JP4539804B2 - Carburizing steel with excellent hardenability and parts manufacturability - Google Patents

Carburizing steel with excellent hardenability and parts manufacturability Download PDF

Info

Publication number
JP4539804B2
JP4539804B2 JP2001111270A JP2001111270A JP4539804B2 JP 4539804 B2 JP4539804 B2 JP 4539804B2 JP 2001111270 A JP2001111270 A JP 2001111270A JP 2001111270 A JP2001111270 A JP 2001111270A JP 4539804 B2 JP4539804 B2 JP 4539804B2
Authority
JP
Japan
Prior art keywords
hardness
steel
quenching
hardenability
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001111270A
Other languages
Japanese (ja)
Other versions
JP2002309342A (en
Inventor
智紀 羽生田
豊 紅林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001111270A priority Critical patent/JP4539804B2/en
Publication of JP2002309342A publication Critical patent/JP2002309342A/en
Application granted granted Critical
Publication of JP4539804B2 publication Critical patent/JP4539804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,焼入性および部品製造性に優れる浸炭焼入用鋼に関する。
【0002】
【従来の技術】
浸炭焼入れは鋼の表層の炭素濃度を高めた上で焼入れを行う熱処理である。浸炭焼入れされた鋼部品は表層硬さが高く,かつ内部の靭性が高いので,疲労強度や靭性を要求される動力伝達機構部品に適用されている。また,浸炭焼入れ前の素材の炭素量が比較的少ないため,機械加工性や塑性加工性などの部品の製造性に優れているので,大量生産される自動車などの部品に多用されている。浸炭焼入れにおける焼入れ剤としてはほとんどの場合,油やソルトが用いられているが,真空浸炭炉ではガスによる焼入れも行われている。
【0003】
ガスによる焼入れは熱処理歪が小さい反面,冷却能が低いため不完全焼入れとなる場合があり,これにより十分な強度や機械的特性が得られない場合がある。
また,油焼入れやソルト焼入れであっても,大物部品の場合には冷却能が不足する場合がある。このような冷却能の不足に対しては,鋼材の焼入性を高めることが有効であり,NiやMoなどの合金元素を高めた鋼材がJIS等の鋼種規格にある。
【0004】
【発明が解決しようとする課題】
鋼の焼入性を高める元素として代表的なSi,Mn,Cr,Ni,Moなどは浸炭焼入れ前の素材の硬さを高める元素でもあり,機械加工性や冷間加工性に有害であり,部品の製造性を劣化させる。例えば,JISでは焼入性の高い肌焼鋼としてはSNCM616やSNCM815などがあるが,最も一般的な肌焼鋼であるSCr420やSCM420に比べて合金添加量が多いため,焼ならしや焼なまし状態の硬さが非常に高く,切削加工や冷間加工が困難である場合が多い。
すなわち,ガス焼入れや大物部品に適合する焼入性と大量生産に適した部品の製造性を両立することは困難であった。
【0005】
【課題を解決するための手段】
本発明の発明者は高い焼入性と低い素材硬度の両立を目的として,鋼材の硬さおよび組織におよぼす化学成分の影響を化学成分の相互作用を含めて調査した結果,以下のようなことを見出した。
【0006】
高い焼入性を得るには冷却速度が油焼入れやガス焼入れに相当する範囲でフェライト・パーライト変態およびベイナイト変態を抑制することが必要である。一方,低い素材硬度を得るには,オーステナイトからの冷却速度が放冷または空冷に相当する範囲において,ベイナイトの生成を抑制し,フェライト・パーライトの多い組織とすることが必要である。これらは一般的には両立が困難とされていたが,合金元素の組み合わせにより好ましい範囲で両立させることが可能であることが判明した。
【0007】
前述のような効果を生み出す化学成分として,最も有効な元素はボロン(以下Bと記す)である。Bはオーステナイトに固溶状態で存在する場合,冷却速度が2℃/秒以上の冷却において,フェライトやベイナイトの生成を抑制し焼入性を高めるが,冷却速度が1℃/秒以下においてはボロンを添加しない場合と同じ組織および硬さが得られる。
【0008】
一般的な肌焼鋼の焼入性や焼ならし硬さにおけるSi,Mn,Cr,NiおよびMoの含有量の影響については従来より十分に解析されており,ある程度の予測も可能であるが,固溶Bの存在する状態でのこれらの合金元素の影響すなわちBとの相互作用については十分に明らかにされていなかった。本発明者らは,NiおよびSiが固溶Bと共存する場合に焼入性の向上に対する寄与が大きく,反対に素材硬度に対する影響は少ないということを見出した。また,逆に,MnおよびMoは固溶Bと共存する場合に特に素材硬度を上昇させる効果が大きいことが判明した。したがって,B,Ni,Siの添加あるいは増量およびMn,Moの低減を基本として合金元素含有量を調整することにより,高い焼入性と低い素材硬度の両立が可能である。
【0009】
一般に,鋼材の焼入性はSi,Mn,Ni,Cr,Mo,Bなどの合金元素含有量の範囲を規定することにより制御することができる。しかし,素材硬度については,熱間加工の履歴や熱処理条件,熱処理材の大きさなどにより異なるため,厳密には実際に製造して評価する必要がある。発明者らはB添加鋼の焼ならし後の硬さにおよぼす合金元素の影響を詳細に調べた結果,固溶Bと共存する場合の合金元素の影響について下記の式で推定できることを見出した。
H=106C(%)+10.8Si(%)+19.9Mn(%)+16.7Ni(%)+8.55Cr(%)+45.5Mo(%)+28
この成分パラメータHは直径30mmの丸棒を焼ならし処理した場合の硬さ(単位;HRB)を表しており,様々な大きさの部品における平均的な素材硬度として鋼材の成分組成の決定に役立つものである。この成分パラメータにより,焼入性と素材硬度のバランスをより好ましいものとすることが可能である。
【0010】
すなわち,本発明は,量で,C:0.12〜0.22%,Si:0.40〜1.50%,Mn:0.25〜0.45%,Ni:0.50〜1.50%,Cr:1.30〜2.30%,B:0.0010〜0.0030%,Ti:0.02〜0.06%,Nb:0.02〜0.12%,Al:0.005〜0.050%、Mo:0.02%以下を含有し,残部F及び不可避的不純物からなり,一端焼入試験において50%マルテンサイトに相当する硬さとなる位置の焼入端からの距離が20mm以上,かつ式
H=106C(%)+10.8Si(%)+19.9Mn(%)+16.7Ni(%)+8.55Cr(%)+45.5Mo(%)+28
で表される成分パラメータHが95以下であることを特徴とする高い焼入性と低い素材硬度を兼備する浸炭用鋼である。
【0011】
本発明の請求範囲の限定理由について以下に説明する。
【0012】
C:0.12〜0.22%
Cは浸炭焼入れ後の非浸炭部の強度を向上する元素であるが,0.12%未満ではその効果が小さく,0.22%を越えると素材硬度が高くなる。よって,Cの含有量は0.12〜0.22%とする。
【0013】
Si:0.40〜1.50%
Siは固溶Bと共存する場合に特に焼入性を向上し,素材硬度に対する影響が小さい元素であるので本発明において積極的に添加される元素であるが,0.40%未満ではその効果が小さく,1.50%を超えるとA3変態点の上昇により,焼入れ前の均一オーステナイト化が困難になる。よって,Siの含有量は0.40〜1.50%とする。
【0014】
Mn:0.25〜0.45%
Mnは焼入性を向上する元素であるが,0.25%未満では効果が小さく,0.45%を越えると固溶Bと共存する場合に素材硬度を上昇させる効果が特に大きく,部品製造性を著しく劣化させる。よって,Mnの含有量は0.25〜0.45%とする。
【0015】
Ni:0.50〜1.50%
Niは浸炭鋼の強度や焼入性を向上する元素であり,固溶Bと共存すると特にその効果が大きいが,含有量が0.50%未満ではその効果が顕著でなく,1.50%を超えると素材においてベイナイト組織が生成しやすくなり機械加工性を著しく劣化させる。よって,Niの含有量は0.50〜1.50%とする。
【0016】
Cr:1.30〜2.30%
Crは浸炭性を向上する元素であり,特にSiおよびNiによる浸炭性の劣化を防止する効果を有する元素であるが,含有量が1.30%未満では効果が不足し,また,2.30%を越えて添加すると,素材においてベイナイト組織が生成しやすくなり機械加工性を著しく劣化させる。よって,Crの含有量は1.30〜2.30%とする。
【0017】
B:0.0010〜0.0030%
Bは焼入性を著しく向上する元素であるが,0.0010%未満では安定した効果が得られず,また,0.0030%を越えて添加しても効果が飽和するので経済的でない。よって,Bの含有量は0.0010〜0.0030%とする。
【0018】
Ti:0.02〜0.06%
Tiは窒化物を形成することにより,Bが窒化物となることを防止し,Bによる焼入性向上効果を安定させる効果を有する元素であるが,0.02%未満ではその効果が小さく,0.06%を超えて添加しても効果が飽和するので経済的でない。よって,Tiの含有量は0.02〜0.06%とする。
【0019】
Nb:0.02〜0.12%
Nbは結晶粒の成長を抑制する元素であり,0.02%未満ではその効果が小さく,0.12%を越えると凝固時に粗大な炭窒化物を形成して結晶粒成長抑制効果が減退する。よって,Nbの含有量は0.02〜0.12%とする。
【0020】
Al:0.005〜0.050%
Alは溶製過程における脱酸を促進し酸化物系介在物量の低減に有効であるが,0.005%未満では脱酸効果がなく,また,0.050%を越えて添加しても効果が飽和するので経済的でない。よって,Alの含有量は0.005〜0.050%とする。
【0021】
50%マルテンサイト硬さとなるジョミニー距離:20mm以上
本発明の目的である高い焼入性と低い素材硬度の両立は上記範囲内の化学組成の鋼材において実現されるものであるが,そのジョミニー一端焼入れ試験結果において50%マルテンサイトに相当する硬さとなる位置の焼入端からの距離が20mm未満ではガス焼入れおよび大物部品の焼入れにおいて不完全焼入れが発生する。よって,50%マルテンサイト硬さとなるジョミニー距離を20mm以上とする。
【0022】
成分パラメータH:95以下
上記範囲内の化学組成の鋼材であっても,
H=106C(%)+10.8Si(%)+19.9Mn(%)+16.7Ni(%)+8.55Cr(%)+45.5Mo(%)+28
なる式で表される成分パラメータが95を超えると鋼材の圧延状態の硬さや焼ならし状態の硬さが著しく上昇し,機械加工性および冷間加工性が得られない。よって成分パラメータHを95以下となるように成分組成を制御する必要がある。
【0023】
なお,Moは焼入性を向上する元素であるが,固溶Bと共存する場合には素材硬度を上昇させる効果が特に大きく,部品製造性を著しく劣化させるので,その含有量を0.02%以下に制限することが好ましい。
【0024】
【実施例】
以下に実施例を挙げて本発明を説明する。表1に示す化学組成の鋼をアーク炉で溶製後,熱間圧延により直径32mmの丸棒とした。発明鋼1,発明鋼2,発明鋼3および発明鋼4は本発明に該当する鋼種である。また,比較鋼Aおよび比較鋼BはそれぞれJISの肌焼鋼SCM822およびSNCM815に相当する鋼種である。
【0025】
【表1】

Figure 0004539804
【0026】
すべての鋼材について,圧延丸棒を925℃1時間保持後空冷の焼ならしを行い,丸棒の横断面の中心部についてロックウェル硬さを測定した。さらにJIS−G0561に基づきジョミニー式一端焼入試験を行い,得られた硬さ曲線から50%マルテンサイトに相当する硬さの位置を算出した。また,直径25mm,長さ50mmに機械加工後,表2に示す条件で浸炭焼入れを行い,ビッカース硬度計により横断面の硬さ分布を調べた。浸炭焼入材の表層硬さは表面から0.05mmの位置において測定し,有効硬化深さは横断面の硬さ分布から550HVを判定基準として算出した。これらの結果および成分パラメータHを表3に示す。
【0027】
【表2】
Figure 0004539804
【0028】
【表3】
Figure 0004539804
【0029】
表3において,発明鋼1〜4はいずれも95HRB以下の焼ならし硬さであるとともに,浸炭焼入れ材の中心部の硬さが350HV以上である。表層および中心部の組織はいずれもマルテンサイトであり,顕著な不完全焼入組織は存在していない。これに対し,比較鋼Aは焼ならし硬さは低いものの,浸炭焼入れ材の表層硬さおよび中心部硬さが発明鋼に対して低い。また,比較鋼Bは浸炭焼入れ材の表層硬さおよび中心部硬さは発明鋼とほぼ同等であるが,焼ならし硬さが極めて高い。
【0030】
表3において,焼ならし硬さは成分パラメータHにほぼ対応しており,また,浸炭焼入れ材の中心部硬さは一端焼入試験における50%マルテンサイト位置とほぼ対応している。したがって,上記のような発明鋼と比較鋼の差異すなわち,本発明鋼における高い焼入性と低い素材硬度の両立は,本発明の規定する成分組成の範囲と成分パラメータHおよび一端焼入試験における50%マルテンサイト位置の制御により得られたものである。
【0031】
【発明の効果】
以上のように本発明によれば,従来困難であった高い焼入性と低い素材硬度の両立により,ガス焼入れや大きいサイズの部品の油焼入れが可能で,かつ従来と同様の部品製造コストを実現する浸炭用鋼を提供できるため産業上の利点は極めて大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carburizing and quenching steel having excellent hardenability and component manufacturability.
[0002]
[Prior art]
Carburizing and quenching is a heat treatment in which quenching is performed after increasing the carbon concentration of the surface layer of steel. Since carburized and hardened steel parts have high surface hardness and high internal toughness, they are applied to power transmission mechanism parts that require fatigue strength and toughness. In addition, since the carbon content of the material before carburizing and quenching is relatively small, it is excellent in manufacturability of parts such as machinability and plastic workability, so it is often used for parts such as automobiles that are mass-produced. In most cases, oil or salt is used as the quenching agent in carburizing and quenching, but gas quenching is also performed in vacuum carburizing furnaces.
[0003]
Quenching with gas has small heat treatment distortion, but it may be incomplete quenching due to low cooling ability, which may not provide sufficient strength and mechanical properties.
Even with oil quenching or salt quenching, large parts may have insufficient cooling capacity. For such a lack of cooling ability, it is effective to increase the hardenability of the steel material, and a steel material having an increased alloying element such as Ni or Mo is in the steel type standard such as JIS.
[0004]
[Problems to be solved by the invention]
Si, Mn, Cr, Ni, Mo, etc., which are typical elements that enhance the hardenability of steel, are elements that increase the hardness of the material before carburizing and quenching, and are harmful to machinability and cold workability. Deteriorating the manufacturability of parts. For example, in JIS, there are SNCM616 and SNCM815 as case hardened steels with high hardenability, but since the amount of alloy addition is larger than SCr420 and SCM420 which are the most common case hardened steels, normalizing and annealing The hardness in the normal state is very high, and cutting and cold working are often difficult.
In other words, it was difficult to achieve both gas quenching and hardenability suitable for large parts and manufacturability of parts suitable for mass production.
[0005]
[Means for Solving the Problems]
The inventors of the present invention have investigated the effects of chemical components on steel hardness and structure, including the interaction of chemical components, with the aim of achieving both high hardenability and low material hardness. I found.
[0006]
In order to obtain high hardenability, it is necessary to suppress the ferrite-pearlite transformation and bainite transformation within a range in which the cooling rate corresponds to oil quenching or gas quenching. On the other hand, in order to obtain a low material hardness, it is necessary to suppress the formation of bainite and to have a structure rich in ferrite and pearlite in a range where the cooling rate from austenite corresponds to cooling or air cooling. These were generally considered to be difficult to be compatible, but it was found that the compatibility can be achieved within a preferable range by a combination of alloy elements.
[0007]
As a chemical component that produces the above-described effects, the most effective element is boron (hereinafter referred to as B). When B is in a solid solution state in austenite, it suppresses the formation of ferrite and bainite and improves hardenability when cooling at a cooling rate of 2 ° C / second or more. The same structure and hardness can be obtained as in the case where no is added.
[0008]
The influence of the contents of Si, Mn, Cr, Ni and Mo on the hardenability and normalization hardness of general case-hardened steel has been well analyzed and can be predicted to some extent. However, the influence of these alloy elements in the presence of solute B, that is, the interaction with B, has not been fully clarified. The present inventors have found that when Ni and Si coexist with solute B, the contribution to the improvement of hardenability is large and, conversely, the influence on the material hardness is small. Conversely, it has been found that Mn and Mo are particularly effective in increasing the material hardness when coexisting with solute B. Therefore, it is possible to achieve both high hardenability and low material hardness by adjusting the alloy element content based on the addition or increase of B, Ni, Si and the reduction of Mn, Mo.
[0009]
Generally, the hardenability of a steel material can be controlled by defining the range of the content of alloy elements such as Si, Mn, Ni, Cr, Mo, and B. However, since the material hardness differs depending on the history of hot working, heat treatment conditions, the size of the heat treatment material, and the like, it is necessary to actually manufacture and evaluate it. As a result of detailed investigation of the influence of the alloying element on the hardness after normalizing of the B-added steel, the inventors found that the influence of the alloying element when coexisting with the solid solution B can be estimated by the following equation. .
H = 106C (%) + 10.8Si (%) + 19.9Mn (%) + 16.7Ni (%) + 8.55Cr (%) + 45.5Mo (%) + 28
This component parameter H represents the hardness (unit: HRB) when a round bar with a diameter of 30 mm is subjected to normalizing treatment, and is used to determine the component composition of steel as the average material hardness of parts of various sizes. It is useful. With this component parameter, it is possible to make the balance between hardenability and material hardness more favorable.
[0010]
That is, the present invention is the mass, C: 0.12~0.22%, Si: 0.40~1.50%, Mn: 0.25~0.45%, Ni: 0.50~1 .50%, Cr: 1.30 to 2.30%, B: 0.0010 to 0.0030%, Ti: 0.02 to 0.06%, Nb: 0.02 to 0.12%, Al: 0.005 to 0.050%, Mo: contains 0.02% or less, made from the remaining portion F e and unavoidable impurities, quenching the position at which the hardness corresponding to 50% martensite at one hardening test The distance from the edge is 20mm or more, and the formula H = 106C (%) + 10.8Si (%) + 19.9Mn (%) + 16.7Ni (%) + 8.55Cr (%) + 45.5Mo (%) + 28
Is a carburizing steel having both high hardenability and low material hardness, characterized in that the component parameter H represented by
[0011]
The reason for limiting the claims of the present invention will be described below.
[0012]
C: 0.12-0.22%
C is an element that improves the strength of the non-carburized portion after carburizing and quenching, but the effect is small when the content is less than 0.12%, and the material hardness is increased when the content exceeds 0.22%. Therefore, the C content is 0.12 to 0.22%.
[0013]
Si: 0.40 to 1.50%
Si is an element that is positively added in the present invention because it improves the hardenability especially when coexisting with solute B and has little influence on the material hardness. However, if it exceeds 1.50%, it becomes difficult to achieve uniform austenite before quenching due to an increase in the A3 transformation point. Therefore, the Si content is set to 0.40 to 1.50%.
[0014]
Mn: 0.25 to 0.45%
Mn is an element that improves hardenability. However, if it is less than 0.25%, the effect is small, and if it exceeds 0.45%, the effect of increasing the material hardness when coexisting with solute B is particularly large. Remarkably deteriorate the performance. Therefore, the Mn content is 0.25 to 0.45%.
[0015]
Ni: 0.50 to 1.50%
Ni is an element that improves the strength and hardenability of carburized steel, and its effect is particularly great when it coexists with solute B. However, when the content is less than 0.50%, the effect is not significant, and 1.50% If it exceeds 1, the bainite structure tends to be formed in the material, and the machinability is remarkably deteriorated. Therefore, the Ni content is 0.50 to 1.50%.
[0016]
Cr: 1.30 to 2.30%
Cr is an element that improves carburizability, and is particularly an element that has an effect of preventing deterioration of carburizability due to Si and Ni. However, if the content is less than 1.30%, the effect is insufficient, and 2.30. If added in excess of%, a bainite structure is likely to be formed in the material, and the machinability is significantly deteriorated. Therefore, the Cr content is 1.30 to 2.30%.
[0017]
B: 0.0010 to 0.0030%
B is an element that remarkably improves hardenability, but if it is less than 0.0010%, a stable effect cannot be obtained, and even if added over 0.0030%, the effect is saturated, so it is not economical. Therefore, the B content is 0.0010 to 0.0030%.
[0018]
Ti: 0.02 to 0.06%
Ti is an element that has the effect of preventing nitrides from forming nitrides by forming nitrides and stabilizing the hardenability improvement effect by B, but the effect is small at less than 0.02%, Adding over 0.06% is not economical because the effect is saturated. Therefore, the Ti content is 0.02 to 0.06%.
[0019]
Nb: 0.02 to 0.12%
Nb is an element that suppresses the growth of crystal grains. If the content is less than 0.02%, the effect is small, and if it exceeds 0.12%, coarse carbonitrides are formed during solidification and the effect of suppressing the crystal grain growth decreases. . Therefore, the Nb content is 0.02 to 0.12%.
[0020]
Al: 0.005 to 0.050%
Al promotes deoxidation in the melting process and is effective in reducing the amount of oxide inclusions, but if it is less than 0.005%, there is no deoxidation effect, and if added over 0.050%, it is also effective. Is not economical because is saturated. Therefore, the Al content is 0.005 to 0.050%.
[0021]
Jominy distance with 50% martensite hardness: 20 mm or more The high hardenability and low material hardness, both of which are the object of the present invention, can be realized in steel materials having a chemical composition within the above range. When the distance from the quenching end at a position corresponding to 50% martensite in the test results is less than 20 mm, incomplete quenching occurs in gas quenching and quenching of large parts. Therefore, the Jominy distance for 50% martensite hardness is set to 20 mm or more.
[0022]
Component parameter H: 95 or less Even if the steel material has a chemical composition within the above range,
H = 106C (%) + 10.8Si (%) + 19.9Mn (%) + 16.7Ni (%) + 8.55Cr (%) + 45.5Mo (%) + 28
When the component parameter expressed by the above formula exceeds 95, the hardness of the steel material in the rolled state and the hardness in the normalized state are remarkably increased, and machinability and cold workability cannot be obtained. Therefore, it is necessary to control the component composition so that the component parameter H is 95 or less.
[0023]
Mo is an element that improves hardenability, but when it coexists with solute B, the effect of increasing the hardness of the material is particularly great, and the manufacturability of parts is significantly deteriorated. It is preferable to limit it to% or less.
[0024]
【Example】
Hereinafter, the present invention will be described with reference to examples. Steel having the chemical composition shown in Table 1 was melted in an arc furnace, and then hot rolled to form a round bar having a diameter of 32 mm. Invention steel 1, invention steel 2, invention steel 3 and invention steel 4 are steel types corresponding to the present invention. Comparative steel A and comparative steel B are steel types corresponding to JIS case-hardened steel SCM822 and SNCM815, respectively.
[0025]
[Table 1]
Figure 0004539804
[0026]
For all steel materials, the rolled round bar was kept at 925 ° C. for 1 hour and then air-cooled and normalized, and the Rockwell hardness was measured at the center of the cross section of the round bar. Further, a Jomini type one-end quenching test was performed based on JIS-G0561, and the hardness position corresponding to 50% martensite was calculated from the obtained hardness curve. Further, after machining to a diameter of 25 mm and a length of 50 mm, carburizing and quenching was performed under the conditions shown in Table 2, and the hardness distribution of the cross section was examined with a Vickers hardness tester. The surface hardness of the carburized quenching material was measured at a position of 0.05 mm from the surface, and the effective hardening depth was calculated from the hardness distribution of the cross section with 550 HV as a criterion. These results and component parameter H are shown in Table 3.
[0027]
[Table 2]
Figure 0004539804
[0028]
[Table 3]
Figure 0004539804
[0029]
In Table 3, invention steels 1 to 4 all have a normalized hardness of 95 HRB or less, and the hardness of the center portion of the carburized and quenched material is 350 HV or more. The surface and central structures are both martensite, and there is no marked incompletely hardened structure. On the other hand, the comparative steel A has a low normalization hardness, but the surface hardness and the center hardness of the carburized quenching material are lower than those of the invention steel. In comparison steel B, the surface hardness and the center hardness of the carburized quenching material are almost the same as those of the invention steel, but the normalization hardness is extremely high.
[0030]
In Table 3, the normalization hardness substantially corresponds to the component parameter H, and the center hardness of the carburized quenching material substantially corresponds to the 50% martensite position in the one-end quenching test. Therefore, the difference between the invention steel and the comparative steel as described above, that is, the compatibility between the high hardenability and the low material hardness in the steel according to the present invention is based on the range of the component composition and the component parameter H and the one-side quench test specified by the present invention. This is obtained by controlling the 50% martensite position.
[0031]
【The invention's effect】
As described above, according to the present invention, gas quenching and oil quenching of large-sized parts can be achieved by combining high hardenability and low material hardness, both of which have been difficult in the past, and the same part manufacturing cost as before. The industrial advantage is enormous because it provides the carburizing steel to be realized.

Claims (1)

量で,C:0.12〜0.22%,Si:0.40〜1.50%,Mn:0.25〜0.45%,Ni:0.50〜1.50%,Cr:1.30〜2.30%,B:0.0010〜0.0030%,Ti:0.02〜0.06%,Nb:0.02〜0.12%,Al:0.005〜0.050%、Mo:0.02%以下を含有し,残部F及び不可避的不純物からなり,一端焼入試験において50%マルテンサイトに相当する硬さとなる位置の焼入端からの距離が20mm以上,かつ下記の式で表される成分パラメータHが95以下であることを特徴とする高い焼入性と低い素材硬度を兼備する浸炭用鋼。
H=106C(%)+10.8Si(%)+19.9Mn(%)+16.7Ni(%)+8.55Cr(%)+45.5Mo(%)+28
In mass, C: 0.12~0.22%, Si: 0.40~1.50%, Mn: 0.25~0.45%, Ni: 0.50~1.50%, Cr: 1.30-2.30%, B: 0.0010-0.0030%, Ti: 0.02-0.06%, Nb: 0.02-0.12%, Al: 0.005-0. 050%, Mo: contains 0.02% or less, made from the remaining portion F e and unavoidable impurities, the distance from the quenched end of hardness a position corresponding to 50% martensite at one hardening test 20mm A carburizing steel having both high hardenability and low material hardness, wherein the component parameter H represented by the following formula is 95 or less.
H = 106C (%) + 10.8Si (%) + 19.9Mn (%) + 16.7Ni (%) + 8.55Cr (%) + 45.5Mo (%) + 28
JP2001111270A 2001-04-10 2001-04-10 Carburizing steel with excellent hardenability and parts manufacturability Expired - Fee Related JP4539804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001111270A JP4539804B2 (en) 2001-04-10 2001-04-10 Carburizing steel with excellent hardenability and parts manufacturability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001111270A JP4539804B2 (en) 2001-04-10 2001-04-10 Carburizing steel with excellent hardenability and parts manufacturability

Publications (2)

Publication Number Publication Date
JP2002309342A JP2002309342A (en) 2002-10-23
JP4539804B2 true JP4539804B2 (en) 2010-09-08

Family

ID=18962902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001111270A Expired - Fee Related JP4539804B2 (en) 2001-04-10 2001-04-10 Carburizing steel with excellent hardenability and parts manufacturability

Country Status (1)

Country Link
JP (1) JP4539804B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5031931B2 (en) 2010-05-31 2012-09-26 新日本製鐵株式会社 Hardened steel and power transmission parts
KR101705168B1 (en) * 2015-04-20 2017-02-10 현대자동차주식회사 Carburizing alloy steel improved durability and the method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967644A (en) * 1995-08-28 1997-03-11 Daido Steel Co Ltd Carburizing steel for gear, excellent in gear cutting property
JPH09287644A (en) * 1996-04-23 1997-11-04 Toa Steel Co Ltd High strength low heat treatment deformation gear and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967644A (en) * 1995-08-28 1997-03-11 Daido Steel Co Ltd Carburizing steel for gear, excellent in gear cutting property
JPH09287644A (en) * 1996-04-23 1997-11-04 Toa Steel Co Ltd High strength low heat treatment deformation gear and manufacture thereof

Also Published As

Publication number Publication date
JP2002309342A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
KR101464712B1 (en) Steel component having excellent temper softening resistance
JP4581966B2 (en) Induction hardening steel
JPH0448049A (en) Leaf spring hose band and its manufacture
KR100382212B1 (en) Stainless steel for brake disc excellent in resistance to temper softening
JPH06293939A (en) Bearing parts excellent in high temperature rolling fatigue characteristic
JP3094856B2 (en) High strength, high toughness case hardening steel
JP5541048B2 (en) Carbonitrided steel parts with excellent pitting resistance
JP3804041B2 (en) High temperature carburizing steel with excellent high temperature carburizing properties and hot forged parts for high temperature carburizing
JPH09170017A (en) Production of steel plate with high strength and high toughness
JP2002069572A (en) Soft-nitriding steel having excellent bending fatigue strength
JPH04143253A (en) Bearing steel excellent in rolling fatigue characteristic
JPH0617224A (en) Carburized bearing parts excellent in high temperature rolling fatigue property
JP4488228B2 (en) Induction hardening steel
JP4539804B2 (en) Carburizing steel with excellent hardenability and parts manufacturability
JP4210362B2 (en) Method for producing high strength steel with excellent fatigue properties
JPS6263653A (en) High strength case hardening steel
JP3551573B2 (en) Steel for carburized gear with excellent gear cutting
JP2009191322A (en) Case-hardened steel superior in grain-coarsening resistance for use in carburized parts
JPH0617225A (en) Carburized bearing parts excellent in rolling fatigue property
JPH07188895A (en) Manufacture of parts for machine structure use
WO2011155605A1 (en) High-machinability high-strength steel and manufacturing method therefor
JP4232242B2 (en) High strength high toughness non-tempered steel
JP3467929B2 (en) High toughness hot forged non-heat treated steel for induction hardening
JPH07207412A (en) Steel for grain stabilizing carburization
JP2000345292A (en) Manufacture of nitrocarburizing steel and nitrocarburized parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4539804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees