JP4543211B2 - Biodegradable resin composition and molded product thereof - Google Patents
Biodegradable resin composition and molded product thereof Download PDFInfo
- Publication number
- JP4543211B2 JP4543211B2 JP2004217971A JP2004217971A JP4543211B2 JP 4543211 B2 JP4543211 B2 JP 4543211B2 JP 2004217971 A JP2004217971 A JP 2004217971A JP 2004217971 A JP2004217971 A JP 2004217971A JP 4543211 B2 JP4543211 B2 JP 4543211B2
- Authority
- JP
- Japan
- Prior art keywords
- resin composition
- copolymer
- lactide
- enzyme
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
- Biological Depolymerization Polymers (AREA)
Description
本発明は、L−乳酸の重合体又は共重合体を樹脂成分として含有する、生分解性に優れる樹脂組成物及びその成形物に関する。 The present invention relates to a resin composition excellent in biodegradability, which contains an L-lactic acid polymer or copolymer as a resin component, and a molded product thereof.
近年、グリーンケミストリー指向が進展するにつれて、澱粉、砂糖、グルコース、植物油などの再生可能資源を原料としたポリ乳酸、ポリヒドロキシ酪酸等が注目を浴びてきている。
しかしながら、ポリ乳酸はポリヒドロキシ酪酸、ポリカプロラクトン、ポリブチレンサクシネート等の生分解性プラスチックに比べて環境中における生分解性がきわめて低いという難点のあることが知られている(非特許文献1〜3参照)。
In recent years, as the trend toward green chemistry progresses, polylactic acid, polyhydroxybutyric acid, and the like, which are made from renewable resources such as starch, sugar, glucose, and vegetable oil, have attracted attention.
However, it is known that polylactic acid has a problem that its biodegradability in the environment is extremely low compared to biodegradable plastics such as polyhydroxybutyric acid, polycaprolactone, and polybutylene succinate (Non-Patent Documents 1 to 3). 3).
本発明の課題は、このような事情の下、生分解性に優れ、取扱いやすいポリ乳酸系又は乳酸共重合体系樹脂組成物及びその成形物を提供することにある。 An object of the present invention is to provide a polylactic acid-based or lactic acid copolymer-based resin composition that is excellent in biodegradability and easy to handle under such circumstances, and a molded product thereof.
本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、L‐乳酸の重合体又は共重合体に特定の酵素を含ませてなる樹脂組成物が課題達成に資すること等を見出し、本発明をなすに至った。 As a result of intensive research to solve the above problems, the present inventors have found that a resin composition containing a specific enzyme in a polymer or copolymer of L-lactic acid contributes to the achievement of the problems. The present invention has been made.
すなわち、本発明によれば、以下の発明が提供される。
(1)(A)L−乳酸の重合体又は共重合体を主とし、(B)プロテネースK、ズブチリシン、α−キモトリプシン、及びぶなしめじ、いちじく又はパッションフルーツの粉末又は抽出物の中から選ばれた少なくとも1種の酵素、粉末あるいは抽出物を含有してなる生分解性樹脂組成物。
(2)(A)成分に対し、(B)成分の割合が0.01〜10質量%の範囲である前記(1)記載の生分解性樹脂組成物。
(3)(A)成分が5000〜2000000の数平均分子量を有する前記(1)又は(2)記載の生分解性樹脂組成物。
(4)さらに、結晶核剤を含有する前記(1)〜(3)のいずれかに記載の生分解性樹脂組成物。
(5)前記(1)〜(4)のいずれかに記載の生分解性樹脂組成物の成形物。
That is, according to the present invention, the following inventions are provided.
(1) (A) Mainly a polymer or copolymer of L-lactic acid, and selected from (B) proteinase K, subtilisin, α-chymotrypsin, and bean shimeji, fig or passion fruit powder or extract. A biodegradable resin composition comprising at least one enzyme, powder or extract.
(2) The biodegradable resin composition according to (1), wherein the ratio of the component (B) is in the range of 0.01 to 10% by mass with respect to the component (A).
(3) The biodegradable resin composition according to (1) or (2), wherein the component (A) has a number average molecular weight of 5,000 to 2,000,000.
(4) The biodegradable resin composition according to any one of (1) to (3), further containing a crystal nucleating agent.
(5) A molded product of the biodegradable resin composition according to any one of (1) to (4).
本発明の生分解性樹脂組成物において(A)成分の樹脂としてL−乳酸の重合体すなわちポリL−乳酸やL−乳酸の共重合体が用いられる。
L−乳酸の共重合体としては、一方のコモノマーにL−乳酸又はL−ラクチドを用い、他方のコモノマーとして、D−乳酸、DL−ラクチド、D−ラクチド、2−ヒドロキシイソ酪酸、4−ヒドロキシイソ酪酸、10−ヒドロキシデカン酸、12−ヒドロキシドデカン酸、12−ヒドロキシステアリン酸、16−ヒドロキシヘキサデカン酸、10,16−ジヒドロキシヘキサデカン酸、9,16−ジヒドロキシヘキサデカン酸、18−ヒドロキシオクタデカン酸、20−ヒドロキシエイコサン酸、22−ヒドロキシドコサン酸、9,10,18−トリヒドロキシオクタデカン酸、グリコリド、β−プロピオラクトン、γ−ブチロラクトン、β−ブチロラクトン、γ−メチル−γ−ブチロラクトン、γ−エチル−γ−ブチロラクトン、δ−バレロラクトン、γ−バレロラクトン、ε−カプロラクトン、γ−カプロラクトン、15−ペンタデカラクトン、γ−ブチロラクタム、δ−バレロラクタム、ε−カプロラクタム、ω−ラウロラクタム、ヘキサメチレンアジパミド、テトラメチレンセバカミド、ヘキサメチレンセバカミド、グリシン環状二量体、アラニン環状二量体、エチレンオキシド、プロピレンオキシドなどを使用するのが好ましい。これら他方のコモノマーは1種で用いてもよいし、また、2種以上を組み合わせて用いてもよい。
上記共重合体は、一方のコモノマーを他方のコモノマーよりモル比で多くしたものが好ましく、中でも一方のコモノマーと他方のコモノマーとのモル比を60:40、更には80:20より高くしたものが好ましい。
(A)成分の所定樹脂は5000〜2000000、中でも10000〜1000000の分子量を有するのが好ましい。
In the biodegradable resin composition of the present invention, a polymer of L-lactic acid, that is, a copolymer of poly L-lactic acid or L-lactic acid is used as the resin of component (A).
As a copolymer of L-lactic acid, L-lactic acid or L-lactide is used as one comonomer, and D-lactic acid, DL-lactide, D-lactide, 2-hydroxyisobutyric acid, 4-hydroxy is used as the other comonomer. Isobutyric acid, 10-hydroxydecanoic acid, 12-hydroxydodecanoic acid, 12-hydroxystearic acid, 16-hydroxyhexadecanoic acid, 10,16-dihydroxyhexadecanoic acid, 9,16-dihydroxyhexadecanoic acid, 18-hydroxyoctadecanoic acid, 20 -Hydroxyeicosanoic acid, 22-hydroxydocosanoic acid, 9,10,18-trihydroxyoctadecanoic acid, glycolide, β-propiolactone, γ-butyrolactone, β-butyrolactone, γ-methyl-γ-butyrolactone, γ- Ethyl-γ-butyrolactone, δ-valerolac T-, γ-valerolactone, ε-caprolactone, γ-caprolactone, 15-pentadecalactone, γ-butyrolactam, δ-valerolactam, ε-caprolactam, ω-laurolactam, hexamethylene adipamide, tetramethylene sebacamide , Hexamethylene sebacamide, glycine cyclic dimer, alanine cyclic dimer, ethylene oxide, propylene oxide and the like are preferably used. These other comonomers may be used alone or in combination of two or more.
The copolymer is preferably one in which one comonomer is increased in molar ratio relative to the other comonomer, and in particular, one in which the molar ratio of one comonomer to the other comonomer is higher than 60:40, more preferably 80:20. preferable.
The predetermined resin of the component (A) preferably has a molecular weight of 5,000 to 2,000,000, particularly 10,000 to 1,000,000.
本発明の生分解性樹脂組成物において(B)成分として特定の酵素すなわちプロテネースK、ズブチリシン、α−キモトリプシンや、特定の粉末や抽出物すなわち、ぶなしめじ、いちじくおよびパッションフルーツの粉末や抽出物が用いられる。
これらの酵素や粉末や抽出物(以下酵素等ともいう)は1種用いてもよいし、また、2種以上を組み合わせて用いてもよい。
酵素等は精製物が好ましいが、植物分泌物や動物臓器、微生物培養液などをホモジナイズした粗製物、安定剤を含む工業用酵素であってもよい。
In the biodegradable resin composition of the present invention, as the component (B), a specific enzyme, that is, proteinase K, subtilisin, α-chymotrypsin, a specific powder or extract, that is, a powder or extract of bamboo shoot, fig and passion fruit Used.
One of these enzymes, powders and extracts (hereinafter also referred to as enzymes) may be used, or two or more thereof may be used in combination.
The enzyme or the like is preferably a purified product, but it may be a crude product obtained by homogenizing plant secretions, animal organs, microorganism culture solution, or the like, or an industrial enzyme containing a stabilizer.
本発明の生分解性樹脂組成物において各成分間の割合については、(A)成分に対し、(B)成分を0.01〜10質量%、中でも0.01〜5質量%の範囲の割合で配合するのが好ましい。 About the ratio between each component in the biodegradable resin composition of this invention, (B) component is 0.01-10 mass% with respect to (A) component, Especially the ratio of the range of 0.01-5 mass% It is preferable to mix with.
本発明の生分解性樹脂組成物には、必要に応じ、顔料、酸化防止剤、帯電防止剤、つや消し剤、劣化防止剤、蛍光増白剤、紫外線安定剤、滑り剤、木粉、フィラー、カーボンブラック、増粘剤、鎖延長剤、架橋剤、結晶核剤、可塑剤、安定剤、粘度安定剤等の添加成分を含有させることができ、とりわけ、添加成分として結晶核剤、例えばタルク、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、酸化チタン等を用いるのが、熱成形時の結晶化を促進させ、成型品の耐熱性や機械的強度を向上させうるので好ましい。
また、本発明の生分解性樹脂組成物には所期の効果を妨げない範囲で、澱粉や加工澱粉、ペクチン、キチン、キトサン、アルギン酸またはその塩、キシロース、セルロース、またはカルボキシメチルセルロース等のセルロースやその誘導体、みつまた、こうぞ、くわくさ、かなむぐら、くわ、いちじく、綿、ケナフ、アバカ、やし殻などの植物繊維、絹、ウールなどの動物繊維、ガラス繊維、カーボン繊維等を含有させてもよい。
The biodegradable resin composition of the present invention includes, as necessary, pigments, antioxidants, antistatic agents, matting agents, deterioration inhibitors, fluorescent whitening agents, UV stabilizers, slipping agents, wood powder, fillers, Additional components such as carbon black, thickener, chain extender, cross-linking agent, crystal nucleating agent, plasticizer, stabilizer, viscosity stabilizer, etc. can be included, among others crystal nucleating agents such as talc, It is preferable to use boron nitride, calcium carbonate, magnesium carbonate, titanium oxide or the like because crystallization at the time of thermoforming can be promoted and the heat resistance and mechanical strength of the molded product can be improved.
In addition, the biodegradable resin composition of the present invention includes starch and processed starch, pectin, chitin, chitosan, alginic acid or a salt thereof, xylose, cellulose, cellulose such as carboxymethylcellulose, and the like as long as the intended effect is not hindered. Derivatives, mitsumata, kokusaku, kana mugura, kuwa, figs, vegetable fibers such as cotton, kenaf, abaca, coconut shell, animal fibers such as silk and wool, glass fibers, carbon fibers, etc. Also good.
本発明の生分解性樹脂組成物は、(A)成分の所定樹脂に(B)成分の酵素や粉末や抽出物を加熱混合することによって調製することができる。
この酵素や粉末や抽出物の熱による活性減少を防止するためには、酵素等をL−乳酸の重合体又はその共重合体と混合する前に、酵素等の水分を十分に取り除いておくことが重要である。また、酵素等からの水分の除去は、L−乳酸の重合体又はその共重合体の加水分解を防止するのに有効である。
加熱混合方法は、樹脂成分を加熱しながら酵素や粉末や抽出物成分をヘンシェルミキサーや混練機で混合する方法、押出機中で樹脂成分と酵素や粉末や抽出物成分を溶融混練する方法、その他ブロー成形法、発泡成形法等を例示することができる。加熱温度は、通常20〜250℃、好ましくは50〜200℃、中でも120〜180℃の範囲で選ばれる。
ヘンシェルミキサーによりL−乳酸の重合体又は共重合体と酵素等をブレンドする場合、加熱による酵素等の活性減少を防止するため、L−乳酸の重合体又は共重合体と粉体(澱粉、タルク、炭酸カルシウム、ゼオライト、カオリン、木粉、セルロース粉末等)を同時にヘンシェルミキサーに加え、高速で加熱混合し、ヘンシェルミキサーのトルクが大きくなる直前に酵素等を添加して、酵素等入りコンパウンドを製造することも可能である。得られたコンパウンドはそのまま、又はL−乳酸の重合体又は共重合体とさらに混合して樹脂組成物とすることもできる。
さらに、酵素等の熱による活性減少を防止するためには、酵素等をポリカプロラクトンやポリブチレンアジペート、ポリエチレンアジペート等の融点の低い樹脂にブレンドした後、酵素等の入ったブレンド体とL−乳酸の重合体又はその共重合体をブレンドして、生分解性樹脂組成物を製造することもできる。
本発明の生分解性樹脂組成物は、射出成形、押出し成形、ブロー成形、プレス成形、カレンダー成形などの方法でシート状、フィルム状、繊維状、容器状に成形加工することができ、また、発泡成形に付すこともできる。発泡成形により成型品を得る場合には、発泡剤を含む成形材料の溶融物を、高圧帯域から低圧帯域に押し出すのがよい。発泡剤としては、加熱よりガスを放出する熱分解型の発泡剤や、低沸点の炭化水素や二酸化炭素、ハロゲン炭化水素等を用いることできる。
The biodegradable resin composition of the present invention can be prepared by heating and mixing the enzyme, powder or extract of the component (B) with the predetermined resin of the component (A).
In order to prevent a decrease in the activity of the enzyme, powder, or extract due to heat, the enzyme and the like should be sufficiently removed before mixing with the L-lactic acid polymer or copolymer thereof. is important. The removal of water from the enzyme or the like is effective for preventing hydrolysis of the L-lactic acid polymer or the copolymer thereof.
The heating and mixing method is a method of mixing the enzyme, powder or extract component with a Henschel mixer or kneader while heating the resin component, a method of melting and kneading the resin component with the enzyme, powder or extract component in an extruder, etc. Examples thereof include a blow molding method and a foam molding method. The heating temperature is usually 20 to 250 ° C., preferably 50 to 200 ° C., particularly 120 to 180 ° C.
When blending an L-lactic acid polymer or copolymer and an enzyme or the like with a Henschel mixer, the L-lactic acid polymer or copolymer and powder (starch, talc, etc.) are used to prevent a decrease in the activity of the enzyme or the like due to heating. , Calcium carbonate, zeolite, kaolin, wood powder, cellulose powder, etc.) are added to the Henschel mixer at the same time, heated and mixed at high speed, and the enzyme is added just before the torque of the Henschel mixer increases to produce a compound containing the enzyme, etc. It is also possible to do. The obtained compound can be used as it is, or further mixed with a polymer or copolymer of L-lactic acid to obtain a resin composition.
Furthermore, in order to prevent a decrease in activity due to heat of the enzyme, etc., the enzyme is blended with a resin having a low melting point such as polycaprolactone, polybutylene adipate or polyethylene adipate, and then the blend containing the enzyme and L-lactic acid are mixed. A biodegradable resin composition can also be produced by blending these polymers or their copolymers.
The biodegradable resin composition of the present invention can be molded into a sheet shape, a film shape, a fiber shape, a container shape by a method such as injection molding, extrusion molding, blow molding, press molding, calendar molding, etc. It can also be subjected to foam molding. When obtaining a molded product by foam molding, it is preferable to extrude a melt of a molding material containing a foaming agent from a high pressure zone to a low pressure zone. As the foaming agent, a thermal decomposition type foaming agent that releases a gas by heating, a hydrocarbon having low boiling point, carbon dioxide, halogen hydrocarbon, or the like can be used.
本発明におけるポリD−ヒドロキシ酪酸の生分解方法は、ポリD−ヒドロキシ酪酸をリパーゼで分解するものであって、リパーゼとしては、例えばアクロモバクター属由来のアルカリリパーゼ、アルカリゲネス属由来のリポプロテインリパーゼ、シュードモナス属由来のリパーゼ、キャンディダ属由来のリパーゼ、ムコール属由来のリパーゼ、リゾパス属由来のリパーゼ、ペニシリウム属由来のリパーゼ、フィコマイセス属由来のリパーゼ、豚膵臓リパーゼ、ヒト膵臓リパーゼ等の哺乳類のリパーゼなどが挙げられ、中でも哺乳類のリパーゼが好ましい。
これらのリパーゼは1種用いてもよいし、また2種以上を組み合わせて用いてもよい。
この生分解方法において用いられるポリD−ヒドロキシ酪酸は、D−ヒドロキシ酪酸のホモポリマーや、モノマー成分としてD−ヒドロキシ酪酸の割合が50%モル以上である、D−ヒドロキシ酪酸と他のコモノマーとの共重合体を意味する。
The biodegradation method of poly D-hydroxybutyric acid in the present invention is a method for degrading poly D-hydroxybutyric acid with lipase. Examples of lipases include alkaline lipase derived from Achromobacter and lipoprotein lipase derived from Alkaligenes. Lipase from Pseudomonas genus, lipase from Candida genus, lipase from Mucor genus, lipase from genus Rhizopus, lipase from genus Penicillium, lipase from genus Phycomyces, porcine pancreatic lipase, human pancreatic lipase, etc. Among them, mammalian lipase is preferable.
One type of these lipases may be used, or two or more types may be used in combination.
The poly-D-hydroxybutyric acid used in this biodegradation method is a homopolymer of D-hydroxybutyric acid or a D-hydroxybutyric acid and other comonomer in which the proportion of D-hydroxybutyric acid is 50% mol or more as a monomer component. It means a copolymer.
本発明の樹脂組成物は、生分解性に極めて優れ、取扱いやすいという顕著な効果を奏し、また、フィルム、シート、板体、発泡体、ボトル状などの各種形状に成形することが可能である。 The resin composition of the present invention has a remarkable effect of being extremely biodegradable and easy to handle, and can be formed into various shapes such as a film, a sheet, a plate, a foam, and a bottle. .
本発明の樹脂組成物は、トレー、発泡トレー、ストレッチフィルム、シュリンクフィルム、飲料用ボトル、歯ブラシ用ブリスター等の包装資材、ハウス用フィルム、トンネルフィルム、マルチフィルム、植生フィルム、苗木用ポット、種ひも、肥料・農薬の被覆材等の農業・園芸用資材、植生ネット、重袋、工事用型枠、土木用シート、芝止め杭などの土木用資材、漁網、海苔網、養殖用網、釣り糸、釣り餌袋などの漁業用資材、紙おむつや生理用品等の防水シート並びに包装材、ゴミ袋、ポリ袋、水切りネット、皿、スプーン、フォークなどのラミネーション容器、結束テープ、歯ブラシやカミソリの柄、シャンプー・リンス用ボトル、化粧品ボトル、ペン、マーカー等の日用品や雑貨品、注射器等の医療器具、骨接合材、縫合材、創傷被覆材等の医療用資材、空気清浄用フィルターなどの各種フィルター、その他磁気カード、ラベル、剥型紙、ゴルフティ等、各種の用途に好適に使用することができる。 The resin composition of the present invention is a packaging material such as a tray, foam tray, stretch film, shrink film, beverage bottle, toothbrush blister, film for house, tunnel film, multifilm, vegetation film, pot for seedling, seed string Agricultural and horticultural materials such as fertilizer and pesticide covering materials, vegetation nets, heavy bags, construction formwork, civil engineering sheets, lawn stakes and other civil engineering materials, fishing nets, laver nets, aquaculture nets, fishing lines, Fishing materials such as fishing bait bags, waterproof sheets such as disposable diapers and sanitary items, and packaging materials, garbage bags, plastic bags, draining nets, dishes, spoons, forks, and other lamination containers, binding tape, toothbrush and razor patterns, shampoo・ Rinse bottles, cosmetic bottles, pens, markers, daily necessities and miscellaneous goods, medical devices such as syringes, osteosynthesis, sutures, wound covers Medical materials of wood such as various filters such as air cleaning filter, other magnetic cards, labels, 剥型 paper, can be suitably used in the golf tee or the like, various applications.
以下、実施例により本発明を実施するための最良の形態を説明するが、本発明はこれらの例により何ら限定されるものではない。 Hereinafter, the best mode for carrying out the present invention will be described with reference to examples, but the present invention is not limited to these examples.
(実施例1)
ポリL‐乳酸(島津製作所社製、ラクティー♯1012、数平均分子量Mn=1.8×105)50gとコーンスターチ50gをヘンシェルミキサーに同時に加えて、高速回転により混合し、ヘンシェルミキサーのトルクが大きくなる直前にプロテネースK(ICN社製)を1g添加して、酵素入りコンパウンドを製造した。さらに得られたコンパウンドを加温したエクストルーダ中で混練した後、ペレット化した。得られたペレットを190℃で押出し成形して肉厚30μmのフィルムを成膜した。
Example 1
Poly L- lactic acid (manufactured by Shimadzu Corporation, Rakuti ♯1012, number average molecular weight Mn = 1.8 × 10 5) was added at the same time 50g corn starch 50g into a Henschel mixer, and mixed using a high-speed rotation, the torque of the Henschel mixer large Immediately before, 1 g of Proteinase K (manufactured by ICN) was added to produce an enzyme-containing compound. Further, the obtained compound was kneaded in a heated extruder and then pelletized. The obtained pellets were extruded at 190 ° C. to form a film having a thickness of 30 μm.
(実施例2)
プロテネースKに代えてズブチリシン(シグマ社製)を酵素に用いた以外は実施例1と同様にしてフィルムを成膜した。
(Example 2)
A film was formed in the same manner as in Example 1 except that subtilisin (manufactured by Sigma) was used as an enzyme instead of proteinase K.
(実施例3)
プロテネースKに代えてα−キモトリプシン(シグマ社製)を酵素に用いた以外は実施例1と同様にしてフィルムを成膜した。
(Example 3)
A film was formed in the same manner as in Example 1 except that α-chymotrypsin (manufactured by Sigma) was used as the enzyme instead of proteinase K.
(参考例1)
プロテネースKに代えてプロナーゼ(ベーリンガーマンハイム社製)を酵素に用いた以外は実施例1と同様にしてフィルムを成膜した。
(Reference Example 1)
A film was formed in the same manner as in Example 1 except that pronase (manufactured by Boehringer Mannheim) was used as the enzyme instead of proteinase K.
(参考例2)
プロテネースKに代えてキモパパイン(ワシントンバイオケミカル社製)を酵素に用いた以外は実施例1と同様にしてフィルムを成膜した。
(Reference Example 2)
A film was formed in the same manner as in Example 1 except that chymopapine (manufactured by Washington Biochemical Co., Ltd.) was used as the enzyme instead of proteinase K.
(参考例3)
プロテネースKに代えてパパイン(カルビオケムノババイオケミカル社製)を酵素に用いた以外は実施例1と同様にしてフィルムを成膜した。
(Reference Example 3)
A film was formed in the same manner as in Example 1 except that papain (manufactured by Calbiochemnova Biochemical Co., Ltd.) was used as the enzyme instead of proteinase K.
(参考例4)
プロテネースKに代えてプラスミン(シグマ社製)を酵素に用いた以外は実施例1と同様にしてフィルムを成膜した。
(Reference Example 4)
A film was formed in the same manner as in Example 1 except that plasmin (manufactured by Sigma) was used as an enzyme instead of proteinase K.
(参考例5)
プロテネースKに代えてエラスターゼ(和光純薬社製)を酵素に用いた以外は実施例1と同様にしてフィルムを成膜した。
(Reference Example 5)
A film was formed in the same manner as in Example 1 except that elastase (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the enzyme instead of proteinase K.
(参考例6)
プロテネースKに代えてトリプシン(シグマ社製)を酵素に用いた以外は実施例1と同様にしてフィルムを成膜した。
(Reference Example 6)
A film was formed in the same manner as in Example 1 except that trypsin (manufactured by Sigma) was used as the enzyme instead of proteinase K.
(実施例4)
プロテネースKに代えてブナシメジ抽出物の凍結乾燥粉末を用いた以外は実施例1と同様にしてフィルムを成膜した。
Example 4
A film was formed in the same manner as in Example 1 except that lyophilized powder of Buna shimeji extract was used instead of proteinase K.
(実施例5)
プロテネースKに代えていちじく抽出物の凍結乾燥粉末を用いた以外は実施例1と同様にしてフィルムを成膜した。
(Example 5)
A film was formed in the same manner as in Example 1 except that lyophilized powder of the extract was used instead of proteinase K.
(実施例6)
プロテネースKに代えてパッションフルーツ抽出物の凍結乾燥粉末を用いた以外は実施例1と同様にしてフィルムを成膜した。
これら実施例4〜6の各抽出物の凍結乾燥粉末について、これを以下抽出粉末と称する。
(Example 6)
A film was formed in the same manner as in Example 1 except that lyophilized powder of a passion fruit extract was used in place of proteinase K.
These freeze-dried powders of the extracts of Examples 4 to 6 are hereinafter referred to as “extracted powder”.
(実施例7)
ポリL−乳酸に代えてL−ラクチドとD−ラクチドのモル比90:10の共重合体を用いた以外は実施例1と同様にしてフィルムを成膜した。
(Example 7)
A film was formed in the same manner as in Example 1 except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.
(実施例8)
ポリL−乳酸に代えてL−ラクチドとD−ラクチドのモル比90:10の共重合体を用いた以外は実施例2と同様にしてフィルムを成膜した。
(Example 8)
A film was formed in the same manner as in Example 2 except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.
(実施例9)
ポリL−乳酸に代えてL−ラクチドとD−ラクチドのモル比90:10の共重合体を用いた以外は実施例3と同様にしてフィルムを成膜した。
Example 9
A film was formed in the same manner as in Example 3, except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.
(参考例7)
ポリL‐乳酸に代えてL‐ラクチドとD‐ラクチドのモル比90:10の共重合体を用いた以外は参考例1と同様にしてフィルムを成膜した。
(Reference Example 7)
A film was formed in the same manner as in Reference Example 1 except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.
(参考例8)
ポリL−乳酸に代えてL−ラクチドとD−ラクチドのモル比90:10の共重合体を用いた以外は参考例2と同様にしてフィルムを成膜した。
(Reference Example 8)
A film was formed in the same manner as in Reference Example 2, except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.
(参考例9)
ポリL−乳酸に代えてL−ラクチドとD−ラクチドのモル比90:10の共重合体を用いた以外は参考例3と同様にしてフィルムを成膜した。
(Reference Example 9)
A film was formed in the same manner as in Reference Example 3 except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.
(参考例10)
ポリL−乳酸に代えてL−ラクチドとD−ラクチドのモル比90:10の共重合体を用いた以外は参考例4と同様にしてフィルムを成膜した。
(Reference Example 10)
A film was formed in the same manner as in Reference Example 4 except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.
(参考例11)
ポリL−乳酸に代えてL−ラクチドとD−ラクチドのモル比90:10の共重合体を用いた以外は参考例5と同様にしてフィルムを成膜した。
(Reference Example 11)
A film was formed in the same manner as in Reference Example 5 except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.
(参考例12)
ポリL−乳酸に代えてL−ラクチドとD−ラクチドのモル比90:10の共重合体を用いた以外は参考例6と同様にしてフィルムを成膜した。
(Reference Example 12)
A film was formed in the same manner as in Reference Example 6 except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.
(実施例10)
ポリL−乳酸に代えてL−ラクチドとD−ラクチドのモル比90:10の共重合体を用いた以外は実施例4と同様にしてフィルムを成膜した。
(Example 10)
A film was formed in the same manner as in Example 4 except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.
(実施例11)
ポリL−乳酸に代えてL−ラクチドとD−ラクチドのモル比90:10の共重合体を用いた以外は実施例5と同様にしてフィルムを成膜した。
(Example 11)
A film was formed in the same manner as in Example 5 except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.
(実施例12)
ポリL−乳酸に代えてL−ラクチドとD−ラクチドのモル比90:10の共重合体を用いた以外は実施例6と同様にしてフィルムを成膜した。
(Example 12)
A film was formed in the same manner as in Example 6 except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.
(参考例13)
リL−乳酸に代えてL−ラクチドとDL−β−ブチロラクトンのモル比90:10の共重合体を用いた以外は参考例6と同様にフィルムを成膜した。
(Reference Example 13)
A film was formed in the same manner as in Reference Example 6 except that a copolymer having a molar ratio of L-lactide and DL-β-butyrolactone of 90:10 was used instead of li-L-lactic acid.
(参考例14)
ポリL−乳酸に代えてL−ラクチドとDL−β−ブチロラクトンとε−カプロラクトンのモル比90:5:5の共重合体を用いた以外は参考例6と同様にフィルムを成膜した。
(Reference Example 14)
A film was formed in the same manner as in Reference Example 6 except that a copolymer of L-lactide, DL-β-butyrolactone, and ε-caprolactone in a molar ratio of 90: 5: 5 was used instead of poly L-lactic acid.
(参考例15)
ポリL−乳酸に代えてL−ラクチドとDL−β−ブチロラクトンとε−カプロラクタムのモル比90:5:5の共重合体を用いた以外は参考例6と同様にフィルムを成膜した。
(Reference Example 15)
A film was formed in the same manner as in Reference Example 6 except that a copolymer of L-lactide, DL-β-butyrolactone, and ε-caprolactam in a molar ratio of 90: 5: 5 was used instead of poly L-lactic acid.
(参考例16)
ポリL−乳酸に代えてL−ラクチドとDL−β−ブチロラクトンとエチレンオキシドのモル比90:5:5の共重合体を用いた以外は参考例6と同様にフィルムを成膜した。
(Reference Example 16)
A film was formed in the same manner as in Reference Example 6 except that a copolymer of L-lactide, DL-β-butyrolactone, and ethylene oxide having a molar ratio of 90: 5: 5 was used instead of poly L-lactic acid.
(ブナシメジ抽出物凍結乾燥粉末の調製方法)
ブナシメジ50gを0.1Mリン酸緩衝液(pH7)100mlを加え、ホモジナイズを行った。さらにガーゼによるろ過、高速遠沈(10000rpm)を行った。得られた抽出液を凍結乾燥し、ブナシメジ抽出液凍結乾燥粉末を得た。
(Method for preparing lyophilized powder of Bunashimeji extract)
Homogenization was performed by adding 100 ml of 0.1M phosphate buffer (pH 7) to 50 g of bunashimeji. Further, filtration with gauze and high-speed centrifugation (10000 rpm) were performed. The obtained extract was freeze-dried to obtain a lysate powder of bunashimeji extract.
(いちじく抽出物凍結乾燥粉末の調製方法)
ブナシメジに代えていちじくを用いた以外は上記ブナシメジ抽出物凍結乾燥粉末の調製方法と同様にいちじく抽出液凍結乾燥粉末を得た。
(Method for preparing fig extract lyophilized powder)
The extract liquid freeze-dried powder was obtained in the same manner as in the above-described method for preparing the freeze-dried powder of Bunashimeji, except that it was used instead of Bunashimeji.
(パッションフルーツ抽出物凍結乾燥粉末の調製方法)
ブナシメジに代えてパッションフルーツを用いた以外は上記ブナシメジ抽出物凍結乾燥粉末の調製方法と同様にパッションフルーツ抽出物凍結乾燥粉末を得た。
(Preparation method of passion fruit extract freeze-dried powder)
A passion fruit extract lyophilized powder was obtained in the same manner as the above-mentioned method for preparing a lysed bunashimeji extract, except that passion fruit was used in place of bunashhimeji.
(L−ラクチドとD−ラクチドのモル比90:10の共重合体の合成方法)
窒素気流中、三口フラスコにピューラック社製L−ラクチド9g、ピューラック社製D−ラクチド1gおよびナカライテスク社製オクチル酸スズ0.01gを加え、130℃で1時間加熱した。得られた粗製の共重合体をクロロホルム100mlに溶解し、メタノール500mlに沈殿させた。(収量9g数平均分子量1.2×104)
(Method for synthesizing copolymer having a molar ratio of L-lactide and D-lactide of 90:10)
In a nitrogen stream, 9 g of Pulac L-lactide, 1 g of Pulac D-lactide and 0.01 g of tin octylate Nacalai Tesque were added to a three-necked flask and heated at 130 ° C. for 1 hour. The obtained crude copolymer was dissolved in 100 ml of chloroform and precipitated in 500 ml of methanol. (Yield 9 g number average molecular weight 1.2 × 10 4 )
(L−ラクチドとDL−β−ブチロラクトンのモル比90:10の共重合体の合成方法)
窒素気流中、三口フラスコにピューラック社製L‐ラクチド9.26g、東京化成社製DL−β−ブチロラクトン0.74gおよび和光純薬製トリエチルアルミニウム0.4mlを加え、30℃で24時間撹拌した。得られた粗製の共重合体をクロロホルム100mlに溶解し、メタノール500mlに沈殿させた。(収量3.6g数平均分子量5.6×103)
(Method for synthesizing copolymer of L-lactide and DL-β-butyrolactone having a molar ratio of 90:10)
In a nitrogen stream, 9.26 g of Pulac L-lactide, 0.74 g of DL-β-butyrolactone manufactured by Tokyo Chemical Industry Co., Ltd. and 0.4 ml of triethylaluminum manufactured by Wako Pure Chemical Industries, Ltd. were added to a three-necked flask and stirred at 30 ° C. for 24 hours. . The obtained crude copolymer was dissolved in 100 ml of chloroform and precipitated in 500 ml of methanol. (Yield 3.6 g number average molecular weight 5.6 × 10 3 )
(L−ラクチドとDL−β−ブチロラクトンとε−カプロラクトンのモル比90:5:5の共重合体の合成方法)
窒素気流中、三口フラスコに東京化成社製DL−β−ブチロラクトン4.2g、東京化成社製ε−カプロラクトン5.8gおよび和光純薬社製テトラフェニルスズ0.01gを加え、30℃で24時間反応させた。得られた粗製の共重合体をクロロホルム100mlに溶解し、メタノールに沈殿させた。(収量5g数平均分子量8.3×103)得られた共重合体1gと島津社製ポリL−ラクチド(ラクティー♯1012、数平均分子量Mn=1.8×105)9gを加え、200℃で5時間加熱した。得られた粗製の三元共重合体をクロロホルム100mlに溶解し、メタノールに沈殿させた。(収量7g数平均分子量5.3×103)
(Method for synthesizing a copolymer of L-lactide, DL-β-butyrolactone and ε-caprolactone in a molar ratio of 90: 5: 5)
In a nitrogen stream, 4.2 g of DL-β-butyrolactone manufactured by Tokyo Chemical Industry Co., Ltd., 5.8 g of ε-caprolactone manufactured by Tokyo Chemical Industry Co., Ltd., and 0.01 g of tetraphenyl tin manufactured by Wako Pure Chemical Industries, Ltd. were added to a three-necked flask at 30 ° C. for 24 hours. Reacted. The obtained crude copolymer was dissolved in 100 ml of chloroform and precipitated in methanol. (Yield 5 g number average molecular weight 8.3 × 10 3 ) 1 g of the obtained copolymer and 9 g poly L-lactide (Lacty # 1012, number average molecular weight Mn = 1.8 × 10 5 ) manufactured by Shimadzu Corporation were added, and 200 Heat at 5 ° C. for 5 hours. The obtained crude ternary copolymer was dissolved in 100 ml of chloroform and precipitated in methanol. (Yield 7 g number average molecular weight 5.3 × 10 3 )
(L−ラクチドとDL−β−ブチロラクトンとε−カプロラクタムのモル比90:5:5の共重合体の合成方法)
窒素気流中、三口フラスコに東京化成社製DL−β−ブチロラクトン4.2g、東京化成社製ε−カプロラクタム5.8gおよび和光純薬社製テトラフェニルスズ0.01gを加え、30℃で24時間反応させた。得られた粗製の共重合体をクロロホルム100mlに溶解し、メタノールに沈殿させた。(収量4g数平均分子量6.3×103)得られた共重合体1gと島津社製ポリL‐ラクチド(ラクティー♯1012、数平均分子量Mn=1.8×105)9gを加え、200℃で5時間加熱した。得られた粗製の三元共重合体をクロロホルム100mlに溶解し、メタノールに沈殿させた。(収量5g数平均分子量4.2×103)
(Method for synthesizing copolymer of L-lactide, DL-β-butyrolactone, and ε-caprolactam at a molar ratio of 90: 5: 5)
In a nitrogen stream, 4.2 g of DL-β-butyrolactone manufactured by Tokyo Chemical Industry Co., Ltd., 5.8 g of ε-caprolactam manufactured by Tokyo Chemical Industry Co., Ltd. and 0.01 g of tetraphenyl tin manufactured by Wako Pure Chemical Industries, Ltd. were added to the three-necked flask at 30 ° C. for 24 hours. Reacted. The obtained crude copolymer was dissolved in 100 ml of chloroform and precipitated in methanol. (Yield 4 g number average molecular weight 6.3 × 10 3 ) 1 g of the obtained copolymer and 9 g of poly L-lactide (Lacty # 1012, number average molecular weight Mn = 1.8 × 10 5 ) manufactured by Shimadzu were added, and 200 Heat at 5 ° C. for 5 hours. The obtained crude ternary copolymer was dissolved in 100 ml of chloroform and precipitated in methanol. (Yield 5 g number average molecular weight 4.2 × 10 3 )
(L−ラクチドとエチレンオキシドとコハク酸のモル比90:5:5の共重合体の合成方法)
窒素気流中、三口フラスコに東京化成社製エチレンオキシド3.3g、東京化成社製無水コハク酸6.7gおよび和光純薬社製ジエトキシマグネシウム0.01gを加え、30℃で24時間反応させた。得られた粗製の共重合体をクロロホルム100mlに溶解し、メタノールに沈殿させた(収量6g、数平均分子量6.8×103)。得られた共重合体1gと島津社製ポリL‐ラクチド9gを加え、200℃で5時間加熱した。得られた粗製の三元共重合体をクロロホルム100mlに溶解し、メタノールに沈殿させた(収量7g数平均分子量5.8×103)。
(Method for synthesizing a copolymer of L-lactide, ethylene oxide, and succinic acid in a molar ratio of 90: 5: 5)
In a nitrogen stream, 3.3 g of ethylene oxide manufactured by Tokyo Chemical Industry Co., Ltd., 6.7 g of succinic anhydride manufactured by Tokyo Chemical Industry Co., Ltd. and 0.01 g of diethoxymagnesium manufactured by Wako Pure Chemical Industries, Ltd. were added and reacted at 30 ° C. for 24 hours. The obtained crude copolymer was dissolved in 100 ml of chloroform and precipitated in methanol (yield 6 g, number average molecular weight 6.8 × 10 3 ). 1 g of the obtained copolymer and 9 g of poly L-lactide manufactured by Shimadzu Corporation were added and heated at 200 ° C. for 5 hours. The obtained crude ternary copolymer was dissolved in 100 ml of chloroform and precipitated in methanol (yield 7 g number average molecular weight 5.8 × 10 3 ).
(試験例1〜28)(生分解性試験)
実施例1〜12及び参考例1〜16で調製した各フィルムを試料に用いて、その各々10mgを0.1Mリン酸緩衝液(pH7.0)4mlとオクチルグルコシド溶液(東京化成社製)1ml中に添加し、37℃で14時間撹拌処理した。
得られた処理液について、その水溶性有機炭素濃度(ppm単位)を有機炭素測定装置(島津製作所社製、製品名:全有機炭素濃度測定装置TOC−5000A)にて測定し、その結果を表1のA欄に示す。
各実施例及び参考例の試料と、その酵素又は抽出粉末に代えて該酵素又は抽出粉末を280℃で加熱処理したものを用いた以外は各実施例と同様にして調製した各フィルムについて、上記と同様に処理し、水溶性有機炭素濃度(ppm単位)を測定し、その結果を表1のB欄にブランクとして示す。
各実施例及び参考例の試料の生分解性は、上記A欄とB欄の値の差として表1のC欄に示す。
(Test Examples 1 to 28) (Biodegradability test)
Using each of the films prepared in Examples 1-12 and Reference Examples 1-16 as samples, 10 mg of each was 4 ml of 0.1 M phosphate buffer (pH 7.0) and 1 ml of octyl glucoside solution (manufactured by Tokyo Chemical Industry Co., Ltd.). And stirred at 37 ° C. for 14 hours.
About the obtained process liquid, the water-soluble organic carbon concentration (ppm unit) was measured with the organic carbon measuring device (the Shimadzu Corporation make, product name: total organic carbon concentration measuring device TOC-5000A), and the result was represented. It is shown in the A column of 1.
For each sample prepared in the same manner as in each example except that the sample of each example and reference example, and the enzyme or extracted powder were heat-treated at 280 ° C. instead of the enzyme or extracted powder, The water-soluble organic carbon concentration (in ppm) was measured, and the result is shown as a blank in column B of Table 1.
The biodegradability of the samples of each Example and Reference Example is shown in the C column of Table 1 as the difference between the values in the A column and the B column.
これより、本発明の樹脂組成物は酵素あるいは抽出物が含有された状態でも分解されることが分る。 From this, it can be seen that the resin composition of the present invention is decomposed even in a state where an enzyme or an extract is contained.
(比較試験例1)
試験例1の試料に代えて、酵素を含まないポリL−乳酸のみからなる肉厚30μmのフィルムを比較試料として用いた以外は試験例1と同様にして緩衝液中で撹拌処理し、測定したが、処理液に水溶性有機炭素は検出されなかった。
(Comparative Test Example 1)
In place of the sample of Test Example 1, a 30 μm thick film consisting only of poly-L-lactic acid containing no enzyme was used as a comparative sample, and the sample was stirred in a buffer solution and measured in the same manner as in Test Example 1. However, water-soluble organic carbon was not detected in the treatment liquid.
(試験例29〜36)
ポリL−乳酸のみからなる肉厚30μmのフィルム10mgを各種酵素液(キモパパイン、パパイン、プラスミン、エラスターゼ、トリプシン、ぶなしめじ抽出粉末、いちじく抽出粉末およびパッションフルーツ抽出粉末)1ml、0.1Mリン酸緩衝液(pH7.0)3ml、オクチルグルコシド溶液(東京化成社製)1mlの混合溶液中に添加し、37℃で14時間撹拌処理した。
得られた処理液について、その水溶性有機炭素濃度(ppm単位)を有機炭素測定装置(島津製作所社製、製品名:全有機炭素濃度測定装置TOC−5000A)にて測定し、その結果を表2のA欄に示す。
これら試験例と、その酵素又は抽出粉末に代えて該酵素又は抽出粉末を280℃で加熱処理したものを用いた以外は同様にフィルムを処理し、水溶性有機炭素濃度(ppm単位)を測定し、その結果を表2のB欄にブランクとして示す。
各試験例の生分解性は、上記A欄とB欄の値の差として表2のC欄に示す。
(Test Examples 29 to 36)
10 ml of a 30 μm thick film consisting only of poly-L-lactic acid, 1 ml of various enzyme solutions (chymopapain, papain, plasmin, elastase, trypsin, bamboo shoot extract powder, fig extract powder and passion fruit extract powder), 0.1 M phosphate buffer The mixture was added to a mixed solution of 3 ml of a liquid (pH 7.0) and 1 ml of an octyl glucoside solution (manufactured by Tokyo Chemical Industry Co., Ltd.) and stirred at 37 ° C. for 14 hours.
About the obtained process liquid, the water-soluble organic carbon concentration (ppm unit) was measured with the organic carbon measuring device (the Shimadzu Corporation make, product name: total organic carbon concentration measuring device TOC-5000A), and the result was represented. It is shown in A column of 2.
The films were treated in the same manner except that these test examples and the enzyme or extract powder were heat-treated at 280 ° C. instead of the enzyme or extract powder, and the water-soluble organic carbon concentration (ppm unit) was measured. The results are shown as blanks in column B of Table 2.
The biodegradability of each test example is shown in the column C of Table 2 as the difference between the values in the columns A and B.
(比較試験例2〜4)
ポリL−乳酸のみからなる肉厚30μmのフィルム10mgを各種酵素液(プロテネースK、ズブチリシン、α‐キモトリプシン)1ml、0.1Mリン酸緩衝液(pH7.0)3ml、オクチルグルコシド溶液(東京化成社製)1mlの混合溶液中に添加し、37℃で14時間撹拌処理した。
得られた処理液について、その水溶性有機炭素濃度(ppm単位)を有機炭素測定装置(島津製作所社製、製品名:全有機炭素濃度測定装置TOC−5000A)にて測定し、その結果を表2のA欄に示す。
これら比較試験例と、その酵素に代えて該酵素を280℃で加熱処理したものを用いた以外は同様にフィルムを処理し、水溶性有機炭素濃度(ppm単位)を測定し、その結果を表2のB欄にブランクとして示す。
各比較試験例の生分解性は、上記A欄とB欄の値の差として表2のC欄に示す。
(Comparative Test Examples 2 to 4)
10 mg of a 30 μm-thick film consisting of poly-L-lactic acid alone, 1 ml of various enzyme solutions (proteinase K, subtilisin, α-chymotrypsin), 3 ml of 0.1 M phosphate buffer (pH 7.0), octyl glucoside solution (Tokyo Kasei Co., Ltd.) The product was added to 1 ml of the mixed solution and stirred at 37 ° C. for 14 hours.
About the obtained process liquid, the water-soluble organic carbon concentration (ppm unit) was measured with the organic carbon measuring device (the Shimadzu Corporation make, product name: total organic carbon concentration measuring device TOC-5000A), and the result was represented. It is shown in A column of 2.
The film was treated in the same manner except that these comparative test examples and the enzyme were heat-treated at 280 ° C. instead of the enzyme, and the water-soluble organic carbon concentration (in ppm) was measured. It is shown as a blank in column B of 2.
The biodegradability of each comparative test example is shown in the C column of Table 2 as the difference between the values in the A column and the B column.
(試験例37〜46)
三菱ガス化学工業社製ポリD‐ヒドロキシ酪酸(数平均分子量2.1×105)のキャストフィルム(30μm)、10mgを各種酵素溶液、生化学工業社製アクロモバクター属由来のアルカリリパーゼ、生化学工業社製アルカリゲネス属由来のリポプロテインリパーゼ、天野社製シュードモナス属由来のリパーゼ(リパーゼAK)、シグマ社製キャンディダ属由来のリパーゼ(タイプVII−S)、バイオキャタリスト社製ムコール属由来のリパーゼ、シグマ社製リゾパス属由来のリパーゼ(タイプVI)、バイオキャタリスト社製ペニシリウム属由来のリパーゼ、和光純薬社製フィコマイセス属由来のリパーゼ(リパーゼPN)、シグマ社製豚膵臓リパーゼ(タイプII)、シグマ社製ヒト膵臓リパーゼ(1mg/ml)1ml、0.1Mリン酸緩衝液(pH7.0)3mlとオクチルグルコシド溶液(東京化成社製)1ml中に添加し、37℃で14時間撹拌処理した。
得られた処理液について、その水溶性有機炭素濃度(ppm単位)を有機炭素測定装置(島津製作所社製、製品名:全有機炭素濃度測定装置TOC−5000A)にて測定し、その結果を表3のA欄に示す。
これら試験例と、その酵素に代えて該酵素を280℃で加熱処理したものを用いた以外は同様にフィルムを処理し、水溶性有機炭素濃度(ppm単位)を測定し、その結果を表3のB欄にブランクとして示す。
各試験例の生分解性は、上記A欄とB欄の値の差として表3のC欄に示す。
(Test Examples 37 to 46)
Mitsubishi Gas Chemical Industries, Ltd. poly D- hydroxy cast film (30 [mu] m), 10 mg of various enzyme solution acid (number average molecular weight 2.1 × 10 5), Seikagaku Corporation Achromobacter derived from the genus alkaline lipase, raw Lipoprotein lipase derived from Alkagenes genus manufactured by Kagaku Kogyo, lipase derived from Pseudomonas genus manufactured by Amano (lipase AK), lipase derived from Candida genus manufactured by Sigma (type VII-S), derived from Mucor genus manufactured by Biocatalyst Lipase, lipase derived from Rhizopus genus manufactured by Sigma (type VI), lipase derived from Penicillium genus manufactured by Biocatalyst, lipase derived from Phycomyces genus manufactured by Wako Pure Chemical Industries, Ltd. (lipase PN), porcine pancreatic lipase manufactured by Sigma (type II) ), Sigma human pancreatic lipase (1 mg / ml) 1 ml, 0.1M The solution was added to 3 ml of a phosphate buffer (pH 7.0) and 1 ml of an octyl glucoside solution (manufactured by Tokyo Chemical Industry Co., Ltd.) and stirred at 37 ° C. for 14 hours.
About the obtained process liquid, the water-soluble organic carbon concentration (ppm unit) was measured with the organic carbon measuring device (the Shimadzu Corporation make, product name: total organic carbon concentration measuring device TOC-5000A), and the result was represented. It is shown in the A column of 3.
The film was treated in the same manner except that these test examples were used and the enzyme was heat-treated at 280 ° C. instead of the enzyme, and the water-soluble organic carbon concentration (in ppm) was measured. It is shown as a blank in the B column.
The biodegradability of each test example is shown in the column C of Table 3 as the difference between the values in the columns A and B.
本発明の樹脂組成物は、生分解性に極めて優れ、取扱いやすく、フィルム、シート、板体、発泡体、ボトル状などの各種形状に成形しうるので、トレー、シュリンクフィルム、各種ボトル等の包装資材、ハウス用フィルム、トンネルフィルム、マルチフィルム等の農業・園芸用資材、型枠、土木用シート等の土木用資材、漁網等の漁業用資材、紙おむつや生理用品等の防水シート、注射器などの医療器具、ゴミ袋、ポリ袋、水切りネット、皿等の日用品や雑貨品、骨接合材、縫合材、創傷被覆材等の医療用資材、フィルター、磁気カード、ラベル、剥型紙等、各種の用途に好適に使用しうる。 The resin composition of the present invention is extremely excellent in biodegradability, easy to handle, and can be formed into various shapes such as films, sheets, plates, foams, bottles, etc., so that packaging of trays, shrink films, various bottles, etc. Agricultural and horticultural materials such as materials, house films, tunnel films, and multi-films, civil engineering materials such as formwork and civil engineering sheets, fishing materials such as fishing nets, waterproof sheets such as disposable diapers and sanitary products, syringes, etc. Daily use and miscellaneous goods such as medical instruments, garbage bags, plastic bags, draining nets, dishes, etc., medical materials such as bone bonding materials, suture materials, wound dressings, filters, magnetic cards, labels, release paper, etc. Can be suitably used.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004217971A JP4543211B2 (en) | 2004-07-26 | 2004-07-26 | Biodegradable resin composition and molded product thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004217971A JP4543211B2 (en) | 2004-07-26 | 2004-07-26 | Biodegradable resin composition and molded product thereof |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010109649A Division JP4811771B2 (en) | 2010-05-11 | 2010-05-11 | Biodegradable resin composition or method for biodegradation of molded product thereof |
JP2010109650A Division JP4811772B2 (en) | 2010-05-11 | 2010-05-11 | Biodegradation method of poly-D-hydroxybutyric acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006036899A JP2006036899A (en) | 2006-02-09 |
JP4543211B2 true JP4543211B2 (en) | 2010-09-15 |
Family
ID=35902245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004217971A Expired - Fee Related JP4543211B2 (en) | 2004-07-26 | 2004-07-26 | Biodegradable resin composition and molded product thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4543211B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2602499T5 (en) | 2011-02-04 | 2022-05-12 | Mosca Gmbh | Strapping from renewable raw materials |
FR2984354A1 (en) * | 2011-12-20 | 2013-06-21 | Centre Nat Rech Scient | PROCESS FOR PREPARING POLYMER ALLOY / ENZYMES |
AU2014325231B2 (en) * | 2013-09-27 | 2017-09-14 | Toyo Seikan Group Holdings, Ltd. | Method for degrading biodegradable resin |
JP7321146B2 (en) * | 2017-08-31 | 2023-08-04 | カルビオリス | Biodegradable polyester articles containing enzymes |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11206370A (en) * | 1998-01-29 | 1999-08-03 | Showa Denko Kk | Sustained release resin composition and its usage |
JP2003252966A (en) * | 2002-03-04 | 2003-09-10 | National Institute Of Advanced Industrial & Technology | Copolymerization-type easily decomposable polylactic acid and decomposition method of polylactic acid |
JP2004018681A (en) * | 2002-06-17 | 2004-01-22 | National Institute Of Advanced Industrial & Technology | Biodegradable poly(lactic acid) resin composition |
JP2005162832A (en) * | 2003-12-01 | 2005-06-23 | Almighty:Kk | Method for degrading polylacic acid |
-
2004
- 2004-07-26 JP JP2004217971A patent/JP4543211B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11206370A (en) * | 1998-01-29 | 1999-08-03 | Showa Denko Kk | Sustained release resin composition and its usage |
JP2003252966A (en) * | 2002-03-04 | 2003-09-10 | National Institute Of Advanced Industrial & Technology | Copolymerization-type easily decomposable polylactic acid and decomposition method of polylactic acid |
JP2004018681A (en) * | 2002-06-17 | 2004-01-22 | National Institute Of Advanced Industrial & Technology | Biodegradable poly(lactic acid) resin composition |
JP2005162832A (en) * | 2003-12-01 | 2005-06-23 | Almighty:Kk | Method for degrading polylacic acid |
Also Published As
Publication number | Publication date |
---|---|
JP2006036899A (en) | 2006-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Thakur et al. | Poly (ε‐caprolactone): A potential polymer for biodegradable food packaging applications | |
Luckachan et al. | Biodegradable polymers-a review on recent trends and emerging perspectives | |
JP3742842B2 (en) | Biodegradable polylactic acid resin composition | |
Chiellini et al. | Biodegradable polymeric materials | |
Bugnicourt et al. | Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging | |
US5883199A (en) | Polyactic acid-based blends | |
Södergård et al. | Properties of lactic acid based polymers and their correlation with composition | |
EP0428620B1 (en) | A method of plasticizing lactide polymers. | |
ES2305201T3 (en) | TERNARY MIXTURES OF BIODEGRADABLE POLYESTERS AND PRODUCTS MANUFACTURED FROM THE SAME. | |
EP1725614B1 (en) | Biodegradable compositions comprising polylactic polymers, adipat copolymers and magnesium silicate | |
CN108102318A (en) | biodegradable film material | |
Bohlmann | General characteristics, processability, industrial applications and market evolution of biodegradable polymers | |
CA1339026C (en) | Degradable thermoplastics from lactides | |
Venkatachalam et al. | Bioplastic world: A review | |
Kushwah et al. | RETRACTED ARTICLE: Towards understanding polyhydroxyalkanoates and their use | |
Fink | The chemistry of bio-based polymers | |
JP4811772B2 (en) | Biodegradation method of poly-D-hydroxybutyric acid | |
JP4543211B2 (en) | Biodegradable resin composition and molded product thereof | |
JP4811771B2 (en) | Biodegradable resin composition or method for biodegradation of molded product thereof | |
JP2008024851A (en) | Biodegradable composition, and molded article and use of the same | |
Javaid et al. | Biodegradable Plastics as a Solution to the Challenging Situation of Plastic Waste Management | |
JP2005060686A (en) | Polylactic acid composition and shaped article obtained from the same | |
Rajan et al. | Lactic acid polymers: Synthesis, properties, and applications | |
JP4235744B2 (en) | Biodegradable resin composition | |
John et al. | Poly lactic acid: An environmentally friendly biodegradable polymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070129 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20090608 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091023 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100312 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100511 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100601 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100609 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |