は、本発明の技術思想を具体化するための半導体発光装置を例示するものであって、本発明は半導体発光装置を以下に限定するものではない。また、各図面に示す部材の大きさや位置関係などは説明を明確にするために誇張しているところがある。   The best mode for carrying out the present invention will be described below with reference to the drawings. However, the embodiments described below exemplify a semiconductor light emitting device for embodying the technical idea of the present invention, and the present invention does not limit the semiconductor light emitting device to the following. Further, the size and positional relationship of the members shown in each drawing are exaggerated for clarity of explanation.

発光ダイオードと、該発光ダイオードからの光が入射される光入射面を有する導光体と、発光ダイオード及び導光体とを保持する筐体とを有する半導体発光装置において、本発明者は、種々の検討および実験の結果、導光体の光入射面側の端部に当接されたスペーサーにより、発光ダイオードの発光面と、導光体の光入射面とを所定の間隔を有するように対向させることとした。即ち、スペーサーを利用して、発光ダイオードの発光面と導光体との間に所定の間隔を設けることにより、光学特性の劣化の無い、高信頼性且つ高輝度発光可能な光半導体装置とすることができることを見出し、本発明をなすに至った。   In a semiconductor light-emitting device including a light-emitting diode, a light guide having a light incident surface on which light from the light-emitting diode is incident, and a casing that holds the light-emitting diode and the light guide, As a result of the examination and the experiment, the light emitting surface of the light emitting diode and the light incident surface of the light guide are opposed to each other with a predetermined distance by the spacer abutted on the light incident surface side end of the light guide I decided to let them. That is, by using a spacer to provide a predetermined distance between the light emitting surface of the light emitting diode and the light guide, an optical semiconductor device capable of emitting light with high reliability and high luminance without deterioration of optical characteristics. The present inventors have found that it is possible to achieve the present invention.

従来、発光ダイオードの発光面と、光入射面を有する導光体の端面とは、発光ダイオードからの光が漏れなく導光体に入射できるように、出来る限り近接させて配置されている。例えば、図2に比較例として示される半導体発光装置は、実装基板に対する実装面と略平行な方向に発光面を有するSMD型発光ダイオードと導光体とを組み合わせたものである。このように、実装面と略平行な方向に発光面を有するSMD型発光ダイオードは、実装基板に対し、ほぼ同じ側に導光体が配置される。そのため、実装基板自体が導光板と近接して配置されることとなり、実装基板と導光体の端部との距離が非常に近い。その一方、導光体は、光透過性および種々の形状への成型性が高い透光性樹脂の射出成型により形成されたものであるため、熱による損傷を受けやすい。したがって、導光体が発光ダイオードから実装基板の方向に放熱される熱に曝されることとなれば、導光体の一部が熱による損傷を受けることにより光学特性に悪影響が生じることとなる。より具体的には、導光体の光入射面の一部が溶けて凹凸形状となり発光ダイオードからの光が乱反射することで、導光体に入射される光の量が減少する。また、発光ダイオードからの光は、導光体内に均一に入射することができず、導光体を光出射面の方向から見ると、長時間の高出力での使用により、色ムラ、色ずれが生じてくる。   Conventionally, a light emitting surface of a light emitting diode and an end surface of a light guide having a light incident surface are arranged as close as possible so that light from the light emitting diode can enter the light guide without leakage. For example, a semiconductor light emitting device shown as a comparative example in FIG. 2 is a combination of an SMD type light emitting diode having a light emitting surface in a direction substantially parallel to the mounting surface with respect to the mounting substrate, and a light guide. As described above, in the SMD type light emitting diode having the light emitting surface in a direction substantially parallel to the mounting surface, the light guide is disposed on substantially the same side with respect to the mounting substrate. Therefore, the mounting substrate itself is disposed close to the light guide plate, and the distance between the mounting substrate and the end of the light guide is very close. On the other hand, since the light guide is formed by injection molding of a light-transmitting resin having high light transmittance and high moldability into various shapes, it is easily damaged by heat. Therefore, if the light guide is exposed to heat radiated from the light emitting diode in the direction of the mounting substrate, a part of the light guide is damaged by the heat, thereby adversely affecting the optical characteristics. . More specifically, a part of the light incident surface of the light guide is melted to form a concavo-convex shape, and the light from the light emitting diode is irregularly reflected, thereby reducing the amount of light incident on the light guide. In addition, the light from the light emitting diode cannot be uniformly incident on the light guide body. When the light guide body is viewed from the direction of the light exit surface, color unevenness and color misregistration occur due to long-time use at high output. Will arise.

そこで、本発明は、発光ダイオードと導光体とが所定の間隔を有するように、両者の間にスペーサーが介されているため、発光ダイオードの発光面と、導光体の光入射面とを空気の層を介して対向させ、保持する。これにより、発光ダイオードの出力が増えた場合においても、発光ダイオードからの熱が導光体の方向へ直接伝わることがなくなり、導光体が熱による損傷を受けることがなくなる。即ち、本発明は、ハウジングを持った発光ダイオードと導光体との間隙をスペーサーにより生じさせるという極めて簡単な構成で、高輝度に発光可能かつ信頼性の高い半導体発光装置とすることができる。   Therefore, in the present invention, since a spacer is interposed between the light emitting diode and the light guide so as to have a predetermined interval, the light emitting surface of the light emitting diode and the light incident surface of the light guide are provided. Oppose and hold through a layer of air. Thereby, even when the output of the light emitting diode increases, heat from the light emitting diode is not directly transmitted to the direction of the light guide, and the light guide is not damaged by heat. That is, the present invention can provide a highly reliable semiconductor light emitting device capable of emitting light with high brightness with a very simple configuration in which a gap between a light emitting diode having a housing and a light guide is generated by a spacer.

図1は、本形態の半導体発光装置にかかる模式的な断面図である。本形態にかかる面状光源の光源である発光ダイオードは、発光面が導光板端面の光入射面に合わせて平坦であり、かつ発光面が実施的にレンズ効果を持たないSMD型発光ダイオードである。さらに、本形態における発光ダイオードは、実装基板に対する実装面と略垂直な方向に発光面を有している。このような発光ダイオードを実装基板に固定し、その発光面を導光体の光入射面と対向させると、実装基板が導光体の反対側となる。これにより、実装基板の発熱による導光体の損傷を防ぐことができる。   FIG. 1 is a schematic cross-sectional view of the semiconductor light emitting device of this embodiment. The light emitting diode which is the light source of the planar light source according to this embodiment is an SMD type light emitting diode in which the light emitting surface is flat in accordance with the light incident surface of the light guide plate end surface, and the light emitting surface has practically no lens effect. . Furthermore, the light emitting diode in this embodiment has a light emitting surface in a direction substantially perpendicular to the mounting surface with respect to the mounting substrate. When such a light emitting diode is fixed to the mounting substrate and the light emitting surface thereof is opposed to the light incident surface of the light guide, the mounting substrate becomes the opposite side of the light guide. Thereby, damage to the light guide due to heat generation of the mounting substrate can be prevented.

さらに、図3は、本形態における発光ダイオードの模式的な断面図である。発光ダイオードは、実装基板302上に半田で接合される。この実装基板上に固定されたSMD型発光ダイオードの発光面と導光体の光入射端面を対向させた状態で、かつ、スペーサーによって、発光ダイオードの発光面と導光体の光入射端面との間に所定の間隔を空けた状態で、筐体内に配置させている。ここで、スペーサーは、導光体の端部および実装基板の発光ダイオードが実装された側の主面に当接している。なお、本形態における発光ダイオードの発光面と導光体の光入射端面との「所定の間隔」は、導光体の耐熱温度、発光ダイオードの発熱特性を考慮し、適宜調節される。   Further, FIG. 3 is a schematic cross-sectional view of the light emitting diode in the present embodiment. The light emitting diode is bonded onto the mounting substrate 302 with solder. The light emitting surface of the SMD type light emitting diode fixed on the mounting substrate and the light incident end surface of the light guide are opposed to each other, and the light emitting surface of the light emitting diode and the light incident end surface of the light guide are separated by a spacer. It is arranged in the housing with a predetermined interval between them. Here, the spacer is in contact with the end surface of the light guide and the main surface of the mounting substrate on the side where the light emitting diode is mounted. In this embodiment, the “predetermined distance” between the light emitting surface of the light emitting diode and the light incident end surface of the light guide is appropriately adjusted in consideration of the heat resistant temperature of the light guide and the heat generation characteristics of the light emitting diode.

本形態における弾性部材は、ステンレス筐体の一部を内側に向かって凸形状とすることにより形成させることができる。この凸形状はステンレス筐体自体によって弾性を備えたバネ片として働く。すなわち、このバネ片は、導光体をスペーサーの方向に押圧を加えることにより、その導光体及びスペーサーを当接させる。これによって、導光体とスペーサーとの装着性が向上され、高信頼性かつ高輝度に発光可能な光半導体装置とすることができる。以下、本発明の各構成について詳述する。   The elastic member in this embodiment can be formed by making a part of the stainless steel casing convex toward the inside. This convex shape works as a spring piece having elasticity by the stainless steel casing itself. That is, this spring piece abuts the light guide and the spacer by pressing the light guide in the direction of the spacer. Thereby, the mounting property between the light guide and the spacer is improved, and an optical semiconductor device capable of emitting light with high reliability and high luminance can be obtained. Hereafter, each structure of this invention is explained in full detail.

(スペーサー)
本形態におけるスペーサーとは、筺体あるいは実装基板と導光体とに当接させて配置され、発光ダイオードの外殻面、特に、発光ダイオードからの光が出射する発光面と導光体の光反射面との間に所定の間隔を生じさせるものである。例えば、図4に示されるように、スペーサー103は、配置される発光ダイオードの発光面より高い位置に底面103dを有しており、その底面103dが導光体の光入射面102aに当接される。スペーサーの形状は、筺体、実装基板および発光ダイオードの形状に合わせ、種々の形状とされる。例えば、図4に示されるように、少なくとも発光ダイオードが収納可能な貫通孔103bを有することができる。ここで、貫通孔の大きさおよび形状は、収納される発光ダイオード、該発光ダイオードとともに収納されるツェナーダイオードや抵抗のような素子の大きさ、形状および数に合わせて適宜調節される。また、光入射面を有する導光体の端部の形状に嵌合可能な凹凸形状を有することもできる。これにより、スペーサーと導光体との装着性を向上させることができる。あるいは、図4に示されるように、実装基板方向には、スペーサーと筐体や実装基板との接触面積をできる限り少なくするため、機械的強度が保持できる程度に、凹凸形状103cとする。これにより、スペーサーは、凸部で筐体や実装基板と当接し、スペーサー103と当接する導光体の方に熱が伝わり難くすることができる。
(spacer)
The spacer in the present embodiment is arranged in contact with the housing or the mounting substrate and the light guide, and the outer shell surface of the light emitting diode, in particular, the light emitting surface from which light from the light emitting diode is emitted and the light reflection of the light guide. A predetermined interval is generated between the surface and the surface. For example, as shown in FIG. 4, the spacer 103 has a bottom surface 103d at a position higher than the light emitting surface of the light emitting diode to be arranged, and the bottom surface 103d is in contact with the light incident surface 102a of the light guide. The The spacer has various shapes according to the shapes of the housing, the mounting substrate, and the light emitting diode. For example, as shown in FIG. 4, it can have a through-hole 103b that can accommodate at least a light-emitting diode. Here, the size and shape of the through-hole are appropriately adjusted according to the size, shape, and number of elements such as a light-emitting diode to be housed, a Zener diode housed together with the light-emitting diode, and a resistor. Moreover, it can also have an uneven | corrugated shape which can be fitted in the shape of the edge part of the light guide which has a light-incidence surface. Thereby, the mounting property between the spacer and the light guide can be improved. Alternatively, as shown in FIG. 4, in order to minimize the contact area between the spacer and the housing or the mounting substrate in the mounting substrate direction, the uneven shape 103c is set to such an extent that the mechanical strength can be maintained. As a result, the spacer is in contact with the housing and the mounting substrate at the convex portion, and it is possible to make it difficult for heat to be transmitted to the light guide that is in contact with the spacer 103.

本形態にかかる半導体発光装置は、導光体の光入射面側の端部に当接されたスペーサーにより、上記発光ダイオードの発光面および光入射面とが所定の間隔を有するように対向されている。これにより、発光ダイオードの発熱が導光体に直接伝わることを防止することができる。しかしながら、発光ダイオードの発光面から出射した光の一部は、導光体の光入射面に反射され易くなり、導光体に入射することなく、スペーサーと導光体に生じた隙間から漏れ出すものもある。そこで、本形態におけるスペーサー103は、上記導光体の光入射面102aに隣接する面側まで覆うような側壁103aを有することが好ましい。このとき、側壁103aは、導光体の光入射面102aに隣接する複数の面のうち、少なくとも導光体の発光観測主面102cに対向する面102bを覆うように形成されていることが好ましいが、さらに導光体の発光観測主面102cや導光体の側面など複数の面を被覆するように形成してもよい。例えば、図4に示されるスペーサーは、その断面がコの字型をしており、コの字の内側に導光体の端部が嵌り込むようにされていることが好ましい。すなわち、スペーサーの凹部の側壁が導光体の光入射面102aに隣接される面方向に位置するようにされている。これにより、スペーサーの凹部側壁上面を光入射面に当接させるものと比較して、側壁の厚み分だけ光入射面を広くとることができるため、より多くの光を導光体に入射させることができる。また、導光体の光入射面102aに入射された光が、その光入射面102aに隣接する面から光が漏れ出しても、上記凹部の側壁にて導光体の方向に反射され、導光体に再度入射させることができ、半導体発光装置の輝度を向上させることができる。   In the semiconductor light emitting device according to this embodiment, the light emitting surface of the light emitting diode and the light incident surface are opposed to each other with a predetermined distance by a spacer that is in contact with the light incident surface side end of the light guide. Yes. Thereby, it can prevent that the heat_generation | fever of a light emitting diode is directly transmitted to a light guide. However, part of the light emitted from the light emitting surface of the light emitting diode is easily reflected by the light incident surface of the light guide, and leaks from the gap generated in the spacer and the light guide without entering the light guide. There are also things. Therefore, the spacer 103 in this embodiment preferably has a side wall 103a that covers up to the surface adjacent to the light incident surface 102a of the light guide. At this time, the side wall 103a is preferably formed so as to cover at least the surface 102b facing the light emission observation main surface 102c of the light guide body among a plurality of surfaces adjacent to the light incident surface 102a of the light guide body. However, you may form so that several surfaces, such as the light emission observation main surface 102c of a light guide, and the side surface of a light guide, may be coat | covered. For example, it is preferable that the spacer shown in FIG. 4 has a U-shaped cross section, and the end of the light guide is fitted inside the U-shape. That is, the side wall of the concave portion of the spacer is positioned in the surface direction adjacent to the light incident surface 102a of the light guide. As a result, the light incident surface can be made wider by the thickness of the side wall as compared with the spacer in which the upper surface of the concave side wall of the spacer is in contact with the light incident surface, so that more light is incident on the light guide. Can do. In addition, even if the light incident on the light incident surface 102a of the light guide leaks out from the surface adjacent to the light incident surface 102a, it is reflected in the direction of the light guide by the side wall of the recess and guided. The light can be incident again on the light body, and the luminance of the semiconductor light emitting device can be improved.

さらに、スペーサーは、少なくとも上記側壁の部分において、炭酸カルシウム、酸化アルミニウムや酸化チタンのような光拡散剤や白色系の顔料を含有していることがより好ましい。このようなスペーサーの側壁部分は、発光ダイオードからの光を、導光体の光入射面102aの方向に反射させることができる。したがって、本形態のように、発光ダイオードの発光面と導光体の光反射面とが当接することなく所定の間隔を有していても、発光ダイオードからの光は漏れなく、導光体に入射することができる。また、上記導光体の光入射面102aに隣接する面から漏れ出した光は、スペーサーの側壁にて導光体の方向に反射され、導光体に再度入射される。したがって、光取り出し効率が高く、高出力発光可能な半導体発光装置とすることができる。   Furthermore, it is more preferable that the spacer contains a light diffusing agent such as calcium carbonate, aluminum oxide or titanium oxide or a white pigment at least in the side wall portion. Such a side wall portion of the spacer can reflect light from the light emitting diode toward the light incident surface 102a of the light guide. Therefore, as in this embodiment, even if the light emitting surface of the light emitting diode and the light reflecting surface of the light guide have a predetermined distance without coming into contact, light from the light emitting diode does not leak and enters the light guide. Can be incident. Further, the light leaking from the surface adjacent to the light incident surface 102a of the light guide is reflected in the direction of the light guide by the side wall of the spacer and is incident on the light guide again. Accordingly, a semiconductor light emitting device with high light extraction efficiency and capable of high output light emission can be obtained.

スペーサーの材料は、実装基板の材料より熱伝導性の低い材料を選択する。例えば、機械的強度に優れたポリカーボーネート、ポリエーテルエーテルケトン、フッ素系樹脂のような絶縁性材料とすることができる。さらに、スペーサーは、炭酸カルシウム、酸化アルミニウムや酸化チタンのような光拡散剤を含有させた樹脂材料にて射出成型により形成することもできる。   As the material for the spacer, a material having a lower thermal conductivity than the material for the mounting substrate is selected. For example, an insulating material such as polycarbonate, polyether ether ketone, or fluorine-based resin having excellent mechanical strength can be used. Furthermore, the spacer can also be formed by injection molding with a resin material containing a light diffusing agent such as calcium carbonate, aluminum oxide or titanium oxide.

(発光ダイオード)
本発明に用いられる発光ダイオードは、半導体発光装置から放出される光によって種々選択させることが出る。特に、本発明では白色光が発光可能な発光ダイオードを利用することがこのましい。このような白色系が発光可能な発光ダイオードはRGBが発光可能な発光ダイオードや半導体発光素子と蛍光体を利用した発光ダイオードなど種々のものが挙げられる。青色系が発光可能な発光素子としては窒化ガリウム系化合物半導体を利用することによって高輝度に発光させることができる。また、発光素子とともに、該発光素子を過電圧による破壊から保護するツェナーダイオードやコンデンサーのような保護素子あるいは抵抗などの電子素子をハウジングに搭載させた発光ダイオードとすることができる。
(Light emitting diode)
The light emitting diode used in the present invention can be variously selected depending on the light emitted from the semiconductor light emitting device. In particular, in the present invention, it is preferable to use a light emitting diode capable of emitting white light. Examples of such light emitting diodes capable of emitting white light include various types such as light emitting diodes capable of emitting RGB and light emitting diodes using semiconductor light emitting elements and phosphors. As a light emitting element capable of emitting blue light, it is possible to emit light with high luminance by using a gallium nitride compound semiconductor. Further, together with the light emitting element, a light emitting diode in which a protective element such as a Zener diode or a capacitor for protecting the light emitting element from destruction due to overvoltage or an electronic element such as a resistor is mounted on a housing can be provided.

また、本形態における発光ダイオードは、凹部を持ったハウジングを有する。該凹部内に露出された電極と凹部底面に配置されたLEDチップとは、金線などの導電性ワイヤーやAg含有エポキシ樹脂などの導電性ペーストなどにより電気的に接続される。ハウジング内はエポキシ樹脂などの透光性樹脂によって封止されSMD型発光ダイオードが形成される。   In addition, the light emitting diode in this embodiment has a housing having a recess. The electrode exposed in the recess and the LED chip disposed on the bottom of the recess are electrically connected by a conductive wire such as a gold wire or a conductive paste such as an Ag-containing epoxy resin. The inside of the housing is sealed with a translucent resin such as an epoxy resin to form an SMD type light emitting diode.

(ハウジング)
本発明に用いられるハウジングは、底部にLEDチップが配置されうるものが好ましく、エポキシ樹脂、シリコーン樹脂、イミド樹脂、アクリル樹脂、PBT(ポリブチレンテレフタレート)、液晶ポリマー、芳香族ナイロンなどの各種樹脂を用いて好適に形成される。特にハウジングでLEDチップからの光を効率よく取り出すためには、上記各種樹脂中に光拡散剤として炭酸カルシウム、酸化アルミニウムや酸化チタンを適宜混入させることが好ましい。これにより反射率の高い白色ハウジングを構成させることができる。
(housing)
The housing used in the present invention is preferably one in which an LED chip can be arranged at the bottom, and various resins such as epoxy resin, silicone resin, imide resin, acrylic resin, PBT (polybutylene terephthalate), liquid crystal polymer, and aromatic nylon are used. It is suitably formed using. In particular, in order to efficiently extract light from the LED chip in the housing, it is preferable to appropriately mix calcium carbonate, aluminum oxide, or titanium oxide as a light diffusing agent in the various resins. Thereby, a white housing with high reflectance can be constituted.

また、ハウジングは、セラミックグリーンシートを積層させ、焼成することにより得られるセラミックパッケージとすることができる。セラミックパッケージは、樹脂材料からなるパッケージと比較して耐熱性および耐光性に優れるため、高出力かつ信頼性の高い半導体発光装置とすることができる。また、凹部を有するセラミックパッケージは、その凹部内壁面は、光反射率の高い金属材料からなる反射面とされていることが好ましい。これにより、発光素子からの光がセラミックスに吸収されることがなくなるため、光取り出し効率に優れた発光ダイオードとすることができる。   The housing can be a ceramic package obtained by laminating and firing ceramic green sheets. Since the ceramic package is superior in heat resistance and light resistance as compared to a package made of a resin material, a high-output and highly reliable semiconductor light-emitting device can be obtained. In the ceramic package having a recess, the inner wall surface of the recess is preferably a reflecting surface made of a metal material having a high light reflectance. Thereby, since the light from the light emitting element is not absorbed by the ceramic, a light emitting diode having excellent light extraction efficiency can be obtained.

スペーサーと対向する側のハウジングの外殻面は、スペーサーの対向面の形状に嵌合可能な凹凸形状とすることが好ましい。これにより、スペーサーと発光ダイオードとの装着性が向上し、振動を受ける使用状態においても信頼性の高い半導体発光装置とすることができる。   It is preferable that the outer shell surface of the housing facing the spacer has an uneven shape that can be fitted into the shape of the facing surface of the spacer. Thereby, the mounting property between the spacer and the light-emitting diode is improved, and a highly reliable semiconductor light-emitting device can be obtained even in a use state receiving vibration.

ハウジング内にはリード電極と電気的に接続されたLEDチップ及び透光性樹脂が好適に充填されている。ここで、LEDチップを被覆する透光性樹脂には、必要に応じて蛍光物質が含有されても良い。また、発光観測面側のハウジング表面及び透光性樹脂は、導光板の端部で当接され易くさせるために実質的に平面であることが好ましい。   The housing is preferably filled with an LED chip and a translucent resin electrically connected to the lead electrode. Here, the translucent resin that covers the LED chip may contain a fluorescent material as necessary. Moreover, it is preferable that the housing surface and the translucent resin on the light emission observation surface side are substantially flat so as to be easily brought into contact with the end portion of the light guide plate.

(蛍光物質)
本発明に用いられる蛍光物質は、発光ダイオードの光を変換させるものであり、発光ダイオードからの光をより長波長に変換させるものの方が効率がよい。LEDチップからの光がエネルギーの高い短波長の可視光の場合、有機蛍光体であるペリレン系誘導体やZnCdS:Cu、アルミニウム酸化物系蛍光体の一種であるYAG:Ce(例えば、YAlO:Ce、YAl12:Ce、YAl:Ce、(Y0.8Gd0.2Al12:Ce、Y(Al0.8Ga0.212:Ce、Tb2.95Ce0.05Al12、Y2.90Ce0.05Tb0.05Al12、Y2.94Ce0.05Pr0.01Al12、Y2.90Ce0.05Pr0.05Al12等)やEu及び/又はCrで付活された窒素含有CaO−Al23−SiO2などの無機蛍光体など種々好適に用いられる。特に、YAG:Ce蛍光体を利用した場合は、その含有量によって青色LEDからの光と、その光を一部吸収して補色となる黄色系が発光可能であり白色系が比較的簡単に信頼性よく形成できるため好ましい。同様に、Eu及び/又はCrで付活された窒素含有CaO−Al23−SiO2蛍光体を利用した場合は、その含有量によって青色LEDからの光と、その光を一部吸収して補色となる赤色系が発光可能であり白色系が比較的簡単に信頼性よく形成できるため好ましい。
(Fluorescent substance)
The fluorescent material used in the present invention converts light from the light emitting diode, and it is more efficient to convert light from the light emitting diode to a longer wavelength. When the light from the LED chip is high-energy short-wavelength visible light, organic phosphors such as perylene derivatives, ZnCdS: Cu, and YAG: Ce (a kind of aluminum oxide phosphor) (for example, YAlO 3 : Ce). Y 3 Al 5 O 12 : Ce, Y 4 Al 2 O 9 : Ce, (Y 0.8 Gd 0.2 ) 3 Al 5 O 12 : Ce, Y 3 (Al 0.8 Ga 0.2 ) 5 O 12 : Ce, Tb 2.95 Ce 0.05 Al 5 O 12 , Y 2.90 Ce 0.05 Tb 0.05 Al 5 O 12 , Y 2.94 Ce 0.05 Pr 0.01 Al 5 O 12 , Y 2.90 Ce 0.05 Pr 0.05 Al 5 O 12, etc.) and various suitable inorganic phosphors such as nitrogen-containing CaO—Al 2 O 3 —SiO 2 activated by Eu and / or Cr Used for. In particular, when a YAG: Ce phosphor is used, depending on its content, the light from the blue LED and the yellow color that partially absorbs the light can be emitted, and the white color is relatively easy to trust. Since it can form with sufficient property, it is preferable. Similarly, when a nitrogen-containing CaO—Al 2 O 3 —SiO 2 phosphor activated with Eu and / or Cr is used, light from the blue LED and a part of the light are absorbed depending on its content. Thus, a red color which is a complementary color can emit light, and a white color can be formed relatively easily and reliably.

(実装基板)
実装基板は発光ダイオードを実装するためのものであり、銅箔などからなる導電性パターンが形成されたガラスエポキシ基板や絶縁性樹脂で結合された金属体などによって好適に構成することができる。あるいは、アルミニウムや銅からなる金属材料に絶縁性材料を介して導電性パターンが施されたものとすることができる。なお、本発明おいて、後述する弾性部材を有する構成とするときには、弾性体からの力が導光体およびスペーサーを介して均一に掛かるようにするため、比較的強度があるものが好ましく、金属材料からなる基板がこのましい。また、実装基板は、放熱シートを介して筺体に配置されることが好ましい。
(Mounting board)
The mounting substrate is for mounting a light emitting diode, and can be suitably configured by a glass epoxy substrate on which a conductive pattern made of copper foil or the like is formed, a metal body bonded with an insulating resin, or the like. Alternatively, a conductive pattern can be applied to a metal material made of aluminum or copper via an insulating material. In the present invention, when a structure having an elastic member to be described later is used, a material having a relatively high strength is preferable so that the force from the elastic body is applied uniformly through the light guide and the spacer. This is a substrate made of materials. Moreover, it is preferable that a mounting board is arrange | positioned at a housing through a heat radiating sheet.

(導光体)
本形態における導光体とは、端面の一部から入射された発光ダイオードからの光をその内部の反射を利用して導光し、所定の光出射面から所望の形状に発光させることができるものである。したがって、発光面の所望形状により、メーター針の指針、液晶バックライト光源として利用可能な板状など種々の形状を取ることができる。導光体は発光ダイオードからの光或いはその光を波長変換させた光を効率よく発光面から放出するために、透光性を有している。このような導光体の材料としてはアクリル樹脂やエポキシ樹脂など種々の材料が好適に挙げられる。
(Light guide)
The light guide in this embodiment can guide the light from the light emitting diode incident from a part of the end face using the internal reflection, and emit light in a desired shape from a predetermined light emitting surface. Is. Therefore, depending on the desired shape of the light emitting surface, various shapes such as a pointer for a meter needle and a plate shape usable as a liquid crystal backlight light source can be taken. The light guide has translucency in order to efficiently emit light from the light emitting diode or light obtained by wavelength conversion of the light from the light emitting surface. As the material of such a light guide, various materials such as an acrylic resin and an epoxy resin can be preferably cited.

(筐体)
本形態における筐体とは、少なくとも発光ダイオードと導光体とを保持可能なものである。筐体は各種光拡散剤を含有した樹脂や金属など種々のものが好適に挙げられる。特に、発光ダイオードの光反射や放熱などを考慮してニッケル、鉄、銅などの金属、ステンレスなどの各種合金がより好適に用いられる。筐体の大きさや形状は導光体、発光ダイオードやスペースに合わせて種々選択できる。なお、本発明において、筐体には発光ダイオードの発光面とスペーサーとを押圧する機能とを併せ持たせてもよい。具体的には、導光体と接する筺体の壁面の一部をバネ片とすることができる。このような場合、樹脂によって形成させることもできるが、金属や合金から形成させる方が強度やスペース的にも優れており、より好ましい。
(Casing)
The housing in this embodiment can hold at least a light emitting diode and a light guide. As the case, various types such as resins and metals containing various light diffusing agents are preferably mentioned. In particular, in consideration of light reflection and heat dissipation of the light emitting diode, metals such as nickel, iron and copper, and various alloys such as stainless steel are more preferably used. The size and shape of the housing can be variously selected according to the light guide, the light emitting diode, and the space. In the present invention, the housing may have a function of pressing the light emitting surface of the light emitting diode and the spacer. Specifically, a part of the wall surface of the casing in contact with the light guide can be a spring piece. In such a case, it can be formed of a resin, but it is more preferable to form it from a metal or alloy because it is superior in strength and space.

(弾性部材)
本形態における弾性部材とは、少なくとも導光体の端面をスペーサーの方向に押圧するものである。したがって、ゴム、バネ(板バネ、スプリング状のものを含む)や各種弾性を有する樹脂などの弾性体を別途設けるもののほか、ステンレスなどの金属や合金から筐体が形成される場合、筐体の一部を、その筺体の材料そのものの弾性力を利用したバネ片とし、弾性部材とすることができる。筐体の一部を利用する場合は、図5の模式的な斜視図に示す弾性部材401が好適に利用することができる。このような形状は、打ち抜き加工により、形成することができる。
(Elastic member)
The elastic member in this embodiment is a member that presses at least the end face of the light guide in the direction of the spacer. Therefore, in addition to the case where an elastic body such as a rubber, a spring (including a leaf spring or a spring-like one) or a resin having various elasticity is separately provided, or when the case is formed from a metal or alloy such as stainless steel, A part can be made into a spring piece using the elastic force of the material of the casing itself, and can be made into an elastic member. When a part of the housing is used, the elastic member 401 shown in the schematic perspective view of FIG. 5 can be preferably used. Such a shape can be formed by punching.

図5は、本形態における半導体発光装置の模式的な斜視図である。図5に示されるように、本形態におけるの弾性体は、筺体の側面方向から見て、扉形状をしている。これにより、筐体を構成する導光体の厚み分の金属片を幅方向に亘って弾性体として利用できるため、任意の弾性力を形成させ易い。以下、本発明の具体的実施例について詳述するが、これのみに限られないことは言うまでもない。   FIG. 5 is a schematic perspective view of the semiconductor light emitting device in this embodiment. As shown in FIG. 5, the elastic body in this embodiment has a door shape when viewed from the side of the housing. Thereby, since the metal piece for the thickness of the light guide which comprises a housing | casing can be utilized as an elastic body over the width direction, it is easy to form arbitrary elastic forces. Hereinafter, specific embodiments of the present invention will be described in detail, but it goes without saying that the present invention is not limited thereto.

以下、本発明に係る実施例について詳述する。なお、本発明は以下に示す実施例のみに限定されないことは言うまでもない。   Examples according to the present invention will be described in detail below. Needless to say, the present invention is not limited to the following examples.

本実施例にかかる半導体発光装置は、SMD型発光ダイオードとして、図3に示す発光ダイオードを利用した。発光ダイオード300は、LEDチップ303と実装基板302の電極306とを電気的に接続させるため、ハウジングの凹部内からハウジングの外郭面にかけて施された導体配線を有する。また、本実施例における発光ダイオード300は、実装基板に対する実装面と略垂直な方向に、LEDチップ303からの光が主に観測される発光面を有するSMD型発光ダイオードである。   The semiconductor light emitting device according to this example used the light emitting diode shown in FIG. 3 as the SMD type light emitting diode. The light emitting diode 300 has conductor wiring applied from the concave portion of the housing to the outer surface of the housing in order to electrically connect the LED chip 303 and the electrode 306 of the mounting substrate 302. Further, the light emitting diode 300 in the present embodiment is an SMD type light emitting diode having a light emitting surface on which light from the LED chip 303 is mainly observed in a direction substantially perpendicular to the mounting surface with respect to the mounting substrate.

本実施例におけるハウジング301について、より詳細に説明する。まず、種々の内径の孔が形成された複数のセラミックスグリーンシートを重ね合わせ、LEDチップを底面に配置できるような凹部を形成する。このとき、導体配線を施す領域には、タングステン粒子を含有する導体ペーストにてパターニングが予め施される。次に、セラミックスグリーンシートの積層体を焼成し、NiおよびAgを材料として順に電解メッキを行うことにより、凹部内壁面の光反射層および導体配線を形成する。   The housing 301 in the present embodiment will be described in more detail. First, a plurality of ceramic green sheets having holes with various inner diameters are overlapped to form a recess that allows the LED chip to be placed on the bottom surface. At this time, patterning is performed in advance on a region to be provided with the conductor wiring with a conductor paste containing tungsten particles. Next, the laminated body of ceramic green sheets is fired, and the light reflecting layer and the conductor wiring on the inner wall surface of the recess are formed by sequentially performing electrolytic plating using Ni and Ag as materials.

LEDチップ303はサファイア基板上にn型窒化ガリウム半導体、活性層に窒化インジュウム・ガリウム/窒化ガリウムの多重量子井戸構造、p型窒化ガリウム半導体のダブルヘテロ構造から形成させた青色が発光可能なものを利用している。このLEDチップをハウジングの底部内にエポキシ樹脂によってダイボンドし、LEDチップのn及びp型半導体表面に設けられたp型電極及びn型電極とをそれぞれ金線によって、凹部底面に露出された導体配線とワイヤーボンディングさせてある。なお、本実施例におけるLEDチップは、1チップあたり100〜125mAの電流を0.5〜1時間流すことにより、平衡に達し、最大で100℃付近まで発熱する。   The LED chip 303 is an n-type gallium nitride semiconductor on a sapphire substrate, an active layer of indium gallium nitride / gallium nitride multiple quantum well structure, and a p-type gallium nitride semiconductor double heterostructure capable of emitting blue light. We are using. The LED chip is die-bonded to the bottom of the housing with an epoxy resin, and the p-type electrode and the n-type electrode provided on the n-type and p-type semiconductor surfaces of the LED chip are respectively exposed to the bottom of the recess by gold wires. And wire bonding. In addition, the LED chip in the present embodiment reaches equilibrium by flowing a current of 100 to 125 mA per chip for 0.5 to 1 hour, and generates heat up to around 100 ° C. at the maximum.

さらに、ハウジング内に、(Y0.8Gd0.23Al512:Ce蛍光体が含有されたシリコーン樹脂を充填させて白色系が発光可能なSMD発光ダイオードを形成させる。 Further, the housing is filled with a silicone resin containing (Y 0.8 Gd 0.2 ) 3 Al 5 O 12 : Ce phosphor to form an SMD light emitting diode capable of emitting white light.

次に、発光ダイオードを直列接続できるパターンが絶縁材料を介して形成されたアルミニウムからなる実装基板302上にフロー半田によって固定と共に電気的に接続させる。この実装基板の幅はSMD型発光ダイオードの大きさ及び導光体の厚みにほぼ等しい薄板形状をしており、平面から見ると複数のSMD発光ダイオードが一定の間隔を持って実装されている。こうして形成されたものを図1あるいは図5に示されるような半導体発光装置とすべく、以下の導光体などと組み合わせる。   Next, the pattern which can connect the light emitting diodes in series is fixed and electrically connected to the mounting substrate 302 made of aluminum formed with an insulating material by flow soldering. The width of this mounting board is a thin plate shape substantially equal to the size of the SMD type light emitting diode and the thickness of the light guide, and a plurality of SMD light emitting diodes are mounted at regular intervals when viewed from the plane. In order to obtain a semiconductor light emitting device as shown in FIG. 1 or FIG.

導光体102はアクリル樹脂を材料とする射出成型によって略直方体形状に形成させてある。本実施例における導光体102の耐熱温度は、95℃から100℃である。また、直方体の端面は、実装基板104上に実装されたSMD型発光ダイオードの発光面の大きさに相当する厚みに形成させ、光入射面とさせてある。さらに、該光入射面と隣接し幅広な主面は、光出射面、即ち発光観測面としてある。一方、該光入射面に対向する端面は、弾性部材に当接できる大きさとさせてある。   The light guide 102 is formed in a substantially rectangular parallelepiped shape by injection molding using an acrylic resin as a material. The heat resistant temperature of the light guide 102 in this embodiment is 95 ° C. to 100 ° C. Further, the end face of the rectangular parallelepiped is formed to have a thickness corresponding to the size of the light emitting surface of the SMD type light emitting diode mounted on the mounting substrate 104, and serves as a light incident surface. Further, the wide main surface adjacent to the light incident surface is a light emitting surface, that is, a light emission observation surface. On the other hand, the end surface facing the light incident surface is sized so as to contact the elastic member.

筐体105は、実装基板104上に配置されたSMD型発光ダイオードと、導光体102と、スペーサー103とをはめ込みできるように、図1の如き形状とさせてある。筐体105は、ステンレスで打ち抜き加工によって比較的簡単に形成させる。本実施例における筺体105は、特に、導光体の端面或いは、実装基板104の側から導光体102と当接するスペーサー103に対して押圧がかかるように、内側に折れ曲がった板状のバネ片401に形成させてある。本実施例ではこの筐体内部側に折れ曲がった板状のバネ片が弾性部材として働く。   The housing 105 has a shape as shown in FIG. 1 so that the SMD type light emitting diode, the light guide 102 and the spacer 103 arranged on the mounting substrate 104 can be fitted. The housing 105 is made of stainless steel and relatively easily formed by punching. The casing 105 in the present embodiment is a plate-like spring piece bent inward so as to be pressed against the spacer 103 in contact with the light guide 102 from the end face of the light guide or the mounting substrate 104 side. 401 is formed. In this embodiment, a plate-like spring piece bent toward the inside of the casing serves as an elastic member.

図5に示されるように、筐体105内へ導光体102、スペーサー103及び実装基板104上に配置されたSMD型発光ダイオードをはめ込み、本発明の半導体発光装置100を形成させる。スペーサー103は、実装基板に載置される発光ダイオードの発光面より光入射面側に底面103dを有しており、その底面103dが導光体の光入射面102aに当接される。また、スペーサー103は、底面103dの間に、貫通孔103bを有し、貫通孔103b内に発光ダイオードが収納されるようになっている。なお、本実施例において、発光ダイオードの発光面と導光体の光入射面との間隔は、およそ0.2mmから0.5mmとする。   As shown in FIG. 5, the light guide 102, the spacer 103, and the SMD type light emitting diode disposed on the mounting substrate 104 are fitted into the housing 105 to form the semiconductor light emitting device 100 of the present invention. The spacer 103 has a bottom surface 103d on the light incident surface side of the light emitting surface of the light emitting diode mounted on the mounting substrate, and the bottom surface 103d is in contact with the light incident surface 102a of the light guide. The spacer 103 has a through hole 103b between the bottom surface 103d, and the light emitting diode is accommodated in the through hole 103b. In this embodiment, the distance between the light emitting surface of the light emitting diode and the light incident surface of the light guide is approximately 0.2 mm to 0.5 mm.

半導体発光装置100に電流を流すと、導光体の発光観測面側から均一な白色光が観測できる。また、本実施例における半導体発光装置は、長時間の高出力発光においても光学特性を損なうことがなく、信頼性の高い半導体発光装置とすることができる。   When a current is passed through the semiconductor light emitting device 100, uniform white light can be observed from the light emission observation surface side of the light guide. In addition, the semiconductor light-emitting device in this embodiment can be a highly reliable semiconductor light-emitting device without impairing optical characteristics even during long-time high-power light emission.

本発明は、振動などに強く、薄型化、小型化、低消費電力化された半導体発光装置として、液晶のバックライトなどの面状光源として利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used as a planar light source such as a liquid crystal backlight as a semiconductor light-emitting device that is resistant to vibration and is thinned, miniaturized, and reduced in power consumption.

図1は、本発明の一実施例における半導体発光装置の模式的な断面図である。FIG. 1 is a schematic cross-sectional view of a semiconductor light emitting device in one embodiment of the present invention. 図2は、本発明との比較のために示す半導体発光装置の模式的な断面図である。FIG. 2 is a schematic cross-sectional view of a semiconductor light emitting device shown for comparison with the present invention. 図3は、本発明の一実施例における発光ダイオードの模式的な断面図である。FIG. 3 is a schematic cross-sectional view of a light emitting diode according to an embodiment of the present invention. 図4は、本発明の一実施例におけるスペーサーの模式的な斜視図である。FIG. 4 is a schematic perspective view of a spacer in one embodiment of the present invention. 図5は、本発明の一実施例における半導体発光装置の模式的な斜視図である。FIG. 5 is a schematic perspective view of a semiconductor light emitting device in one embodiment of the present invention.

符号の説明Explanation of symbols

100、200・・・半導体発光装置
101、401・・・弾性部材
102、201・・・導光体
102a・・・導光体の光入射面
102b・・・導光体の発光観測主面
102c・・・導光体の発光観測主面に対向する主面
103・・・スペーサー
103a・・・スペーサーの側壁
103b・・・スペーサーの貫通孔
103c・・・スペーサーの凹凸形状
103d・・・スペーサーの底面
104、204、302・・・実装基板
105、203・・・筺体
106、202、300・・・発光ダイオード
301・・・ハウジング
303・・・LEDチップ
304・・・蛍光物質
305・・・導電性ワイヤ
306・・・実装基板の電極
307・・・導体配線
DESCRIPTION OF SYMBOLS 100, 200 ... Semiconductor light-emitting device 101, 401 ... Elastic member 102, 201 ... Light guide 102a ... Light incident surface 102b of a light guide ... Light emission observation main surface 102c of a light guide ... Main surface 103 opposite to the light emission main surface of the light guide ... Spacer 103a ... Spacer side wall 103b ... Spacer through-hole 103c ... Bottom surface 104, 204, 302 ... mounting substrate 105, 203 ... housing 106, 202, 300 ... light emitting diode 301 ... housing 303 ... LED chip 304 ... fluorescent substance 305 ... conductive Conductive wire 306 ... Mounting board electrode 307 ... Conductor wiring

Claims (3)

発光ダイオードと、該発光ダイオードからの光が入射される光入射面を有する導光体と、前記発光ダイオード及び導光体を保持する筐体とを有する半導体発光装置であって、
前記発光ダイオードは、実装基板上に配置され、その実装面と略垂直方向に発光面を有し、
前記導光体の光入射面側の端部に当接されたスペーサーにより、前記発光面と前記光入射面とが所定の間隔を有するように対向しており、
前記スペーサーの実装基板方向には凸部が設けられ、該凸部と前記実装基板又は前記筐体とが当接されていることを特徴とする半導体発光装置。
A light emitting diode, a semiconductor light-emitting device having a light guide having a light incident surface to which light is incident, and a housing for holding the light emitting diode and the light guide member from the light emitting diode,
The light emitting diode is disposed on a mounting substrate and has a light emitting surface in a direction substantially perpendicular to the mounting surface;
The abutted spacer end of the light incident surface side of the light guide, the pre-Symbol onset light surface and the light incident surface faces so as to have a predetermined interval,
A semiconductor light emitting device , wherein a convex portion is provided in the mounting substrate direction of the spacer, and the convex portion is in contact with the mounting substrate or the housing .
前記スペーサーは、前記発光ダイオードが収納される貫通孔を有する請求項1に記載の半導体発光装置。   The semiconductor light emitting device according to claim 1, wherein the spacer has a through hole in which the light emitting diode is accommodated. 前記スペーサーは、前記導光体の端部が嵌合する凹部を有する請求項1または2に記載の半導体発光装置。   The semiconductor light-emitting device according to claim 1, wherein the spacer has a recess into which an end of the light guide is fitted.
JP2004187135A 2004-06-25 2004-06-25 Semiconductor light emitting device Expired - Fee Related JP4543779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004187135A JP4543779B2 (en) 2004-06-25 2004-06-25 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004187135A JP4543779B2 (en) 2004-06-25 2004-06-25 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2006013087A JP2006013087A (en) 2006-01-12
JP4543779B2 true JP4543779B2 (en) 2010-09-15

Family

ID=35779961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004187135A Expired - Fee Related JP4543779B2 (en) 2004-06-25 2004-06-25 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4543779B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4795108B2 (en) * 2006-05-11 2011-10-19 株式会社リコー Image reading apparatus and image forming apparatus
JP4596172B2 (en) * 2006-05-18 2010-12-08 ミネベア株式会社 Surface lighting device
JP4311454B2 (en) 2006-06-05 2009-08-12 エプソンイメージングデバイス株式会社 Lighting device, liquid crystal device, and electronic device
JP4706858B2 (en) 2006-07-10 2011-06-22 ミネベア株式会社 Surface lighting device
JP4915911B2 (en) * 2006-10-02 2012-04-11 株式会社 日立ディスプレイズ Liquid crystal display
JP4973213B2 (en) * 2007-01-31 2012-07-11 三菱電機株式会社 Light source device, planar light source device, and display device
JP2008192523A (en) * 2007-02-07 2008-08-21 Matsushita Electric Ind Co Ltd Plane light-emitting device
JP5295523B2 (en) * 2007-05-30 2013-09-18 株式会社ジャパンディスプレイ Liquid crystal display
FR2922685B1 (en) * 2007-10-22 2011-02-25 Commissariat Energie Atomique AN OPTOELECTRONIC DEVICE BASED ON NANOWIRES AND CORRESPONDING METHODS
JP4952632B2 (en) 2008-03-28 2012-06-13 豊田合成株式会社 Light emitting device and lens used therefor
JP2009300897A (en) * 2008-06-17 2009-12-24 Asahi Techno Plus Kk Luminous display board
KR101515833B1 (en) * 2008-10-08 2015-05-04 삼성전자주식회사 Optical device
JP2010135297A (en) * 2008-11-04 2010-06-17 Fujifilm Corp Surface lighting device
JP5351608B2 (en) * 2009-05-22 2013-11-27 パナソニック株式会社 Indicator light device
JP2010276628A (en) * 2009-05-26 2010-12-09 Hitachi Ltd Liquid crystal display device
KR101698816B1 (en) * 2009-11-30 2017-01-24 삼성디스플레이 주식회사 Backlight assembly
JP2011187285A (en) * 2010-03-08 2011-09-22 Toshiba Corp Light emitting device
CN101818874B (en) * 2010-03-29 2011-06-29 友达光电股份有限公司 Liquid crystal display device and backlight module thereof
WO2012020592A1 (en) * 2010-08-09 2012-02-16 シャープ株式会社 Illumination device and display device
US20130135901A1 (en) * 2010-08-09 2013-05-30 Sharp Kabushiki Kaisha Illumination device and display device
WO2012036061A1 (en) * 2010-09-15 2012-03-22 シャープ株式会社 Illumination device, display device, and television receiver
WO2012086510A1 (en) * 2010-12-24 2012-06-28 シャープ株式会社 Illumination device, display device and television receiver
JP2012141342A (en) * 2010-12-28 2012-07-26 Sumitomo Bakelite Co Ltd Display panel
JP2012189914A (en) * 2011-03-14 2012-10-04 Funai Electric Co Ltd Liquid crystal display device
JP2012208254A (en) * 2011-03-29 2012-10-25 Funai Electric Co Ltd Illumination device for display device and display device
JPWO2012144126A1 (en) 2011-04-20 2014-07-28 パナソニック株式会社 Light source, backlight unit, liquid crystal display device and illumination device
JP2012237826A (en) * 2011-05-10 2012-12-06 Funai Electric Co Ltd Liquid crystal module
JP2013012549A (en) * 2011-06-28 2013-01-17 Sharp Corp Light emitting device, light emitting device apparatus, and manufacturing method of light emitting device apparatus
WO2013047371A1 (en) * 2011-09-28 2013-04-04 シャープ株式会社 Lighting device, display device and television receiver device
JP2013171626A (en) * 2012-02-17 2013-09-02 Sharp Corp Light source board and light source module
JP5717675B2 (en) * 2012-03-02 2015-05-13 シャープ株式会社 Display device and television receiver
CN102927499B (en) * 2012-10-24 2015-02-11 深圳市华星光电技术有限公司 Liquid crystal display device and backlight module thereof
CN104776371A (en) * 2015-03-10 2015-07-15 长兴曙峰光电科技有限公司 LED (Light Emitting Diode) streetlamp

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160892A (en) * 1994-12-05 1996-06-21 Sharp Corp Surface light emitting display device
JPH10247412A (en) * 1997-03-03 1998-09-14 Omron Corp Surface light source device
JP2003282956A (en) * 2003-04-21 2003-10-03 Nichia Chem Ind Ltd Semiconductor light-emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160892A (en) * 1994-12-05 1996-06-21 Sharp Corp Surface light emitting display device
JPH10247412A (en) * 1997-03-03 1998-09-14 Omron Corp Surface light source device
JP2003282956A (en) * 2003-04-21 2003-10-03 Nichia Chem Ind Ltd Semiconductor light-emitting device

Also Published As

Publication number Publication date
JP2006013087A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
JP4543779B2 (en) Semiconductor light emitting device
KR102218518B1 (en) Light emitting device
EP1848037B1 (en) Light emitting diode device
US7851999B2 (en) Light emitting device
JP4882634B2 (en) Light emitting device
JP2006005290A (en) Light emitting diode
JP6414427B2 (en) Light emitting device mounting structure
JP2008171797A (en) Backlight unit
JP4479624B2 (en) Light emitting device
EP1843403B1 (en) Light emitting unit and lighting apparatus
JP4600668B2 (en) Surface lighting device
JPH10334718A (en) Plane luminous device
JP2010177053A (en) Backlight unit
JP2014082481A (en) Light-emitting device
JP2007035882A (en) Led illuminator
JP4366981B2 (en) Semiconductor light emitting device and method for forming the same
JP2018032689A (en) Light-emitting device, and illuminating device
JP3834188B2 (en) Semiconductor light emitting device
JP2008159706A (en) Light-emitting device
JP2007088084A (en) Light-emitting device
JP2004342371A (en) Surface light-emitting device
JP5722759B2 (en) Light emitting device
JP2006024645A (en) Semiconductor light emitting device
JP2007088085A (en) Light-emitting device
JP2007088083A (en) Light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4543779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees