JP4542770B2 - Manufacturing method of fine particle arrangement substrate and fine particle arrangement substrate obtained by the method - Google Patents

Manufacturing method of fine particle arrangement substrate and fine particle arrangement substrate obtained by the method Download PDF

Info

Publication number
JP4542770B2
JP4542770B2 JP2003402586A JP2003402586A JP4542770B2 JP 4542770 B2 JP4542770 B2 JP 4542770B2 JP 2003402586 A JP2003402586 A JP 2003402586A JP 2003402586 A JP2003402586 A JP 2003402586A JP 4542770 B2 JP4542770 B2 JP 4542770B2
Authority
JP
Japan
Prior art keywords
substrate
fine particles
fine particle
fine
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003402586A
Other languages
Japanese (ja)
Other versions
JP2005161175A (en
Inventor
厚範 松田
浩行 武藤
基次 逆井
稔 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP2003402586A priority Critical patent/JP4542770B2/en
Publication of JP2005161175A publication Critical patent/JP2005161175A/en
Application granted granted Critical
Publication of JP4542770B2 publication Critical patent/JP4542770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Silicon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、微粒子配置基板の製造方法およびその方法で得られた微粒子配置基板に関する。さらに詳しくは、本発明は、各種光学用途などに有用な、表面に微粒子が、所定のパターンに規則的に配置した基板を、短時間で効率よく、かつ安定的に製造する方法、およびこの方法で得られた微粒子配置基板に関するものである。   The present invention relates to a method for producing a fine particle-arranged substrate and a fine particle-arranged substrate obtained by the method. More specifically, the present invention is a method for efficiently and stably producing a substrate in which fine particles are regularly arranged in a predetermined pattern, which is useful for various optical applications, in a short time, and this method. It relates to a fine particle arrangement substrate obtained in (1).

近年、光学的または熱的性質や形状が制御された機能性微粒子を、基板上に規則的に堆積・配列させる技術は、次世代の光機能素子や化学センサなどを構築するための基礎技術として注目されている。
例えば、光学的に制御された微粒子を表面に一次元に配列した基板は、光導波路、マイクロレンズアレイ、レーザアレイ、光カップラ、光アイソレータ、光コリメータなどの用途が考えられ、二次元に配列した基板は、光の拡散、反射、回折などの光学材料、面発光レーザ、平板型のマイクロレンズアレイ、光カップラ、光アイソレータ、光コリメータなどの用途が考えられる。また、三次元に配列した基板は、フォトニック材料などの用途が考えられる。
In recent years, the technology that regularly deposits and arranges functional fine particles with controlled optical or thermal properties and shapes on a substrate is a basic technology for constructing next-generation optical functional elements and chemical sensors. Attention has been paid.
For example, a substrate with optically controlled fine particles arranged one-dimensionally on the surface can be used for optical waveguides, microlens arrays, laser arrays, optical couplers, optical isolators, optical collimators, etc. The substrate may be used for optical materials such as light diffusion, reflection, and diffraction, surface emitting lasers, flat microlens arrays, optical couplers, optical isolators, and optical collimators. Further, the substrate arranged in three dimensions can be used for photonic materials and the like.

表面基板に、微粒子を六方晶格子状または正方晶格子状などに、短時間で規則的に配列させる方法として、例えば、蒸気圧および表面張力を異にする2種以上の液体を含有し、かつ均一組成を有する液体混合物から成る媒体中に、凝集相微粒子を分散し、該微粒子分散液を基板表面上に流延して液膜を形成させ、該液膜から前記媒体の一部を気化除去することにより、該微粒子を該基板表面に単層もしくは複数層に展開する微粒子薄膜の製造方法が開示されている(例えば、特許文献1参照)。しかしながら、この製造方法においては、製造条件を極めて厳密に制御しなければ、微粒子を所望の形状に規則的に配列することができず、したがって、安定した形状の微粒子配列が得られにくいという欠点がある。
特開2002−286962号公報
As a method of regularly arranging fine particles in a hexagonal lattice or tetragonal lattice on a surface substrate in a short time, for example, containing two or more liquids having different vapor pressures and surface tensions, and Agglomerated fine particles are dispersed in a medium composed of a liquid mixture having a uniform composition, and the fine particle dispersion is cast on the substrate surface to form a liquid film, and a part of the medium is vaporized and removed from the liquid film. Thus, a method for producing a fine particle thin film is disclosed in which the fine particles are developed in a single layer or multiple layers on the surface of the substrate (see, for example, Patent Document 1). However, in this production method, unless the production conditions are controlled very strictly, the fine particles cannot be regularly arranged in a desired shape. Therefore, there is a disadvantage that it is difficult to obtain a fine-shaped fine particle arrangement. is there.
JP 2002-286932 A

本発明は、このような事情のもとで、各種光学用途などに有用な、表面に微粒子が、所定のパターンに規則的に配置した基板を、短時間で効率よく、かつ安定的に製造する方法、およびこの方法で得られた微粒子配置基板を提供することを目的とするものである。   Under such circumstances, the present invention efficiently and stably manufactures a substrate in which fine particles are regularly arranged in a predetermined pattern on a surface, which is useful for various optical applications. It is an object of the present invention to provide a method and a fine particle arrangement substrate obtained by this method.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、表面に所定パターンの溝が形成された基板を、傾斜させて、その一端を微粒子分散液中に浸積させることにより、その目的を達成し得ることを見出し、その知見に基づいて本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the inventors of the present invention inclined the substrate having a predetermined pattern of grooves formed on the surface and immersed one end of the substrate in the fine particle dispersion. The inventors have found that the object can be achieved, and have completed the present invention based on the findings.

すなわち、本発明は、
(1)微粒子と液状媒体を含む微粒子分散液中に、表面に溝を有する基板を傾斜させて、その一端を浸積させることにより、前記微粒子分散液を、前記基板の溝に沿って上昇させて溝内に満たしたのち、前記液状媒体を気化させて、前記溝に微粒子を配置することからなり、
前記微粒子が、平均粒径0.01〜50μmおよび粒度分布の変動係数(CV値)5%以下のシリカ系微粒子であり、
前記液状媒体が、20℃における表面張力が150〜400μN/cmであり、大気圧下での沸点が30〜180℃である液体媒体であり、
前記基板が、有機高分子化合物、ガラス、セラミックス、金属、半金属から選択されるものであり、
前記基板の表面の溝の深さが、微粒子の平均粒径の0.1〜5倍であること
を特徴とする微粒子配置基板の製造方法、
(2)表面に溝を有する基板の一端を微粒子分散液中に浸積させる際の基板の傾斜角度が、60°以下である上記(1)項に記載の方法、
(3)微粒子分散液が界面活性剤を含む上記(1)または(2)項に記載の方法、
(4)微粒子が、表面に熱可塑性成分または未硬化熱硬化性成分の被覆層を有し、かつ配置後加熱処理して、該微粒子を固定化させる上記(1)ないし(3)項のいずれか1項に記載の方法、および
(5)上記(1)ないし(4)項のいずれか1項に記載の方法で得られたことを特徴とする微粒子配置基板、
を提供するものである。
That is, the present invention
(1) The fine particle dispersion is raised along the grooves of the substrate by inclining a substrate having grooves on the surface and immersing one end of the substrate in a fine particle dispersion containing fine particles and a liquid medium. The liquid medium is vaporized and the fine particles are arranged in the groove,
The fine particles are silica-based fine particles having an average particle size of 0.01 to 50 μm and a coefficient of variation of particle size distribution (CV value) of 5% or less,
The liquid medium is a liquid medium having a surface tension of 150 to 400 μN / cm at 20 ° C. and a boiling point of 30 to 180 ° C. under atmospheric pressure,
The substrate is selected from organic polymer compounds, glass, ceramics, metals, metalloids,
The depth of the groove on the surface of the substrate is 0.1 to 5 times the average particle size of the fine particles;
(2) The method according to the above item (1), wherein an inclination angle of the substrate when one end of the substrate having a groove on the surface is immersed in the fine particle dispersion is 60 ° or less,
(3) The method according to (1) or (2) above, wherein the fine particle dispersion contains a surfactant,
(4) Any of the above items (1) to (3), wherein the fine particles have a coating layer of a thermoplastic component or an uncured thermosetting component on the surface, and are heat-treated after being arranged to immobilize the fine particles. And (5) a fine particle arrangement substrate obtained by the method according to any one of (1) to (4) above,
Is to provide.

本発明によれば、各種光学用途などに有用な、表面に微粒子が、所定のパターンに規則的に配置した基板を、短時間で効率よく、かつ安定的に製造する方法、およびこの方法で得られた微粒子配置基板を提供することができる。   According to the present invention, a method for efficiently and stably producing a substrate in which fine particles are regularly arranged in a predetermined pattern, useful for various optical applications, in a short time, and obtained by this method. The fine particle arrangement substrate can be provided.

本発明の微粒子配置基板の製造方法においては、微粒子と液状媒体を含む微粒子分散液中に、表面に溝を有する基板を傾斜させて、一端を浸積させることにより、前記溝に微粒子を配置する方法が用いられる。
前記微粒子分散液を構成する液状媒体(以下、分散媒と称すことがある。)としては、20℃における表面張力が150〜400μN/cmであり、かつ大気圧下での沸点が30〜180℃である液体が好ましく、特に上記表面張力が200〜350μN/cmであり、かつ上記沸点が40〜130℃の範囲にある液体が好ましい。このような液体の具体例としては、メタノール(240μN/cm、65℃)、エタノール(240μN/cm、78℃)、プロパノール(230〜250μN/cm、82〜97℃)、ブタノール(240μN/cm、82〜117℃)、アセトニトリル(320μN/cm、81℃)、メチルエチルケトン(280μN/cm、80℃)、酢酸イソブチル(260μN/cm、117℃)、1−ヘプタン(220μN/cm、94℃)、硫化ジエチル(350μN/cm、53℃)などを挙げることができる。なお、上記( )内の数値は、前者が20℃での表面張力を示し、後者が大気圧下での沸点を示す。分散媒は一種類、あるいは、相溶性を有する二種類以上の液体の混合物でもよい。
これらの液体を、微粒子分散液の液状媒体として用いる場合には、蒸留などの精製操作によって、純度を100%近くにする必要はなく、むしろ数質量%程度の水を含むことが、実質的に好ましい。
In the method for producing a fine particle-arranged substrate of the present invention, fine particles are arranged in the groove by inclining a substrate having a groove on the surface and immersing one end in a fine particle dispersion containing fine particles and a liquid medium. The method is used.
The liquid medium constituting the fine particle dispersion (hereinafter sometimes referred to as a dispersion medium) has a surface tension at 20 ° C. of 150 to 400 μN / cm and a boiling point of 30 to 180 ° C. under atmospheric pressure. In particular, a liquid having a surface tension of 200 to 350 μN / cm and a boiling point of 40 to 130 ° C. is preferable. Specific examples of such liquids include methanol (240 μN / cm, 65 ° C.), ethanol (240 μN / cm, 78 ° C.), propanol (230-250 μN / cm, 82-97 ° C.), butanol (240 μN / cm, 82-117 ° C.), acetonitrile (320 μN / cm, 81 ° C.), methyl ethyl ketone (280 μN / cm, 80 ° C.), isobutyl acetate (260 μN / cm, 117 ° C.), 1-heptane (220 μN / cm, 94 ° C.), sulfide Examples include diethyl (350 μN / cm, 53 ° C.). In addition, as for the numerical value in said (), the former shows the surface tension in 20 degreeC, and the latter shows the boiling point under atmospheric pressure. The dispersion medium may be a single type or a mixture of two or more types of compatible liquids.
When these liquids are used as the liquid medium of the fine particle dispersion, it is not necessary to make the purity close to 100% by a purification operation such as distillation. preferable.

一方、前記微粒子分散液を構成する微粒子の種類については、特に制限はなく、様々な種類のもの、例えば無機系、有機高分子系、無機有機ハイブリッド系粒子などの中から、形成される微粒子配置基板の用途に応じて適宜選択して用いられる。
ここで、無機系粒子としては、例えばシリカ粒子、アルミナ粒子、チタニア粒子、ジルコニア粒子、酸化鉄粒子、カーボンなどが挙げられ、有機高分子系粒子としては、例えばポリスチレン、ポリメチルメタクリレート、ポリエチレンテレフタレート、ポリカーボネート、ポリイミド、ポリアクリルアミド、ベンゾグアナミン樹脂、ベンゾグアナミン/メラミン/ホルムアルデヒド樹脂、ABS樹脂、AS樹脂などの粒子が挙げられる。
On the other hand, the type of fine particles constituting the fine particle dispersion is not particularly limited, and the arrangement of fine particles formed from various types such as inorganic, organic polymer, inorganic-organic hybrid particles, etc. It is appropriately selected according to the use of the substrate.
Examples of the inorganic particles include silica particles, alumina particles, titania particles, zirconia particles, iron oxide particles, and carbon. Examples of the organic polymer particles include polystyrene, polymethyl methacrylate, polyethylene terephthalate, Examples of the particles include polycarbonate, polyimide, polyacrylamide, benzoguanamine resin, benzoguanamine / melamine / formaldehyde resin, ABS resin, and AS resin.

一方、無機有機ハイブリッド系粒子としては、例えばメチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジプロポキシシラン、ジメチルジイソプロポキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジプロピルジエトキシシラン、ジブチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジビニルジメトキシシラン、ジビニルジエトキシシラン、メチルエチルジメチルシラン、メチルエチルジエトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、エチルフェニルジメトキシシラン、エチルフェニルジエトキシシランなどのオルガノアルコキシシランの加水分解・縮重合によって得られるポリオルガノシロキサン粒子を挙げることができる。   On the other hand, examples of inorganic / organic hybrid particles include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, and butyltrimethoxy. Silane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-acryloyloxypropyltrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, Dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldipropoxysilane, dimethyldiisopropoxysilane, diethyldimethoxysilane, diethyldi Toxisilane, Dipropyldiethoxysilane, Dibutyldimethoxysilane, Diphenyldimethoxysilane, Diphenyldiethoxysilane, Divinyldimethoxysilane, Divinyldiethoxysilane, Methylethyldimethylsilane, Methylethyldiethoxysilane, Methylphenyldimethoxysilane, Methylphenyldiethoxy Mention may be made of polyorganosiloxane particles obtained by hydrolysis / condensation polymerization of organoalkoxysilanes such as silane, ethylphenyldimethoxysilane and ethylphenyldiethoxysilane.

本発明においては、これらの微粒子は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、微粒子の比重としては、分散媒として用いられる液状媒体よりも大きければよく、特に制限はないが、あまり大きすぎると、微粒子分散液での沈降速度が速すぎるため、安定した微粒子分散液が得られにくく、操作中に微粒子が沈降するおそれがある。したがって、比重の上限は5程度である。   In the present invention, these fine particles may be used alone or in combination of two or more. The specific gravity of the fine particles is not particularly limited as long as the specific gravity of the fine particles is larger than that of the liquid medium used as the dispersion medium. However, if the specific gravity is too large, the sedimentation rate in the fine particle dispersion is too high, so It is difficult to obtain and fine particles may settle during operation. Therefore, the upper limit of the specific gravity is about 5.

さらに、当該微粒子は、分散媒に分散可能であることが肝要であり、したがって、分散媒に容易に分散し得るように表面処理してもよい。表面処理の方法としては、前記無機系粒子の場合は、シランカップリング剤で表面処理する方法を用いることができる。また、前記の無機系粒子や有機系粒子を、前記の無機有機ハイブリッド系粒子の原料として例示したオルガノアルコキシシランの加水分解・縮重合ゾルに投入し、その表面にポリオルガノシロキサンを被覆して、コア/シェル構造とする方法を用いることができる。   Furthermore, it is important that the fine particles can be dispersed in a dispersion medium, and therefore, the fine particles may be surface-treated so that they can be easily dispersed in the dispersion medium. As the surface treatment method, in the case of the inorganic particles, a method of surface treatment with a silane coupling agent can be used. In addition, the inorganic particles and organic particles are put into the organoalkoxysilane hydrolysis / condensation polymerization sol exemplified as a raw material of the inorganic organic hybrid particles, and the surface is coated with polyorganosiloxane, A method of forming a core / shell structure can be used.

さらに、微粒子表面に接着性成分の被覆層を設けることができる。この被覆層としては、熱可塑性樹脂または未硬化熱硬化性樹脂からなる層が挙げられる。このような接着性成分の被覆層を設けることにより、この微粒子が配置した基板を加熱処理することにより、該微粒子を微粒子同士および基板と固着させ、密着性よく、固定化することができる。なお、前述のコア/シェル構造の微粒子においては、シェルが接着性成分としての機能も有している。   Furthermore, a coating layer of an adhesive component can be provided on the surface of the fine particles. Examples of the covering layer include a layer made of a thermoplastic resin or an uncured thermosetting resin. By providing such a coating layer of an adhesive component, the substrate on which the fine particles are arranged is heat-treated, so that the fine particles can be fixed to each other and the substrate and fixed with good adhesion. In the core / shell structure fine particles described above, the shell also has a function as an adhesive component.

当該微粒子の形状については特に制限はなく、単分散な真球状、繭型形状、等方多面体など、いずれであってもよい。また、その大きさは、球状の場合は、通常平均粒径で0.01〜50μm程度、好ましくは0.1〜20μmである。また、粒度分布の変動係数(CV値)は5%以下が好ましく、より好ましくは3%以下、さらに好ましくは2%以下である。
なお、変動係数(CV値)は、下式により求めることができる。
CV値(%)=(粒径の標準偏差/平均粒径)×100
本発明においては、微粒子として、特に平均粒径が0.01〜50μmでCV値が5%以下のシリカ系微粒子が好ましい。
The shape of the fine particles is not particularly limited, and may be any of monodispersed true spherical shape, saddle shape, isotropic polyhedron and the like. Moreover, the magnitude | size is about 0.01-50 micrometers normally in an average particle diameter, when it is spherical, Preferably it is 0.1-20 micrometers. The variation coefficient (CV value) of the particle size distribution is preferably 5% or less, more preferably 3% or less, and further preferably 2% or less.
The coefficient of variation (CV value) can be obtained from the following equation.
CV value (%) = (standard deviation of particle size / average particle size) × 100
In the present invention, silica-based fine particles having an average particle diameter of 0.01 to 50 μm and a CV value of 5% or less are particularly preferable.

本発明においては、微粒子分散液の濃度は、当該微粒子の比重や粒径などによって異なるが、通常0.1〜5質量%程度である。なお、粒径が数μm程度のシリカ系粒子の場合は、1質量%程度とすることが好ましい。
また、この微粒子分散液には、該微粒子の分散性および分散媒の表面張力を調整するために、界面活性剤を添加することができる。この界面活性剤は、使用する分散媒と微粒子の組み合わせ、あるいは後述の基板の材質などによって、公知の界面活性剤の中から適宜選択すればよい。界面活性剤の使用量は特に制限はないが、分散媒に対し、通常0.001〜1質量%程度、好ましくは0.005〜0.5質量%である。
In the present invention, the concentration of the fine particle dispersion varies depending on the specific gravity and particle size of the fine particles, but is usually about 0.1 to 5% by mass. In the case of silica-based particles having a particle size of about several μm, the amount is preferably about 1% by mass.
In addition, a surfactant can be added to the fine particle dispersion to adjust the dispersibility of the fine particles and the surface tension of the dispersion medium. The surfactant may be appropriately selected from known surfactants depending on the combination of the dispersion medium and fine particles used or the material of the substrate described later. The amount of the surfactant used is not particularly limited, but is usually about 0.001 to 1% by mass, preferably 0.005 to 0.5% by mass with respect to the dispersion medium.

本発明において用いられる基板の材質については特に制限はなく、形成される微粒子配置基板の用途に応じて、有機高分子化合物、ガラス、セラミックス、金属、半金属などの中から適宜選択することができる。基板の素材としては、例えばポリカーボネート、ポリオレフィン、ポリエチレン、ポリエチレンテレフタレート、アクリル樹脂、ポリメチルペンテン、エポキシ樹脂などの有機高分子化合物、ソーダ石灰ガラス、無アルカリガラス、石英ガラスなどのガラス、アルミナ、ジルコニアなどのセラミックス、アルミニウム、チタン、シリコンなどの金属および半金属が挙げられる。基板の材質に応じて、分散媒の種類や界面活性剤の種類を適宜選択する。   The material of the substrate used in the present invention is not particularly limited, and can be appropriately selected from organic polymer compounds, glass, ceramics, metals, metalloids and the like according to the use of the fine particle arrangement substrate to be formed. . Examples of the substrate material include organic polymer compounds such as polycarbonate, polyolefin, polyethylene, polyethylene terephthalate, acrylic resin, polymethylpentene, and epoxy resin, glass such as soda-lime glass, alkali-free glass, and quartz glass, alumina, zirconia, and the like. And metals and semi-metals such as ceramics, aluminum, titanium, and silicon. Depending on the material of the substrate, the type of dispersion medium and the type of surfactant are appropriately selected.

本発明においては、基板として、表面に溝が形成された基板が用いられる。後で説明するように、この溝に沿って微粒子分散液が上昇し、微粒子が配置される。したがって、溝のパターンについては特に制限はなく、微粒子の所望配置パターンに応じて、適宜選択される。この溝は直線状に設けてもよいし、曲線状に設けてもよく、また1列設けてもよいし、複数列設けてもよい。複数列設ける場合、隣接する列同士の間隔は同じでも、異なってもよい。   In the present invention, a substrate having a groove formed on the surface is used as the substrate. As will be described later, the fine particle dispersion rises along the grooves and fine particles are arranged. Therefore, the groove pattern is not particularly limited, and is appropriately selected according to the desired arrangement pattern of the fine particles. The grooves may be provided in a straight line, a curved line, a single line, or a plurality of lines. When a plurality of rows are provided, the intervals between adjacent rows may be the same or different.

溝の断面形状としては、特に制限はなく、例えば凹形状、V形状、半円形状などを挙げることができるが、特にV形状が好ましい。V形状の場合、溝底角度は120°以下が好ましく、より好ましくは45〜90°、特に好ましくは60°近辺である。また、溝幅は、使用する微粒子の平均粒径に対して10倍以下が好ましく、より好ましくは5倍以下、さらに好ましくは1〜2倍である。溝深さは、該微粒子の平均粒径の0.1〜5倍程度が好ましく、より好ましくは0.5〜3.0倍である。   The cross-sectional shape of the groove is not particularly limited, and examples thereof include a concave shape, a V shape, and a semicircular shape, and a V shape is particularly preferable. In the case of the V shape, the groove bottom angle is preferably 120 ° or less, more preferably 45 to 90 °, and particularly preferably around 60 °. Further, the groove width is preferably 10 times or less, more preferably 5 times or less, and further preferably 1 to 2 times the average particle diameter of the fine particles used. The groove depth is preferably about 0.1 to 5 times the average particle size of the fine particles, more preferably 0.5 to 3.0 times.

本発明においては、溝の形成方法については特に制限はなく、基板の材質の種類に応じて、様々な方法の中から、適宜選択することができる。具体的には、射出成形法、エッチング法、フォトリソグラフィ法、熱転写法、ゾル−ゲルエンボス法などの方法を採用することができる。
本発明においては、このようにして表面に溝を設けてなる基板を傾斜させて、その一端を微粒子分散液中に浸積させることにより、該微粒子分散液を前記基板の溝に沿って上昇させて溝内を満たしたのち、分散媒を気化させ、前記溝に微粒子を配置させる。
In the present invention, the method for forming the groove is not particularly limited, and can be appropriately selected from various methods according to the type of the material of the substrate. Specifically, methods such as injection molding, etching, photolithography, thermal transfer, and sol-gel embossing can be employed.
In the present invention, the substrate having the grooves provided on the surface in this manner is inclined, and one end of the substrate is immersed in the fine particle dispersion to raise the fine particle dispersion along the grooves of the substrate. After filling the inside of the groove, the dispersion medium is vaporized and fine particles are arranged in the groove.

微粒子分散液中に、基板の一端を浸積させる際の基板の傾斜角度(浸積角度)は特に制限はないが、60°以下が好ましく、特に5〜45°が好ましい。また、基板の浸積時間については、特に制限はなく、基板のサイズと溝の形成パターンによって、最適時間が選定される。例えば、基板のサイズが3cm×4cm程度であれば、3〜10分程度が好ましい。さらに、浸積速度および引上げ速度については特に制限はないが、それぞれ1mm/s程度が好ましい。   The inclination angle (immersion angle) of the substrate when one end of the substrate is immersed in the fine particle dispersion is not particularly limited, but is preferably 60 ° or less, and more preferably 5 to 45 °. Moreover, there is no restriction | limiting in particular about the immersion time of a board | substrate, and optimal time is selected by the size of a board | substrate and the formation pattern of a groove | channel. For example, if the size of the substrate is about 3 cm × 4 cm, about 3 to 10 minutes is preferable. Further, the immersion speed and the pulling speed are not particularly limited, but each is preferably about 1 mm / s.

溝に沿って微粒子分散液を上昇させ、形成された液膜から分散媒を気化させる方法としては特に制限はなく、目的に応じて最適乾燥条件が設定される。
このようにして、乾燥し、分散媒を気化させることにより、微粒子が所定パターンの溝に沿って規則的に配置した基板が得られる。また、接着性成分が被覆された微粒子を用いた場合には、乾燥後に、前記接着性成分の種類に応じて、適当な温度で加熱処理することにより、該微粒子は、密着性よく固定化される。
The method for raising the fine particle dispersion along the grooves and evaporating the dispersion medium from the formed liquid film is not particularly limited, and optimum drying conditions are set according to the purpose.
In this way, by drying and vaporizing the dispersion medium, a substrate in which fine particles are regularly arranged along a groove having a predetermined pattern can be obtained. In addition, when fine particles coated with an adhesive component are used, the fine particles are fixed with good adhesion by drying at a suitable temperature according to the type of the adhesive component after drying. The

本発明方法によれば、基板表面に所定パターンの溝を形成することにより、その溝に沿って微粒子が配置するので、溝のパターンを選択することで、微粒子が所望パターン形状に規則的に配置した基板を、安定して製造することができる。
本発明はまた、このような本発明の方法で得られた微粒子配置基板をも提供する。
この微粒子配置基板の用途としては、その形状と次元によって、以下に示す用途が考えられる。例えば、一次元に配列した場合においては、光導波路、マイクロレンズアレイ、レーザアレイ、光カップラ、光アイソレータ、光コリメータなどが考えられる。また二次元に配列した場合においては、光の拡散・反射・回折などの光学材料、面発光レーザ、平板型のマイクロレンズアレイ、光カップラ、光アイソレータ、光コリメータなどが考えられる。さらに三次元に配列した場合においては、結晶性を持つように微粒子を配列、積層することで、フォトニック材料、低温超塑性セラミックスなどの機能材料、微小圧力センサなどが考えられる。
According to the method of the present invention, by forming grooves of a predetermined pattern on the substrate surface, the fine particles are arranged along the grooves. By selecting the groove pattern, the fine particles are regularly arranged in a desired pattern shape. The manufactured substrate can be manufactured stably.
The present invention also provides a fine particle arrangement substrate obtained by such a method of the present invention.
As the application of the fine particle arrangement substrate, the following applications can be considered depending on the shape and dimensions. For example, in the case of a one-dimensional arrangement, an optical waveguide, a microlens array, a laser array, an optical coupler, an optical isolator, an optical collimator, etc. can be considered. In the case of two-dimensional arrangement, optical materials such as light diffusion / reflection / diffraction, surface emitting lasers, flat-plate microlens arrays, optical couplers, optical isolators, optical collimators, and the like can be considered. Further, in the case of three-dimensional arrangement, by arranging and laminating fine particles so as to have crystallinity, functional materials such as photonic materials and low-temperature superplastic ceramics, micro pressure sensors, and the like can be considered.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
実施例1
(1)微粒子分散液の調製
水とエタノールとの質量比1:99の混合媒体(分散媒)に、シリカ微粒子(宇部日東化成社製、商品名「ハイプレシカSS」、平均粒径10.0μm、CV値0.9%)を、0.002質量%濃度になるように添加し、分散させて微粒子分散液を調製した。
(2)溝付き基板の作製
長さ40mm、幅30mm、厚さ0.1mmのポリメチルペンテン製基板に金型プレス法により、幅40μm、深さ15μmのV溝を、40μmの間隔で並列に複数設け、溝付き基板を作製した。
(3)微粒子配置基板の作製
上記(2)で作製した溝付き基板を、図1(符合1は微粒子分散液、2は基板装置用治具、3は溝付き基板)の治具2に固定し、該基板3を微粒子分散液1の水面に対して10度になるように傾斜させ、その一端を、室温(25℃)、大気圧下で上記微粒子分散液中にゆっくりと浸積させた。すると、分散媒の基板に対する表面張力(濡れ性)と分散媒の蒸発による対流効果によって、微粒子分散液が基板の溝に沿って上昇し、その上昇の際に、同時に微粒子が基板の溝に沿って配列する。溝構造は、分散液/基板間の接触面積を増大させ、該分散液の流動を促進させる効果をもたらす。
基板の一端を微粒子分散液中に浸積した状態(室温、大気圧下)を5分間維持したのち、基板を微粒子分散液から引き上げ、基板上に残存している分散媒を除去するために、風乾を行った。
(4)微粒子配置状態の観察
上記(3)で得られた基板について、CCDカメラ付光学顕微鏡を用いて、数百倍から千倍程度の倍率で、微粒子の配列状態を観察した。図2に、この観察写真を示す。ピッチ40μmの溝に沿って、微粒子が配置されていることが観察された。
実施例2
実施例1(1)の微粒子分散液の調製において、分散媒中に、ノニオン性界面活性剤(和光純薬工業社製、平均分子量600のポリエチレングリコール)を0.01質量%になるように添加した以外は、実施例1と同様な操作を行い、微粒子配置基板を作製した。
この基板について、実施例1(4)と同様な観察を行ったところ、実施例1と同様に微粒子が配列されていることが分かった。
実施例3
(1)微粒子分散液の調製
フェニルトリエトキシシラン[PhSi(OEt)](信越化学工業社製)のエタノール(EtOH)溶液に、0.01質量%濃度の希塩酸(和光純薬特級を使用)を加えて、室温で2時間加水分解処理を行った。次いで、この溶液を4質量%濃度のアンモニア水(和光純薬特級を使用)中に一気に投入して、さらに2時間加水分解・重縮合を行い、ポリフェニルシルセスキオキサン(PhSi3/2)微粒子を含むゾルを調製した。
ゾル液の組成は、モル比で[PhSi(OEt)]:EtOH:HO(希塩酸中の水):HO(アンモニア水中の水)=1:4:50:xとした。50≦x≦100で平均粒径約1μmのPhSiO3/2微粒子を作製することができた。
得られたゾル中から、微粒子のみを遠心分離機(パソリナ小型遠心機)を用いて、室温下1000rpmで分離し、乾燥機(ヤマト科学社製)を用いて50℃で3時間乾燥処理を行った。得られた微粒子をエタノールに分散し、1質量%濃度の微粒子分散液を調製した。
(2)微粒子配置基板の作製
幅1.6μm、深さ0.5μmのV溝が1.6μmの間隔で並列に複数設けられたガラス製溝付き基板を用い、実施例1(3)と同様な操作を行い、微粒子配置基板を作製した。
(3)微粒子配置状態の観察
上記(2)で得られた基板について、光学顕微鏡および電界放出型走査型電子顕微鏡(日立製作所製、FE−SEM−S4000)を用いて観察を行ったところ、実施例1と同様に、溝に粒子が配列されていることが分かった。
実施例4
実施例1において、溝付き基板として、断面が半径20μmの半円状の溝を40μmの間隔で並列に複数設けた溝付きポリメチルペンテン製基板を用いた以外は、実施例1と同様な操作を行い、微粒子配置基板を作製した。
この基板について、実施例1(4)と同様に観察を行ったところ、実施例1と同様に配列されていることが分かった。
実施例5
(1)微粒子配置基板の作製
実施例1(1)の微粒子分散液の調製において、シリカ微粒子の代わりに、ポリスチレン樹脂を表面に被覆したシリカ微粒子(宇部日東化成社製、商品名「ハイプレシカN3P14」、平均粒径5.2μm、樹脂被覆厚み0.1μm、CV値1.7%)を用い、かつ溝付き基板として、ポリメチルペンテン製の代わりに、ガラス製のものを用い、実施例1と同様な操作を行い、基板の溝に微粒子を配列させた。その後、オーブン中にて120℃で2時間加熱処理し、微粒子配置基板を作製した。
(2)微粒子配置状態の観察
実施例1と同様に観察を行ったところ、同様に配列されていることが分かった。
その状態で、光学顕微鏡(拡大倍率100倍)にて粒子個数(粒子個数A)を計測した。その後、専用ノズル(ノズル口径1.5mm)を45°、距離10mmの条件になるよう設置し、設置後、ノズルから窒素ガスを0.1MPaで10秒間吹き付けて粒子を引き飛ばした。その後、粒子個数(粒子個数B)を計測し、粒子残存率(%)[(B/A)×100]を求め、固着力を評価した。その結果、残存率が98%であった。
実施例6
(1)シェル/コア構造を有するシリカ粒子の作製
フェニルトリエトキシシランのエタノール溶液に、0.01質量%濃度の希塩酸を加えて、室温で加水分解を行い、ここにシリカ微粒子(宇部日東化成社製、商品名「ハイプレシカSS」、平均粒径10.0μm、CV値0.9%)を加えて、さらに4質量%濃度のアンモニア水を添加することにより、ポリフェニルシルセスキオキサンが表面に被覆されたシェル/コア構造を有するシリカ微粒子を作製した。このシリカ微粒子は、平均粒径が15μmであり、シリカ粒子表面にポリフェニルシルセスキオキサンが2.5μm形成されていた。
(2)微粒子配置基板の作製
上記(1)で得られたシェル/コア構造を有するシリカ粒子を用い、実施例5と同様にして、基板の溝に微粒子を配列させた。その後、オーブン中にて300℃で2時間加熱処理し、微粒子配置基板を作製した。
(3)微粒子配置状態の観察
実施例1と同様に観察を行ったところ、表面に被覆されていたポリフェニルシルセスキオキサンが融着を起こし、粒子同士が接着されていることと、実施例5同様に配列されていることが分かった。
その状態で、光学顕微鏡(拡大倍率100倍)にて粒子個数(粒子個数A)を計測した。その後、専用ノズル(ノズル口径1.5mm)を45°、距離10mmの条件になるよう設置し、設置後、ノズルから窒素ガスを0.1MPaで10秒間吹き付けて粒子を引き飛ばした。その後粒子個数(粒子個数B)を計測し、粒子残存率(%)[(B/A)×100]を求め、固着力を評価した。その結果、残存率が100%であった。
比較例1
実施例1において、溝付きポリメチルペンテン製基板の代わりに、溝を形成していないポリメチルペンテン製基板を用いた以外は、実施例1と同様な操作を行い、微粒子配置基板を作製した。
この基板について、実施例1と同様に観察を行ったところ、微粒子はち密に充填しているが、方向性をもって配列していないことが分かった。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
Example 1
(1) Preparation of fine particle dispersion liquid In a mixed medium (dispersion medium) having a mass ratio of water and ethanol of 1:99, silica fine particles (manufactured by Ube Nitto Kasei Co., Ltd., trade name “HI-PRECICA SS”, average particle size 10.0 μm, CV value 0.9%) was added to a concentration of 0.002% by mass and dispersed to prepare a fine particle dispersion.
(2) Fabrication of grooved substrate V-grooves having a width of 40 μm and a depth of 15 μm are arranged in parallel at intervals of 40 μm on a polymethylpentene substrate having a length of 40 mm, a width of 30 mm, and a thickness of 0.1 mm by a die pressing method. A plurality of substrates with grooves were prepared.
(3) Production of Fine Particle Arrangement Substrate The grooved substrate produced in (2) above is fixed to the jig 2 in FIG. 1 (reference numeral 1 is a fine particle dispersion, 2 is a jig for a substrate device, and 3 is a grooved substrate). Then, the substrate 3 was inclined so as to be 10 degrees with respect to the water surface of the fine particle dispersion 1, and one end thereof was slowly immersed in the fine particle dispersion at room temperature (25 ° C.) and atmospheric pressure. . Then, due to the surface tension (wetting property) of the dispersion medium to the substrate and the convection effect due to evaporation of the dispersion medium, the fine particle dispersion rises along the groove of the substrate, and at the same time, the fine particles move along the groove of the substrate. Arrange. The groove structure has an effect of increasing the contact area between the dispersion / substrate and promoting the flow of the dispersion.
In order to remove the dispersion medium remaining on the substrate by lifting the substrate from the fine particle dispersion after maintaining the state where one end of the substrate is immersed in the fine particle dispersion (at room temperature and atmospheric pressure) for 5 minutes, Air-dried.
(4) Observation of Fine Particle Arrangement State With respect to the substrate obtained in (3) above, the arrangement state of the fine particles was observed at a magnification of about several hundred to one thousand times using an optical microscope with a CCD camera. FIG. 2 shows this observation photograph. It was observed that fine particles were arranged along the grooves having a pitch of 40 μm.
Example 2
In the preparation of the fine particle dispersion of Example 1 (1), a nonionic surfactant (manufactured by Wako Pure Chemical Industries, Ltd., polyethylene glycol having an average molecular weight of 600) is added to the dispersion medium so as to be 0.01% by mass. Except for the above, the same operation as in Example 1 was performed to produce a fine particle arrangement substrate.
When this substrate was observed in the same manner as in Example 1 (4), it was found that fine particles were arranged in the same manner as in Example 1.
Example 3
(1) Preparation of fine particle dispersion 0.01% by mass diluted hydrochloric acid (using Wako Pure Chemical special grade) in ethanol (EtOH) solution of phenyltriethoxysilane [PhSi (OEt) 3 ] (manufactured by Shin-Etsu Chemical Co., Ltd.) And a hydrolysis treatment was performed at room temperature for 2 hours. Next, this solution was poured into 4% by mass ammonia water (using Wako Pure Chemicals special grade) at a stretch, followed by further hydrolysis and polycondensation for 2 hours to obtain polyphenylsilsesquioxane (PhSi 3/2 ). A sol containing fine particles was prepared.
The composition of the sol solution was [PhSi (OEt) 3 ]: EtOH: H 2 O (water in dilute hydrochloric acid): H 2 O (water in ammonia water) = 1: 4: 50: x in molar ratio. PhSiO 3/2 fine particles having an average particle diameter of about 1 μm with 50 ≦ x ≦ 100 could be produced.
From the obtained sol, only fine particles are separated at 1000 rpm at room temperature using a centrifuge (Pasolina small centrifuge), and dried at 50 ° C. for 3 hours using a dryer (manufactured by Yamato Kagaku). It was. The obtained fine particles were dispersed in ethanol to prepare a fine particle dispersion having a concentration of 1% by mass.
(2) Production of Fine Particle Arrangement Substrate Similar to Example 1 (3), using a glass grooved substrate in which a plurality of V-grooves having a width of 1.6 μm and a depth of 0.5 μm are provided in parallel at intervals of 1.6 μm. Thus, a fine particle placement substrate was produced.
(3) Observation of fine particle arrangement state The substrate obtained in (2) above was observed using an optical microscope and a field emission scanning electron microscope (manufactured by Hitachi, Ltd., FE-SEM-S4000). As in Example 1, it was found that particles were arranged in the groove.
Example 4
In Example 1, the same operation as in Example 1 was used except that a grooved polymethylpentene substrate in which a plurality of semicircular grooves having a radius of 20 μm were provided in parallel at intervals of 40 μm was used as the grooved substrate. The fine particle arrangement substrate was manufactured.
When this substrate was observed in the same manner as in Example 1 (4), it was found that it was arranged in the same manner as in Example 1.
Example 5
(1) Production of Fine Particle Arrangement Substrate In the preparation of the fine particle dispersion of Example 1 (1), silica fine particles coated with polystyrene resin on the surface instead of silica fine particles (trade name “HI-PRECICA N3P14” manufactured by Ube Nitto Kasei Co., Ltd.) And an average particle diameter of 5.2 μm, a resin coating thickness of 0.1 μm, a CV value of 1.7%), and a grooved substrate using glass instead of polymethylpentene. The same operation was performed to arrange fine particles in the groove of the substrate. Thereafter, heat treatment was performed in an oven at 120 ° C. for 2 hours to produce a fine particle-arranged substrate.
(2) Observation of arrangement state of fine particles When observation was performed in the same manner as in Example 1, it was found that the fine particles were arranged in the same manner.
In this state, the number of particles (number of particles A) was measured with an optical microscope (magnification 100 times). Thereafter, a dedicated nozzle (nozzle diameter: 1.5 mm) was installed under conditions of 45 ° and a distance of 10 mm, and after installation, nitrogen gas was blown from the nozzle at 0.1 MPa for 10 seconds to pull out particles. Thereafter, the number of particles (particle number B) was measured, the particle residual rate (%) [(B / A) × 100] was determined, and the fixing force was evaluated. As a result, the residual rate was 98%.
Example 6
(1) Preparation of silica particles having a shell / core structure To a ethanolic solution of phenyltriethoxysilane, 0.01% by mass of diluted hydrochloric acid is added and hydrolyzed at room temperature, and silica particles (Ube Nitto Kasei Co., Ltd.) Product name “HI-PRECICA SS”, average particle size 10.0 μm, CV value 0.9%), and further adding 4% by weight ammonia water, polyphenylsilsesquioxane is formed on the surface. Silica fine particles having a coated shell / core structure were prepared. The silica fine particles had an average particle diameter of 15 μm, and 2.5 μm of polyphenylsilsesquioxane was formed on the surface of the silica particles.
(2) Production of Fine Particle Arrangement Substrate Using the silica particles having the shell / core structure obtained in (1) above, fine particles were arranged in the grooves of the substrate in the same manner as in Example 5. Thereafter, heat treatment was performed in an oven at 300 ° C. for 2 hours to produce a fine particle-arranged substrate.
(3) Observation of the state of fine particle arrangement When observation was performed in the same manner as in Example 1, the polyphenylsilsesquioxane coated on the surface caused fusion, and the particles were adhered to each other. 5 was found to be arranged in the same manner.
In this state, the number of particles (number of particles A) was measured with an optical microscope (magnification 100 times). Thereafter, a dedicated nozzle (nozzle diameter: 1.5 mm) was installed under conditions of 45 ° and a distance of 10 mm, and after installation, nitrogen gas was blown from the nozzle at 0.1 MPa for 10 seconds to pull out particles. Thereafter, the number of particles (particle number B) was measured, the particle residual rate (%) [(B / A) × 100] was determined, and the fixing force was evaluated. As a result, the residual rate was 100%.
Comparative Example 1
In Example 1, instead of the grooved polymethylpentene substrate, the same operation as in Example 1 was carried out except that a polymethylpentene substrate without grooves was used to produce a fine particle arrangement substrate.
When this substrate was observed in the same manner as in Example 1, it was found that the fine particles were densely packed but were not arranged with directionality.

産業上の利用分野Industrial application fields

本発明によれば、表面に微粒子が、所定のパターンに規則的に配置した基板を、短時間で効率よく、かつ安定的に製造することができる。このようにして得られた微粒子配置基板は、光学分野における種々の用途が期待できる。   According to the present invention, a substrate in which fine particles are regularly arranged on a surface in a predetermined pattern can be manufactured efficiently and stably in a short time. The fine particle arrangement substrate thus obtained can be expected to be used in various fields in the optical field.

実施例及び比較例において、基板の一端を微粒子分散液中に浸積させる方法を示す説明図である。In an Example and a comparative example, it is explanatory drawing which shows the method of immersing the end of a board | substrate in a fine particle dispersion. 実施例1で得られた微粒子配置基板における微粒子の配列状態を示す光学顕微鏡による観察写真図である。FIG. 3 is an observation photograph by an optical microscope showing an arrangement state of fine particles on a fine particle arrangement substrate obtained in Example 1.

符合の説明Explanation of sign

1 微粒子分散液
2 基板装着用治具
3 溝付き基板
1 Fine particle dispersion 2 Jig for substrate mounting 3 Substrate with groove

Claims (5)

微粒子と液状媒体を含む微粒子分散液中に、表面に溝を有する基板を傾斜させて、その一端を浸積させることにより、前記微粒子分散液を、前記基板の溝に沿って上昇させて溝内に満たしたのち、前記液状媒体を気化させて、前記溝に微粒子を配置することからなり、
前記微粒子が、平均粒径0.01〜50μmおよび粒度分布の変動係数(CV値)5%以下のシリカ系微粒子であり、
前記液状媒体が、20℃における表面張力が150〜400μN/cmであり、大気圧下での沸点が30〜180℃である液体媒体であり、
前記基板が、有機高分子化合物、ガラス、セラミックス、金属、半金属から選択されるものであり、
前記基板の表面の溝の深さが、微粒子の平均粒径の0.1〜5倍であること
を特徴とする微粒子配置基板の製造方法。
A substrate having a groove on the surface is inclined in a fine particle dispersion containing fine particles and a liquid medium, and one end of the substrate is immersed, so that the fine particle dispersion is raised along the groove of the substrate. The liquid medium is vaporized and the fine particles are disposed in the groove,
The fine particles are silica-based fine particles having an average particle size of 0.01 to 50 μm and a coefficient of variation of particle size distribution (CV value) of 5% or less,
The liquid medium is a liquid medium having a surface tension of 150 to 400 μN / cm at 20 ° C. and a boiling point of 30 to 180 ° C. under atmospheric pressure,
The substrate is selected from organic polymer compounds, glass, ceramics, metals, metalloids,
A method for producing a fine particle-arranged substrate, wherein the depth of the groove on the surface of the substrate is 0.1 to 5 times the average particle diameter of the fine particles.
表面に溝を有する基板の一端を微粒子分散液中に浸積させる際の基板の傾斜角度が、60°以下である請求項1に記載の方法。   The method according to claim 1, wherein an inclination angle of the substrate when the one end of the substrate having a groove on the surface is immersed in the fine particle dispersion is 60 ° or less. 微粒子分散液が界面活性剤を含む請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the fine particle dispersion contains a surfactant. 微粒子が、表面に熱可塑性成分または未硬化熱硬化性成分の被覆層を有し、かつ配置後加熱処理して、該微粒子を固定化させる請求項1ないし3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the fine particles have a coating layer of a thermoplastic component or an uncured thermosetting component on the surface, and the fine particles are fixed by heat treatment after placement. . 請求項1ないし4のいずれか1項に記載の方法で得られたことを特徴とする微粒子配置基板。
A fine particle-arranged substrate obtained by the method according to any one of claims 1 to 4.
JP2003402586A 2003-12-02 2003-12-02 Manufacturing method of fine particle arrangement substrate and fine particle arrangement substrate obtained by the method Expired - Fee Related JP4542770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003402586A JP4542770B2 (en) 2003-12-02 2003-12-02 Manufacturing method of fine particle arrangement substrate and fine particle arrangement substrate obtained by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003402586A JP4542770B2 (en) 2003-12-02 2003-12-02 Manufacturing method of fine particle arrangement substrate and fine particle arrangement substrate obtained by the method

Publications (2)

Publication Number Publication Date
JP2005161175A JP2005161175A (en) 2005-06-23
JP4542770B2 true JP4542770B2 (en) 2010-09-15

Family

ID=34726112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003402586A Expired - Fee Related JP4542770B2 (en) 2003-12-02 2003-12-02 Manufacturing method of fine particle arrangement substrate and fine particle arrangement substrate obtained by the method

Country Status (1)

Country Link
JP (1) JP4542770B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5518406B2 (en) * 2009-09-10 2014-06-11 富士電機株式会社 Method for producing fine particle array structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1184402A (en) * 1997-07-23 1999-03-26 Samsung Electron Co Ltd Liquid crystal injecting device and method therefor
JP2001323250A (en) * 2000-05-12 2001-11-22 Nippon Paint Co Ltd Hydrophilization treating agent and method for producing the same
JP2002286962A (en) * 2001-03-26 2002-10-03 Mitsubishi Chemicals Corp Method for manufacturing particle thin film
JP2003192991A (en) * 2001-12-25 2003-07-09 Oji Paper Co Ltd Water-based coating and coated sheet obtained using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1184402A (en) * 1997-07-23 1999-03-26 Samsung Electron Co Ltd Liquid crystal injecting device and method therefor
JP2001323250A (en) * 2000-05-12 2001-11-22 Nippon Paint Co Ltd Hydrophilization treating agent and method for producing the same
JP2002286962A (en) * 2001-03-26 2002-10-03 Mitsubishi Chemicals Corp Method for manufacturing particle thin film
JP2003192991A (en) * 2001-12-25 2003-07-09 Oji Paper Co Ltd Water-based coating and coated sheet obtained using the same

Also Published As

Publication number Publication date
JP2005161175A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
TWI664759B (en) Optical substrate, mold for optical substrate manufacturing, and light emitting element including optical substrate
US7247349B2 (en) Method of self-assembly and optical applications of crystalline colloidal patterns on substrates
KR20100016245A (en) Process for surface structuring of product having a sol-gel layer, product having structured a sol-gel layer
JP6070720B2 (en) Manufacturing method of optical element manufacturing mold and manufacturing method of optical element
US20150056438A1 (en) Hollow Silica Particles, Method of Manufacturing the Same, Composition Including the Same and Sheet with Inner Cavities
WO2018082168A1 (en) Thin-film encapsulated oled device and thin film encapsulation method for oled device
RU2745516C2 (en) Ink composition for impressing, method of impressing, light device, optical sensor and photoelectric device with optical element
CN109143465A (en) Method for forming optical waveguide device
Feng et al. Long‐Range‐Ordered Assembly of Micro‐/Nanostructures at Superwetting Interfaces
JP4542770B2 (en) Manufacturing method of fine particle arrangement substrate and fine particle arrangement substrate obtained by the method
CN110065925B (en) Micro-nano material self-assembly method, substrate and application
US11257728B2 (en) Fluidic assembly substrates and methods for making such
Sun et al. Fabricating colloidal crystals and construction of ordered nanostructures
JP4849375B2 (en) Fine particle array thin film, method for manufacturing the same, and fine particle array thin film manufacturing apparatus
Han et al. Desolvation‐Triggered Versatile Transfer‐Printing of Pure BN Films with Thermal–Optical Dual Functionality
US9553223B2 (en) Method for alignment of microwires
JP4495476B2 (en) Method for manufacturing optical element having antireflection film
KR101299359B1 (en) 2D Photonic crystal structure having improved light extraction efficiency and Method of manufacturing the same
Cui et al. Functional colloidal assemblies based on superwettable Substrates
Shibata et al. Organic–inorganic hybrid materials for photonic applications
CN113213421A (en) Method and device for preparing large-area array nanoneedle structure
CA2622813A1 (en) Capillary transport of nanoparticles or microparticles to form an ordered structure
TW202201049A (en) Light diffusion plate using microlens array and method for manufacturing same
Nazoktabar et al. Fabrication and optical characterization of silicon nanostructure arrays by laser interference lithography and metal-assisted chemical etching
WO2009102097A1 (en) Method of forming nanostructure on surface of a polymer film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4542770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees