JP4538330B2 - Multi-photon recording method and multilayer optical recording medium - Google Patents

Multi-photon recording method and multilayer optical recording medium Download PDF

Info

Publication number
JP4538330B2
JP4538330B2 JP2005008485A JP2005008485A JP4538330B2 JP 4538330 B2 JP4538330 B2 JP 4538330B2 JP 2005008485 A JP2005008485 A JP 2005008485A JP 2005008485 A JP2005008485 A JP 2005008485A JP 4538330 B2 JP4538330 B2 JP 4538330B2
Authority
JP
Japan
Prior art keywords
recording
recording medium
dye
multilayer optical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005008485A
Other languages
Japanese (ja)
Other versions
JP2006196125A (en
Inventor
剛 三樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005008485A priority Critical patent/JP4538330B2/en
Publication of JP2006196125A publication Critical patent/JP2006196125A/en
Application granted granted Critical
Publication of JP4538330B2 publication Critical patent/JP4538330B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Description

本発明は多光子記録方法及び多層光記録媒体に関し、詳細には光記録媒体中の記録材料に2つの異なる波長の光束を用い2光子吸収による情報の記録を行う2光子吸収記録方法に関する。   The present invention relates to a multiphoton recording method and a multilayer optical recording medium, and more particularly to a two-photon absorption recording method for recording information by two-photon absorption using light beams of two different wavelengths as recording materials in the optical recording medium.

近年の光ディスクの大容量化は、主に記録波長の短波長化と対物レンズの高NA化による最短記録波長の改善による記録面密度の向上により成し遂げられてきた。これに対し、光の透過性を利用して、記録媒体全体を有効利用し大容量記録を成し遂げようとする試みは、ホグラムメモリーに端を発し、ビット記録よる3次元光記録へと続いてきた。   In recent years, the increase in capacity of optical discs has been achieved mainly by increasing the recording surface density by shortening the recording wavelength and improving the shortest recording wavelength by increasing the NA of the objective lens. On the other hand, attempts to achieve high-capacity recording by effectively using the entire recording medium by utilizing light transmittance originated in the hologram memory and continued to three-dimensional optical recording by bit recording. It was.

このようなビット記録による3次元光記録は、現用の記録層が1層の光記録に比較し、深さ方向に多層化した分だけ大容量化が可能であり、現状の100倍を越える大容量記録の実現が期待されている。深さ方向に多重に記録するには、基本的に同一の性質を持った多重化された記録層の、意図した層にのみ書き込んだり、読み出したりすることが必要となる。従って、何らかの非線形性を導入し選択性を付与することが必要となる。この非線形性を付与する方法の一つとして、2光子吸収反応を利用した書き込みが挙げられる。通常の吸収過程は吸収帯のエネルギーに対応した1光子吸収過程であるが、この半分のエネルギーを持つ光子2つを同時に吸収する2光子吸収過程によっても同様の反応を起こすことが可能である。この2光子吸収過程の特徴は、吸収量が光強度(エネルギー密度)の2乗に比例することで、この結果として、光のエネルギー密度が高まる書き込み光の焦点近傍でのみ吸収が起こる。また、記録層に用いる材料によっては、消去と書き込みのサイクルの可能なものが非特許文献1に記載されている。消去の過程においても、2光子吸収過程を利用し、特定の書き込みビットのみを消去可能であることが示されているが、吸収波長が異なるため、書き込みとは異なる波長の短パルス光源が必要とされる。
A.Toriumi and S.Kawata, Opt.Lett Vol.23, No.24 P.1924〜P.1926 (1998)
Such three-dimensional optical recording by bit recording can increase the capacity by the number of layers in the depth direction as compared with optical recording with a single recording layer, which is 100 times larger than the current recording layer. Realization of capacity recording is expected. In order to multiplexly record in the depth direction, it is basically necessary to write or read only to the intended layer of the multiplexed recording layers having the same properties. Therefore, it is necessary to introduce some non-linearity and impart selectivity. One method for imparting this nonlinearity is writing using a two-photon absorption reaction. The normal absorption process is a one-photon absorption process corresponding to the energy of the absorption band, but a similar reaction can be caused by a two-photon absorption process that simultaneously absorbs two photons having half the energy. A characteristic of this two-photon absorption process is that the amount of absorption is proportional to the square of the light intensity (energy density). As a result, absorption occurs only in the vicinity of the focus of the writing light where the energy density of light increases. Non-Patent Document 1 describes materials that can be erased and written depending on the material used for the recording layer. In the erasing process, it has been shown that only a specific write bit can be erased using a two-photon absorption process. However, since the absorption wavelength is different, a short pulse light source having a wavelength different from that of writing is required. Is done.
A.Toriumi and S.Kawata, Opt.Lett Vol.23, No.24 P.1924〜P.1926 (1998)

しかしながら、非特許文献2によれば、2光子吸収過程を用いることにより記録層の多層化が可能であるが、1光子吸収過程に比べ、2光子吸収過程の確率は小さく、非常に高強度の光源を必要となる。従って、記録材料の熱的損傷の防止と、2光子吸収反応の両立には、ピークパワーは大きいが、平均出力は比較的小さな、超短パルス光源が書き込み光源として必要である。現時点では、超短パルス光源は、大型、かつ高価な光源であり、実用化の大きな障壁となっている。また、3次元多層記録を実現するためには、大型かつ高価な超短パルス光源に変わる光源の開発も重要であるが、それにも増して、2光子吸収反応の効率が高い高感度な材料の開発が不可欠である。2光子吸収反応の効率を高めるために様々な材料研究が行われているが、実用上の感度を決定する要因の一つとして、屈折率変化の大きさが挙げられる。この屈折率変化は色素の光異性化反応による体積変化により起こる。従って、色素の持つポテンシャルを活かすため、媒体中での光異性化が速やかに起こる必要がある。   However, according to Non-Patent Document 2, the recording layer can be multilayered by using the two-photon absorption process. However, the probability of the two-photon absorption process is small compared to the one-photon absorption process, and the recording layer has a very high intensity. A light source is required. Therefore, in order to achieve both the prevention of thermal damage of the recording material and the two-photon absorption reaction, an ultrashort pulse light source having a large peak power but a relatively small average output is required as a writing light source. At present, the ultra-short pulse light source is a large and expensive light source, which is a large barrier to practical use. In addition, in order to realize three-dimensional multilayer recording, it is important to develop a light source that can be replaced with a large and expensive ultrashort pulse light source, but in addition to that, a highly sensitive material with high efficiency of two-photon absorption reaction can be used. Development is essential. Various materials researches have been conducted to increase the efficiency of the two-photon absorption reaction, and one of the factors that determine practical sensitivity is the magnitude of the refractive index change. This refractive index change is caused by a volume change caused by a photoisomerization reaction of the dye. Therefore, in order to make use of the potential of the dye, photoisomerization in the medium needs to occur promptly.

本発明はこれらの問題点を解決するためのものであり、記録媒体中での光異性化が速やかに起こり、記録材料の実効的な感度アップを可能にする多光子記録方法及び多層光記録媒体を提供することを目的とする。   The present invention is intended to solve these problems, and is a multiphoton recording method and multilayer optical recording medium in which photoisomerization occurs quickly in the recording medium and the effective sensitivity of the recording material can be increased. The purpose is to provide.

前記問題点を解決するために、本発明の多光子記録方法は、記録媒体の少なくとも一部を記録光照射と同時又は前に加熱するプレヒート工程を有し、プレヒート工程に用いるレーザ光の照射光量がピット先端照射時から後端を照射し終わるまでの時間と共に、照射光量を変化させる。よって、隣接ビット間及び隣接記録層間の干渉が最小となる記録が可能となる。また、投入熱量が最小となることで、記録層内の色素の凝集が抑制され、記録時のS/Nを維持することが可能な高信頼性の多層光記録媒体及び多光子記録再生装置を提供できる。 In order to solve the above problems, the multiphoton recording method of the present invention includes a preheating step in which at least a part of the recording medium is heated simultaneously with or before the recording light irradiation, and the irradiation light amount of laser light used in the preheating step The irradiation light quantity is changed with the time from when the pit tip is irradiated until the rear end is irradiated . Therefore, recording with minimum interference between adjacent bits and adjacent recording layers is possible. Also, a highly reliable multilayer optical recording medium and multiphoton recording / reproducing apparatus capable of suppressing the aggregation of the dye in the recording layer and maintaining the S / N during recording by minimizing the input heat amount. Can be provided.

また、プレヒート工程の加熱手段がレーザ光の照射による加熱であることにより、遠隔的かつ局部的にバインダー材料のガラス転移点付近まで加熱し、加熱部位でのみ記録閾値の低下が起こるがその他の部分では、熱の影響をほとんど受けないため記録内容は安定に保持される。   In addition, because the heating means in the preheating process is heating by laser light irradiation, it is heated to the vicinity of the glass transition point of the binder material remotely and locally. However, since it is hardly affected by heat, the recorded contents are kept stable.

更に、プレヒート工程に用いるレーザ光が、書き込み光と同軸に導入され、かつ記録情報と同期して変調されることにより、投入熱量がより小さくて済み、隣接するビットの書き込み閾値のばらつきの防止や隣接トラックあるいは隣接記録層等の書き込みビット近傍の記録済みビットの温度変化が小さくなることにより、ヒートサイクルによる色素層の結晶化や記録ビットのコントラスト低下の影響がない、高信頼性の多層光記録媒体及び多光子記録再生装置を提供できる。   Furthermore, the laser light used in the preheating process is introduced coaxially with the writing light and is modulated in synchronization with the recording information, so that the amount of input heat can be reduced, and variation in the writing threshold of adjacent bits can be prevented. Reliable multi-layer optical recording that is less affected by crystallization of the dye layer and reduction of recording bit contrast due to heat cycle due to a small change in temperature of recorded bits in the vicinity of writing bits such as adjacent tracks or adjacent recording layers A medium and a multiphoton recording / reproducing apparatus can be provided.

また、照射光の照射光量の変化を、出力又はパルス幅あるいはその両方が異なる複数のパルス列の照射により構成することにより、デジタル制御が容易に可能となり、アナログ制御に比較して高速での制御を行う場合にも制御精度を保ったまま、低コストなシステムを構築できる。   In addition, by configuring the change in the amount of irradiation light by irradiating multiple pulse trains with different outputs and / or pulse widths, digital control becomes easier, and control at a higher speed than analog control is possible. Even when it is performed, a low-cost system can be constructed while maintaining control accuracy.

更に、プレヒート工程に用いるレーザ光の照射パターンが、当該記録ビット以前に記録された記録ビットの書き込み時の投入熱量を考慮して決定されたテーブルに従う。よって、投入熱量を最適化でき、隣接ビット間及び隣接記録層間の熱干渉の影響をさらに受けにくく、かつ色素層内での色素の結晶化がより抑制されるため、高S/N、かつ高信頼性を両立できる多層光記録媒体及び多光子記録再生装置を提供できる。   Further, the irradiation pattern of the laser beam used in the preheating process follows a table determined in consideration of the input heat amount at the time of writing the recording bit recorded before the recording bit. Therefore, the amount of input heat can be optimized, it is less susceptible to thermal interference between adjacent bits and adjacent recording layers, and dye crystallization in the dye layer is further suppressed, so that high S / N and high It is possible to provide a multilayer optical recording medium and a multiphoton recording / reproducing apparatus that can achieve both reliability.

また、別の発明としての多層光記録媒体は、多層の光記録媒体中に、記録色素に加え、光記録媒体の少なくとも一部を記録光照射前に加熱するプレヒート工程に用いるレーザ光を吸収する色素を分散したことに特徴がある。よって、記録媒体内でのプレヒート光の吸収量を色素濃度により決定できるため、記録媒体を構成するバインダー等の選択の幅が広がるため、所望の特性を優先した材料選択により高信頼性の多層光記録媒体が提供できる。   In addition, the multilayer optical recording medium as another invention absorbs laser light used in a preheating process in which at least a part of the optical recording medium is heated before recording light irradiation in addition to the recording dye in the multilayer optical recording medium. It is characterized in that the pigment is dispersed. Therefore, since the amount of preheat light absorbed in the recording medium can be determined by the dye concentration, the range of choices for binders, etc. that make up the recording medium is widened. A recording medium can be provided.

更に、記録色素とプレヒート工程に用いるレーザ光を吸収する色素の濃度分布が一致することにより、プレヒートが必要な記録層のみに色素を配置し、加熱することが可能となることで、記録時の記録媒体内への投入熱量が小さくなり、ヒートサイクルによる色素層の結晶化や記録ビットのコントラスト低下の影響が無い、さらに高信頼性の多層光記録媒体を提供できる。   Furthermore, since the density distributions of the recording dye and the dye that absorbs the laser light used in the preheating process match, it is possible to dispose the dye only in the recording layer that requires preheating and to heat it. It is possible to provide a highly reliable multilayer optical recording medium in which the amount of heat input into the recording medium is reduced, and there is no influence of crystallization of the dye layer or reduction in contrast of recording bits due to heat cycle.

また、多層光記録媒体の表面からの深度により、プレヒート工程に用いるレーザ光を吸収する色素の濃度に濃度勾配を持つことにより、書き込み及び読み出しパワーの層ごとの平坦化と読み取り信号強度の平坦化が可能となり、高信頼性の多層光記録媒体を提供できる。   In addition, the density of the dye that absorbs the laser light used in the preheating process has a concentration gradient depending on the depth from the surface of the multilayer optical recording medium, thereby flattening the writing and reading power for each layer and flattening the reading signal intensity. Therefore, a highly reliable multilayer optical recording medium can be provided.

更に、記録色素を含む層と含まない層がガラス転移点の異なる材料により構成されていることにより、記録色素を含む層は感度優先、記録色素を含まない層は記録媒体の安定性優先の媒体設計が可能となり、結果として高信頼性の多層光記録媒体を提供できる。   Further, since the layer containing the recording dye and the layer not containing the recording dye are made of materials having different glass transition points, the layer containing the recording dye has priority on sensitivity, and the layer not containing the recording dye has priority on stability of the recording medium. As a result, a highly reliable multilayer optical recording medium can be provided.

本発明の多光子記録方法によれば、記録媒体の少なくとも一部を記録光照射と同時又は前に加熱するプレヒート工程に用いるレーザ光の照射光量がピット先端照射時から後端を照射し終わるまでの時間と共に、照射光量を変化させる。よって、隣接ビット間及び隣接記録層間の干渉が最小となる記録が可能となる。また、投入熱量が最小となることで、記録層内の色素の凝集が抑制され、記録時のS/Nを維持することが可能な高信頼性の多層光記録媒体及び多光子記録再生装置を提供できる。 According to the multiphoton recording method of the present invention, the irradiation light amount of the laser beam used in the preheating process in which at least a part of the recording medium is heated at the same time or before the recording light irradiation until the rear end is irradiated after the irradiation of the pit front end. The amount of irradiation light is changed over time. Therefore, recording with minimum interference between adjacent bits and adjacent recording layers is possible. Also, a highly reliable multilayer optical recording medium and multiphoton recording / reproducing apparatus capable of suppressing the aggregation of the dye in the recording layer and maintaining the S / N during recording by minimizing the input heat amount. Can be provided.

図1は本発明の一実施の形態例に係る多層光記録媒体の構成を示す断面図である。同図に示す本実施の形態例の多層光記録媒体100は、グルーブが刻まれたポリカーボネート製の記録層支持基板103に、記録材料であるジアリールエテンとバインダーであるPVB(ポリ・ビニル・ブチラール)を等量、メトキシエタノールに溶解し、さらにアゾ色素を添加したものをスピンコートにより成膜した記録層104が形成されている。次に、PVBを同じくメトキシエタノールに溶解した色素を含まない溶液を作成、接着層102を形成し、順次積層後、両面に保護基板101、105を接着し、高感度多層基板を作成した。なお、基板の構成・材料・色素等は本発明の構成の一例であり、本実施の形態例に限定されるものではない。   FIG. 1 is a sectional view showing the structure of a multilayer optical recording medium according to an embodiment of the present invention. In the multilayer optical recording medium 100 of this embodiment shown in the figure, a diarylethene as a recording material and PVB (polyvinyl butyral) as a binder are formed on a polycarbonate recording layer supporting substrate 103 in which grooves are engraved. A recording layer 104 is formed by spin-coating an equal amount dissolved in methoxyethanol and further added with an azo dye. Next, a solution containing PVB dissolved in methoxyethanol and containing no pigment was prepared, the adhesive layer 102 was formed, the layers were sequentially laminated, and then the protective substrates 101 and 105 were adhered to both surfaces to prepare a high-sensitivity multilayer substrate. Note that the configuration, material, pigment, and the like of the substrate are examples of the configuration of the present invention, and are not limited to the present embodiment.

図2は本発明の一実施の形態例に係る多層光記録媒体の別の構成を示す断面図である。同図に示す本実施の形態例の多層光記録媒体200は、グルーブが刻まれたポリカーボネート製の記録層支持基板203に、記録材料であるジアリールエテンとバインダーであるPVB(ポリ・ビニル・ブチラール)を等量、メトキシエタノールに溶解し、さらにアゾ色素を添加したものをスピンコートにより成膜した記録層204が形成されている。次に、PVBを同じくメトキシエタノールに溶解した色素を含まない溶液を作成、接着層202を形成した。最表面の記録層204より、波長780nmにおいて、一層あたりの吸収光量が媒体表面での光量のそれぞれ0.2%となるように、色素濃度を変えた溶液を用意し記録層204を含め順次積層した。最後に両面に保護基板201、205を接着し、高感度多層基板を作成した。なお、基板の構成・材料・色素等は本発明の構成の一例であり、本実施の形態例に限定されるものではない。   FIG. 2 is a cross-sectional view showing another configuration of the multilayer optical recording medium according to an embodiment of the present invention. In the multilayer optical recording medium 200 of the present embodiment shown in the figure, a recording layer supporting substrate 203 made of polycarbonate having grooves engraved with diarylethene as a recording material and PVB (polyvinyl butyral) as a binder. A recording layer 204 is formed by spin-coating an equal amount dissolved in methoxyethanol and further added with an azo dye. Next, a solution not containing a pigment obtained by dissolving PVB in methoxyethanol was prepared, and an adhesive layer 202 was formed. From the outermost recording layer 204, a solution with different dye concentrations is prepared so that the amount of absorbed light per layer is 0.2% of the amount of light on the surface of the medium at a wavelength of 780 nm. did. Finally, the protective substrates 201 and 205 were bonded to both surfaces to produce a high-sensitivity multilayer substrate. Note that the configuration, material, pigment, and the like of the substrate are examples of the configuration of the present invention, and are not limited to the present embodiment.

次に、図1及び図2に示した多層光記録媒体を用い、プレヒートの工程をレーザ光により行い、かつレーザ光によるプレヒートを記録情報と同期させて行う本発明の2光子吸収記録装置について説明する。   Next, the two-photon absorption recording apparatus according to the present invention, which uses the multilayer optical recording medium shown in FIGS. 1 and 2, performs the preheating process with laser light, and synchronizes the preheating with the laser light with the recording information, will be described. To do.

図3は本発明の一実施の形態例に係る2光子吸収記録再生装置の構成を示す構成図である。同図に示す本実施の形態例の2光子吸収記録再生装置300は2系統の光学系を持っている。先ず、再生・フォーカス・トラッキングのサーボ及びプレヒートに係る再生用レーザ兼プレヒート光レーザの光学系から説明する。再生用を兼ねる780nmのプレヒート光用半導体レーザ301からの出射光は、カップリングレンズ302により並行光となり、無偏光ビームスプリッタ303により光路を変えられ、偏光ビームスプリッタ304と1/4波長板305よりなる光アイソレータを通り、円偏光に変換される。対物レンズ306により上述した多層光記録媒体100、200の何れかの記録層に集光された光の一部は、記録層を構成する異種界面の屈折率差により反射する。上述した多層光記録媒体100、200の場合は約0.1%である。この反射光は旋光方向が逆転しており、1/4波長板305を通過後、入射光と直交する直線偏光に変換され、偏光ビームスプリッタ304で検出系へと導かれる。検出系では、集光レンズ307により集光され、ピンホール308により焦点以外からの反射・散乱光が除去される。集光レンズ309により再度集光され、シリンドリカルレンズ310を通り4分割アバランシェ・フォトダイオード311に導かれる。4分割アバランシェ・フォトダイオード311により高感度に検出された信号によりトラッキング・フォーカスサーボがかけられる。また、4分割アバランシェ・フォトダイオード311からの和信号により、記録情報の読み出しも可能となることは言うまでもない。この光源からの出射光は、記録層で2光子吸収が起こるには出力が弱く、読み取りによる再生信号の劣化は起こりえない。記録層には吸収色素が含まれているため、本実施の形態例では一層あたり約0.2%が吸収され熱に変わる。CD/DVD系記録メディアと同様にマークを記録する部位では出力を上げ、記録層をガラス転移点以上に上げることにより、2光子吸収により励起される光異性化反応が速やかに起こる用記録部位のみを改質する。しかし、前後の層はスポットが絞られていないため一層あたりの熱量は同じだが広いエリアに熱が吸収されるため温度は上がらず、再結晶等の悪影響は最小限となる。   FIG. 3 is a block diagram showing a configuration of a two-photon absorption recording / reproducing apparatus according to an embodiment of the present invention. The two-photon absorption recording / reproducing apparatus 300 of this embodiment shown in the figure has two systems of optical systems. First, the optical system of a reproducing laser and preheating light laser relating to reproduction / focus / tracking servo and preheating will be described. The light emitted from the semiconductor laser 301 for 780 nm preheating light that also serves as a reproducing light becomes parallel light by the coupling lens 302, the optical path can be changed by the non-polarizing beam splitter 303, and the polarizing beam splitter 304 and the quarter wavelength plate 305 And is converted into circularly polarized light. A part of the light condensed by the objective lens 306 on one of the recording layers of the multilayer optical recording media 100 and 200 described above is reflected by a difference in refractive index between different interfaces constituting the recording layer. In the case of the multilayer optical recording media 100 and 200 described above, it is about 0.1%. The reflected light has a reverse optical rotation direction, passes through the quarter-wave plate 305, is converted into linearly polarized light orthogonal to the incident light, and is guided to the detection system by the polarization beam splitter 304. In the detection system, the light is condensed by the condensing lens 307 and the reflected / scattered light from other than the focal point is removed by the pinhole 308. The light is condensed again by the condenser lens 309, passes through the cylindrical lens 310, and is guided to the four-divided avalanche photodiode 311. Tracking focus servo is applied by a signal detected with high sensitivity by the four-divided avalanche photodiode 311. Needless to say, the recorded information can also be read by the sum signal from the four-divided avalanche photodiode 311. The light emitted from this light source has a weak output for two-photon absorption to occur in the recording layer, and the reproduction signal cannot be deteriorated by reading. Since the recording layer contains an absorbing dye, approximately 0.2% of the recording layer is absorbed and converted to heat in this embodiment. As with CD / DVD-based recording media, only the recording portion where the photoisomerization reaction excited by two-photon absorption occurs rapidly by increasing the output at the portion where the mark is recorded and raising the recording layer above the glass transition point. To reform. However, the front and rear layers have the same spot, so the amount of heat per layer is the same, but heat is absorbed in a wide area, so the temperature does not rise, and adverse effects such as recrystallization are minimized.

次に、記録系について説明する。780nmの記録用パルスレーザ312からの出射光は、ビームエキスパンダ313、無偏光ビームスプリッタ303、偏光ビームスプリッタ304、1/4波長板305を経て、対物レンズ306により多層光記録媒体100、200に焦点を結ぶ。この際、記録用パルスレーザ312の出射光は、再生用半導体レーザ301の出射光と同軸となるよう調整されている必要がある。このとき、両者の多層光記録媒体内の焦点は、一致するので記録時のトラキング・フォーカスサーボも可能となる。以上のような機構により、記録用パルスレーザ312の出射光は、多層光記録媒体100、200上に焦点を結ぶ。記録層には、記録色素に加えプレヒート用レーザ光の吸収色素も含まれており、かつ記録光照射時には同期してプレヒート用レーザも照射されており、記録スポット周辺はプレヒートされ、バインダー樹脂は軟化しており、記録色素の異性化反応は速やかに行われる。以上のような過程により、2光子吸収により情報が書き込まれる。なお、記録媒体の形状はディスク以外にもカードなど他の形態を取ることも可能であり、それらに対応する記録再生システムも含め、本実施の形態例はその構成を制限するものではない。   Next, the recording system will be described. The light emitted from the 780 nm recording pulse laser 312 passes through the beam expander 313, the non-polarizing beam splitter 303, the polarizing beam splitter 304, and the quarter-wave plate 305, and then into the multilayer optical recording media 100 and 200 by the objective lens 306. Focus. At this time, the emitted light of the recording pulse laser 312 needs to be adjusted to be coaxial with the emitted light of the reproducing semiconductor laser 301. At this time, since the focal points in the multilayer optical recording medium coincide, tracking / focus servo at the time of recording is also possible. With the mechanism as described above, the light emitted from the recording pulse laser 312 is focused on the multilayer optical recording media 100 and 200. In addition to the recording dye, the recording layer also contains an absorption dye for the preheating laser beam. The recording layer is also irradiated with the preheating laser in synchronism with the recording light irradiation, the recording spot periphery is preheated, and the binder resin is softened. Therefore, the isomerization reaction of the recording dye is performed promptly. Through the above process, information is written by two-photon absorption. The shape of the recording medium can take other forms such as a card in addition to the disk, and the configuration of the present embodiment, including the recording / reproducing system corresponding to the form, does not limit the configuration.

ここで更に詳細に説明すると、2光子吸収が誘起される大きな電界強度を得るための光源に、超短パルスレーザが用いられているが、超短パルスレーザを用いる利点は平均パワーが小さいため、試料に対する熱的影響は小さく、試料の熱的損傷は起こらない。しかし、ピークパワーは平均パワーの3桁から5桁ほど大きいために、集光スポット近傍でのみ2光子吸収を誘起することが可能である点にある。ここで、屈折率変化による多光子吸収記録を、記録色素側から考えると、2光子吸収を起こした色素は、光異性化反応により分子の立体構造が変わることにより、吸収波長の変化が起こることによりその長波長側での屈折率が変化することによりマークが書き込まれている。また、多層メモリとしての応用では、深度方向に多重化した記録層から、光を用い読み書きするために、記録色素はアモルファス状態であることが望ましく、アモルファス状態を安定化するためにバインダー樹脂中に分散されている。しかし、樹脂中に分散することは逆に、色素分子を拘束することに他ならず、屈折率変化の源である光異性化反応の分子を物理的に拘束することにより阻害する。これを防ぐ目的で、樹脂による色素分子の拘束が弱い樹脂を用いた場合には、異性化反応のみが促進されるのではなく、一般に色素の拡散も速く、結晶化による記録層の劣化および記録マークのコントラスト低下も起こる。そこで、本発明では、樹脂に熱をかけることにより機械的強度の変化即ち軟化が起こることにより、ネットワーク中に存在する色素の光異性化反応に対する拘束が弱まることに着目し、書き込み前のプレヒートによりピークパワーが小さな光源でも書き込みを容易(高感度化)とし、読み出し時および保存時には常温とすることにより、読み出し耐性および保存特性を確保することが可能となった。   In more detail here, an ultrashort pulse laser is used as a light source for obtaining a large electric field intensity that induces two-photon absorption, but the advantage of using an ultrashort pulse laser is that the average power is small, The thermal effect on the sample is small and no thermal damage of the sample occurs. However, since the peak power is about 3 to 5 orders of magnitude higher than the average power, it is possible to induce two-photon absorption only in the vicinity of the focused spot. Here, considering the multiphoton absorption recording by the change in refractive index from the recording dye side, the absorption wavelength of the dye that caused the two-photon absorption changes due to the change in the three-dimensional structure of the molecule by the photoisomerization reaction. Thus, the mark is written by changing the refractive index on the long wavelength side. In addition, in the application as a multi-layer memory, it is desirable that the recording dye is in an amorphous state in order to read / write using light from the recording layer multiplexed in the depth direction, and in the binder resin to stabilize the amorphous state Is distributed. However, the dispersion in the resin is constrained by restraining the dye molecule and physically inhibiting the molecule of the photoisomerization reaction that is the source of the refractive index change. For the purpose of preventing this, when using a resin that is weakly bound to dye molecules by the resin, not only the isomerization reaction is accelerated, but also the diffusion of the dye is generally fast, and the recording layer is deteriorated and recorded by crystallization. Mark contrast also decreases. Therefore, in the present invention, attention is paid to the fact that the mechanical strength changes, that is, the softening caused by applying heat to the resin, thereby weakening the constraint on the photoisomerization reaction of the dye existing in the network. Even with a light source having a small peak power, writing can be facilitated (high sensitivity), and reading resistance and storage characteristics can be ensured by setting the reading temperature and storage temperature to room temperature.

また、本実施の形態例のようにプレヒートを行うことにより、記録が容易となるが、ヒートサイクルを繰り返すことは、やはりバインダー樹脂中での色素の拡散を伴い、サイクル数を経るごとに記録情報の劣化が進む。従って、CWレーザ光により遠隔的かつ局部的にバインダー材料のガラス転移点付近まで加熱することにより、加熱部位でのみ記録閾値の低下が起こるが、その他の部分では熱の影響をほとんど受けないため記録内容は安定に保持される。   In addition, recording is facilitated by preheating as in the present embodiment, but repeating the heat cycle also involves the diffusion of the dye in the binder resin, and the recorded information every time the number of cycles passes. Deterioration progresses. Therefore, by remotely and locally heating to the vicinity of the glass transition point of the binder material by the CW laser light, the recording threshold value is lowered only at the heated portion, but the recording is not affected by the heat in other portions. The content is kept stable.

更に、プレヒートのためのレーザ光を、記録情報(書き込み光により書き込む記録ビット)と同期して加熱を行うことにより、投入熱量がより小さくて済むことにより、隣接するビットの書き込み閾値のばらつきの防止や隣接トラックあるいは隣接記録層等の書き込みビット近傍の記録済みビットの温度変化が小さくなることにより安定性の更なる向上が可能となる。   In addition, by heating the laser light for preheating in synchronization with the recording information (recording bits written by writing light), the input heat amount can be reduced, thereby preventing variations in the write threshold of adjacent bits. Further, the stability can be further improved by reducing the temperature change of the recorded bits in the vicinity of the write bit such as the adjacent track or the adjacent recording layer.

また、光記録の利点は、記録の読み書きが遠隔で行うことができる点にある。この遠隔で読み書きできるという特徴は、記録媒体の少なくとも片側が光を透過する素材により構成されていることによる。従って、レーザ光によりプレヒートする場合には、プレヒートに用いるレーザ光の熱源としての利用効率(即ち吸収率)と遠隔で記録の読み書きをするための透過率のバランスを取ることが必要となる。このバランスを取るために、記録媒体を構成する樹脂等の素材の吸収率と透過率を変えることも可能であるが、レーザ光の吸収色素を混ぜる量を変えることにより、樹脂の物理的性質(光学的性質・ガラス転移点)を大きく変えることなく吸収・透過量を設計することが可能となる。   Further, the advantage of optical recording is that the recording can be read and written remotely. The feature of being able to read and write remotely is that at least one side of the recording medium is made of a material that transmits light. Therefore, in the case of preheating with laser light, it is necessary to balance the utilization efficiency (that is, absorption rate) of the laser light used for preheating and the transmittance for remotely reading and writing recording. In order to achieve this balance, it is possible to change the absorptivity and transmittance of materials such as resin that constitute the recording medium, but by changing the amount of the laser light absorbing dye mixed, the physical properties of the resin ( It is possible to design the amount of absorption and transmission without greatly changing the optical properties (glass transition point).

更に、プレヒート用のレーザ光の吸収は小さいほど熱的干渉の影響は小さい。従って、記録色素とプレヒート光の吸収色素の分布を一致させることにより、記録色素の存在する領域のみが選択的に加熱され、記録閾値の低減と記録済みビットの安定性の両立が可能となる。   Furthermore, the smaller the absorption of the laser beam for preheating, the smaller the influence of thermal interference. Therefore, by matching the distribution of the recording dye and the absorption dye of the preheat light, only the region where the recording dye exists is selectively heated, and it is possible to reduce both the recording threshold and the stability of recorded bits.

また、深さ方向に多重化された記録層を持つ多層光記録媒体では、深度の深い記録層では深度の浅い記録層に比べると、浅い記録層での吸収分だけプレヒート光の強度は減少する。従って、それを補償するように、深度の深い記録層では色素濃度を高くし、吸収量を大きくすることにより加熱効率を高め、プレヒート光の必要光量を平坦化することが可能となる。更に、前述したように、プレヒートの工程によりガラス転移点以上に加熱される部分は、書き込みパルスにより光異性化反応が誘起される書き込みマーク部位と一致することが望ましく、またマーク周囲の色素の結晶化を押さえるためにはマーク周囲はなるべく加熱しないことが、メディア上の色素層の記録特性および記録マークの保存特性を確保する上で重要である。本発明の構成では、各マークの先端では、隣接マークとの間に物理的な距離があるために室温に近い温度からプレヒートする必要がある。一旦ガラス転移点まで上昇した後は、円周方向のビットが伸びる方向に熱量を投入するだけでよい。特に、現行の金属系反射層を持つディスクに比較し、熱の拡散が遅いため、一旦暖めるとスポット内をその温度に保持するための熱量は小さく、長手方向に伸びる部分を加熱するための熱量を投入するだけでよい。従って、マーク先端が最も熱量が必要で、後方に行くに従い少なく制御することにより、記録マークの形状とガラス転移点まで温度が上昇する領域を一致させることが可能となる。   Also, in a multilayer optical recording medium having recording layers multiplexed in the depth direction, the intensity of the preheat light is reduced in the deep recording layer by the amount absorbed by the shallow recording layer compared to the recording layer having a shallow depth. . Therefore, in order to compensate for this, it is possible to increase the dye concentration in the deep recording layer and increase the amount of absorption, thereby increasing the heating efficiency and flattening the necessary amount of preheat light. Further, as described above, it is desirable that the portion heated above the glass transition point by the preheating step coincides with the writing mark site where the photoisomerization reaction is induced by the writing pulse, and the crystal of the dye around the mark. In order to suppress the formation, it is important to secure the recording characteristics of the dye layer on the medium and the storage characteristics of the recording marks so that the area around the mark is not heated as much as possible. In the configuration of the present invention, since there is a physical distance between adjacent marks at the tip of each mark, it is necessary to preheat from a temperature close to room temperature. Once it rises to the glass transition point, it is only necessary to input heat in the direction in which the circumferential bit extends. In particular, the heat diffusion is slower than that of the current disk with a metallic reflective layer, so once heated, the amount of heat to keep the temperature in the spot is small, and the amount of heat to heat the part extending in the longitudinal direction. It is only necessary to input. Therefore, the tip of the mark requires the most heat, and by controlling it as it goes backward, it becomes possible to match the shape of the recording mark with the region where the temperature rises to the glass transition point.

次に、プレヒート光の制御シーケンスを用いた高感度記録方法について、図1及び図2に示した多層光記録媒体を用い、図3に示した2光子吸収記録再生装置を用いて記録する際の、プレヒート用光源の制御シーケンスを示す図4を用いて説明する。図4の(d)は、多層光記録媒体上のピットの概略図である。図4の(a)はプレヒート光をON/OFF制御した場合を、図4の(b)はプレヒート光を概略指数関数近似で減衰させた場合を、図4の(c)は最初のパルスの出力が大きく、残りのパルスは出力を60%とした場合のプレヒート光の制御シーケンスをそれぞれ示している。何れの場合も、2光子吸収による書き込みを確認し、かつプレヒート光のない場合に比較し記録エネルギーが下がっていることが確認された。なお、上述した実施の形態例は一例であり、色素、バインダー及び記録媒体の構成、各層の反射率及び赤外光の吸収率等は様々な条件が採用可能であることは言うまでもない。また、上記条件が変わった場合には、制御シーケンスも変更が必要であり、本実施の形態例に限るものではない。   Next, regarding a high-sensitivity recording method using a preheat light control sequence, the multi-layer optical recording medium shown in FIGS. 1 and 2 is used and recording is performed using the two-photon absorption recording / reproducing apparatus shown in FIG. The control sequence of the preheating light source will be described with reference to FIG. FIG. 4D is a schematic diagram of pits on the multilayer optical recording medium. 4A shows the case where the preheat light is ON / OFF controlled, FIG. 4B shows the case where the preheat light is attenuated by approximate exponential function approximation, and FIG. 4C shows the first pulse. The control sequence of the preheat light when the output is large and the remaining pulse is 60% is shown. In any case, writing by two-photon absorption was confirmed, and it was confirmed that the recording energy was lowered as compared with the case where there was no preheat light. Note that the above-described embodiment is merely an example, and it is needless to say that various conditions can be adopted for the configuration of the dye, the binder, and the recording medium, the reflectance of each layer, the absorption rate of infrared light, and the like. When the above conditions change, the control sequence also needs to be changed and is not limited to the present embodiment.

このように、投入熱量の制御はプレヒート用レーザの出力をアナログ制御することにより、理想的な書き込みができる。しかし、高速でアナログでの制御を行うことは、制御精度とコストの両立が難しい。そこで、本発明における投入熱量の制御は、パルスの高さまたは幅あるいはその組み合わせで行うデジタル制御として行うことができる。   In this way, the input heat amount can be controlled by analog control of the output of the preheating laser, so that ideal writing can be performed. However, performing analog control at high speed makes it difficult to achieve both control accuracy and cost. Therefore, the control of the input heat amount in the present invention can be performed as digital control performed by the height or width of the pulse or a combination thereof.

また、多光子記録方法において、プレヒート工程に用いるレーザ光の照射パターンが、当該記録ビット以前に記録された記録ビットの書き込み時の投入熱量を考慮して決定されたテーブルに従う。更に、上述したように、本発明によれば、記録ビットごとの書き込み時のプレヒート工程の最適制御となる。本発明の多層光記録媒体が、現行ディスクに比較すると記録層内の熱伝導が悪くプレヒートによる熱の蓄積の影響が現れやすく、記録ビット間及び記録層間での熱干渉が起こりやすいことを考慮し、隣接ビットに投入された熱量を考慮し、テーブルに従ったプレヒート光の照射パターンを採用することにより、最小限の熱量の投入により所望のプレヒートの効果を得ることができる。   In the multi-photon recording method, the irradiation pattern of the laser beam used in the preheating process follows a table determined in consideration of the input heat amount at the time of writing the recording bit recorded before the recording bit. Furthermore, as described above, according to the present invention, optimal control of the preheating process at the time of writing for each recording bit is achieved. In consideration of the fact that the multilayer optical recording medium of the present invention has poor heat conduction in the recording layer compared to current discs, and the effect of heat accumulation due to preheating tends to appear, and thermal interference between recording bits and between recording layers tends to occur. Considering the amount of heat input to the adjacent bit, and adopting an irradiation pattern of preheat light according to the table, a desired preheating effect can be obtained by inputting a minimum amount of heat.

なお、本発明は上記実施の形態例に限定されるものではなく、特許請求の範囲内の記載であれば多種の変形や置換可能であることは言うまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications and substitutions are possible as long as they are described within the scope of the claims.

本発明の一実施の形態例に係る多層光記録媒体の構成を示す断面図である。1 is a cross-sectional view illustrating a configuration of a multilayer optical recording medium according to an embodiment of the present invention. 本発明の一実施の形態例に係る多層光記録媒体の別の構成を示す断面図である。It is sectional drawing which shows another structure of the multilayer optical recording medium based on one embodiment of this invention. 本発明の一実施の形態例に係る2光子吸収記録再生装置の構成を示す構成図である。It is a block diagram which shows the structure of the two-photon absorption recording / reproducing apparatus based on one embodiment of this invention. 多層光記録媒体と2光子吸収記録再生装置を用いて記録する際のプレヒート用光源の制御シーケンスを示す図である。It is a figure which shows the control sequence of the light source for preheating at the time of recording using a multilayer optical recording medium and a two-photon absorption recording / reproducing apparatus.

符号の説明Explanation of symbols

100,200;多層光記録媒体、
102,105,202,205;接着層、
103,203;記録層支持基板、
104,204;記録層、
300;2光子吸収記録再生装置、
301;ヒート光用半導体レーザ、302;カップリングレンズ、
303;無偏光ビームスプリッタ、304;偏光ビームスプリッタ、
305;1/4波長板、306;対物レンズ、
307,309;集光レンズ、308;ピンホール、
310;シリンドリカルレンズ、
311;4分割アバランシェ・フォトダイオード、
312;記録用パルスレーザ、313;ビームエキスパンダ。
100, 200; multilayer optical recording medium,
102, 105, 202, 205; adhesive layer,
103, 203; recording layer support substrate,
104, 204; recording layer,
300; two-photon absorption recording / reproducing apparatus,
301; semiconductor laser for heat light; 302; coupling lens;
303; non-polarizing beam splitter, 304; polarizing beam splitter,
305; 1/4 wavelength plate, 306; Objective lens,
307, 309; condenser lens, 308; pinhole,
310; cylindrical lens,
311; quadrant avalanche photodiode,
312; recording pulse laser; 313; beam expander.

Claims (9)

記録媒体中の記録材料に多光子吸収過程による記録を行う記録方法において、
記録媒体の少なくとも一部を記録光照射と同時又は前に加熱するプレヒート工程を有し、
該プレヒート工程に用いるレーザ光の照射光量がピット先端照射時から後端を照射し終わるまでの時間と共に、照射光量を変化させることを特徴とする多光子記録方法。
In a recording method for performing recording by a multiphoton absorption process on a recording material in a recording medium,
Having a preheating step of heating at least a part of the recording medium simultaneously with or before the recording light irradiation,
A multi-photon recording method characterized in that the irradiation light amount is changed with the time from the irradiation of the pit front end to the end of irradiation of the rear end of the irradiation light amount of the laser light used in the preheating step.
前記プレヒート工程の加熱はレーザ光の照射による加熱である請求項1記載の多光子記録方法。   The multi-photon recording method according to claim 1, wherein the heating in the preheating step is heating by laser light irradiation. 前記プレヒート工程の加熱に用いるレーザ光は書き込み光と同軸に導入され、かつ記録情報と同期して変調される請求項2記載の多光子記録方法。   3. The multiphoton recording method according to claim 2, wherein the laser beam used for heating in the preheating step is introduced coaxially with the writing beam and is modulated in synchronization with the recording information. 照射光の照射光量の変化を、出力又はパルス幅あるいはその両方が異なる複数のパルス列の照射により構成する請求項1〜3のいずれかに記載の多光子記録方法。   The multiphoton recording method according to claim 1, wherein the change in the amount of irradiation light is configured by irradiation with a plurality of pulse trains having different outputs and / or pulse widths. 前記プレヒート工程に用いるレーザ光の照射パターンが、当該記録ビット以前に記録された記録ビットの書き込み時の投入熱量を考慮して決定されたテーブルに従う請求項1又は4に記載の多光子記録方法。   5. The multiphoton recording method according to claim 1, wherein an irradiation pattern of the laser beam used in the preheating step is based on a table determined in consideration of an input heat amount at the time of writing a recording bit recorded before the recording bit. 多層の光記録媒体中に、記録色素に加え、光記録媒体の少なくとも一部を記録光照射前に加熱するプレヒート工程に用いるレーザ光を吸収する色素を分散したことを特徴とする多層光記録媒体。   A multilayer optical recording medium comprising a multilayer optical recording medium in which a dye that absorbs laser light used in a preheating process in which at least a part of the optical recording medium is heated before recording light irradiation is dispersed in addition to the recording dye . 記録色素と前記プレヒート工程に用いるレーザ光を吸収する色素の濃度分布が一致する請求項6記載の多層光記録媒体。   The multilayer optical recording medium according to claim 6, wherein the density distribution of the recording dye and the dye absorbing the laser beam used in the preheating step match. 多層光記録媒体の表面からの深度により、前記プレヒート工程に用いるレーザ光を吸収する色素の濃度に濃度勾配を持つ請求項6又は7に記載の多層光記録媒体。   The multilayer optical recording medium according to claim 6 or 7, wherein the multilayer optical recording medium has a density gradient in the density of the dye that absorbs the laser light used in the preheating step depending on the depth from the surface of the multilayer optical recording medium. 記録色素を含む層と含まない層がガラス転移点の異なる材料により構成されている請求項6〜8のいずれかに記載の多層光記録媒体。   The multilayer optical recording medium according to any one of claims 6 to 8, wherein the layer containing the recording dye and the layer not containing the recording dye are made of materials having different glass transition points.
JP2005008485A 2005-01-17 2005-01-17 Multi-photon recording method and multilayer optical recording medium Expired - Fee Related JP4538330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005008485A JP4538330B2 (en) 2005-01-17 2005-01-17 Multi-photon recording method and multilayer optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005008485A JP4538330B2 (en) 2005-01-17 2005-01-17 Multi-photon recording method and multilayer optical recording medium

Publications (2)

Publication Number Publication Date
JP2006196125A JP2006196125A (en) 2006-07-27
JP4538330B2 true JP4538330B2 (en) 2010-09-08

Family

ID=36802073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005008485A Expired - Fee Related JP4538330B2 (en) 2005-01-17 2005-01-17 Multi-photon recording method and multilayer optical recording medium

Country Status (1)

Country Link
JP (1) JP4538330B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099705A1 (en) * 2007-02-16 2008-08-21 Sanyo Electric Co., Ltd. Recording medium and recording/reproducing device
WO2008099707A1 (en) * 2007-02-16 2008-08-21 Sanyo Electric Co., Ltd. Optical pickup device and recording/reproduction device
CN101611445B (en) 2007-02-16 2012-02-29 三洋电机株式会社 Recording medium, optical pickup device and recording/reproducing device
JP4546986B2 (en) * 2007-03-30 2010-09-22 リンテック株式会社 Sheet for manufacturing multilayer optical recording medium, multilayer structure for optical recording medium, and multilayer optical recording medium
JP4935736B2 (en) 2008-03-26 2012-05-23 ソニー株式会社 Optical recording method and optical recording apparatus
US8077582B2 (en) * 2008-10-03 2011-12-13 Sony Corporation Optical pickup, optical information recording method, and optical disc apparatus
US8553515B2 (en) * 2010-11-30 2013-10-08 General Electric Company System and method for precise servoing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772567A (en) * 1993-09-03 1995-03-17 Hitachi Ltd Optical information recording medium and optical information recording and reproducing device
JPH07129996A (en) * 1993-11-08 1995-05-19 Sony Corp Optical wavelength multiplex recording and reproducing device
WO1998002875A1 (en) * 1996-07-11 1998-01-22 Seiko Epson Corporation Optical disc and process for the production of the same, and process for the production of sheet material
JP2003303447A (en) * 2002-04-04 2003-10-24 Hitachi Maxell Ltd Optical recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772567A (en) * 1993-09-03 1995-03-17 Hitachi Ltd Optical information recording medium and optical information recording and reproducing device
JPH07129996A (en) * 1993-11-08 1995-05-19 Sony Corp Optical wavelength multiplex recording and reproducing device
WO1998002875A1 (en) * 1996-07-11 1998-01-22 Seiko Epson Corporation Optical disc and process for the production of the same, and process for the production of sheet material
JP2003303447A (en) * 2002-04-04 2003-10-24 Hitachi Maxell Ltd Optical recording medium

Also Published As

Publication number Publication date
JP2006196125A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP4538330B2 (en) Multi-photon recording method and multilayer optical recording medium
JP4879324B2 (en) Recording / reproducing method, recording / reproducing apparatus, and recording medium
JP4580033B2 (en) Multilayer optical recording medium manufacturing method and multilayer optical recording medium recording apparatus
JP2000036130A (en) Optical information recording medium, its recording and reproduction method, its production and optical information recording and reproducing device
US8576681B2 (en) Optical information recording medium, optical information recording apparatus and optical information recording method
JPH05128588A (en) Optical recording medium, optical recording/reproducing method, information writing device and information record reproducer
TWI251235B (en) Optical information recording medium, recording and readout methods using the same, optical information recording device, and optical information readout device
JP4456527B2 (en) Optical information recording medium, and information recording method and information reproducing method using the same
JP2005302275A (en) Optical information recording medium, recording and reproducing method, and recording and reproducing device
JP4298374B2 (en) Optical information recording medium, and recording method, reproducing method, optical information recording apparatus, and optical information reproducing apparatus using the same
JP2010170691A (en) Information recording medium and recording/reproducing apparatus using the same
CN101256790B (en) Optical information recording medium and optical information reproducing method
JP2011170935A (en) Optical recording and reproducing method, and optical recording medium
TWI352350B (en) Optical recording medium, information recording me
US20060013115A1 (en) Multi-stack optical information carrier
JP4136713B2 (en) Multilayer recording medium and multilayer recording system
JP4308117B2 (en) Information recording method and apparatus, and information recording medium
JP4040072B2 (en) Recording method and optical disc apparatus
JP3895354B2 (en) Recording method and optical disc apparatus
JP2002329316A (en) Optical recording medium, optical information processor and optical recording and reproducing device
TWI292908B (en) Writable optical record carrier
TW201243841A (en) Recording device, recording method, and optical recording medium
JP2004535036A (en) Multilayer composite liquid crystal optical memory system with information recording and reading means
JP2013242939A (en) Recording layer and optical information recording medium
JP4356048B2 (en) optical disk

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091015

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees