JP4540094B2 - Method for producing porous ceramic - Google Patents

Method for producing porous ceramic Download PDF

Info

Publication number
JP4540094B2
JP4540094B2 JP2004028759A JP2004028759A JP4540094B2 JP 4540094 B2 JP4540094 B2 JP 4540094B2 JP 2004028759 A JP2004028759 A JP 2004028759A JP 2004028759 A JP2004028759 A JP 2004028759A JP 4540094 B2 JP4540094 B2 JP 4540094B2
Authority
JP
Japan
Prior art keywords
water
polymer particles
absorbing polymer
ceramic
water absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004028759A
Other languages
Japanese (ja)
Other versions
JP2004262747A (en
Inventor
守功 松永
晃 栗山
浩司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Toagosei Co Ltd
Original Assignee
NGK Insulators Ltd
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Toagosei Co Ltd filed Critical NGK Insulators Ltd
Priority to JP2004028759A priority Critical patent/JP4540094B2/en
Publication of JP2004262747A publication Critical patent/JP2004262747A/en
Application granted granted Critical
Publication of JP4540094B2 publication Critical patent/JP4540094B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、多孔質セラミック(すなわち多くの微細な気孔を有するセラミック)の製造方法に関するものであり、特に気孔率が高く強度が大きな多孔質セラミックの製造方法に関するものである。多孔質セラミックの用途としては、自動車排ガス浄化用のセラミックフィルター、熱機関および燃焼装置等から排出される排ガス浄化用セラミックフィルター、水等の液体濾過用セラミックフィルター等の濾過材料、排ガス浄化用の触媒等の触媒担体、自動車排ガス浄化用熱交換体、蓄熱体、電池用焼結基板、断熱材料、および廃水処理に使用される微生物担体等が挙げられる。
The present invention relates to a method for producing a porous ceramic (that is, a ceramic having many fine pores), and more particularly to a method for producing a porous ceramic having a high porosity and a high strength. Porous ceramics include: automobile exhaust gas purification ceramic filters, exhaust gas purification ceramic filters discharged from heat engines and combustion devices, etc., filtering materials such as water and other liquid filtration ceramic filters, exhaust gas purification catalysts Catalyst carriers such as automobile exhaust gas purification heat exchangers, heat accumulators, sintered substrates for batteries, heat insulating materials, and microbial carriers used for wastewater treatment.

多孔質セラミックの製造方法としてセラミック骨材自身が多孔質である原料を利用する方法、およびセラミック原料に発泡剤を混合する方法が知られている。前者の方法は原料の制約のため設計の自由度が小さく、後者の方法は気孔量および気孔径などの特性を再現性よく制御することが困難である等の問題があった。それらの問題を解決するため、セラミック原料に予め吸水膨潤した吸水性ポリマーを造孔剤として添加混練し、次いで得られる混合物を一定形状に成形した後、乾燥または焼成する方法も知られている(例えば、特許文献1〜4参照。)。   As a method for producing a porous ceramic, a method using a raw material in which the ceramic aggregate itself is porous and a method of mixing a foaming agent with the ceramic raw material are known. The former method has a low degree of freedom in design due to restrictions on raw materials, and the latter method has problems such as difficulty in controlling characteristics such as the amount of pores and pore diameter with good reproducibility. In order to solve these problems, there is also known a method of adding and kneading a water-absorbing polymer previously absorbed and swollen to a ceramic raw material as a pore-forming agent, and then molding the resulting mixture into a certain shape, followed by drying or firing ( For example, see Patent Documents 1 to 4.)

特開昭62-212274号公報JP-A-62-212274 特開平8-73282号公報JP-A-8-73282 特開平10-167856号公報Japanese Patent Laid-Open No. 10-167856 特開平10-245278号公報JP-A-10-245278

吸水膨潤させた吸水性ポリマーを造孔剤としてセラミック原料と混ぜて成形し焼成する方法では、吸水して膨潤したポリマーが自身の体積だけでなく、吸収して内部に保持した水の体積によってセラミック原料の骨材間に空隙を生じることによって造孔作用が生じることを利用している。
しかし、上記特許文献などに開示された従来技術では、吸水性ポリマーが焼成前に水を逆戻しする等の理由により、セラミック焼成体の気孔径分布や混練物の硬さを工程上制御するのが困難であった。本発明は、セラミック焼成体の気孔径分布や混練物の硬さを工程上制御するのが容易であり、気孔率の大きいセラミック焼成体が得られる多孔質セラミックの製造方法を提供することを目的とする。
In the method in which water-absorbing polymer swollen with water is mixed with a ceramic raw material as a pore-forming agent and molded and baked, the polymer that has absorbed and swollen absorbs not only its own volume but also the volume of water absorbed and retained inside the ceramic. It utilizes the fact that a pore-forming action is generated by generating voids between the raw material aggregates.
However, in the prior art disclosed in the above-mentioned patent documents, the pore size distribution of the ceramic fired body and the hardness of the kneaded material are controlled in the process for the reason that the water-absorbing polymer reverses water before firing. It was difficult. An object of the present invention is to provide a method for producing a porous ceramic, in which the pore size distribution of the ceramic fired body and the hardness of the kneaded product can be easily controlled in the process, and a ceramic fired body having a high porosity can be obtained. And

上記課題を解決するために、請求項1に記載の発明の多孔質セラミックの製造方法は、圧力980Paにおける吸水量が5〜30ml/gである吸水性ポリマー粒子、セラミック原料および水を含有する混合物を成形する工程および得られた成形物を加熱焼成する工程を含む多孔質セラミックの製造方法において、吸水性ポリマー粒子は、圧力980Paにおける吸水量Xml/gおよび圧力9800Paにおける吸水量Yml/gの比X/Yが1.0〜1.6の範囲のものであることを特徴とするものである。
請求項2に記載の発明の多孔質セラミックの製造方法は、請求項1に記載の発明において、吸水性ポリマー粒子は、不飽和結合を1個有する単官能ビニル単量体および不飽和結合を2個以上有する多官能ビニル単量体をそれぞれ100モル%および0.1〜10モル%の割合で含有する単量体混合物をラジカル重合させて得られるポリマーからなることを特徴とする。
請求項3に記載の発明の多孔質セラミックの製造方法は、請求項1または2に記載の発明において、吸水性ポリマー粒子は、逆相懸濁重合法によりビニル単量体を重合させて得られるポリマーからなることを特徴とする。
請求項4に記載の発明の多孔質セラミックの製造方法は、請求項1〜3のいずれかに記載の発明において、吸水性ポリマー粒子は、構成単量体単位として2−アクリルアミド−2−メチルプロパンスルホン酸単位またはアクリルアミド単位を有するポリマーからなることを特徴とする。
請求項5に記載の発明の多孔質セラミックの製造方法は、請求項1に記載の発明において、吸水性ポリマー粒子、セラミック原料および水を含有する混合物は、粉末状の吸水性ポリマー粒子と粉末状のセラミック原料が混合された、吸水性ポリマー粒子とセラミック原料の粉末状混合物に水が添加、混合されて得られることを特徴とする。
In order to solve the above-mentioned problem, a method for producing a porous ceramic according to claim 1 is a mixture comprising water-absorbing polymer particles having a water absorption of 5 to 30 ml / g at a pressure of 980 Pa, a ceramic raw material, and water. In the method for producing a porous ceramic including the step of forming a molded product and the step of heating and firing the obtained molded product, the water-absorbing polymer particles have a ratio of a water absorption amount Xml / g at a pressure of 980 Pa and a water absorption amount Yml / g at a pressure of 9800 Pa. X / Y is in the range of 1.0 to 1.6 .
According to a second aspect of the present invention, there is provided a method for producing a porous ceramic according to the first aspect of the present invention, wherein the water-absorbing polymer particles comprise a monofunctional vinyl monomer having one unsaturated bond and two unsaturated bonds. It is characterized by comprising a polymer obtained by radical polymerization of a monomer mixture containing 100 mol% and 0.1 to 10 mol% of polyfunctional vinyl monomers having at least one .
According to a third aspect of the present invention, there is provided a method for producing a porous ceramic according to the first or second aspect, wherein the water-absorbing polymer particles are obtained by polymerizing a vinyl monomer by a reverse phase suspension polymerization method. It is characterized by comprising a polymer.
The method for producing a porous ceramic according to a fourth aspect of the present invention is the method according to any one of the first to third aspects, wherein the water-absorbing polymer particles are 2-acrylamido-2-methylpropane as a constituent monomer unit. It consists of a polymer which has a sulfonic acid unit or an acrylamide unit.
According to a fifth aspect of the present invention, there is provided a method for producing a porous ceramic according to the first aspect of the present invention, wherein the mixture containing the water-absorbing polymer particles, the ceramic raw material and the water is powdered water-absorbing polymer particles and powder. Water is added to and mixed with a powdered mixture of water-absorbing polymer particles and ceramic raw material mixed with the ceramic raw material.

本発明によれば、混練時のシェアによって水を逆戻ししにくい硬い吸水性樹脂を造孔剤として使用することによって、多孔質セラミックとの混練物の硬度および気孔径分布を容易に制御でき、かつ高強度で高い気孔率の多孔質セラミックが得られる。
According to the present invention, the hardness and pore size distribution of the kneaded product with the porous ceramic can be easily controlled by using a hard water-absorbing resin that does not easily reverse water due to the share at the time of kneading as a pore-forming agent, In addition, a porous ceramic having high strength and high porosity can be obtained.

本明細書において、アクリルとメタクリルを合わせて(メタ)アクリル、アクリレートとメタクリレートを合わせて(メタ)アクリレートとともいう。
本発明で使用される吸水性ポリマー粒子は、造孔剤として機能するものであり、圧力980Paにおける吸水量が5〜30ml/g(乾燥状態の吸水性ポリマー1g当たりが吸収するイオン交換水の量が5〜30mlであることを意味する。)の範囲のものである。
In this specification, acrylic and methacryl are referred to as (meth) acryl, and acrylate and methacrylate are referred to as (meth) acrylate.
The water-absorbing polymer particles used in the present invention function as a pore-forming agent, and the water absorption at a pressure of 980 Pa is 5 to 30 ml / g (the amount of ion-exchanged water absorbed per 1 g of the water-absorbing polymer in the dry state). Is in the range of 5 to 30 ml.).

圧力980Paにおける吸水量が5ml/gより小さいと、十分な気孔率を得るために造孔剤を多く添加する必要が生じ、そのために焼成時に有機ガスが多く発生して爆発限界を超えたり、焼成時間が長くなる等の問題が生じる場合がある。一方、30ml/gより大きいと、混練物および焼成物の硬さを制御するのが困難となる場合がある。その理由は、吸水性ポリマー粒子、セラミック原料および水を含有する混合物を混練する際に、混合物にかかるシェアによって吸水性ポリマーに含まれた水が逆戻しされやすく、その結果吸水性ポリマーの吸水割合や粒子径が変化しやすいためと考えられる。また混練により得られる混練物(坏土ともいう。)を、成型に適当な硬さの調整するために必要な水の量が多くなるため、水分の乾燥に必要なエネルギー量が著しく増加するために好ましくない。   If the water absorption at a pressure of 980 Pa is smaller than 5 ml / g, it is necessary to add a large amount of pore-forming agent in order to obtain a sufficient porosity. Therefore, a large amount of organic gas is generated at the time of firing, exceeding the explosion limit, or firing. Problems such as long time may occur. On the other hand, if it is greater than 30 ml / g, it may be difficult to control the hardness of the kneaded product and the fired product. The reason is that when the mixture containing the water-absorbing polymer particles, the ceramic raw material and water is kneaded, the water contained in the water-absorbing polymer is easily reversed due to the share of the mixture, and as a result, the water absorption ratio of the water-absorbing polymer. This is probably because the particle diameter is likely to change. In addition, since the amount of water necessary for adjusting the hardness suitable for molding of the kneaded material (also known as kneaded clay) obtained by kneading increases, the amount of energy necessary for drying moisture increases significantly. It is not preferable.

また、吸水性ポリマー粒子は、圧力980Paにおける吸水量Xml/gおよび圧力9800Paにおける吸水量Yml/gの比X/Yが1.0〜1.6の範囲のものであることが好ましい。上記比が1.6を超えると混練物および焼成物の硬さを制御するのが困難となる場合がある。その理由は、吸水性ポリマー粒子、セラミック原料および水を含有する混合物を混練する際に、混合物にかかるシェアが大きいと吸水性ポリマーに含まれた水が逆戻しされやすく、その結果吸水性ポリマーの吸水割合や粒子径が変化しやすいためと考えられる。なお、通常この比が1未満となることはない。   The water-absorbing polymer particles preferably have a ratio X / Y of a water absorption amount Xml / g at a pressure of 980 Pa and a water absorption amount Yml / g at a pressure of 9800 Pa in the range of 1.0 to 1.6. When the ratio exceeds 1.6, it may be difficult to control the hardness of the kneaded product and the fired product. The reason for this is that when the mixture containing the water-absorbing polymer particles, the ceramic raw material and water is kneaded, if the share of the mixture is large, the water contained in the water-absorbing polymer is likely to be reversed. This is thought to be because the water absorption ratio and particle size are likely to change. Normally, this ratio is never less than 1.

圧力980Paにおける吸水量が30ml/g以下である吸水性ポリマー粒子は、同時に架橋密度が高く、ポリマー粒子の強度が大きいものである。このことは、一般に、「吸水量は「(イオンの浸透圧)+(高分子電解質の親和力)」が大きいほど大きく、「ポリマー粒子の架橋密度」が大きいほど小さい」ことおよび「ポリマー粒子の強度はポリマー粒子の架橋密度に比例して大きくなる」ことと対応している。   Water-absorbing polymer particles having a water absorption amount of 30 ml / g or less at a pressure of 980 Pa are simultaneously high in crosslinking density and high in polymer particle strength. In general, this means that “the amount of water absorption is larger as“ (ion osmotic pressure) + (affinity of polymer electrolyte) ”is larger,“ smaller as “crosslinking density of polymer particles” is larger ”and“ strength of polymer particles ”. Corresponds to “increasing in proportion to the crosslinking density of the polymer particles”.

吸水性ポリマー粒子は、吸水し膨潤した状態における形状が球形であり、飽和吸水状態における平均粒子径が、セラミック成形物の厚さを基準として1/30〜1/1の範囲にあるものが好ましく、1/15〜1/2の範囲にあるものがより好ましく、1/15〜1/3の範囲にあるものが更に好ましい。粒子径が小さすぎると得られるセラミック焼成物は気孔率の小さいものとなり、例えばセラミック焼成物をフィルターとして使用するときに通過させる気体や液体の圧力損失が大きくなる場合がある。粒子径が大きすぎると得られるセラミック焼成物は強度が小さいものとなる場合がある。セラミック成形物の厚さとは、セラミック成形物がセラミックからなる複数の壁構造を有している場合は、個々の壁の厚さを意味するものであり、セラミック成形物全体としてのかたまりの厚さを意味しない。   The water-absorbing polymer particles preferably have a spherical shape in the water-absorbed and swollen state, and the average particle diameter in the saturated water-absorbing state is in the range of 1/30 to 1/1 based on the thickness of the ceramic molded product. More preferably, it is in the range of 1/15 to 1/2, more preferably in the range of 1/15 to 1/3. If the particle diameter is too small, the ceramic fired product obtained has a low porosity, and for example, when using the ceramic fired product as a filter, the pressure loss of the gas or liquid that passes therethrough may increase. If the particle diameter is too large, the obtained ceramic fired product may have a low strength. The thickness of the ceramic molding means the thickness of the individual wall when the ceramic molding has a plurality of wall structures made of ceramic, and the thickness of the whole ceramic molding. Does not mean.

吸水性ポリマー粒子としては、ビニル単量体を水溶液重合させて得られるポリマーを乾燥後に適切な大きさに粉砕したもの(1)、ビニル単量体を逆相懸濁重合させて得られる球状のポリマー(2)、ビニル単量体を懸濁重合させて得られる球状の疎水性ポリマー粒子にケン化等の変性処理をして吸水性ポリマーとしたもの(3)、およびデンプンからなる高分子単位とデンプン以外の高分子単位を含むグラフト重合体の変性物を主成分とするもの(4)等が挙げられる。   As the water-absorbing polymer particles, a polymer obtained by aqueous polymerization of a vinyl monomer is pulverized to an appropriate size after drying (1), and a spherical shape obtained by reverse-phase suspension polymerization of a vinyl monomer. Polymer (2), spherical hydrophobic polymer particles obtained by suspension polymerization of a vinyl monomer to give a water-absorbing polymer by modification treatment such as saponification (3), and a polymer unit comprising starch (4) etc. which have as a main component the modified | denatured substance of the graft polymer containing polymer units other than styrene and starch.

上記(1)および(2)において用いることができるビニル単量体として、例えばスルホン基、カルボキシル基、アミド基、アミノ基、水酸基等の親水性基を有する水溶性の単量体、すなわち2-アクリルアミド-2-メチルプロパンスルホン酸、2-(メタ)アクリロイルエタンスルホン酸、スチレンスルホン酸、(メタ)アクリル酸、マレイン酸、イタコン酸、クロトン酸、フマール酸および、またはそれらの部分アルカリ中和物、(メタ)アクリルアミド、N, N-ジメチルアクリルアミド、N-イソプロピルアクリルアミド、N-メチロール(メタ)アクリルアミド、N-アルコキシメチル(メタ)アクリルアミド、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、N-ビニルピロリドン、アクリロイルモルホリン等が挙げられる。これらの様な単量体は、2種以上混合して用いられても良い。重合および吸水性能のコントロールが容易であることから、2-アクリルアミド-2-メチルプロパンスルホン酸、2-(メタ)アクリロイルエタンスルホン酸、(メタ)アクリル酸、(メタ)アクリルアミド、N, N-ジメチルアクリルアミド、N-メチロール(メタ)アクリルアミドが好ましく、特に2-アクリルアミド-2-メチルプロパンスルホン酸、およびアクリルアミドが好ましい。
(3)のポリマーとして、例えば酢酸ビニル-アクリル酸メチル共重合体のケン化物が挙げられる。また、(4)のポリマーとして、例えばデンプン-(メタ)アクリル酸グラフト系樹脂、デンプン-アクリロニトリル共重合体のケン化物、デンプン-アクリルアミド共重合体のケン化物等のポリマー変性物が挙げられる。その他、イソブチレン-無水マレイン酸共重合体変性物の架橋体が挙げられる。なお、先に示した吸水性ポリマーは2種以上併用しても良い。
Examples of vinyl monomers that can be used in the above (1) and (2) include water-soluble monomers having a hydrophilic group such as a sulfone group, a carboxyl group, an amide group, an amino group, and a hydroxyl group, that is, 2- Acrylamide-2-methylpropanesulfonic acid, 2- (meth) acryloylethanesulfonic acid, styrenesulfonic acid, (meth) acrylic acid, maleic acid, itaconic acid, crotonic acid, fumaric acid, and / or partially alkaline neutralized products thereof , (Meth) acrylamide, N, N-dimethylacrylamide, N-isopropylacrylamide, N-methylol (meth) acrylamide, N-alkoxymethyl (meth) acrylamide, diethylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, N -Vinylpyrrolidone, acryloylmorpholine, etc. are mentioned. Two or more of these monomers may be used as a mixture. 2-acrylamido-2-methylpropanesulfonic acid, 2- (meth) acryloylethanesulfonic acid, (meth) acrylic acid, (meth) acrylamide, N, N-dimethyl due to easy control of polymerization and water absorption performance Acrylamide and N-methylol (meth) acrylamide are preferable, and 2-acrylamido-2-methylpropanesulfonic acid and acrylamide are particularly preferable.
Examples of the polymer (3) include a saponified product of vinyl acetate-methyl acrylate copolymer. Examples of the polymer (4) include polymer-modified products such as starch- (meth) acrylic acid graft resin, saponified starch-acrylonitrile copolymer, and saponified starch-acrylamide copolymer. In addition, a cross-linked product of a modified product of isobutylene-maleic anhydride copolymer may be used. Two or more water-absorbing polymers shown above may be used in combination.

この中でも逆相懸濁重合で合成された球状の吸水性ポリマー粒子は、セラミック成分との混和性が高く、重合条件を選ぶことによって粒径や吸水倍率を制御しやすいので最も好ましい。また、吸水性ポリマー粒子の形状は、焼成して得られる多孔質セラミックの気孔の形状に影響する。一般に、多孔質セラミック焼成体の気孔が尖った形状となっている場合、尖った形状の先端に応力が集中して破壊され易く、その強度が小さくなることが知られている。それに対して、球状の吸水性ポリマー粒子を用いた場合は、気孔が球状となるのでセラミック強度が高くなるので望ましい。また、吸水性ポリマーの粉砕品を使用する場合は、粉砕後に分級して粒径を揃えたものとすることが好ましい。   Among these, spherical water-absorbing polymer particles synthesized by reversed-phase suspension polymerization are most preferable because they have high miscibility with the ceramic component and the particle size and water absorption ratio can be easily controlled by selecting the polymerization conditions. Further, the shape of the water-absorbing polymer particles affects the pore shape of the porous ceramic obtained by firing. In general, when the pores of the porous ceramic fired body have a sharp shape, it is known that stress is easily concentrated at the tip of the sharp shape and is easily broken, and its strength is reduced. On the other hand, the use of spherical water-absorbing polymer particles is desirable because the pores are spherical and the ceramic strength is increased. Further, when a pulverized product of a water-absorbing polymer is used, it is preferable to classify after pulverization to make the particle diameters uniform.

吸水性ポリマーは、架橋されたものであってもよい。架橋された吸水性ポリマー粒子は、強度が大きいため、セラミック原料との混練などの工程において形状がくずれにくく、従って意図した形状、大きさの気孔を有する設計通りの多孔質セラミックを得ることが容易となる。
吸水性ポリマーに架橋構造を導入するためのひとつの手段として、吸水性ポリマーを製造する際に多官能ビニル単量体である架橋剤を併用することが挙げられる。架橋剤として用いられる多官能ビニル単量体として、例えばポリエチレングリコールジ(メタ)アクリレートやポリプロピレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等のポリオール類のジあるいはトリ(メタ)アクリレート、メチレンビス(メタ)アクリルアミド等のビスアミド類が挙げられる。これらのうちメチレンビスアクリルアミドおよびポリエチレングリコールジアクリレートが特に好ましい。
多官能ビニル単量体の使用量は単官能ビニル単量体の使用量100モル%を基準として、0.1〜10モル%であることが好ましく、0.5〜8モル%であることがより好ましく、1.0〜5モル%であることがさらに好ましい。使用量が0.1モル%より小さいとセラミック原料との混練物の強度を上げる効果が充分発揮できないことがあり、10モル%よりも大きいと好ましい吸水性能に調整することが困難となる場合がある。
The water-absorbing polymer may be cross-linked. Since the crosslinked water-absorbing polymer particles have high strength, the shape thereof is not easily lost in a process such as kneading with a ceramic raw material. Therefore, it is easy to obtain a porous ceramic as designed having pores of an intended shape and size. It becomes.
One means for introducing a cross-linked structure into the water-absorbing polymer is to use a cross-linking agent that is a polyfunctional vinyl monomer in producing the water-absorbing polymer. Examples of polyfunctional vinyl monomers used as crosslinking agents include polyols such as polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, and trimethylolpropane tri (meth) acrylate. Bisamides such as di- or tri (meth) acrylate and methylene bis (meth) acrylamide may be mentioned. Of these, methylenebisacrylamide and polyethylene glycol diacrylate are particularly preferred.
The use amount of the polyfunctional vinyl monomer is preferably 0.1 to 10 mol%, and preferably 0.5 to 8 mol%, based on the use amount of 100 mol% of the monofunctional vinyl monomer. More preferably, it is 1.0-5 mol%. If the amount used is less than 0.1 mol%, the effect of increasing the strength of the kneaded material with the ceramic raw material may not be sufficiently exerted, and if it is greater than 10 mol%, it may be difficult to adjust to a preferable water absorption performance. is there.

吸水性ポリマーに架橋構造を導入するための別の手段として、吸水性ポリマーの構成単量体である不飽和カルボン酸単量体およびその部分中和塩中に含まれるカルボキシル基との反応性を利用した架橋剤を使用する方法もある。そのような架橋剤として、例えば(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセロールジグリシジルエーテル、(ポリ)グリセロールトリグリシジルエーテル、ソルビトールジグリシジルエーテル、ソルビトールトリグリシジルエーテル、ペンタエリスリトールジグリシジルエーテル、ペンタエリスリトールトリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル等のポリグリシジル化合物や、エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のハロエポキシ化合物や、2,4-トリレンジイソシアネート、ヘキサメチレンジイソシナネート等のイソシアネート化合物が挙げられる。これらのうちエチレングリコールジグリシジルエーテルが特に好ましい。   As another means for introducing a crosslinked structure into the water-absorbing polymer, the reactivity with the carboxyl group contained in the unsaturated carboxylic acid monomer that is a constituent monomer of the water-absorbing polymer and its partially neutralized salt is used. There is also a method of using a utilized cross-linking agent. Examples of such crosslinking agents include (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerol diglycidyl ether, (poly) glycerol triglycidyl ether, sorbitol diglycidyl ether, sorbitol triglycidyl Polyglycidyl compounds such as ether, pentaerythritol diglycidyl ether, pentaerythritol triglycidyl ether, pentaerythritol tetraglycidyl ether, haloepoxy compounds such as epichlorohydrin, epibromohydrin, α-methylepichlorohydrin, and 2,4-tolylene diisocyanate And isocyanate compounds such as hexamethylene diisocyanate. Of these, ethylene glycol diglycidyl ether is particularly preferred.

セラミック原料としてコージェライト化原料を使用する場合、吸水性ポリマーは、アルカリ金属やアルカリ土類金属等を含まないものが望ましい。なぜならば、上記の金属を多量に含むポリマーを使用すると、コージェライト化反応が阻害されて熱膨張係数が大きくなる等の物性低下がおこることもあるためである。従って、吸水性ポリマーの中に、スルホン基、カルボキシル基を含むものについては、それらの官能基がナトリウム塩やカリウム塩等の状態ではなく、中和しない状態あるいはアンモニウム塩であることが望ましい。その他、ノニオン性の親水性官能基を含む吸水性ポリマーも望ましいものとして挙げられる。ノニオン性の親水性官能基の例としては、水酸基、オキシエチレン基、オキシプロピレン基などのオキシアルキレン基、アミド基などが挙げられる。   When a cordierite forming raw material is used as the ceramic raw material, the water-absorbing polymer is preferably free of alkali metals or alkaline earth metals. This is because, when a polymer containing a large amount of the above metal is used, physical properties such as a cordierite formation reaction may be hindered and a thermal expansion coefficient may be increased. Therefore, in the water-absorbing polymer containing a sulfone group or a carboxyl group, it is desirable that these functional groups are not in a state such as sodium salt or potassium salt but in an unneutralized state or an ammonium salt. In addition, a water-absorbing polymer containing a nonionic hydrophilic functional group is also desirable. Examples of nonionic hydrophilic functional groups include hydroxyl groups, oxyalkylene groups such as oxyethylene groups and oxypropylene groups, and amide groups.

本発明で使用されるセラミック原料としては、陶磁器原料、例えば粘土、粘土鉱物、シャモット、シリカ、珪砂、珪藻土、陶石、長石、高炉スラグ、シラス、シラスバルーン、フライアッシュ等の他、特殊セラミック原料、例えばコージェライト、タルク、アルミナ、カオリン、水酸化アルミニウム、マグネシア、フェライト、ゼオライト、ムライト、アパタイト、スラグ、炭化珪素、ジルコニア、窒化アルミニウム、チタン酸アルミニウム等、および電池の電極用原料、例えばニッケル粉末、コバルト粉末、ランタン・マンガナイト、ランタン・ストロンチウム・マンガナイト等が挙げられる。   Ceramic materials used in the present invention include ceramic materials such as clay, clay minerals, chamotte, silica, quartz sand, diatomaceous earth, porcelain stone, feldspar, blast furnace slag, shirasu, shirasu balloon, fly ash, and other special ceramic materials. For example, cordierite, talc, alumina, kaolin, aluminum hydroxide, magnesia, ferrite, zeolite, mullite, apatite, slag, silicon carbide, zirconia, aluminum nitride, aluminum titanate, etc., and battery electrode raw materials such as nickel powder , Cobalt powder, lanthanum / manganite, lanthanum / strontium / manganite and the like.

多孔質セラミックの製造方法は、上記のセラミック原料、吸水性ポリマー粒子および水、さらに必要に応じてメチルセルロース等の結合剤、オレフィンワックスの様な潤滑剤を含有する混合物を混練して成形する工程を含む。混練は公知の方法により行えばよく、例えばニーダー、ポニーミキサー、スクリュー押出機、真空土練機などを使用して行うことができる。セラミック原料は通常粉末状のものが使用される。   The method for producing a porous ceramic comprises a step of kneading and molding the above-mentioned ceramic raw material, water-absorbing polymer particles and water, and optionally a mixture containing a binder such as methylcellulose and a lubricant such as olefin wax. Including. The kneading may be performed by a known method, for example, using a kneader, a pony mixer, a screw extruder, a vacuum kneader or the like. Ceramic materials are usually used in powder form.

また、得られた成形物を乾燥させ、焼成する工程を含む。乾燥および焼成は公知の方法により行えばよく、高周波誘電発熱式加熱装置、熱風乾燥機、加熱床乾燥機、マングル乾燥機、トンネル乾燥機等の装置を用いることができる。乾燥は通常150℃以下の温度で行われ、実質的に水分を含まない状態まで乾燥されることが好ましい。焼成は、150℃を超える温度好ましくは800℃以上に加熱することによりなされる。吸水性ポリマー粒子、結合剤などの有機物が十分に燃焼され、セラミック原料の焼成が十分になされるように焼成温度および焼成時間が設定される。   Moreover, the process of drying and baking the obtained molded object is included. Drying and firing may be performed by a known method, and devices such as a high frequency dielectric heating type heating device, a hot air dryer, a heated floor dryer, a mangle dryer, and a tunnel dryer can be used. Drying is usually performed at a temperature of 150 ° C. or lower, and it is preferable to dry to a state that does not substantially contain moisture. Firing is performed by heating to a temperature exceeding 150 ° C, preferably 800 ° C or higher. The firing temperature and firing time are set so that organic substances such as water-absorbing polymer particles and binder are sufficiently combusted and the ceramic raw material is sufficiently fired.

セラミック原料および吸水性ポリマー粒子の使用量の割合は、いずれも乾燥状態(水を含まない状態)において、セラミック原料100質量部を基準として、吸水性ポリマー粒子0.1〜20質量部が好ましく、0.5〜10質量部がより好ましい。吸水性ポリマーの使用量が0.1質量部未満では十分な気孔率が得られない場合がある。20質量部を超えると焼成時に有機ガスが多く発生して焼成装置内のガス組成が爆発限界を超えたり、焼成時間が長くなりすぎたり、焼成中の体積変化が大きいために得られるセラミック成形物が歪や割れを有するものになりやすい等の問題が発生する場合がある。   As for the ratio of the usage-amount of a ceramic raw material and a water-absorbing polymer particle, 0.1-20 mass parts of water-absorbing polymer particles are preferable on the basis of 100 mass parts of ceramic raw materials in a dry state (state which does not contain water), 0.5-10 mass parts is more preferable. If the amount of water-absorbing polymer used is less than 0.1 parts by mass, sufficient porosity may not be obtained. When the amount exceeds 20 parts by mass, a large amount of organic gas is generated during firing, and the gas composition in the firing device exceeds the explosion limit, the firing time becomes too long, or the volume change during firing is large. May cause problems such as being likely to have distortion or cracks.

吸水性ポリマー粒子、セラミック原料および水を含有する混合物は、これらの原料を任意の方法により混合させて得られるものである。水の使用量は、吸水性ポリマー粒子、セラミック原料の種類、配合処方に応じて、好ましい混練物の硬さ、および成形性が得られるように調整される。セラミック原料100質量部を基準として水の使用量が100質量部以下である場合は、混練物を乾燥するために要する時間、エネルギーコストが過大とならないために好ましい。   The mixture containing the water-absorbing polymer particles, the ceramic raw material and water is obtained by mixing these raw materials by an arbitrary method. The amount of water used is adjusted so as to obtain a preferable hardness and formability of the kneaded material, depending on the water-absorbing polymer particles, the type of ceramic raw material, and the formulation. When the amount of water used is 100 parts by mass or less based on 100 parts by mass of the ceramic raw material, it is preferable because the time and energy cost required for drying the kneaded product do not become excessive.

原料混合における吸水性ポリマー粒子の添加方法については、含水状態(吸水状態)のものを添加する方法、または乾燥状態のものを添加する方法のいずれでも良い。含水状態の吸水性ポリマー粒子の外観は、粉末状態のもの、ペースト状態のものなどの形態であってもよい。
含水状態の吸水性ポリマー粒子を使用する場合、その含水割合は特に限定されないが、吸水性ポリマーを粉末として取り扱うことが可能な、すなわち吸水性ポリマー粉末が流動性を有する範囲の含水割合とすることが好ましい。その理由は、含水割合が多くゲル状態になったポリマー粒子は取り扱いが困難であり、またセラミック原料との混合、分散が不十分となり焼成後のセラミック成形物の強度や気孔率が不十分となる場合があるためである。
乾燥された粉末状態または含水割合が調整された粉末状態の吸水性ポリマー粒子は、セラミック原料粉末との混合が容易であり、得られる吸水性ポリマー粒子とセラミック原料粉末との混合物は高い均一分散性を有するものとなりやすい。すなわち、粉末状の吸水性ポリマー粒子と粉末状のセラミック原料が予め混合、分散された、吸水性ポリマー粒子とセラミック原料の粉末状混合物に水が添加、混合される方法は、得られる原料混練物が均一なものとなりやすく、成形された原料混練物を乾燥、焼成をさせて得られるセラミック成形物が高強度で気孔の分布も均一なものとなりやすいために好ましい方法である。一方、粉末状の吸水性ポリマー粒子と粉末状のセラミック原料が予め混合されることなく、吸水性ポリマー粒子、セラミック原料および水が実質的に同時に混合されるような方法においては、得られる原料混練物が不均一なものとなる場合があり、成形された原料混練物を乾燥、焼成をさせて得られるセラミック成形物が強度や気孔分布の均一性が不充分なものとなる場合がある。
The method for adding the water-absorbing polymer particles in the raw material mixing may be either a method of adding a water-containing state (water-absorbing state) or a method of adding a dry state. The appearance of the water-containing water-absorbing polymer particles may be in the form of a powder or a paste.
When using water-absorbing polymer particles in a water-containing state, the water content is not particularly limited, but the water-absorbing polymer can be handled as a powder, that is, the water content in a range where the water-absorbing polymer powder has fluidity. Is preferred. The reason for this is that polymer particles that have a high water content and are in a gel state are difficult to handle, and mixing and dispersion with ceramic raw materials become insufficient, resulting in insufficient strength and porosity of the fired ceramic molded product. This is because there are cases.
The water-absorbing polymer particles in a dried powder state or a powder state in which the moisture content is adjusted are easy to mix with the ceramic raw material powder, and the resulting mixture of the water-absorbing polymer particles and the ceramic raw material powder has a high uniform dispersibility. It becomes easy to have. That is, a method in which water is added to and mixed with a powdery mixture of water-absorbing polymer particles and ceramic raw material in which powdered water-absorbing polymer particles and powdered ceramic raw material are mixed and dispersed in advance. This is a preferable method because a ceramic molded product obtained by drying and firing the molded raw material kneaded product tends to be uniform and the pore distribution tends to be uniform. On the other hand, in the method in which the water-absorbing polymer particles, the ceramic raw material and the water are mixed substantially simultaneously without the powdery water-absorbing polymer particles and the powdered ceramic raw material being mixed in advance, the obtained material kneading The product may be non-uniform, and the ceramic molded product obtained by drying and firing the molded raw material kneaded product may have insufficient strength and uniformity of pore distribution.

混錬、成形工程においては、成形性を良好なものとするために混練物の硬さを適切な範囲にする必要がある。一般に、セラミック原料の種類、吸水性ポリマー粒子の添加量、水量および混練方法等によって混練物の硬さは変化しやすく、同じ条件で実施しても再現性のある硬さが得られないことも多い。本発明の吸水性ポリマー粒子を使用すると、一旦設定した条件において、混練物の硬さが意図したとおり再現されやすいため、工程を制御しやすく、安定に成形を実施することができる。その他の条件については、公知の方法を採用することができる。   In the kneading and molding processes, it is necessary to make the hardness of the kneaded material in an appropriate range in order to improve the moldability. In general, the hardness of the kneaded product is likely to change depending on the type of ceramic raw material, the amount of water-absorbing polymer particles added, the amount of water and the kneading method, and reproducible hardness may not be obtained even when carried out under the same conditions. Many. When the water-absorbing polymer particles of the present invention are used, the hardness of the kneaded material is easily reproduced as intended under the preset conditions, so that the process can be easily controlled and molding can be performed stably. About other conditions, a well-known method is employable.

(製造例1 逆相懸濁重合による吸水性ポリマー粒子A〜Eの製造)
3リットルのセパラブルフラスコにn-ヘキサン1603g、ソルビタンモノラウレート(HLB 4.3)10gを入れて溶解させた。一方、別の容器にアクリル酸96gと2−アクリルアミド−2−メチルプロパンスルホン酸224g、メチレンビスアクリルアミド14.9g(架橋剤。架橋剤以外のモノマー100mol%を基準として4mol%)をイオン交換水286.4gに溶解し、氷冷しながら124.67gの25%アンモニア水溶液を加えて部分中和(75mol%中和)されたモノマー水溶液を調製した。セパラブルフラスコの内容物を400r.p.m(回転/分)の撹拌速度で撹拌しながら、モノマー水溶液を添加した後、溶存酸素濃度が十分に小さくなるまで200ml/分の流量で2時間窒素置換した。30℃に外温制御してフラスコ内容物の温度が安定したら、t-ブチルヒドロキシパーオキシドの6.9%水溶液0.58gを入れた。次いで、5%重亜硫酸ナトリウム水溶液0.90gを5回分に分けてそのうちの1回分を添加して重合を開始させた。重合熱による反応液の温度上昇が観測された。反応液の温度が低下して30℃に制御された外温とほぼ同じ温度になったときに、残りの重亜硫酸ナトリウム水溶液4回分のうち1回分を添加した。反応液の温度が一旦上昇した後低下して外温とほぼ同じ温度になったときに重亜硫酸ナトリウム水溶液1回分を添加するという操作をさらに3回繰り返した。5回目の重亜硫酸ナトリウム水溶液添加後、一旦上昇した温度が外温とほぼ同じ温度になってからそのまま一時間熟成した。重合開始後も30℃に外温制御したまま窒素置換を継続し、400r.p.mの回転数で反応終了まで撹拌した。静置して二相分離させた後、上澄み液を捨てた。その後、下層の沈殿物を120℃で6時間乾燥後、擂潰機により解砕することによって球状の吸水性ポリマー粒子Aを得た。
吸水性ポリマー粒子BおよびCの製造は、メチレンビスアクリルアミドの使用量をそれぞれ3mol%、2mol%に変更する以外は吸水性ポリマー粒子Aの製造条件と同様に行った。
吸水性ポリマー粒子Dの製造は、架橋剤以外のモノマーを2−アクリルアミド−2−メチルプロパンスルホン酸224gおよび50%アクリルアミド水溶液192gに変更し、25%アンモニア水溶液およびイオン交換水の使用量をそれぞれ55.1gおよび261.8gに変更する以外は吸水性ポリマー粒子Aの製造と同様に行った。架橋剤以外のモノマー100mol%を基準として架橋剤であるメチレンビスアクリルアミドを4mol%使用したことも吸水性ポリマー粒子Aの製造条件と同様である。
吸水性ポリマー粒子Eの製造は、架橋剤以外のモノマーを50%アクリルアミド水溶液480gおよびアクリル酸80.0gに変更し、25%アンモニア水溶液およびイオン交換水の使用量をそれぞれ56.6gおよび114.7gに変更する以外は吸水性ポリマー粒子Aの製造と同様に行った。架橋剤以外のモノマー100mol%を基準として架橋剤であるメチレンビスアクリルアミドを4mol%使用したことも吸水性ポリマー粒子Aの製造条件と同様である。
吸水性ポリマー粒子B〜Eはいずれも球状の形状を有していた。
(Production Example 1 Production of water-absorbing polymer particles A to E by reverse phase suspension polymerization)
In a 3 liter separable flask, 1603 g of n-hexane and 10 g of sorbitan monolaurate (HLB 4.3) were added and dissolved. On the other hand, 96 g of acrylic acid, 224 g of 2-acrylamido-2-methylpropanesulfonic acid, 14.9 g of methylenebisacrylamide (4 mol% based on 100 mol% of monomers other than the cross-linking agent) in 286.4 g of ion-exchanged water in a separate container A monomer aqueous solution that was partially neutralized (75 mol% neutralized) was prepared by adding 124.67 g of 25% aqueous ammonia solution while cooling with ice. While stirring the contents of the separable flask at a stirring speed of 400 rpm (rotation / min), the aqueous monomer solution was added, and then the atmosphere was purged with nitrogen at a flow rate of 200 ml / min for 2 hours until the dissolved oxygen concentration was sufficiently low. . When the temperature of the flask contents was stabilized by controlling the external temperature to 30 ° C., 0.58 g of a 6.9% aqueous solution of t-butylhydroxyperoxide was added. Next, 0.90 g of 5% sodium bisulfite aqueous solution was divided into five portions, and one portion of them was added to initiate polymerization. A temperature rise of the reaction solution due to the heat of polymerization was observed. When the temperature of the reaction solution decreased to the same temperature as the external temperature controlled at 30 ° C., one portion of the remaining four sodium bisulfite aqueous solutions was added. The operation of adding once a sodium bisulfite aqueous solution was repeated three more times when the temperature of the reaction solution once increased and then decreased to reach the same temperature as the external temperature. After the fifth addition of the sodium bisulfite aqueous solution, the temperature was once aged for about 1 hour after the temperature rose to almost the same as the external temperature. Nitrogen substitution was continued while the external temperature was controlled at 30 ° C. even after the start of polymerization, and the reaction was stirred at the rotation speed of 400 rpm until the reaction was completed. After allowing to stand to separate into two phases, the supernatant was discarded. Thereafter, the lower layer precipitate was dried at 120 ° C. for 6 hours and then pulverized by a crusher to obtain spherical water-absorbing polymer particles A.
The water-absorbing polymer particles B and C were produced in the same manner as the water-absorbing polymer particle A except that the amount of methylenebisacrylamide used was changed to 3 mol% and 2 mol%, respectively.
In the production of the water-absorbing polymer particles D, the monomers other than the cross-linking agent were changed to 224 g of 2-acrylamido-2-methylpropanesulfonic acid and 192 g of 50% acrylamide aqueous solution, and the usage amounts of 25% ammonia aqueous solution and ion-exchanged water were 55.1 respectively. The same procedure as in the production of the water-absorbing polymer particles A was carried out except that g and 261.8 g were changed. The use of 4 mol% of methylene bisacrylamide as a crosslinking agent based on 100 mol% of a monomer other than the crosslinking agent is the same as the production conditions for the water-absorbing polymer particles A.
For the production of water-absorbing polymer particles E, the monomers other than the crosslinking agent are changed to 480 g of 50% acrylamide aqueous solution and 80.0 g of acrylic acid, and the usage amounts of 25% aqueous ammonia solution and ion-exchanged water are changed to 56.6 g and 114.7 g, respectively. Except for this, the production was performed in the same manner as in the production of the water-absorbing polymer particles A. The use of 4 mol% of methylene bisacrylamide as a crosslinking agent based on 100 mol% of a monomer other than the crosslinking agent is the same as the production conditions for the water-absorbing polymer particles A.
All of the water-absorbing polymer particles B to E had a spherical shape.

(製造例2 吸水性ポリマー粒子FおよびGの製造)
アクリル酸100gとイオン交換水を混合後、氷冷しながら25%アンモニア水溶液を加えて部分中和(75mol%中和)することによってアクリル酸濃度35質量%の水溶液を調製し、架橋剤として東亞合成株式会社製アロニックスM−245(ポリエチレングリコールジアクリレート、オキシエチレン単位の繰り返し数nは約9)を20g添加した。この単量体水溶液に、光開始剤として2,2−ジメトキシ−2−フェニルアセトフェノン0.01gと過硫酸アンモニウム0.1gを加え、これを内径146mmの円筒型ガラス容器(反応器)に仕込み、水溶液の温度を20℃に保ちながら30分間窒素バブリングした。その後、反応器の上方から100Wブラックライト(株式会社東芝製、商品名「H100BL」)を用いて5.0mW/cm2の照射強度で3分間紫外線を照射し、シート状含水架橋重合体ゲルを作成した(積算光量:900mJ/cm2)。このゲルを乾燥、粉砕して吸水性樹脂の粗粒子を得た。次いで、ボールミルにて粉砕した後、330メッシュ(45μm)の篩いにかけて通過したものを回収して、吸水性ポリマー粒子Fを得た。
吸水性ポリマー粒子Gの製造は、50%アクリルアミド水溶液200gとイオン交換水を混合し、アクリルアミド濃度30質量%の水溶液を調製し、架橋剤として東亞合成株式会社製アロニックスM−240(ポリエチレングリコールジアクリレート、オキシエチレン単位の繰り返し数nは約4)を10g添加した単量体水溶液に変更する以外は、ポリマー粒子Fの製造条件と同様に行った。
(Production Example 2 Production of water-absorbing polymer particles F and G)
After mixing 100 g of acrylic acid and ion-exchanged water, an aqueous solution with an acrylic acid concentration of 35% by mass was prepared by adding a 25% aqueous ammonia solution while cooling with ice to partially neutralize (75 mol% neutralization). 20 g of Aronix M-245 (polyethylene glycol diacrylate, the number of repeating oxyethylene units n is about 9) manufactured by Synthetic Co., Ltd. was added. To this aqueous monomer solution, 0.01 g of 2,2-dimethoxy-2-phenylacetophenone and 0.1 g of ammonium persulfate were added as a photoinitiator and charged into a cylindrical glass container (reactor) having an inner diameter of 146 mm. Was kept under nitrogen bubbling for 30 minutes. Then, ultraviolet rays were irradiated from the top of the reactor for 3 minutes using a 100 W black light (trade name “H100BL”, manufactured by Toshiba Corporation) with an irradiation intensity of 5.0 mW / cm 2 to create a sheet-like water-containing crosslinked polymer gel. (Integrated light intensity: 900 mJ / cm 2 ). This gel was dried and pulverized to obtain coarse particles of a water absorbent resin. Next, after pulverizing with a ball mill, the particles passed through a 330 mesh (45 μm) sieve were collected to obtain water-absorbing polymer particles F.
The water-absorbing polymer particles G are produced by mixing 200 g of a 50% aqueous acrylamide solution and ion-exchanged water to prepare an aqueous solution having an acrylamide concentration of 30% by mass, and using Aronix M-240 (polyethylene glycol diacrylate) manufactured by Toagosei Co., Ltd. The number of repeating oxyethylene units n was the same as that for polymer particles F except that the monomer aqueous solution was added with 10 g of about 4).

(吸水性ポリマー粒子の加圧下吸水量の測定)
吸水性ポリマー粒子の加圧下吸水量すなわち圧力980Paおよび9800Paにおける吸水量は、図1に示す測定装置を用いて測定した。図1に示す様に、測定装置は(1)〜(3)から構成される。(1)は空気抜きするための枝管が付いたビュレット1、ピンチコック2、シリコンチューブ3およびポリ四フッ化エチレンチューブ4から成る。(2)では漏斗5の上に底面に多数の穴が空いた支柱円筒8、さらにその上に装置用濾紙10が設置されている。(3)にある様に吸水性ポリマー粒子のサンプル6は2枚のサンプル固定用濾紙7に挟まれて粘着テープ9によって円筒状のおもり11に固定される。円筒状のおもりは2種類あり、サンプル6に対して980Paの荷重を与えるものおよび9800Paの荷重を与えるものを使用する。(1)と(2)とはシリコンチューブ3によってつながれる。また、漏斗5および支柱円筒8は、ビュレット1に対する高さが固定されており、ビュレット枝管の内部に設置されたポリ四フッ化エチレンチューブ4の下端と支柱円筒8の底面とが同じ高さになる様に設定されている。(図1中の点線)
(Measurement of water absorption under pressure of water-absorbing polymer particles)
The amount of water absorption under pressure of the water-absorbing polymer particles, that is, the amount of water absorption at pressures of 980 Pa and 9800 Pa, was measured using the measuring apparatus shown in FIG. As shown in FIG. 1, the measuring device is composed of (1) to (3). (1) consists of a burette 1 with a branch pipe for venting air, a pinch cock 2, a silicon tube 3 and a polytetrafluoroethylene tube 4. In (2), a support cylinder 8 having a large number of holes on the bottom surface is provided on the funnel 5, and a filter paper 10 for the apparatus is further provided thereon. As shown in (3), a sample 6 of water-absorbing polymer particles is sandwiched between two sample fixing filter papers 7 and fixed to a cylindrical weight 11 by an adhesive tape 9. There are two types of cylindrical weights, one that gives a load of 980 Pa to sample 6 and one that gives a load of 9800 Pa. (1) and (2) are connected by a silicon tube 3. The height of the funnel 5 and the support cylinder 8 is fixed with respect to the burette 1, and the lower end of the polytetrafluoroethylene tube 4 installed inside the buret branch pipe and the bottom of the support cylinder 8 are the same height. It is set to become. (Dotted line in Fig. 1)

上記構成の測定装置を用いて加圧下吸水量を測定した。測定方法について以下に説明する。(1)にあるピンチコック2を外し、ビュレット1の上部からシリコンチューブ3を通してイオン交換水を入れ、ビュレット1から装置用濾紙10までイオン交換水12で満たされた状態にした。次いで、ピンチコック2を閉じてビュレット1の内部の圧力を保ち、ビュレット枝管にゴム栓で接続されたポリ四フッ化エチレンチューブ4から空気を除去した。こうして、ビュレット1から装置用濾紙10までイオン交換水12が連続的に供給される状態とした。次いで、装置用濾紙10からにじみ出た余分なイオン交換水12を除去した後、ビュレット1の目盛りの読み(a)を記録した。吸水性ポリマー粒子サンプル0.05gを秤量し、(3)にある様に、サンプル固定用濾紙7の中央部に均一に置き、もう1枚の濾紙で乾燥状態の吸水性ポリマー粒子サンプルを挟みながら粘着テープ9で円柱状のおもり11の底面に固定した。サンプルが固定されたおもり11を(2)に示される装置用濾紙10上に載置した。次いで、装置用濾紙10上におもり11を載置した時点から、30分間経過した後のビュレット1の目盛りの読み(b)を記録した。吸水性ポリマー粒子の吸水量と2枚の濾紙7の吸水量の合計(c)は、(a−b)で求められる。同様の操作により、吸水性ポリマー粒子サンプルを含まない2枚の濾紙7の吸水量を測定した(d)。加圧下吸水量は以下の式より求めた。
加圧下吸水量(ml/g)= (c−d)/(吸水性ポリマー粒子量(g))
The amount of water absorption under pressure was measured using the measuring apparatus having the above configuration. The measurement method will be described below. The pinch cock 2 in (1) was removed, and ion exchange water was poured from the upper part of the burette 1 through the silicon tube 3 so that the burette 1 to the filter paper 10 for apparatus were filled with the ion exchange water 12. Next, the pinch cock 2 was closed to maintain the pressure inside the burette 1, and air was removed from the polytetrafluoroethylene tube 4 connected to the buret branch pipe with a rubber stopper. Thus, the ion exchange water 12 was continuously supplied from the burette 1 to the filter paper 10 for the apparatus. Next, after removing the excess ion-exchanged water 12 oozing out from the filter paper for apparatus 10, the reading (a) on the scale of the burette 1 was recorded. Weigh out 0.05g of water-absorbing polymer particle sample and place it evenly on the center of the filter paper 7 for sample fixing as shown in (3), and stick the dry water-absorbing polymer particle sample with another filter paper. The bottom of the weight 11 was fixed with a tape 9. The weight 11 on which the sample was fixed was placed on the filter paper 10 for apparatus shown in (2). Next, the reading (b) of the scale of the bullet 1 after 30 minutes from the time when the weight 11 was placed on the filter paper 10 for apparatus was recorded. The sum (c) of the water absorption amount of the water-absorbing polymer particles and the water absorption amount of the two filter papers 7 is obtained by (ab). By the same operation, the water absorption of the two filter papers 7 not containing the water absorbent polymer particle sample was measured (d). The amount of water absorption under pressure was determined from the following equation.
Water absorption under pressure (ml / g) = (cd) / (Water-absorbing polymer particle amount (g))

以上の様に各サンプルについて980Paおよび9800Paの負荷となるそれぞれの条件において加圧下吸水量を測定した。   As described above, the amount of water absorption under pressure was measured for each sample under the respective conditions of 980 Pa and 9800 Pa.

(混練物硬度の測定)
実施例および比較例において得られた混練物(成形・焼成前のもの)の硬度を以下に示す方法によって測定した。混練物を50mlスクリューバイアル瓶に採取し、空隙がほとんど出来ない様にきっちりと詰め、表面を平らにした。この混練物を23℃に保温し、下記の条件でカードメーター(飯尾電機社製、ME-303型)を用いて混練物硬度を測定した。
荷重 :400g
感圧軸の直径 :3mmφ
感圧軸の降下速度:0.36cm/秒
実施例および比較例で用いた条件において良好な成形性を有する混練物の硬度は1.5×104〜6.0×104 N/m2の範囲であった。
(Measurement of kneaded material hardness)
The hardness of the kneaded material (before molding and firing) obtained in the examples and comparative examples was measured by the following method. The kneaded material was collected in a 50 ml screw vial, packed tightly so that there was almost no void, and the surface was flattened. The kneaded product was kept at 23 ° C., and the kneaded product hardness was measured using a card meter (ME-303, manufactured by Iio Electric Co., Ltd.) under the following conditions.
Load: 400g
Diameter of pressure sensitive shaft: 3mmφ
Decrease speed of pressure-sensitive axis: 0.36 cm / sec. The hardness of the kneaded material having good moldability under the conditions used in the examples and comparative examples was in the range of 1.5 × 10 4 to 6.0 × 10 4 N / m 2 . .

(成形性の評価)
混練物を押出し成形法で円柱状に成形したもの(焼成前のもの)の外観を目視にて評価した。成形物にひび割れのあるものまたは成形物を静置したときに円柱形状を保てないもの(保形性の悪いもの)をいずれも「×」とし、ひび割れがなくかつ保形性が良好なものを「○」とした。
(Evaluation of formability)
The appearance of the kneaded product formed into a cylindrical shape by extrusion molding (before firing) was visually evaluated. Those with cracks in the molded product or those that cannot maintain the cylindrical shape when the molded product is left standing (poor shape retention) are all marked with “x”, and have no cracks and good shape retention Was marked as “◯”.

(実施例1)
吸水性ポリマー粒子として製造例1で製造されたポリマー粒子Aを使用した。ポリマー粒子Aの圧力980Paにおける吸水量は9ml/gであり、圧力980Paにおける吸水量Xml/gおよび圧力9800Paにおける吸水量Yml/gの比X/Yは1.32であり、常圧吸水量(常圧において乾燥状態の吸水性ポリマー1g当たりがイオン交換水を飽和吸水した状態の質量(ポリマー自身の質量も含む)をg単位で表したもの)は10g/gであり、飽和吸水状態における平均粒子径は40μmであった。ポリマー粒子Aの常圧吸水量は、上記「吸水性ポリマー粒子の加圧下吸水量の測定」において「おもり11」を使用せず、軽く押さえた状態で測定した吸水量を意味する。後述する吸水性ポリマー粒子B、C、DおよびEの常圧吸水量も同様である。
セラミック原料としてコージェライト化原料のカオリン、仮焼カオリン、タルク、アルミナ、水酸化アルミニウム、シリカを21:13:39:9:13:5の質量比(全体量100質量部)となる様に配合し、そこに結合剤であるメチルセルロース4質量部、潤滑剤であるオレフィンワックス1質量部および造孔剤である乾燥状態の吸水性ポリマー粒子Aを5質量部添加混合した後、イオン交換水80質量部を添加してすぐにσ型ニーダで30分間混練した。その後、押出し成形法で円柱状に成形し、120℃で乾燥して水分を除いた。乾燥は120℃においてほぼ恒量となるまで行った。次いで、1000℃まで昇温後、1000℃〜1400℃の間を昇温速度50℃/時間で昇温し、1420℃に達してから温度を維持して4時間焼成した。焼成体の気孔率は水銀ポロシメーターによって測定した。
Example 1
The polymer particle A produced in Production Example 1 was used as the water-absorbing polymer particle. The water absorption amount of the polymer particles A at a pressure of 980 Pa is 9 ml / g, the ratio X / Y of the water absorption amount Xml / g at a pressure of 980 Pa and the water absorption amount Yml / g at a pressure of 9800 Pa is 1.32. The weight of the water-absorbing polymer in a dry state at normal pressure is 10 g / g in mass (including the mass of the polymer itself) when ion-exchanged water is saturated and absorbed, and the average in the saturated water-absorbing state. The particle size was 40 μm. The normal-pressure water absorption amount of the polymer particles A means the water absorption amount measured in a state where the “weight 11” is not used in the “measurement of water absorption amount under pressure of the water-absorbing polymer particles” and is lightly pressed. The same applies to the atmospheric water absorption amount of water-absorbing polymer particles B, C, D and E described later.
As a ceramic raw material, the cordierite forming raw materials kaolin, calcined kaolin, talc, alumina, aluminum hydroxide, and silica are mixed in a mass ratio of 21: 13: 39: 9: 13: 5 (100 parts by mass in total). 4 parts by weight of methylcellulose as a binder, 1 part by weight of an olefin wax as a lubricant, and 5 parts by weight of dry water-absorbing polymer particles A as a pore-forming agent were added and mixed, and then 80 parts by weight of ion-exchanged water. Immediately after adding the part, the mixture was kneaded with a σ type kneader for 30 minutes. Thereafter, it was molded into a cylindrical shape by an extrusion molding method and dried at 120 ° C. to remove moisture. Drying was performed at 120 ° C. until the weight was almost constant. Next, after raising the temperature to 1000 ° C., the temperature was raised between 1000 ° C. and 1400 ° C. at a rate of temperature rise of 50 ° C./hour, and after reaching 1420 ° C., the temperature was maintained and firing was performed for 4 hours. The porosity of the fired body was measured with a mercury porosimeter.

(実施例2)
イオン交換水の量を80質量部から90質量部に変更した以外は実施例1と同様に行った。
(Example 2)
The same procedure as in Example 1 was performed except that the amount of ion-exchanged water was changed from 80 parts by mass to 90 parts by mass.

(実施例3)
吸水性ポリマー粒子Aの使用量を5質量部から3.1質量部に変更した以外は実施例1と同様に行った。
(Example 3)
The same procedure as in Example 1 was carried out except that the amount of the water-absorbing polymer particles A was changed from 5 parts by mass to 3.1 parts by mass.

(実施例4)
吸水性ポリマー粒子Aに代えて製造例1で製造された吸水性ポリマー粒子Bを使用した以外は、実施例1と同様に行った。ポリマー粒子Bの圧力980Paにおける吸水量は13ml/gであり、比X/Yは1.33であり、常圧吸水量は15g/gであり、飽和吸水状態における平均粒子径は53μmであった。
Example 4
The same procedure as in Example 1 was performed except that the water absorbent polymer particles B produced in Production Example 1 were used in place of the water absorbent polymer particles A. The water absorption amount of the polymer particles B at a pressure of 980 Pa was 13 ml / g, the ratio X / Y was 1.33, the atmospheric water absorption amount was 15 g / g, and the average particle size in a saturated water absorption state was 53 μm. .

(実施例5)
吸水性ポリマー粒子Aに代えて製造例1で製造された吸水性ポリマー粒子Cを使用した以外は、実施例1と同様に行った。ポリマー粒子Cの圧力980Paにおける吸水量は20ml/gであり、比X/Yは1.45であり、常圧吸水量は23g/gであり、飽和吸水状態における平均粒子径は62μmであった。
(Example 5)
The same procedure as in Example 1 was performed except that the water absorbent polymer particles C produced in Production Example 1 were used in place of the water absorbent polymer particles A. The water absorption amount of the polymer particles C at a pressure of 980 Pa was 20 ml / g, the ratio X / Y was 1.45, the normal pressure water absorption amount was 23 g / g, and the average particle size in a saturated water absorption state was 62 μm. .

(実施例6)
吸水性ポリマー粒子Aに代えて製造例1で製造された吸水性ポリマー粒子Dを使用した以外は、実施例1と同様に行った。ポリマー粒子Dの圧力980Paにおける吸水量は11ml/gであり、比X/Yは1.13であり、常圧吸水量は13g/gであり、飽和吸水状態における平均粒子径は49μmであった。
(Example 6)
The same procedure as in Example 1 was performed except that the water absorbent polymer particles D produced in Production Example 1 were used in place of the water absorbent polymer particles A. The water absorption amount of the polymer particles D at a pressure of 980 Pa was 11 ml / g, the ratio X / Y was 1.13, the normal pressure water absorption amount was 13 g / g, and the average particle size in a saturated water absorption state was 49 μm. .

(実施例7)
吸水性ポリマー粒子Aに代えて製造例1で製造された吸水性ポリマー粒子Eを使用した以外は、実施例1と同様に行った。ポリマー粒子Eの圧力980Paにおける吸水量は10ml/gであり、比X/Yは1.36であり、常圧吸水量は12g/gであり、飽和吸水状態における平均粒子径は65μmであった。
(Example 7)
The same procedure as in Example 1 was carried out except that the water absorbent polymer particles E produced in Production Example 1 were used in place of the water absorbent polymer particles A. The water absorption of the polymer particles E at a pressure of 980 Pa was 10 ml / g, the ratio X / Y was 1.36, the water absorption at normal pressure was 12 g / g, and the average particle diameter in a saturated water absorption state was 65 μm. .

(実施例8)
吸水性ポリマー粒子Aに代えて製造例2で製造された吸水性ポリマー粒子Fを使用した以外は、実施例1と同様に行った。ポリマー粒子Fの圧力980Paにおける吸水量は27ml/gであり、比X/Yは1.16であり、常圧吸水量は29g/gであり、飽和吸水状態における平均粒子径は42μmであった。
(Example 8)
The same procedure as in Example 1 was carried out except that the water absorbent polymer particles F produced in Production Example 2 were used in place of the water absorbent polymer particles A. The water absorption amount of the polymer particles F at a pressure of 980 Pa was 27 ml / g, the ratio X / Y was 1.16, the normal water absorption amount was 29 g / g, and the average particle size in a saturated water absorption state was 42 μm. .

(実施例9)
吸水性ポリマー粒子Aに代えて製造例2で製造された吸水性ポリマー粒子Gを使用した以外は、実施例1と同様に行った。ポリマー粒子Gの圧力980Paにおける吸水量は19ml/gであり、比X/Yは1.05であり、常圧吸水量は22g/gであり、飽和吸水状態における平均粒子径は41μmであった。
Example 9
The same procedure as in Example 1 was performed except that the water absorbent polymer particles G produced in Production Example 2 were used in place of the water absorbent polymer particles A. The water absorption amount of the polymer particles G at a pressure of 980 Pa was 19 ml / g, the ratio X / Y was 1.05, the normal pressure water absorption amount was 22 g / g, and the average particle size in a saturated water absorption state was 41 μm. .

(実施例10)
吸水性ポリマー粒子Aに代えて吸水性ポリマー粒子H(クラレイソプレンケミカル社製、KIゲル201K、330メッシュパス品。イソブチレン−無水マレイン酸共重合体変性物の架橋体の塩の粉砕品。)を使用した以外は、実施例1と同様に行った。ポリマー粒子Hの圧力980Paにおける吸水量は25ml/gであり、比X/Yは1.32であり、常圧吸水量は32g/gであり、飽和吸水状態における平均粒子径は60μmであった。
(Example 10)
Instead of the water-absorbing polymer particles A, water-absorbing polymer particles H (manufactured by Kuraray Isoprene Chemical Co., Ltd., KI gel 201K, 330 mesh pass product, a crushed product of a crosslinked salt of a modified product of isobutylene-maleic anhydride copolymer). The same procedure as in Example 1 was performed except that it was used. The water absorption amount of the polymer particles H at a pressure of 980 Pa was 25 ml / g, the ratio X / Y was 1.32, the normal pressure water absorption amount was 32 g / g, and the average particle size in the saturated water absorption state was 60 μm. .

(比較例1)
吸水性ポリマー粒子Aの5質量部に代えて吸水性ポリマー粒子I(クラレイソプレンケミカル社製、KIゲル201K、顆粒状品。イソブチレン−無水マレイン酸共重合体変性物の架橋体の塩。)の5質量部を粉砕などすることなくそのまま使用した以外は、実施例1と同様の操作を試みた。ポリマー粒子Iの圧力980Paにおける吸水量は35ml/gであり、比X/Yは1.54であり、常圧吸水量は200g/g(カタログ値)であり、飽和吸水状態における平均粒子径は320μmであった。混練物の成形を試みたが、流動性が不足してうまく成形できず、成形物にはひび割れが見られた。
なお別途、この混練物に適度な流動性を付与するために必要な水の添加量を探索したところ、120質量部が必要であることがわかった。このように多量の水が使用された場合、乾燥に多くの時間とエネルギーを要するため実用的でなかった。
(Comparative Example 1)
Instead of 5 parts by mass of the water-absorbing polymer particles A, water-absorbing polymer particles I (Kuraray isoprene Chemical Co., Ltd., KI gel 201K, granular product, cross-linked salt of isobutylene-maleic anhydride copolymer modified product). An operation similar to that of Example 1 was attempted except that 5 parts by mass were used as they were without being pulverized. The water absorption of the polymer particles I at a pressure of 980 Pa is 35 ml / g, the ratio X / Y is 1.54, the normal water absorption is 200 g / g (catalog value), and the average particle diameter in the saturated water absorption state is 320 μm. An attempt was made to form the kneaded product, but the fluidity was insufficient and the product could not be formed well, and the molded product was cracked.
Separately, when the amount of water necessary for imparting appropriate fluidity to this kneaded material was searched, it was found that 120 parts by mass were necessary. When a large amount of water is used in this way, it takes much time and energy to dry, which is not practical.

(比較例2)
吸水性ポリマー粒子Aの5質量部に代えて吸水性ポリマー粒子Iを0.15質量部使用した以外は実施例1と同様の操作を試みた。得られた混練物は保形性が悪く、成形物が形状を維持することができなかった。
(Comparative Example 2)
The same operation as in Example 1 was attempted except that 0.15 part by mass of the water-absorbing polymer particle I was used instead of 5 parts by mass of the water-absorbing polymer particle A. The obtained kneaded product had poor shape retention, and the molded product could not maintain its shape.

(比較例3)
吸水性ポリマー粒子Aの5質量部に代えて吸水性ポリマー粒子Iを2質量部使用した以外は実施例1と同様の操作を行った。
(Comparative Example 3)
The same operation as in Example 1 was performed except that 2 parts by mass of the water-absorbing polymer particles I were used in place of 5 parts by mass of the water-absorbing polymer particles A.

(比較例4)
吸水性ポリマー粒子Aの5質量部に代えて吸水性ポリマー粒子J(三洋化成工業社製サンフレッシュST-500Dの粉砕品。ポリアクリル系架橋樹脂。)の5質量部を使用した以外は、実施例1と同様の操作を試みた。ポリマー粒子Jの圧力980Paにおける吸水量は75ml/gであり、比X/Yは1.09であり、常圧吸水量は400g/g(カタログ値)であり、飽和吸水状態における平均粒子径は190μmであった。混練物の成形を試みたが、流動性が不足してうまく成形できず、成形物にはひび割れが見られた。
なお別途、この混練物に適度な流動性を付与するために必要な水の添加量を探索したところ、140質量部が必要であることがわかった。このように多量の水が使用された場合、乾燥に多くの時間とエネルギーを要するため実用的でなかった。
(Comparative Example 4)
Except that 5 parts by mass of the water-absorbing polymer particles A was used instead of 5 parts by mass of the water-absorbing polymer particles J (Sanfresh ST-500D pulverized product manufactured by Sanyo Chemical Industries, Ltd., polyacrylic crosslinked resin). The same operation as in Example 1 was attempted. The water absorption of the polymer particle J at a pressure of 980 Pa is 75 ml / g, the ratio X / Y is 1.09, the normal pressure water absorption is 400 g / g (catalog value), and the average particle diameter in the saturated water absorption state is It was 190 μm. An attempt was made to form the kneaded product, but the fluidity was insufficient and the product could not be formed well, and the molded product was cracked.
Separately, when the amount of water necessary for imparting appropriate fluidity to this kneaded material was searched, it was found that 140 parts by mass were necessary. When a large amount of water is used in this way, it takes much time and energy to dry, which is not practical.

(比較例5)
吸水性ポリマー粒子Aの5質量部に代えて吸水性ポリマー粒子Jを0.08質量部使用した以外は実施例1と同様の操作を試みた。得られた混練物は保形性が悪く、成形物が形状を維持することができなかった。
(Comparative Example 5)
The same operation as in Example 1 was tried except that 0.08 part by mass of the water-absorbing polymer particle J was used instead of 5 parts by mass of the water-absorbing polymer particle A. The obtained kneaded product had poor shape retention, and the molded product could not maintain its shape.

(比較例6)
吸水性ポリマー粒子Aの5質量部に代えて吸水性ポリマー粒子Jを2質量部使用した以外は実施例1と同様の操作を行った。
(Comparative Example 6)
The same operation as in Example 1 was performed except that 2 parts by mass of the water-absorbing polymer particles J were used instead of 5 parts by mass of the water-absorbing polymer particles A.

(比較例7)
吸水性ポリマー粒子Aの5質量部に代えて球状の吸水性ポリマー粒子K(住友精化社製アクアキープSA-60N。ポリアクリルアミド系架橋樹脂。)の5質量部を使用した以外は、実施例1と同様の操作を試みた。ポリマー粒子Kの圧力980Paにおける吸水量は140ml/gであり、比X/Yは1.93であり、常圧吸水量は480g/gであり、飽和吸水状態における平均粒子径は710μmであった。混練物の成形を試みたが、流動性が不足してうまく成形できず、成形物にはひび割れが見られた。
なお別途、この混練物に適度な流動性を付与するために必要な水の添加量を探索したところ、150質量部が必要であることがわかった。このように多量の水が使用された場合、乾燥に多くの時間とエネルギーを要するため実用的でなかった。
(Comparative Example 7)
Example except that 5 parts by mass of spherical water-absorbing polymer particles K (Aquakeep SA-60N manufactured by Sumitomo Seika Co., Ltd., polyacrylamide-based crosslinked resin) was used instead of 5 parts by mass of the water-absorbing polymer particles A. I tried the same operation as 1. The water absorption amount of the polymer particles K at a pressure of 980 Pa was 140 ml / g, the ratio X / Y was 1.93, the normal pressure water absorption amount was 480 g / g, and the average particle size in the saturated water absorption state was 710 μm. . An attempt was made to form the kneaded product, but the fluidity was insufficient and the product could not be formed well, and the molded product was cracked.
Separately, when an amount of water necessary for imparting appropriate fluidity to this kneaded material was searched, it was found that 150 parts by mass was necessary. When a large amount of water is used in this way, it takes much time and energy to dry, which is not practical.

(比較例8)
吸水性ポリマー粒子Aの5質量部に代えて吸水性ポリマー粒子Kを0.06質量部使用した以外は実施例1と同様の操作を試みた。得られた混練物は保形性が悪く、成形物が形状を維持することができなかった。
(Comparative Example 8)
The same operation as in Example 1 was attempted except that 0.06 part by mass of the water-absorbing polymer particle K was used instead of 5 parts by mass of the water-absorbing polymer particle A. The obtained kneaded product had poor shape retention, and the molded product could not maintain its shape.

(比較例9)
吸水性ポリマー粒子Aの5質量部に代えて吸水性ポリマー粒子Kを2質量部使用した以外は実施例1と同様の操作を行った。
(Comparative Example 9)
The same operation as in Example 1 was performed except that 2 parts by mass of the water-absorbing polymer particles K was used instead of 5 parts by mass of the water-absorbing polymer particles A.

(比較例10)
吸水性ポリマー粒子Aの5質量部に代えて吸水性ポリマー粒子L(東亞合成社製アロンザップTS-U-1。アクリル酸単位および2−アクリルアミド−2−メチルプロパンスルホン酸単位を有する架橋ポリマー。)の5質量部を使用した以外は、実施例1と同様の操作を試みた。ポリマー粒子Lの圧力980Paにおける吸水量は98ml/gであり、比X/Yは2.80であり、常圧吸水量は150g/gであり、飽和吸水状態における平均粒子径は450μmであった。混練物の成形を試みたが、流動性が不足してうまく成形できず、成形物にはひび割れが見られた。
なお別途、この混練物に適度な流動性を付与するために必要な水の添加量を探索したところ、120質量部が必要であることがわかった。このように多量の水が使用された場合、乾燥に多くの時間とエネルギーを要するため実用的でなかった。
(Comparative Example 10)
Instead of 5 parts by mass of the water-absorbing polymer particles A, water-absorbing polymer particles L (Alonzap TS-U-1 manufactured by Toagosei Co., Ltd. Crosslinked polymer having acrylic acid units and 2-acrylamido-2-methylpropanesulfonic acid units.) The same operation as in Example 1 was attempted except that 5 parts by mass of the above was used. The water absorption amount of the polymer particles L at a pressure of 980 Pa was 98 ml / g, the ratio X / Y was 2.80, the normal water absorption amount was 150 g / g, and the average particle size in the saturated water absorption state was 450 μm. . An attempt was made to form the kneaded product, but the fluidity was insufficient and the product could not be formed well, and the molded product was cracked.
Separately, when an amount of water necessary for imparting appropriate fluidity to the kneaded product was searched, it was found that 120 parts by mass was necessary. When a large amount of water is used in this way, it takes much time and energy to dry, which is not practical.

(比較例11)
吸水性ポリマー粒子Aの5質量部に代えて吸水性ポリマー粒子Lを0.2質量部使用した以外は実施例1と同様の操作を試みた。得られた混練物は保形性が悪く、成形物が形状を維持することができなかった。
(Comparative Example 11)
The same operation as in Example 1 was attempted except that 0.2 parts by mass of the water-absorbing polymer particles L was used instead of 5 parts by mass of the water-absorbing polymer particles A. The obtained kneaded product had poor shape retention, and the molded product could not maintain its shape.

(比較例12)
吸水性ポリマー粒子Aの5質量部に代えて吸水性ポリマー粒子Lを2質量部使用した以外は実施例1と同様の操作を行った。
(Comparative Example 12)
The same operation as in Example 1 was performed except that 2 parts by mass of the water-absorbing polymer particles L were used instead of 5 parts by mass of the water-absorbing polymer particles A.

(比較例13)
吸水性ポリマー粒子Aの5質量部に代えて球状の吸水性ポリマー粒子M(東亞合成社製アロンザップU。アクリル酸単位を主要構成単位とする架橋ポリマー。)の5質量部を使用した以外は、実施例1と同様の操作を試みた。ポリマー粒子Mの圧力980Paにおける吸水量は112ml/gであり、比X/Yは1.67であり、常圧吸水量は210g/gであり、飽和吸水状態における平均粒子径は590μmであった。混練物の成形を試みたが、流動性が不足してうまく成形できず、成形物にはひび割れが見られた。
なお別途、この混練物に適度な流動性を付与するために必要な水の添加量を探索したところ、120質量部が必要であることがわかった。このように多量の水が使用された場合、乾燥に多くの時間とエネルギーを要するため実用的でなかった。
(Comparative Example 13)
Instead of using 5 parts by mass of the water-absorbing polymer particles A, 5 parts by mass of spherical water-absorbing polymer particles M (Aronzap U manufactured by Toagosei Co., Ltd., a cross-linked polymer having an acrylic acid unit as a main constituent unit) were used. The same operation as in Example 1 was attempted. The water absorption amount of the polymer particles M at a pressure of 980 Pa was 112 ml / g, the ratio X / Y was 1.67, the normal pressure water absorption amount was 210 g / g, and the average particle size in a saturated water absorption state was 590 μm. . An attempt was made to form the kneaded product, but the fluidity was insufficient and the product could not be formed well, and the molded product was cracked.
Separately, when an amount of water necessary for imparting appropriate fluidity to the kneaded product was searched, it was found that 120 parts by mass was necessary. When a large amount of water is used in this way, it takes much time and energy to dry, which is not practical.

(比較例14)
吸水性ポリマー粒子Aの5質量部に代えて吸水性ポリマー粒子Mを0.14質量部使用した以外は実施例1と同様の操作を試みた。得られた混練物は保形性が悪く、成形物が形状を維持することができなかった。
(Comparative Example 14)
The same operation as in Example 1 was attempted except that 0.14 parts by mass of the water-absorbing polymer particles M were used in place of 5 parts by mass of the water-absorbing polymer particles A. The obtained kneaded product had poor shape retention, and the molded product could not maintain its shape.

(比較例15)
吸水性ポリマー粒子Aの5質量部に代えて吸水性ポリマー粒子Mを2質量部使用した以外は実施例1と同様の操作を行った。
(Comparative Example 15)
The same operation as in Example 1 was performed except that 2 parts by mass of the water-absorbing polymer particles M were used in place of 5 parts by mass of the water-absorbing polymer particles A.

実施例および比較例における混練物の硬度および成形性の評価結果ならびに焼成体の気孔率のデータを表1に示した。   Table 1 shows the evaluation results of the hardness and formability of the kneaded materials and the porosity data of the fired bodies in the examples and comparative examples.

Figure 0004540094
Figure 0004540094

比較例1、4、7、10および13においては実施例1、2、4、5、6、7、8、9および10と同じ量の吸水性ポリマー粒子を使用した結果、混練物の成形性が悪く、成形物はひび割れを有するものであった。
上記の結果は、比較例で用いた公知の吸水性ポリマー粒子と、実施例で用いた本発明の技術的範囲内の吸水性ポリマー粒子とは、常圧下での吸水量もかなり違うことが影響していることも考えられる。そこで、各種の吸水性ポリマー粒子について、いずれもイオン交換水の全使用量80質量部から吸水性ポリマーの非存在下におけるセラミック原料粉末の混練に必要な50質量部を差し引いた30質量部のイオン交換水が飽和吸水量に相当する量を使用して比較した実験が、実施例3、比較例2、5、8、11、および14である。その結果、実施例3では適切な混練物硬度となり混練物の成形性も良好であったが、比較例2、5、8、11、および14の場合は混練物硬度が小さく、成形性(保形性)が悪かった。
そこで、比較例3、6、9、12、および15において、吸水性ポリマー粒子の使用量を2質量部に調節したところ、必要な混練物硬度および成形性を有する条件も見出されたが、得られる焼成体は気孔率が46〜54%というように、実施例と比べて気孔率が小さいものであった。
In Comparative Examples 1, 4, 7, 10 and 13, as a result of using the same amount of water-absorbing polymer particles as in Examples 1, 2, 4, 5, 6, 7, 8, 9 and 10, the moldability of the kneaded product was However, the molded product had cracks.
The above results show that the known water-absorbing polymer particles used in the comparative examples and the water-absorbing polymer particles used in the examples within the technical scope of the present invention are significantly different in water absorption under normal pressure. It is also possible that Therefore, for each of the various water-absorbing polymer particles, 30 parts by mass of ions obtained by subtracting 50 parts by mass necessary for kneading the ceramic raw material powder in the absence of the water-absorbing polymer from the total amount of ion-exchanged water used of 80 parts by mass. Examples 3 and Comparative Examples 2, 5, 8, 11, and 14 are experiments in which the exchanged water is compared using an amount corresponding to the saturated water absorption. As a result, in Example 3, the kneaded material hardness was appropriate, and the kneaded material had good moldability, but in Comparative Examples 2, 5, 8, 11, and 14, the kneaded material hardness was small, and the moldability (retaining property) was maintained. (Formality) was bad.
Therefore, in Comparative Examples 3, 6, 9, 12, and 15, when the amount of water-absorbing polymer particles was adjusted to 2 parts by mass, conditions for having the necessary kneaded material hardness and moldability were also found. The obtained fired body had a porosity smaller than that of the example, such that the porosity was 46 to 54%.

特許請求の範囲に記載された発明を特徴付ける要件の意味について以下に補足する。本発明の本質は、常圧付近における吸水量が比較的少ない(しかしゼロではない)吸水性ポリマー粒子を造孔剤として使用することにある(請求項1に記載の発明)。吸水性ポリマー粒子が常圧付近における吸水量が少なすぎるものであると、ポリマー粒子が保持する水分の量が少ないために十分な気孔率が得られない。吸水性ポリマー粒子が常圧付近における吸水量が多すぎるものであると、混練工程においてシェアがかかったときに吸水したポリマー粒子から水分が逆戻りして粒子径が変化しやすいために、混練物および焼成物の硬さや気孔径分布を制御するのが困難となる場合がある。しかし、常圧における吸水量は、測定条件によって大きくことなるほか、吸水性ポリマーの粒子径が小さい場合は測定が容易でなく、得られる吸水量のデータは再現性が乏しい場合もある。そこで本発明の請求項1においては、常圧を代表し(常圧に近く)、しかも測定の再現性が良好な条件として、常圧に若干の負荷をプラスした圧力980Paにおける吸水量を規定した。   The meaning of the requirements characterizing the invention described in the claims will be supplemented below. The essence of the present invention is to use water-absorbing polymer particles having a relatively small amount of water absorption (but not zero) near normal pressure as the pore-forming agent (the invention according to claim 1). If the water-absorbing polymer particles have an excessively small amount of water absorption near normal pressure, a sufficient porosity cannot be obtained because the amount of water retained by the polymer particles is small. If the water-absorbing polymer particles have an excessive amount of water absorption at around normal pressure, the water is reversed from the polymer particles absorbed when the shear is applied in the kneading process, and the particle diameter is likely to change. It may be difficult to control the hardness and pore size distribution of the fired product. However, the amount of water absorption at normal pressure varies depending on the measurement conditions, and when the particle size of the water-absorbing polymer is small, measurement is not easy, and the data on the amount of water absorption obtained may be poorly reproducible. Therefore, in claim 1 of the present invention, the amount of water absorption at a pressure of 980 Pa obtained by adding a slight load to the normal pressure is defined as a condition that represents normal pressure (close to normal pressure) and has good reproducibility of measurement. .

請求項2に記載の発明においては、混練におけるシェアがかかったときの吸水量が常圧付近における吸水量と比べて極端に少なくならないことを規定した。圧力9800Pa(混練におけるシェアがかかった時に相当)における吸水量が、圧力980Paにおける吸水量(常圧付近における吸水量に近似)と比べて極端に少なくなる場合は、混練工程においてシェアがかかったときに吸水したポリマー粒子から水分が逆戻りして粒子径が変化しやすいために、混練物および焼成物の硬さや気孔径分布を制御するのが困難となる場合がある。   The invention according to claim 2 stipulates that the amount of water absorption when shearing in kneading is not extremely reduced compared to the amount of water absorption near normal pressure. When the amount of water absorption at a pressure of 9800 Pa (equivalent to a share in kneading) is extremely smaller than the amount of water absorption at a pressure of 980 Pa (approximate to the amount of water absorption near normal pressure), when a share is applied in the kneading process Since the water reverts from the polymer particles that have absorbed water and the particle size is likely to change, it may be difficult to control the hardness and pore size distribution of the kneaded product and the fired product.

なお、特許文献3では、ゲル強度の高い吸水性樹脂の微粒子を飽和吸水させて造孔剤として用いることによって吸水ゲルの変形を抑制していた。しかし、この場合純水よりもかなり吸水性の低い生理食塩水を含む吸水ポリマーゲルに対するゲル強度であり、実際にイオン交換水を吸水させて使用する場合には逆戻りが生じるすなわち吸水量が大きい吸水性ポリマーを使用していた。特許文献3の段落0012には、「純水に対する吸水性能は、50g/g以上であり、好ましくは100〜1000g/gである。」と記載されており、本願発明において好適に使用できる吸水性ポリマー粒子の吸水量より大きい吸水性樹脂を使用する技術であることがわかる。特許文献3の実施例において使用されている吸水性ポリマーと同等品または類似品と思われる吸水性ポリマー粒子Jを使用したものが本願の比較例4〜6であり、これら比較例においては混練物の成形性が悪かったり、本願の実施例と比べて気孔率が小さかったりした。
食塩水を使用して吸水量を抑える方法においては、得られる多孔質セラミック焼成体が食塩を多く含むという問題がある。
In Patent Document 3, deformation of the water-absorbing gel is suppressed by using water-absorbent resin particles having high gel strength as a pore-forming agent by saturated water absorption. However, in this case, it is gel strength against a water-absorbing polymer gel containing physiological saline, which is much less water-absorbing than pure water. A functional polymer was used. In paragraph 0012 of Patent Document 3, it is described that “the water absorption performance with respect to pure water is 50 g / g or more, preferably 100 to 1000 g / g”, and can be used suitably in the present invention. It can be seen that this is a technique that uses a water-absorbing resin larger than the water absorption amount of the polymer particles. Comparative Examples 4 to 6 using the water-absorbing polymer particles J, which are considered to be equivalent to or similar to the water-absorbing polymer used in the examples of Patent Document 3, are Comparative Examples 4 to 6 of the present application. The moldability was poor, or the porosity was small compared to the examples of the present application.
In the method of suppressing the amount of water absorption using a saline solution, there is a problem that the obtained porous ceramic fired body contains a large amount of salt.

本発明によれば、気孔率が高く強度が大きな多孔質セラミックが得られる。多孔質セラミックの用途としては、自動車排ガス浄化用のセラミックフィルター、熱機関および燃焼装置等から排出される排ガス浄化用セラミックフィルター、水等の液体濾過用セラミックフィルター等の濾過材料、排ガス浄化用の触媒等の触媒担体、自動車排ガス浄化用熱交換体、蓄熱体、電池用焼結基板、断熱材料、および廃水処理に使用される微生物担体等が挙げられる。
According to the present invention, a porous ceramic having a high porosity and a high strength can be obtained. Porous ceramics include: automobile exhaust gas purification ceramic filters, exhaust gas purification ceramic filters discharged from heat engines and combustion devices, etc., filtering materials such as water and other liquid filtration ceramic filters, exhaust gas purification catalysts Catalyst carriers such as automobile exhaust gas purification heat exchangers, heat accumulators, sintered substrates for batteries, heat insulating materials, and microbial carriers used for wastewater treatment.

加圧下吸水量の測定装置。Measuring device for water absorption under pressure.

符号の説明Explanation of symbols

1 ビュレット
2 ピンチコック
3 シリコンチューブ
4 ポリ四フッ化エチレンチューブ
5 漏斗
6 サンプル(吸水性ポリマー粒子)
7 サンプル固定用濾紙
8 支柱円筒(ステンレス製、多数の穴が空いている)
9 粘着テープ
10 装置用濾紙
11 おもり(円柱状、ステンレス製)
12 イオン交換水
1 Burette
2 Pinch cock
3 Silicon tube
4 Polytetrafluoroethylene tube
5 Funnel
6 samples (water-absorbing polymer particles)
7 Sample fixing filter paper
8-post cylinder (made of stainless steel, with many holes)
9 Adhesive tape
10 Filter paper for equipment
11 Weight (cylindrical, stainless steel)
12 Ion exchange water

Claims (5)

圧力980Paにおける吸水量が5〜30ml/gである吸水性ポリマー粒子、セラミック原料および水を含有する混合物を成形する工程および得られた成形物を加熱焼成する工程を含む多孔質セラミックの製造方法において、
吸水性ポリマー粒子は、圧力980Paにおける吸水量Xml/gおよび圧力9800Paにおける吸水量Yml/gの比X/Yが1.0〜1.6の範囲のものであることを特徴とする多孔質セラミックの製造方法。
In a method for producing a porous ceramic comprising a step of forming a mixture containing water-absorbing polymer particles having a water absorption amount of 5 to 30 ml / g at a pressure of 980 Pa, a ceramic raw material and water, and a step of heating and firing the obtained molded product ,
The water-absorbing polymer particles have a ratio X / Y of a water absorption amount Xml / g at a pressure of 980 Pa and a water absorption amount Yml / g at a pressure of 9800 Pa in the range of 1.0 to 1.6. Manufacturing method.
吸水性ポリマー粒子は、不飽和結合を1個有する単官能ビニル単量体および不飽和結合を2個以上有する多官能ビニル単量体をそれぞれ100モル%および0.1〜10モル%の割合で含有する単量体混合物をラジカル重合させて得られるポリマーからなることを特徴とする、請求項1に記載の多孔質セラミックの製造方法。 The water-absorbing polymer particles are composed of a monofunctional vinyl monomer having one unsaturated bond and a polyfunctional vinyl monomer having two or more unsaturated bonds in proportions of 100 mol% and 0.1 to 10 mol%, respectively. 2. The method for producing a porous ceramic according to claim 1, comprising a polymer obtained by radical polymerization of the monomer mixture to be contained . 吸水性ポリマー粒子は、逆相懸濁重合法によりビニル単量体を重合させて得られるポリマーからなることを特徴とする、請求項1または2に記載の多孔質セラミックの製造方法。 The method for producing a porous ceramic according to claim 1 or 2, wherein the water-absorbing polymer particles comprise a polymer obtained by polymerizing a vinyl monomer by a reverse phase suspension polymerization method. 吸水性ポリマー粒子は、構成単量体単位として2−アクリルアミド−2−メチルプロパンスルホン酸単位またはアクリルアミド単位を有するポリマーからなることを特徴とする、請求項1〜3のいずれかに記載の多孔質セラミックの製造方法。 The porous polymer according to any one of claims 1 to 3, wherein the water-absorbing polymer particles are composed of a polymer having a 2-acrylamide-2-methylpropanesulfonic acid unit or an acrylamide unit as a constituent monomer unit. Manufacturing method of ceramic. 吸水性ポリマー粒子、セラミック原料および水を含有する混合物は、粉末状の吸水性ポリマー粒子と粉末状のセラミック原料が混合された、吸水性ポリマー粒子とセラミック原料の粉末状混合物に水が添加、混合されて得られることを特徴とする請求項1に記載の多孔質セラミックの製造方法 The mixture containing water- absorbing polymer particles , ceramic raw material and water is a mixture of powdered water-absorbing polymer particles and powdered ceramic raw material. Water is added to and mixed with the powdered mixture of water-absorbing polymer particles and ceramic raw material. The method for producing a porous ceramic according to claim 1, wherein the method is obtained .
JP2004028759A 2003-02-12 2004-02-05 Method for producing porous ceramic Expired - Lifetime JP4540094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004028759A JP4540094B2 (en) 2003-02-12 2004-02-05 Method for producing porous ceramic

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003033704 2003-02-12
JP2004028759A JP4540094B2 (en) 2003-02-12 2004-02-05 Method for producing porous ceramic

Publications (2)

Publication Number Publication Date
JP2004262747A JP2004262747A (en) 2004-09-24
JP4540094B2 true JP4540094B2 (en) 2010-09-08

Family

ID=33133882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004028759A Expired - Lifetime JP4540094B2 (en) 2003-02-12 2004-02-05 Method for producing porous ceramic

Country Status (1)

Country Link
JP (1) JP4540094B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2505570A1 (en) 2011-03-30 2012-10-03 NGK Insulators, Ltd. Honeycomb structure, manufacturing method thereof, and catalyst carrying honeycomb structure

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100670724B1 (en) * 2003-12-26 2007-01-19 니뽄 가이시 가부시키가이샤 Method for producing honeycomb structure
JP5298547B2 (en) * 2008-02-01 2013-09-25 東亞合成株式会社 Method for producing polymer fine particle powder
PL2239280T3 (en) 2008-02-01 2016-07-29 Toagosei Co Ltd Process for the production of polymer microparticles
JP5509525B2 (en) 2008-02-01 2014-06-04 東亞合成株式会社 Method for producing polymer fine particles
US8058370B2 (en) 2008-02-01 2011-11-15 Toagosei Co., Ltd. Process for the production of polymer microparticles
US8362165B2 (en) 2008-02-01 2013-01-29 Toagosei Co., Ltd. Process for the production of polymer microparticles
JP4574693B2 (en) 2008-03-28 2010-11-04 日本碍子株式会社 Manufacturing method of honeycomb structure
JP2010100442A (en) * 2008-10-21 2010-05-06 Nozawa Corp Method for producing cordierite
JP5479118B2 (en) * 2010-01-13 2014-04-23 日本碍子株式会社 Manufacturing method of honeycomb structure
EP2615074B1 (en) 2010-09-10 2019-03-20 Toagosei Co., Ltd. Additive for molding of ceramic material
US9346043B2 (en) * 2012-03-06 2016-05-24 Ngk Insulators, Ltd. Honeycomb structure and honeycomb catalyst
JP6003827B2 (en) * 2013-06-28 2016-10-05 東亞合成株式会社 Solid oxide fuel cell and method for producing the same
US10454111B2 (en) 2014-06-10 2019-10-22 Toagosei Co., Ltd. Electrode for nonaqueous electrolyte secondary battery, method of manufacturing same, and nonaqueous electrolyte secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747757A (en) * 1980-09-01 1982-03-18 Kuraray Co Manufacture of porous inorganic matter formed body
JPH1135691A (en) * 1997-07-25 1999-02-09 Nippon Shokubai Co Ltd Cutting of hydrous water absorbing and cross-linked polymer
JP2000044611A (en) * 1998-07-27 2000-02-15 Fuji Xerox Co Ltd Colored polymer gel particle and its production
JP2000128907A (en) * 1998-10-22 2000-05-09 Mitsubishi Chemicals Corp Production of water-absorbing polymer
JP2002125457A (en) * 2000-10-23 2002-05-08 Sanyo Chem Ind Ltd Water-holding material for raising plant body
WO2002072671A1 (en) * 2001-03-14 2002-09-19 Sekisui Chemical Co., Ltd. Hollow polymer particles, method for preparing hollow polymer particles, porous ceramic filter, and method for preparing porous ceramic filter
JP2003038919A (en) * 2001-07-27 2003-02-12 Sekisui Chem Co Ltd Method for producing porous ceramic filter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3923432B2 (en) * 2001-03-14 2007-05-30 積水化学工業株式会社 Hollow polymer particles, method for producing hollow polymer particles, porous ceramic filter, and method for producing porous ceramic filter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747757A (en) * 1980-09-01 1982-03-18 Kuraray Co Manufacture of porous inorganic matter formed body
JPH1135691A (en) * 1997-07-25 1999-02-09 Nippon Shokubai Co Ltd Cutting of hydrous water absorbing and cross-linked polymer
JP2000044611A (en) * 1998-07-27 2000-02-15 Fuji Xerox Co Ltd Colored polymer gel particle and its production
JP2000128907A (en) * 1998-10-22 2000-05-09 Mitsubishi Chemicals Corp Production of water-absorbing polymer
JP2002125457A (en) * 2000-10-23 2002-05-08 Sanyo Chem Ind Ltd Water-holding material for raising plant body
WO2002072671A1 (en) * 2001-03-14 2002-09-19 Sekisui Chemical Co., Ltd. Hollow polymer particles, method for preparing hollow polymer particles, porous ceramic filter, and method for preparing porous ceramic filter
JP2003038919A (en) * 2001-07-27 2003-02-12 Sekisui Chem Co Ltd Method for producing porous ceramic filter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2505570A1 (en) 2011-03-30 2012-10-03 NGK Insulators, Ltd. Honeycomb structure, manufacturing method thereof, and catalyst carrying honeycomb structure
JP2012206057A (en) * 2011-03-30 2012-10-25 Ngk Insulators Ltd Honeycomb structure and method of manufacturing the same
US8722172B2 (en) 2011-03-30 2014-05-13 Ngk Insulators, Ltd. Honeycomb structure, manufacturing method thereof, and catalyst carrying honeycomb structure
US9174880B2 (en) 2011-03-30 2015-11-03 Ngk Insulators, Ltd. Honeycomb structure, manufacturing method thereof, and catalyst carrying honeycomb structure
EP3424892A1 (en) 2011-03-30 2019-01-09 NGK Insulators, Ltd. Honeycomb structure, manufacturing method thereof, and catalyst carrying honeycomb structure

Also Published As

Publication number Publication date
JP2004262747A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
EP1595857B1 (en) Method for producing porous ceramic
JP4540094B2 (en) Method for producing porous ceramic
JP4991084B2 (en) Water absorbent, process for producing the same and use of the water absorbent
KR100819613B1 (en) Water absorbent and producing method of same
CN108350179B (en) Superabsorbent polymers
KR101771996B1 (en) Water absorbent resin and method for producing same
JP4866733B2 (en) Method for producing aqueous liquid absorbent
EP0508810B1 (en) Method of production of particulate hydrogel polymer and absorbent resin
TWI461445B (en) Water-absorbing polymer structures produced using polymer dispersions
US20020128618A1 (en) Hydrogels
JP4587327B2 (en) Swellable hydrogel-forming polymer with high permeability
TWI302541B (en) Water-absorbent resin and its production process
CA2433044A1 (en) Hydrogels coated with steric or electrostatic spacers
JP6029800B2 (en) Water absorbent resin particles
JP2005288265A (en) Aqueous liquid absorbent and its manufacturing method
JP2003511489A (en) Mechanically stable hydrogel-forming polymers
US20030144386A1 (en) Mixtures of hydrogel-forming polymers and building materials
JP2005501960A (en) Superabsorbent hydrogel with specific particle size distribution
JP2009534483A (en) Highly permeable superabsorbent polymer structure
WO2021117781A1 (en) Water absorbent resin particles, and method for producing water absorbent resin particles
MXPA01010496A (en) Polymer mixture forming hidro
JP5273311B2 (en) Additive for ceramic molding
JPWO2018174175A1 (en) Method for producing water absorbent resin
JP2002537446A (en) Production of superabsorbents in emulsions with high content of internal phase
WO2022181452A1 (en) Method for producing water absorbent resin particles

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050217

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

R150 Certificate of patent or registration of utility model

Ref document number: 4540094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140702

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250