JP4537912B2 - Steam turbine plant with high temperature steam valve and high temperature steam valve - Google Patents

Steam turbine plant with high temperature steam valve and high temperature steam valve Download PDF

Info

Publication number
JP4537912B2
JP4537912B2 JP2005236009A JP2005236009A JP4537912B2 JP 4537912 B2 JP4537912 B2 JP 4537912B2 JP 2005236009 A JP2005236009 A JP 2005236009A JP 2005236009 A JP2005236009 A JP 2005236009A JP 4537912 B2 JP4537912 B2 JP 4537912B2
Authority
JP
Japan
Prior art keywords
valve
steam
cooling
cooling steam
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005236009A
Other languages
Japanese (ja)
Other versions
JP2006105130A (en
Inventor
雅文 福田
英夫 保坂
勉 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005236009A priority Critical patent/JP4537912B2/en
Publication of JP2006105130A publication Critical patent/JP2006105130A/en
Application granted granted Critical
Publication of JP4537912B2 publication Critical patent/JP4537912B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高温蒸気タービンシステムに適用される高温蒸気弁に係り、特に弁構成要素を冷却する冷却構造を採用した高温蒸気弁および高温蒸気弁を備えた蒸気タービンプラントに関する。   The present invention relates to a high temperature steam valve applied to a high temperature steam turbine system, and more particularly to a high temperature steam valve employing a cooling structure for cooling valve components and a steam turbine plant including the high temperature steam valve.

近年、事業用火力発電プラントにおいては、環境問題の観点から蒸気タービンの一層の効率化が要求されており、そのため蒸気温度は益々高温化される傾向にある。現在、広く採用されている蒸気条件は、169Kg/cm2×566℃或いは246Kg/cm2×566℃であり、現在最も高い蒸気条件は、610℃である。これらの蒸気条件が採用されている理由にとして、蒸気タービンの蒸気流量を制御するために設けられている蒸気弁の各部材の構成に使用される材料のコスト的制約が大きな要因となっている。   In recent years, thermal power plants for commercial use have been demanded to further improve the efficiency of steam turbines from the viewpoint of environmental problems, and as a result, the steam temperature tends to increase more and more. Currently, the steam conditions widely adopted are 169 Kg / cm 2 × 566 ° C. or 246 Kg / cm 2 × 566 ° C., and the current highest steam condition is 610 ° C. The reason why these steam conditions are adopted is largely due to the cost constraints of the materials used for the construction of each member of the steam valve provided to control the steam flow rate of the steam turbine. .

周知のように、蒸気弁は弁ケーシング内で弁座に対向配置した弁体を弁棒によって外部から駆動するように構成されており、この弁棒は弁ケーシングの弁棒貫通部でブッシュを介して摺動自在に支持されており、ブッシュと弁棒との間には、摺動を許容するための若干の空隙を設けている。蒸気温度が610℃という現在最も高い蒸気条件を採用しているユニットでは、蒸気弁の各部材を構成する材料として、弁ケーシングに12Cr鋼などの耐熱合金鋼、ブッシュに窒化鋼、弁棒に12Cr鋼をそれぞれ採用している。   As is well known, a steam valve is configured such that a valve body disposed opposite to a valve seat in a valve casing is driven from the outside by a valve stem, and this valve stem is inserted through a bush at a valve stem penetration portion of the valve casing. A small gap is provided between the bush and the valve stem to allow sliding. In the unit that adopts the highest steam condition with a steam temperature of 610 ° C, the material constituting each member of the steam valve is a heat-resistant alloy steel such as 12Cr steel for the valve casing, nitrided steel for the bush, and 12Cr for the valve stem. Each adopts steel.

ところで、昨今の趨勢は省エネルギーを指向し、蒸気温度をより高温化する傾向にある。このため、現在最も高い蒸気温度である610℃を超えて、650℃やさらには700℃以上の蒸気温度の採用が検討されている。蒸気温度の高温化は蒸気タービンシステムの熱効率向上のために歓迎されることではあるが、蒸気弁の構成材料にとっては非常に厳しいものであり、高い蒸気温度のもとでは、弁棒がクリープ変形するとか、弁棒とブッシュとの間の摺動部に酸化スケールが付着堆積して円滑な摺動を阻害し、さらには弁棒とブッシュとの摺動部を固着させる恐れがある。   By the way, the current trend is to save energy and to increase the steam temperature. For this reason, adoption of steam temperatures exceeding 610 ° C, which is the highest steam temperature at present, of 650 ° C or even 700 ° C or higher is under consideration. Although higher steam temperatures are welcomed to improve the thermal efficiency of steam turbine systems, they are extremely harsh for the components of steam valves and under high steam temperatures, the valve stems creep. In addition, the oxide scale may adhere to and accumulate on the sliding portion between the valve stem and the bush, and smooth sliding may be hindered, and the sliding portion between the valve stem and the bush may be fixed.

このため、従来の高温蒸気弁においては、弁棒内部に孔を加工し、この孔に冷却蒸気を流して弁棒を冷却する発明(例えば、特許文献1)とか、弁ケーシングの弁蓋を上蓋と内蓋とに分離して上蓋と内蓋との間に冷却蒸気を流してケーシングのフランジを冷却すると共に、弁棒とブッシュとの摺動部に耐酸化性層を設けて酸化スケールが付着堆積することを防止した発明(例えば、特許文献2、3)、更に円板状弁体の回動によって流路の開度を加減するバタフライ弁において、弁棒の一端が貫通する弁軸筒(グランドパッキンや弾性緩衝材等からなる軸封部を収容する筒状部を指す)の外周に空間部を介して筒状のジャケットを追設し、環状に形成された空間部に外部から冷却媒体を供給するようにした発明(例えば、特許文献4)が公開されている。
実開昭57−145879号公報 実開昭61−14276号公報 特開平8−93407号公報 特開2004−19784号公報
For this reason, in the conventional high-temperature steam valve, an invention is made such that a hole is machined in the valve stem and cooling steam is allowed to flow through the hole to cool the valve stem (for example, Patent Document 1), or the valve lid of the valve casing is an upper lid. In addition to cooling the casing flange by flowing cooling steam between the top lid and the inner lid, an oxidation-resistant layer is provided on the sliding part of the valve stem and bush to attach the oxide scale. In the invention that prevents accumulation (for example, Patent Documents 2 and 3), and a butterfly valve that adjusts the opening degree of the flow path by rotating the disc-shaped valve body, a valve shaft cylinder through which one end of the valve rod penetrates ( A cylindrical jacket is additionally provided on the outer periphery of the outer periphery of a gland packing or a shaft seal portion made of an elastic cushioning material or the like via a space portion, and a cooling medium is externally provided in the annular space portion. (For example, Patent Document 4) is disclosed It has been.
Japanese Utility Model Publication No. 57-145879 Japanese Utility Model Publication No. 61-14276 JP-A-8-93407 JP 2004-19784 A

しかしながら、上記特許文献1に記載された発明では、弁棒のみの冷却はできるが、弁棒、ブッシュ間の摺動部の冷却までは考慮されておらず、従って、摺動部に酸化スケールの付着堆積を防止する対策としては十分ではない。また、特許文献2、3に記載の発明では、弁ケーシングのフランジ部と弁蓋とを締付けるボルトの冷却はできるが、特許文献1同様、弁棒、ブッシュ間の摺動部の冷却はできない。この結果、特許文献2、3に記載の発明では、より高温化された蒸気に対しては、耐酸化性層を設けても、酸化スケールの付着堆積を防止することはできない。   However, in the invention described in Patent Document 1 above, only the valve stem can be cooled, but cooling of the sliding portion between the valve stem and the bush is not taken into consideration. It is not enough as a measure to prevent adhesion accumulation. Further, in the inventions described in Patent Documents 2 and 3, although the bolt for tightening the flange portion of the valve casing and the valve lid can be cooled, the sliding portion between the valve stem and the bush cannot be cooled as in Patent Document 1. As a result, in the inventions described in Patent Documents 2 and 3, even when an oxidation-resistant layer is provided for higher-temperature steam, it is impossible to prevent adhesion and deposition of oxide scale.

さらに、特許文献4に記載の発明では、弁棒を回動自在に支持する軸受部材よりもむしろ軸封部を冷却する構造になっているため、弁内部から弁棒を通して軸受部材、すなわち弁棒摺動部へ熱が伝わってしまい、当該弁棒摺動部を十分に冷却することができない。したがって、特許文献4に記載の発明も弁棒の回動を支持する弁棒摺動部に酸化スケールの付着堆積を防止する対策としては十分ではない。
このように、上記特許文献1〜4に記載の技術では、弁棒摺動部に酸化スケールが付着堆積するために、弁棒摺動部の摩耗量が大きくなり、ブッシュ、弁棒間の摺動隙間が長期間適正に保たれないため取替えを余儀なくされる。
Furthermore, in the invention described in Patent Document 4, since the shaft sealing portion is cooled rather than the bearing member that rotatably supports the valve rod, the bearing member, that is, the valve rod is passed through the valve rod from the inside of the valve. Heat is transferred to the sliding portion, and the valve stem sliding portion cannot be sufficiently cooled. Therefore, the invention described in Patent Document 4 is not sufficient as a measure for preventing the deposition and deposition of oxide scale on the valve stem sliding portion that supports the rotation of the valve stem.
As described above, in the techniques described in Patent Documents 1 to 4, since the oxide scale adheres to and accumulates on the valve stem sliding portion, the wear amount of the valve stem sliding portion increases, and the sliding between the bush and the valve stem increases. The moving gap is not maintained properly for a long time, so it must be replaced.

そこで本発明は、上記従来技術の欠点に鑑みてなされたもので、弁ケーシングの弁棒貫通部に設けた弁棒、ブッシュ間の摺動部分を適正に冷却して、摺動部に酸化スケールが付着堆積することを防止し、弁棒、ブッシュ間の摺動隙間が長期間適正に保つことのできる高温蒸気弁および高温蒸気弁を備えた蒸気タービンプラントを提供することを目的とするものである。   Accordingly, the present invention has been made in view of the above-mentioned drawbacks of the prior art. The sliding portion between the valve stem and the bush provided in the valve stem penetrating portion of the valve casing is appropriately cooled, and the oxidized scale is formed on the sliding portion. It is intended to provide a high-temperature steam valve and a steam turbine plant equipped with a high-temperature steam valve that can prevent the adhesion and deposition of the valve and keep the sliding gap between the valve stem and bushing properly for a long period of time. is there.

上記の目的を達成するため、請求項1に係る高温蒸気弁の発明は、主蒸気入口、主蒸気出口および内部に弁室を有する弁ケーシング、前記弁室に配置された弁座、この弁座に対向して設けられた弁体、前記弁ケーシングを摺動自在に貫通して前記弁体を駆動する弁棒を備えた高温蒸気弁において、前記弁ケーシングの弁棒貫通部を囲むように冷却蒸気通路を設け、この冷却蒸気通路に外部から冷却蒸気を導入し、当該冷却蒸気通路を通った冷却蒸気を弁室内の弁棒に向けて排出するように構成したことを特徴とする。   In order to achieve the above object, a high-temperature steam valve according to claim 1 includes a main steam inlet, a valve casing having a main steam outlet and a valve chamber therein, a valve seat disposed in the valve chamber, and the valve seat. In a high-temperature steam valve having a valve body provided opposite to the valve body and a valve rod that slidably penetrates the valve casing and drives the valve body, the valve body is cooled so as to surround the valve rod penetration portion of the valve casing. A steam passage is provided, cooling steam is introduced into the cooling steam passage from the outside, and the cooling steam passing through the cooling steam passage is discharged toward the valve rod in the valve chamber.

本発明によれば、蒸気温度が610℃以上の高温蒸気弁においてブッシュ及び弁棒の耐摩耗性が増加すると共に、かじりや固着が生じにくく、両部品の耐用年数が長くなる。
従って、製品の信頼性向上に寄与することになると共に補修費或いは取替え費を軽減することにも繋がるなどの顕著な効果を奏することができる。
According to the present invention, in a high-temperature steam valve having a steam temperature of 610 ° C. or higher, the wear resistance of the bush and the valve stem is increased, and galling or sticking hardly occurs, and the service life of both parts is increased.
Accordingly, it is possible to achieve remarkable effects such as contributing to improvement of product reliability and reducing repair costs or replacement costs.

以下、本発明の実施例について図面を参照して説明する。
(実施例1)
図1は本発明を複合型再熱高温蒸気弁に適用した場合の実施例の断面図である。
図1において、まず、複合型再熱高温蒸気弁の基本的な構成から説明する。1は複合型再熱蒸気弁全体を示す符号である。2は弁ケーシングであり、図示左側部に主蒸気入口部3、反対側である図示右側部下部に主蒸気出口部4をそれぞれ設け、そして、これら主蒸気入口部3および主蒸気出口部4間に形成された弁室5内に弁座6を配置し、この弁座6に対して図示上部および下部からそれぞれ昇降するように駆動される第1弁体7および第2弁体8を接離自在に配置している。なお、9は流入した主蒸気中のごみを除去する円筒型のストレーナである。
Embodiments of the present invention will be described below with reference to the drawings.
Example 1
FIG. 1 is a sectional view of an embodiment in which the present invention is applied to a combined reheat high temperature steam valve.
In FIG. 1, first, the basic configuration of the combined reheat high temperature steam valve will be described. Reference numeral 1 denotes a composite reheat steam valve as a whole. Reference numeral 2 denotes a valve casing, and a main steam inlet 3 is provided on the left side of the figure, and a main steam outlet 4 is provided on the lower side of the right side, which is the opposite side, and between the main steam inlet 3 and the main steam outlet 4. The valve seat 6 is disposed in the valve chamber 5 formed in the first and second valve bodies 8 and 8 that are driven to move up and down from the upper and lower parts of the figure relative to the valve seat 6. Arranged freely. In addition, 9 is a cylindrical strainer which removes the dust in the main steam which flowed in.

前記第1弁体7は断面がほぼH状で外周面が円筒状に形成されており、その中心部の図示上面に弁棒10の一端を取付け、かつ外周面でガイド部11の内周面に摺動可能に案内されるように構成されている。前記ガイド部11は前記弁ケーシング2の弁蓋12の内面すなわち弁室5側にブッシュ14と同心状に固定されている。弁棒10の中間部は前記弁ケーシング2の弁蓋12の中心部に形成した弁棒貫通部13に嵌合して設けたブッシュ14によって摺動自在に支持され、他端部は弁蓋12の上部に設置された第1アクチュエータ15に連結されている。この第1アクチュエータ15が外部からの指令により第1弁棒10を介して第1弁体7を昇降させることにより、主蒸気の流量を制御する。   The first valve body 7 has a substantially H-shaped cross section and an outer peripheral surface formed in a cylindrical shape. One end of the valve stem 10 is attached to the upper surface of the center of the first valve body 7 in the drawing, and the inner peripheral surface of the guide portion 11 is the outer peripheral surface. It is configured to be guided so as to be slidable. The guide portion 11 is fixed concentrically with the bush 14 on the inner surface of the valve lid 12 of the valve casing 2, that is, on the valve chamber 5 side. An intermediate portion of the valve stem 10 is slidably supported by a bush 14 fitted in a valve stem penetrating portion 13 formed at the central portion of the valve lid 12 of the valve casing 2, and the other end portion is supported by the valve lid 12. Is connected to a first actuator 15 installed on the upper side of the first actuator 15. The first actuator 15 raises and lowers the first valve body 7 via the first valve rod 10 according to an external command, thereby controlling the flow rate of the main steam.

ところで、前記弁蓋12にはブッシュ14および第1弁棒10の摺動部の隙間から漏れ出る蒸気を外部に抜くための蒸気抜き孔16を放射方向に適宜個数(図では1個を示す)設けると共に、ブッシュ14と弁棒10とを冷却するための冷却蒸気通路17を設けている。この冷却蒸気通路17は、ブッシュ14を囲むように円環状に設けられた冷却蒸気マニフォールド18と、この冷却蒸気マニフォールド18に冷却蒸気を供給する冷却蒸気導入孔19と、冷却蒸気マニフォールド18から分岐してブッシュ14の軸心方向に設けられた複数個の冷却蒸気孔20と、この冷却蒸気孔20を弁室5に連通させる冷却蒸気排出孔21とから構成されている。   By the way, the valve lid 12 has an appropriate number of steam vent holes 16 in the radial direction for extracting steam leaking from the gap between the bush 14 and the sliding portion of the first valve rod 10 in the radial direction (one is shown in the figure). A cooling steam passage 17 for cooling the bush 14 and the valve stem 10 is provided. The cooling steam passage 17 branches from a cooling steam manifold 18 provided in an annular shape so as to surround the bush 14, a cooling steam introduction hole 19 for supplying cooling steam to the cooling steam manifold 18, and the cooling steam manifold 18. And a plurality of cooling steam holes 20 provided in the axial direction of the bush 14 and a cooling steam discharge hole 21 for communicating the cooling steam holes 20 with the valve chamber 5.

一方、第2弁体8は、その中心部の図示下面を第2弁棒22の一端に固定されている。第2弁棒22の中間部は弁ケーシング2の下部開口部から立上がるようにして設けた筒状ガイド部23の中心部に形成した弁棒貫通部24に嵌合して設けたブッシュ25によって摺動自在に支持され、他端部は弁ケーシング1の下部に設置された第2アクチュエータ26に連結されている。   On the other hand, the lower surface of the second valve body 8 in the center is fixed to one end of the second valve rod 22. An intermediate portion of the second valve rod 22 is provided by a bush 25 fitted to a valve rod penetrating portion 24 formed at the center of a cylindrical guide portion 23 provided so as to rise from the lower opening of the valve casing 2. The other end is connected to a second actuator 26 installed at the lower part of the valve casing 1.

ところで、前記ガイド部23にはブッシュ25および第2弁棒22の摺動部の隙間から漏れ出る蒸気を外部に抜くための蒸気抜き孔27を放射方向に適宜個数(図では1個を示している)設けると共に、ブッシュ25と弁棒22とを冷却するための冷却蒸気通路28を設けている。この冷却蒸気通路28は、ブッシュ25を囲むように円環状に設けられた冷却蒸気マニフォールド29と、この冷却蒸気マニフォールド29に冷却蒸気を供給する冷却蒸気導入孔30と、冷却蒸気マニフォールド29からブッシュ25の軸心方向に設けられた複数個の冷却蒸気孔31と、この冷却蒸気孔31を通って熱交換を終えた蒸気を弁室5に連通させる冷却蒸気排出孔32とから構成されている。
第2アクチュエータ26は外部からの指令により第2弁棒22を介して、第2弁体8を昇降させ、蒸気の遮断、流出を制御する。
By the way, the guide portion 23 has an appropriate number of steam vent holes 27 in the radial direction for extracting steam leaking from the gap between the sliding portions of the bush 25 and the second valve rod 22 in the radial direction (one is shown in the figure). And a cooling steam passage 28 for cooling the bush 25 and the valve stem 22 is provided. The cooling steam passage 28 includes an annular cooling steam manifold 29 that surrounds the bush 25, a cooling steam introduction hole 30 that supplies the cooling steam to the cooling steam manifold 29, and the cooling steam manifold 29 to the bush 25. The cooling steam holes 31 are provided in the direction of the axis of the cooling steam, and the cooling steam discharge holes 32 through which the steam that has finished heat exchange through the cooling steam holes 31 are communicated with the valve chamber 5.
The 2nd actuator 26 raises / lowers the 2nd valve body 8 via the 2nd valve rod 22 by the command from the outside, and controls interruption | blocking and outflow of a vapor | steam.

以上のように構成された複合型再熱蒸気弁において、弁の全閉時には、第1弁体7と第2弁体8の先端面が弁座6に当接し、弁ケーシング2の主蒸気入口3から弁ケーシング2内部の弁室5に入る610℃以上の主蒸気の流れは、第1弁体7、第2弁体8と弁座6との当接部分で遮断され、主蒸気出口4を通して流れない。   In the composite reheat steam valve configured as described above, when the valves are fully closed, the tip surfaces of the first valve body 7 and the second valve body 8 abut against the valve seat 6, and the main steam inlet of the valve casing 2 3, the flow of main steam of 610 ° C. or more entering the valve chamber 5 inside the valve casing 2 is blocked at the contact portion between the first valve body 7, the second valve body 8 and the valve seat 6, and the main steam outlet 4 Does not flow through.

この状態において、第2弁体8を第2弁棒22によって上方向へ動かすことにより止弁機能が開状態となる。さらに、第1弁体7を第1弁棒10によって上方向へ動かすことにより調節弁機能が開状態となり主蒸気は第1弁体7、第2弁体8と弁座6との間に形成された隙間を通って主蒸気出口4から排出される。   In this state, the valve stop function is opened by moving the second valve body 8 upward by the second valve rod 22. Further, by moving the first valve body 7 upward by the first valve rod 10, the control valve function is opened and main steam is formed between the first valve body 7, the second valve body 8 and the valve seat 6. It is discharged from the main steam outlet 4 through the created gap.

一方、弁ケーシング1の上部において、610℃未満の冷却蒸気は弁ケーシング2の弁蓋12に設けた冷却蒸気導入孔19から円環状の冷却蒸気マニフォールド18に供給される。この冷却蒸気は、冷却蒸気マニフォールド18からブッシュ14を取り囲むように円周方向に複数個配置された冷却蒸気孔20に分流することにより、弁蓋12を介してブッシュ14および弁棒10を円周方向にほぼ均一に冷却する。そして、弁蓋12との熱交換を終えた冷却蒸気はその後冷却蒸気排出孔21を経て弁室5内部の弁棒10に向けて排出される。この排出される冷却蒸気によって弁棒10が直接冷却される。この冷却蒸気はその後主蒸気入口3から入ってきた主蒸気と混合し、弁体、弁座間の隙間を通り、最終的に主蒸気出口4から排出される。   On the other hand, in the upper part of the valve casing 1, the cooling steam of less than 610 ° C. is supplied to the annular cooling steam manifold 18 from the cooling steam introduction hole 19 provided in the valve lid 12 of the valve casing 2. This cooling steam is diverted from the cooling steam manifold 18 to a plurality of cooling steam holes 20 arranged in the circumferential direction so as to surround the bush 14, thereby causing the bush 14 and the valve stem 10 to circumferentially pass through the valve lid 12. Cool almost uniformly in the direction. The cooling steam that has finished heat exchange with the valve lid 12 is then discharged toward the valve rod 10 inside the valve chamber 5 through the cooling steam discharge hole 21. The valve stem 10 is directly cooled by the discharged cooling steam. This cooling steam is then mixed with the main steam that has entered from the main steam inlet 3, passes through the gap between the valve body and the valve seat, and is finally discharged from the main steam outlet 4.

同様に、弁ケーシング2の下部においても、冷却蒸気は弁ケーシング2の下部および円筒状ガイド部23に亘って設けた冷却蒸気導入孔30から円環状の冷却蒸気マニフォールド29に供給される。この冷却蒸気は、冷却蒸気マニフォールド29からブッシュ25を取り囲むように円周方向に複数個配置された冷却蒸気孔31に分流することにより、ガイド部23を介してブッシュ25および弁棒22を円周方向にほぼ均一に冷却する。
そして、ガイド部23との熱交換を終えた冷却蒸気はその後冷却蒸気排出孔32を経て弁室5内部の弁棒22に向けて排出される。この排出される冷却蒸気によって弁棒22が直接冷却される。この冷却蒸気はその後弁体8、弁座6間の隙間を通ってきた主蒸気と混合し、最終的には主蒸気出口4から排出される。
Similarly, also in the lower part of the valve casing 2, the cooling steam is supplied to the annular cooling steam manifold 29 from the cooling steam introduction hole 30 provided over the lower part of the valve casing 2 and the cylindrical guide part 23. The cooling steam is diverted from the cooling steam manifold 29 to a plurality of cooling steam holes 31 arranged in the circumferential direction so as to surround the bush 25, thereby causing the bush 25 and the valve rod 22 to circumferentially pass through the guide portion 23. Cool almost uniformly in the direction.
The cooling steam that has finished heat exchange with the guide portion 23 is then discharged toward the valve rod 22 inside the valve chamber 5 through the cooling steam discharge hole 32. The valve stem 22 is directly cooled by the discharged cooling steam. The cooling steam is then mixed with the main steam that has passed through the gap between the valve body 8 and the valve seat 6, and is finally discharged from the main steam outlet 4.

このように、冷却蒸気は主蒸気と混合して複合型再熱高温蒸気弁1から排出されて、図示しない蒸気タービンに導入されるが、冷却蒸気の蒸気量は主蒸気の蒸気量に比べて僅かなので、蒸気タービンに導入される蒸気に影響を及ぼすことはない。   In this way, the cooling steam is mixed with the main steam and discharged from the combined reheat high-temperature steam valve 1 and introduced into a steam turbine (not shown). The amount of cooling steam is larger than the amount of main steam. Since it is so small, it does not affect the steam introduced into the steam turbine.

以上述べたように、本実施例によれば、弁ケーシング2の弁蓋12およびガイド部23に設けられた冷却蒸気導入孔19および30、冷却蒸気マニフォールド18および29、冷却蒸気孔20および31に610℃未満の温度の冷却蒸気を流すように構成したことにより、効果的に弁棒貫通部を適正な温度まで冷却することができる。さらに、冷却蒸気排出孔21および32を経てそれぞれ弁室5内部に排出される冷却蒸気によって弁室5内の弁棒10および22を直接冷却するので、摺動部に至る熱量を低減できる。
この結果、ブッシュ14、弁棒10間の摺動部、ブッシュ25、弁棒22間の摺動部を610℃未満の温度に保持することできるので、摺動部に酸化スケールの付着堆積を防止することができ、弁棒10、ブッシュ14、ブッシュ25、弁棒22の摺動部に窒化処理材等の従来使用していた材料を用いても長期間の使用が可能となる。
As described above, according to this embodiment, the cooling steam introduction holes 19 and 30, the cooling steam manifolds 18 and 29, and the cooling steam holes 20 and 31 provided in the valve lid 12 and the guide portion 23 of the valve casing 2 are provided. By configuring the cooling steam to flow at a temperature lower than 610 ° C., the valve stem penetrating portion can be effectively cooled to an appropriate temperature. Furthermore, since the valve rods 10 and 22 in the valve chamber 5 are directly cooled by the cooling steam discharged into the valve chamber 5 through the cooling steam discharge holes 21 and 32, respectively, the amount of heat reaching the sliding portion can be reduced.
As a result, the sliding portion between the bush 14 and the valve stem 10 and the sliding portion between the bush 25 and the valve stem 22 can be maintained at a temperature of less than 610 ° C., thereby preventing oxide scale from being deposited on the sliding portion. Even if a conventionally used material such as a nitriding material is used for the sliding portions of the valve stem 10, the bush 14, the bush 25, and the valve stem 22, it can be used for a long time.

(実施例2)
本発明の実施例2について図2、図4、図5に基づいて説明する。本実施例も実施例1同様、複合型再熱高温蒸気弁に適用したものであり、図1と対応する部分には同一符号を付けて説明を適宜省略する。
(Example 2)
A second embodiment of the present invention will be described with reference to FIGS. As in the first embodiment, this embodiment is also applied to a combined reheat high temperature steam valve, and the same reference numerals are given to the portions corresponding to those in FIG.

図2において、本実施例2の主な特徴点は、弁棒10、22の外周部に臨む蒸気抜き孔16および27の開口部を挟むようにして、その両側にピストンリング33、34を配置し、さらに、ブッシュ14、25を円周方向に複数個に分割したことを特徴とするものであり、その他の構成は前述した図1と同様なので説明を省略する。   In FIG. 2, the main feature of the second embodiment is that piston rings 33 and 34 are arranged on both sides so as to sandwich the openings of the steam vent holes 16 and 27 facing the outer periphery of the valve rods 10 and 22. Further, the bushes 14 and 25 are divided into a plurality of parts in the circumferential direction, and other configurations are the same as those in FIG.

本実施例2の場合、ブッシュ14は弁蓋12を貫通せずに弁内部から弁蓋12の厚さ方向のほぼ中間部まで埋め込むようにし、ピストンリング33よりも外側に位置する弁棒10と弁蓋12の貫通穴との隙間は、図1の実施例1の場合よりも若干大きく設定している。そして、蒸気抜き孔16の弁棒10外周部を臨む開口部を挟むように、弁蓋12に一対の円環状の溝をそれぞれ設け、これらの溝にピストンリング33を収め、ピストンリング33に弁棒10を嵌めることによって弁棒10と弁蓋12の貫通穴との隙間から蒸気が逃げないようにしている。なお、ピストンリング33は図4に示す様に両端部に向きの異なる段部を有する1本の平角棒材を円環状に曲げて成形したもので、その両端部の段部を重ね合わせ、この重ね合わせ部331の横に隙間332を設けることにより、バネ効果を備えるようにしている。   In the case of the second embodiment, the bush 14 is embedded from the inside of the valve to the substantially middle part in the thickness direction of the valve lid 12 without penetrating the valve lid 12, and the valve rod 10 positioned outside the piston ring 33. The gap between the valve lid 12 and the through hole is set to be slightly larger than that in the first embodiment shown in FIG. A pair of annular grooves are provided in the valve lid 12 so as to sandwich the opening of the steam vent hole 16 facing the outer periphery of the valve stem 10, and the piston ring 33 is accommodated in these grooves. By fitting the rod 10, steam does not escape from the gap between the valve rod 10 and the through hole of the valve lid 12. As shown in FIG. 4, the piston ring 33 is formed by bending a single flat bar having step portions with different directions at both ends into an annular shape, and overlapping the step portions at both ends. By providing a gap 332 next to the overlapping portion 331, a spring effect is provided.

一方、ブッシュ25の下端部は図1のようにガイド部23を貫通せずに蒸気抜き孔127の手前までの長さまで埋め込むようにし、ガイド部23を貫通する弁棒22とガイド部23の貫通穴との隙間も図1の場合よりも若干大きく設定している。そして、蒸気抜き孔27の弁棒22外周部を臨む開口部を挟むように、弁ケーシング2に円環状の溝をそれぞれ設け、この溝でピストンリング34を収め、ピストンリング34に弁棒22を嵌めることによって弁棒22とガイド部23の貫通穴との隙間から蒸気が逃げないようにしている。なお、ピストンリング34はピストンリング33と同様に形成されている。   On the other hand, the lower end portion of the bush 25 does not penetrate the guide portion 23 as shown in FIG. 1 but is embedded up to the length before the steam vent hole 127, and the valve rod 22 penetrating the guide portion 23 and the guide portion 23 penetrate. The gap with the hole is also set slightly larger than in the case of FIG. An annular groove is provided in the valve casing 2 so as to sandwich the opening of the steam vent hole 27 facing the outer periphery of the valve rod 22, and the piston ring 34 is accommodated in the groove, and the valve rod 22 is inserted into the piston ring 34. By fitting, steam does not escape from the gap between the valve stem 22 and the through hole of the guide portion 23. The piston ring 34 is formed in the same manner as the piston ring 33.

本実施例2の複合型再熱高温蒸気弁は、このような構成を採用した結果、ブッシュ14と弁棒10、ブッシュ25と弁棒22の隙間が大きくなり、その分摺動が容易になる。隙間が大きくなると冷却蒸気孔20、31から出た冷却蒸気が蒸気抜き孔16、27の方向へ漏れやすくなるが、ピストンリング33、34によりその流れが阻害されるので漏れを止めることができる。ピストンリング33、34は重ね合わせ部41と隙間42の作用によりバネ効果を有しており、弁棒10、22が熱により膨張、収縮しても弁棒10、22とピストンリング33、34の隙間をほぼ無くすことができるので漏れを止めることができる。   As a result of adopting such a configuration, the composite reheat high temperature steam valve according to the second embodiment has a large gap between the bush 14 and the valve stem 10 and between the bush 25 and the valve stem 22, which facilitates sliding. . When the gap becomes larger, the cooling steam that has exited from the cooling steam holes 20 and 31 is likely to leak in the direction of the steam vent holes 16 and 27, but the flow is blocked by the piston rings 33 and 34, so that the leakage can be stopped. The piston rings 33, 34 have a spring effect due to the action of the overlapping portion 41 and the gap 42, and even if the valve stems 10, 22 expand and contract due to heat, the valve stems 10, 22 and the piston rings 33, 34 Since the gap can be almost eliminated, leakage can be stopped.

また、ブッシュ14、25は図5に示す様に円周方向に分割部141を有しており、ブッシュ14、25が熱変形したり、弁棒10、22との間に温度差ができて隙間が狭くなった場合でもかじりや固着が起こらないように構成されている。   Further, as shown in FIG. 5, the bushes 14 and 25 have a divided portion 141 in the circumferential direction, and the bushes 14 and 25 are thermally deformed or a temperature difference is generated between the valve rods 10 and 22. Even when the gap becomes narrow, it is configured so that no galling or sticking occurs.

それゆえ、本実施例2の複合型再熱高温蒸気弁は長期間の使用が可能な上、高い摺動性と高い漏れ防止機能を発揮し、さらに、冷却による熱変形から生じうるかじりや固着をも防止することができる。   Therefore, the combined reheat high temperature steam valve of the second embodiment can be used for a long period of time, exhibits high slidability and a high leakage prevention function, and further, galling and sticking that can arise from thermal deformation due to cooling. Can also be prevented.

(実施例3)
本発明の実施例3について図3、図4、図5を参照して説明する。本実施例は主蒸気止弁に適用した例を示す。
図3において、本実施例3の主蒸気止弁100は弁体が1つなので、弁蓋12には図1のように弁棒貫通部13は設けておらず、弁ケーシング2下部にだけ弁棒貫通部24を設けている。本実施例の弁ケーシング2は図示左側に主蒸気入口3を、また反対側である図示右側下部には主蒸気出口4をそれぞれ設け、そして、これら主蒸気入口部3および主蒸気出口部4間に形成された縦位置の弁室5内に弁座6と、この弁座6に対して図示下部から駆動される弁体8を接離自在に配置している。この弁座6に対して弁体8の移動により主蒸気の遮断及び流出を調節する。
(Example 3)
A third embodiment of the present invention will be described with reference to FIGS. 3, 4, and 5. FIG. This embodiment shows an example applied to a main steam stop valve.
3, since the main steam stop valve 100 of the third embodiment has one valve body, the valve lid 12 is not provided with the valve rod penetrating portion 13 as shown in FIG. A rod penetrating portion 24 is provided. The valve casing 2 of the present embodiment is provided with a main steam inlet 3 on the left side in the figure, and a main steam outlet 4 on the opposite lower side in the figure, and between the main steam inlet part 3 and the main steam outlet part 4. A valve seat 6 and a valve body 8 driven from the lower part of the figure with respect to the valve seat 6 are disposed in the valve chamber 5 in the vertical position formed in the figure. The shutoff and outflow of the main steam are adjusted by the movement of the valve body 8 with respect to the valve seat 6.

そして、本実施例3では、実施例2の場合と同様に弁棒22はその一端が弁体8の下端中央部に連結され、またその他端が円筒状のブッシュ25内部を摺動自在に貫通してアクチュエータ26に連結されている。アクチュエータ26は外部からの指令により弁棒22を介して、弁体8を上下に動かし、主蒸気の遮断及び流出を調節する。
なお、本実施例における弁棒貫通部の冷却構造および弁棒貫通部からの蒸気漏れ防止構造は上述した実施例2の場合とほぼ同じなので説明は省略する。
In the third embodiment, as in the second embodiment, the valve rod 22 has one end connected to the center of the lower end of the valve body 8 and the other end slidably passed through the cylindrical bush 25. Thus, the actuator 26 is connected. The actuator 26 moves the valve body 8 up and down via the valve rod 22 according to a command from the outside, and adjusts the cutoff and outflow of the main steam.
In addition, since the cooling structure of the valve stem penetrating portion and the structure for preventing vapor leakage from the valve stem penetrating portion in the present embodiment are substantially the same as those in the second embodiment described above, description thereof will be omitted.

本実施例3の高温主蒸気止弁100においても、長期間の使用が可能な上、高い摺動性と高い漏れ防止機能を発揮し、さらに、冷却による熱変形から生じうるかじりや固着をも防止する。   The high-temperature main steam stop valve 100 of the third embodiment can be used for a long period of time, exhibits high slidability and a high leakage prevention function, and also has galling and sticking that can occur from thermal deformation due to cooling. To prevent.

さらに、摺動性を高めるためにブッシュと25、弁棒22間の隙間を従来よりも若干大きくし、そのため生じる冷却蒸気の漏れ増大を防ぐために蒸気抜きの前後に漏れ防止用のピストンリング34を配置することにより、長期間の使用が可能な上、高い摺動性と高い漏れ防止機能を発揮するようにした。さらに、ブッシュ25を縦に分割する構造を取ることにより、冷却による熱変形から生じうるかじりや固着をも防止することができる。   Furthermore, in order to improve the slidability, the clearance between the bush 25 and the valve stem 22 is made slightly larger than before, and a piston ring 34 for preventing leakage is provided before and after steam removal in order to prevent an increase in the leakage of cooling steam. By arranging it, it can be used for a long time, and also exhibits high slidability and high leakage prevention function. Further, by adopting a structure in which the bush 25 is vertically divided, it is possible to prevent galling and sticking that may occur due to thermal deformation due to cooling.

なお、以上の実施例は複合型再熱蒸気弁、主蒸気止め弁に適用する場合ついて述べたが、本発明は、これに限定されるものではなく、高温蒸気システムに適用される主蒸気制御弁、再熱蒸気止め弁、再熱蒸気制御弁などの蒸気弁にも適用することができる。   In addition, although the above Example described the case where it applies to a composite type reheat steam valve and a main steam stop valve, this invention is not limited to this, The main steam control applied to a high temperature steam system The present invention can also be applied to steam valves such as valves, reheat steam stop valves, and reheat steam control valves.

本発明の実施例1を説明するための断面図。Sectional drawing for demonstrating Example 1 of this invention. 本発明の実施例2を説明する断面図。Sectional drawing explaining Example 2 of this invention. 本発明の実施例3を説明する断面図。Sectional drawing explaining Example 3 of this invention. 実施例1、2に採用したピストンリングの斜視図。The perspective view of the piston ring employ | adopted as Example 1,2. 実施例1、2に採用した分割型のブッシュの斜視図。The perspective view of the split type bush employ | adopted as Example 1,2.

符号の説明Explanation of symbols

2…弁ケーシング、3…主蒸気入口、4…主蒸気出口、5…弁室、6…弁座、7…弁体、8…弁体、9…ストレーナ、10…弁棒、11…ガイド部、12…弁蓋、13…弁棒貫通部、14…ブッシュ、15…アクチュエータ、16…蒸気抜き孔、17…冷却蒸気通路、18…冷却蒸気マニフォールド、19…冷却蒸気導入孔、20…冷却蒸気孔、21…冷却蒸気排出孔、22…弁棒、23…ガイド部、24…弁棒貫通部、25…ブッシュ、26…アクチュエータ、27…蒸気抜き孔、28…冷却蒸気通路、29…冷却蒸気マニフォールド、30…冷却蒸気導入孔、31…冷却蒸気孔、32…冷却蒸気排出孔、33…ピストンリング、34…ピストンリング、331…重ね合わせ部、332…隙間、141…分割部。

DESCRIPTION OF SYMBOLS 2 ... Valve casing, 3 ... Main steam inlet, 4 ... Main steam outlet, 5 ... Valve chamber, 6 ... Valve seat, 7 ... Valve body, 8 ... Valve body, 9 ... Strainer, 10 ... Valve rod, 11 ... Guide part , 12 ... Valve lid, 13 ... Valve rod penetration, 14 ... Bush, 15 ... Actuator, 16 ... Steam vent, 17 ... Cooling steam passage, 18 ... Cooling steam manifold, 19 ... Cooling steam inlet, 20 ... Cooling steam Hole: 21 ... Cooling steam discharge hole, 22 ... Valve rod, 23 ... Guide part, 24 ... Valve rod penetrating part, 25 ... Bush, 26 ... Actuator, 27 ... Vapor vent hole, 28 ... Cooling steam passage, 29 ... Cooling steam Manifold, 30 ... cooling steam introduction hole, 31 ... cooling steam hole, 32 ... cooling steam discharge hole, 33 ... piston ring, 34 ... piston ring, 331 ... overlapping part, 332 ... gap, 141 ... divided part.

Claims (7)

主蒸気入口、主蒸気出口および内部に弁室を有する弁ケーシング、前記弁室に配置された弁座、この弁座に対向して設けられた弁体、前記弁ケーシングを摺動自在に貫通して前記弁体を駆動する弁棒を備えた高温蒸気弁において、
前記弁ケーシングの弁棒貫通部を囲むように冷却蒸気通路を設け、この冷却蒸気通路に外部から冷却蒸気を導入し、当該冷却蒸気通路を通った冷却蒸気を弁室内の弁棒に向けて排出するように構成したことを特徴とする高温蒸気弁。
A main steam inlet, a main steam outlet and a valve casing having a valve chamber therein, a valve seat disposed in the valve chamber, a valve body provided opposite to the valve seat, and slidably penetrating the valve casing In a high temperature steam valve provided with a valve rod for driving the valve body,
A cooling steam passage is provided so as to surround the valve rod penetration part of the valve casing, cooling steam is introduced into the cooling steam passage from the outside, and the cooling steam passing through the cooling steam passage is discharged toward the valve rod in the valve chamber. A high temperature steam valve characterized by being configured to do so.
前記弁ケーシングの弁棒貫通部に弁軸の摺動を円滑にするブッシュを嵌めたことを特徴とする請求項1記載の高温蒸気弁。   The high-temperature steam valve according to claim 1, wherein a bush for smooth sliding of the valve shaft is fitted in a valve rod penetrating portion of the valve casing. 前記冷却蒸気通路を、外部から冷却蒸気を導入するための冷却蒸気導入孔、この冷却蒸気導入孔に連通し弁棒貫通部を囲むように形成された冷却蒸気マニフォールド、この冷却蒸気マニフォールドから分岐し弁棒貫通部に平行して形成された冷却蒸気孔およびこの冷却蒸気孔で熱交換を終えた蒸気を弁室内に排出する冷却蒸気排出孔とから構成したことを特徴とする請求項1記載の高温蒸気弁。   The cooling steam passage is branched from the cooling steam manifold, a cooling steam introduction hole for introducing cooling steam from the outside, a cooling steam manifold formed so as to communicate with the cooling steam introduction hole and surround the valve rod penetrating portion, and 2. The cooling steam hole formed in parallel with the valve stem penetrating portion and the cooling steam discharge hole for discharging the steam having finished heat exchange in the cooling steam hole into the valve chamber. High temperature steam valve. 前記弁棒貫通部に蒸気抜き孔を設け、この蒸気抜き孔の弁軸を臨む開口の前後に蒸気漏れ防止用のピストンリングを配置したことを特徴とする請求項1記載の高温蒸気弁。   2. The high temperature steam valve according to claim 1, wherein a steam vent hole is provided in the valve rod penetrating portion, and a piston ring for preventing steam leakage is disposed before and after the opening facing the valve shaft of the steam vent hole. 前記ブッシュを円周方向に複数個に分割したことを特徴とする請求項2記載の高温蒸気弁。   The high-temperature steam valve according to claim 2, wherein the bush is divided into a plurality of parts in the circumferential direction. 主蒸気温度を610℃以上、冷却蒸気温度を610℃未満とすることを特徴とする請求項1ないし5のいずれかに記載の高温蒸気弁。   The high temperature steam valve according to any one of claims 1 to 5, wherein the main steam temperature is 610 ° C or higher and the cooling steam temperature is lower than 610 ° C. 請求項1ないし6のいずれかに記載の高温蒸気弁を備えた蒸気タービンプラント。

The steam turbine plant provided with the high temperature steam valve in any one of Claims 1 thru | or 6.

JP2005236009A 2004-09-08 2005-08-16 Steam turbine plant with high temperature steam valve and high temperature steam valve Expired - Fee Related JP4537912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005236009A JP4537912B2 (en) 2004-09-08 2005-08-16 Steam turbine plant with high temperature steam valve and high temperature steam valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004260587 2004-09-08
JP2005236009A JP4537912B2 (en) 2004-09-08 2005-08-16 Steam turbine plant with high temperature steam valve and high temperature steam valve

Publications (2)

Publication Number Publication Date
JP2006105130A JP2006105130A (en) 2006-04-20
JP4537912B2 true JP4537912B2 (en) 2010-09-08

Family

ID=36375149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005236009A Expired - Fee Related JP4537912B2 (en) 2004-09-08 2005-08-16 Steam turbine plant with high temperature steam valve and high temperature steam valve

Country Status (1)

Country Link
JP (1) JP4537912B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8142138B2 (en) * 2009-05-01 2012-03-27 General Electric Company Turbine engine having cooling pin
JP6104742B2 (en) * 2013-07-12 2017-03-29 三菱重工業株式会社 Combination valve and steam turbine system
JP6210842B2 (en) * 2013-10-29 2017-10-11 三菱重工業株式会社 Steam control valve
CN114135343A (en) * 2021-10-30 2022-03-04 中国长江动力集团有限公司 Main steam adjusting combined steam valve for steam turbine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145879U (en) * 1981-03-11 1982-09-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145879U (en) * 1981-03-11 1982-09-13

Also Published As

Publication number Publication date
JP2006105130A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
US7481058B2 (en) High temperature steam valve and steam turbine plant
US7210899B2 (en) Passive clearance control
CN102959294B (en) Fluid control valve
CN100582440C (en) Variable pressure-controlled cooling scheme and thrust control arrangements for a steam turbine
EP1644625B1 (en) Turbocharger apparatus having an exhaust gas sealing system for preventing gas leakage from the turbocharger apparatus
US9279345B2 (en) Steam turbomachine valve having a valve member and seal assembly
AU2008346921B2 (en) Seal assembly for use with valves having a two-piece cage
US8052380B2 (en) Thermally-activated clearance reduction for a steam turbine
JP4537912B2 (en) Steam turbine plant with high temperature steam valve and high temperature steam valve
US20070257445A1 (en) Tension Spring Actuators for Variable Clearance Positive Pressure Packings for Steam Turbines
CN102575623A (en) Structure for reducing axial leakage of valve
US20140252259A1 (en) Butterfly valve
JP5047096B2 (en) Steam valve device
US5628617A (en) Expanding bell seal
JP2014070513A (en) Steam valve for steam turbine
JP5072767B2 (en) Steam valve for steam turbine
JP2006017016A (en) Steam turbine casing and steam turbine
JP6021702B2 (en) Leak prevention seal, reactor coolant pump
US7086828B2 (en) Steam turbine and method for operating a steam turbine
CN102787871A (en) Main steam valve of steam turbine
US20160208930A1 (en) Valve for shutting off and/or controlling the flow rate of fluid flows, and a method for the post-production of such a valve
CN115111051A (en) Turbocharger turbine exhaust valve assembly
US20150198058A1 (en) Steam turbomachine valve having a floating seal assembly
CN220249005U (en) Ball valve
US9279344B2 (en) Valve poppet element defining balance chamber

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4537912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees