JP4539199B2 - Zinc alloy galvanic anode and method for galvanic protection of equipment placed in a high temperature environment using the zinc alloy galvanic anode - Google Patents
Zinc alloy galvanic anode and method for galvanic protection of equipment placed in a high temperature environment using the zinc alloy galvanic anode Download PDFInfo
- Publication number
- JP4539199B2 JP4539199B2 JP2004197631A JP2004197631A JP4539199B2 JP 4539199 B2 JP4539199 B2 JP 4539199B2 JP 2004197631 A JP2004197631 A JP 2004197631A JP 2004197631 A JP2004197631 A JP 2004197631A JP 4539199 B2 JP4539199 B2 JP 4539199B2
- Authority
- JP
- Japan
- Prior art keywords
- zinc alloy
- anode
- galvanic
- galvanic anode
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910001297 Zn alloy Inorganic materials 0.000 title claims description 36
- 238000000034 method Methods 0.000 title claims description 6
- 238000005260 corrosion Methods 0.000 claims description 7
- 230000007797 corrosion Effects 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 7
- 239000011701 zinc Substances 0.000 claims description 7
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 230000005611 electricity Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 7
- 239000013535 sea water Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910007570 Zn-Al Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Prevention Of Electric Corrosion (AREA)
Description
この発明は、亜鉛合金流電陽極およびその亜鉛合金流電陽極を用いて高温環境、特に50℃以上の高温海水環境に置かれた設備を流電防食する方法に関するものである。 The present invention relates to a zinc alloy galvanic anode and a method for galvanic protection of equipment placed in a high temperature environment, particularly a high temperature seawater environment of 50 ° C. or higher, using the zinc alloy galvanic anode.
一般に、常温海水環境下で流電防食する時に使用される亜鉛合金流電陽極としてMIL規格(US Mil Spec.A18001J)やASTM規格(ASTMB418−88 Type I)が推奨され用いられていた。この亜鉛合金流電陽極は流電陽極として優れた性能を有しているが、この亜鉛合金流電陽極は有害物質であると考えられているCd:0.025〜0.07質量%を含有するために、近年、Cdを含まない亜鉛合金流電陽極が求められるようになってきた。かかるCdを含まない亜鉛合金流電陽極の一例として、Al:0.01〜0.4質量%、Sn:0.02〜0.2質量%未満を含有し、残部がZnおよび0.01質量%以下の不可避不純物からなる組成を有する亜鉛合金流電陽極が知られている(特許文献1参照)。
前記従来のCdを含まない亜鉛合金流電陽極は常温において優れた流電防食作用を奏するものであるが、50℃以上の高温環境、特に50℃以上の海水中において粒界腐食を起こし、有効電気量が早期に低下するという問題点があった。 The conventional zinc alloy galvanic anode containing no Cd exhibits excellent galvanic anticorrosive action at room temperature, but causes intergranular corrosion in a high temperature environment of 50 ° C. or higher, particularly in seawater of 50 ° C. or higher. There was a problem that the amount of electricity was reduced early.
そこで、本発明者らは、これらの課題を解決すべく研究を行った結果、前記従来のCdを含まない亜鉛合金流電陽極において、Sn含有量を低減させてSn含有量を0.0005〜0.02質量%未満に限定した亜鉛合金流電陽極は、50℃以上の高温環境、特に50℃以上の海水中において粒界腐食を起こし難くなり、有効電気量が早期に低下することはない、という研究結果が得られたのである。 Therefore, as a result of researches to solve these problems, the present inventors have reduced the Sn content in the conventional zinc alloy galvanic anode not containing Cd and reduced the Sn content to 0.0005 to 0.05. The zinc alloy galvanic anode limited to less than 0.02% by mass is less likely to cause intergranular corrosion in a high temperature environment of 50 ° C. or higher, particularly in seawater of 50 ° C. or higher, and the effective amount of electricity does not decrease early. The research result was obtained.
この発明は、かかる研究結果に基づいてなされたものであって、
(1)Al:0.03〜0.5質量%、Sn:0.0005〜0.02質量%未満を含有し、残部がZnおよび不可避不純物からなる組成を有する亜鉛合金流電陽極、
(2)亜鉛合金流電陽極を用いて50℃以上の高温環境下に置かれた設備を電気防食する方法において、亜鉛合金流電陽極としてAl:0.03〜0.5質量%、Sn:0.0005〜0.02質量%未満を含有し、残部がZnおよび不可避不純物からなる組成を有する亜鉛合金流電陽極を用いる高温環境下に置かれた設備の流電防食方法、に特徴を有するものである。
The present invention has been made based on the results of such research,
(1) Al: 0.03 to 0.5% by mass, Sn: 0.0005 to less than 0.02% by mass, a zinc alloy galvanic anode having a composition consisting of Zn and inevitable impurities,
(2) In a method of using a zinc alloy fluid anode to catalyze equipment placed in a high temperature environment of 50 ° C. or higher, Al: 0.03 to 0.5 mass% as a zinc alloy fluid anode, Sn: Featuring a galvanic anticorrosion method for equipment placed in a high temperature environment using a zinc alloy galvanic anode containing 0.0005 to less than 0.02% by mass and the balance being composed of Zn and inevitable impurities Is.
この発明の亜鉛合金流電陽極の成分組成を前述の如く限定した理由を説明する。Al:
Alは高純度亜鉛地金に合金化させることで、流電陽極性能(陽極電位、有効電気量、溶解状態)を向上させる作用があり、さらに不可避不純物として含まれるFeの悪影響を抑制し、腐食生成物を軟化させる作用があるが、その含有量が0.03質量%未満では十分な効果が得られず、一方、0.5質量%を越えて添加すると、有効電気量の低下が顕著になるので好ましくない。したがって、この発明の亜鉛合金流電陽極に含まれるAlの含有量を0.03〜0.5質量%に定めた。一般的な製造設備で生産し、かつ安定した高性能品を得るにはAl:0.1〜0.3質量%の範囲内にあることが好ましいので、一層好ましい範囲はAl:0.1〜0.3質量%に定めた。
The reason why the component composition of the zinc alloy galvanic anode of this invention is limited as described above will be described. Al:
Al alloyed with high-purity zinc ingots has the effect of improving the galvanic anode performance (anode potential, effective amount of electricity, dissolved state), further suppressing the adverse effects of Fe contained as inevitable impurities, and corrosive Although there is an effect of softening the product, if the content is less than 0.03% by mass, a sufficient effect cannot be obtained. On the other hand, when the content exceeds 0.5% by mass, the reduction in the effective electricity amount is remarkable. This is not preferable. Therefore, the content of Al contained in the zinc alloy galvanic anode of this invention is set to 0.03 to 0.5% by mass. In order to obtain a stable high-performance product that is produced by general manufacturing equipment, it is preferable that Al is in the range of 0.1 to 0.3% by mass, so a more preferable range is Al: 0.1 to 0.1% by mass. It was set to 0.3% by mass.
Sn:
Snは不純物が低濃度である高純度亜鉛およびZn−Al合金に対して、極微量の添加で流電陽極性能(陽極電位、有効電気量)を向上させる作用があるが、その含有量が0.0005質量%未満では所望の効果が得られないので好ましくなく、一方、0.02質量%以上添加すると、高温環境下において粒界腐食が進行し、短期間で有効電気量が低下するので好ましくない。したがって、この発明の亜鉛合金流電陽極に含まれるSnの含有量を0.0005〜0.02質量%未満に定めた。一層好ましい範囲は、0.001〜0.01質量%である。
Sn:
Sn has the effect of improving the galvanic anode performance (anode potential, effective electric quantity) by adding a trace amount to high-purity zinc and Zn-Al alloys with low impurity concentration, but its content is 0 If less than .0005 mass%, the desired effect cannot be obtained, which is not preferable. On the other hand, when 0.02 mass% or more is added, intergranular corrosion proceeds in a high-temperature environment, and the effective amount of electricity decreases in a short period. Absent. Therefore, the content of Sn contained in the zinc alloy galvanic anode of the present invention is set to 0.0005 to less than 0.02% by mass. A more preferable range is 0.001 to 0.01% by mass.
この発明の亜鉛合金流電陽極は、高温環境、特に50℃以上の高温海水環境に置かれた設備を流電防食する際に、粒界腐食速度が小さいところから、長期間有効電気量が低下することがないと言う優れた効果を奏するものである。 The zinc alloy galvanic anode of the present invention has a low long-term effective electricity amount due to its low intergranular corrosion rate when galvanically preventing equipment placed in a high temperature environment, particularly in a high temperature seawater environment of 50 ° C. or higher. There is an excellent effect that there is nothing to do.
JIS H 2107に規定される高純度亜鉛地金を黒鉛ルツボにて溶解し、これに所定量のAlおよびSnを添加して表1に示す成分組成の亜鉛合金溶湯を作製し、これら亜鉛合金溶湯を鋳造して直径:15mmの丸棒テストピースからなる本発明亜鉛合金流電陽極1〜13、比較亜鉛合金流電陽極1〜3および従来亜鉛合金流電陽極1を作製した。これら本発明亜鉛合金流電陽極1〜13、比較亜鉛合金流電陽極1〜3および従来亜鉛合金流電陽極1を80℃および50℃の人工海水中にそれぞれ浸漬し、陽極電流密度:1mA/cm2の通電条件で30日間流電陽極試験を行い、陽極電位と有効電気量を求め、その結果を表1に示した。 A high-purity zinc ingot specified in JIS H 2107 is melted with a graphite crucible, and a predetermined amount of Al and Sn are added thereto to produce molten zinc alloys having the composition shown in Table 1, and these molten zinc alloys The zinc alloy current flowing anodes 1 to 13, the comparative zinc alloy current flowing anodes 1 to 3, and the conventional zinc alloy current flowing anode 1 comprising round bar test pieces having a diameter of 15 mm were produced. These zinc alloy galvanic anodes 1 to 13, comparative zinc alloy galvanic anodes 1 to 3 and conventional zinc alloy galvanic anode 1 were immersed in artificial seawater at 80 ° C. and 50 ° C., respectively, and an anode current density of 1 mA / A galvanic anode test was conducted for 30 days under a current-carrying condition of cm 2 , and the anode potential and effective amount of electricity were determined. The results are shown in Table 1.
表1に示される結果から、本発明亜鉛合金流電陽極1〜13を使用して流電防食を行うと、30日経過しても有効電気量がいずれも800A・h/kg以上有するに対し、従来亜鉛合金流電陽極1を使用して30日間流電防食を行うと有効電気量がいずれも800A・h/kg未満となり、有効電気量が低下することが分かる。また、この発明の条件から外れた組成を有する比較亜鉛合金流電陽極1〜3も800A・h/kg未満となり、有効電気量が低下することが分かる。 From the results shown in Table 1, when galvanic corrosion protection is performed using the zinc alloy galvanic anodes 1 to 13 of the present invention, the effective electricity amount is 800 A · h / kg or more even after 30 days. It can be seen that when the conventional zinc alloy galvanic anode 1 is used for 30 days to prevent galvanic corrosion, the effective electricity amount is less than 800 A · h / kg, and the effective electricity amount is reduced. Further, it can be seen that the comparative zinc alloy galvanic anodes 1 to 3 having a composition deviating from the conditions of the present invention are also less than 800 A · h / kg, and the effective electricity amount is reduced.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004197631A JP4539199B2 (en) | 2004-07-05 | 2004-07-05 | Zinc alloy galvanic anode and method for galvanic protection of equipment placed in a high temperature environment using the zinc alloy galvanic anode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004197631A JP4539199B2 (en) | 2004-07-05 | 2004-07-05 | Zinc alloy galvanic anode and method for galvanic protection of equipment placed in a high temperature environment using the zinc alloy galvanic anode |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006016677A JP2006016677A (en) | 2006-01-19 |
JP4539199B2 true JP4539199B2 (en) | 2010-09-08 |
Family
ID=35791215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004197631A Expired - Lifetime JP4539199B2 (en) | 2004-07-05 | 2004-07-05 | Zinc alloy galvanic anode and method for galvanic protection of equipment placed in a high temperature environment using the zinc alloy galvanic anode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4539199B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53100125A (en) * | 1977-02-14 | 1978-09-01 | Nippon Boshoku Kogyo Kk | Zinc alloy for galvanic anode |
JP2001519478A (en) * | 1997-10-02 | 2001-10-23 | フルー・コーポレイシヨン | Cathodic protection method and apparatus |
-
2004
- 2004-07-05 JP JP2004197631A patent/JP4539199B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53100125A (en) * | 1977-02-14 | 1978-09-01 | Nippon Boshoku Kogyo Kk | Zinc alloy for galvanic anode |
JP2001519478A (en) * | 1997-10-02 | 2001-10-23 | フルー・コーポレイシヨン | Cathodic protection method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2006016677A (en) | 2006-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102002715B (en) | High-performance aluminium alloy sacrificial anode | |
CN102560190A (en) | High-zinc leadless brass alloy and preparation method thereof | |
EP1650317A2 (en) | Copper based precipitation hardening alloy | |
CN104862710A (en) | Environment-friendly sacrificial zinc alloy anode | |
US20130084208A1 (en) | Aluminum-based alloys | |
JP2012207255A (en) | Lead-free free-machining bronze alloy for casting | |
WO2011121799A1 (en) | Lead-free free-machining bronze casting alloy | |
JP4539199B2 (en) | Zinc alloy galvanic anode and method for galvanic protection of equipment placed in a high temperature environment using the zinc alloy galvanic anode | |
CN101445935A (en) | Aluminum alloy sacrificial anode suitable for abyssal environment | |
JP4126633B2 (en) | Aluminum alloy galvanic anode for low temperature seawater | |
CN114737193B (en) | High-resistance Wen Xisheng anode and preparation method thereof | |
JP5080946B2 (en) | Lead-free solder alloy for manual soldering | |
JPH0459379B2 (en) | ||
JP6799513B2 (en) | Aluminum alloy for galvanic anode | |
JP4436553B2 (en) | Aluminum alloy for low temperature seawater environmental current anode | |
JPH07166276A (en) | Copper alloy excellent in resistance to ant-lair-like corrosion and heat exchanger tube made of this copper alloy | |
JP2012020325A (en) | Cu-Mn BASED BRAZING FILLER METAL FINE WIRE, AND METHOD FOR PRODUCING THE SAME | |
KR20120042483A (en) | Brass alloy with corrosion resistance containing little lead | |
JP2008144213A (en) | Extruded material of free-cutting aluminum alloy having excellent corrosion resistance to alcohol solution containing oh group | |
JP4395820B2 (en) | Magnesium alloy for galvanic anode | |
JPS6213552A (en) | Aluminum alloy for galvanic anode | |
JPS6250538B2 (en) | ||
JPH0733555B2 (en) | Magnesium alloy for galvanic anode used for cathodic protection | |
RU2483133C2 (en) | Aluminium-based protective alloy | |
JP3184516B2 (en) | Magnesium alloy for galvanic anode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070426 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100527 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100601 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100614 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4539199 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130702 Year of fee payment: 3 |