JP4531955B2 - Semiconductor laser device and manufacturing method thereof - Google Patents

Semiconductor laser device and manufacturing method thereof Download PDF

Info

Publication number
JP4531955B2
JP4531955B2 JP2000266796A JP2000266796A JP4531955B2 JP 4531955 B2 JP4531955 B2 JP 4531955B2 JP 2000266796 A JP2000266796 A JP 2000266796A JP 2000266796 A JP2000266796 A JP 2000266796A JP 4531955 B2 JP4531955 B2 JP 4531955B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
plane
laser device
alas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000266796A
Other languages
Japanese (ja)
Other versions
JP2002076517A (en
Inventor
均 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2000266796A priority Critical patent/JP4531955B2/en
Publication of JP2002076517A publication Critical patent/JP2002076517A/en
Application granted granted Critical
Publication of JP4531955B2 publication Critical patent/JP4531955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体レーザ素子及びその作製方法に関し、更に詳細には、GaAs基板上にAlAs(N)層とAl(As)N層との組み合わせによる内部電流狭窄構造を有する半導体レーザ素子、特に発光波長0.6μmから1.65μmの帯域の半導体レーザ素子として最適な半導体レーザ素子及びその作製方法に関するものである。
【0002】
【従来の技術】
従来、GaAs基板上に形成した、発光波長980nm帯の狭ストライプ型半導体レーザ素子の分野では、活性層上に形成されたストライプ状リッジに電流注入領域を有するリッジ導波路型半導体レーザ素子が、作製が容易であり、動作信頼性も高いという理由から、代表的に用いられている。
【0003】
【発明が解決しようとする課題】
しかし、リッジ導波路型半導体レーザ素子は、埋め込み型ストライプ半導体レーザ素子、つまり内部電流狭窄構造を有する半導体レーザ素子に比べて、しきい値電流が高くなるという問題点があった。
リッジ導波路型半導体レーザ素子のしきい値電流が埋め込み型ストライプ半導体レーザ素子に比べて高くなる原因は、通常、リッジ下部の幅が2μmから3μm程度の狭い幅であっても、活性層の位置では、リッジ上部の電流注入領域から注入された電流が拡散して、リッジ下部の1.5倍程度に、つまり電流注入領域の幅が3μmから5μm程度に広がることに起因している。
ここで、埋め込み型ストライプ半導体レーザ素子とは、活性層を有する2重ヘテロ構造をエッチングしてメサ状に形成し、次いでメサの両側を電流狭窄層で埋め込んだ構造の半導体レーザを言う。特に、屈折率の小さい化合物半導体層で埋め込んだ内部電流狭窄構造を有する半導体レーザ素子は、屈折率導波路型半導体レーザ素子として分類され、安定した単一モードの横モード発振を持続することができるので、光通信分野の光源として最適と考えられている。
【0004】
そこで、本発明の目的は、このような実情に鑑み、しきい値電流が低い、狭ストライプ型の内部電流狭窄構造を有するGaAs系半導体レーザ素子を提供することである。
【0005】
【課題を解決するための手段】
本発明者は、AlAsN層は、N含有率が高くなるにつれて、電気絶縁性が増大するという現象と、1999年春季応用物理学会予稿集の29p−T−6に発表されている「GaInNAs/GaAs量子井戸構造のMOVPE成長における基板オフ角の効果」に関する研究とに注目した。
1999年春季応用物理学会予稿集29p−T−6によれば、GaAs基板の基板面をA方向にオフした場合、オフ角を増加させるにつれ、基板面に成長させたGaInNAs層のPL波長は長波長にシフトする、つまり、GaInNAs層のN含有率が増加する。
そこで、Nを含むGaNAs層、又はAlAsN層をGaAs基板上に成長させる場合、通常、GaAs基板の(100)面上に成長させているが、本発明者は、(100)面と(111)A面方向に傾斜した面を有するGaAs基板を用いることにより、Nの取り込み量を変化させ、N含有率が低く、As含有率が高く、電気絶縁性が低いAlAs(N)層を(100)面上に、N含有率の高く、As含有率が低く、電気絶縁性が高いAl(As)N層を(111)A面上に成膜することにより、電流狭窄構造を形成することを着想した。
そして、本発明者は、この着想を実験的に確認して、本発明を発明するに至った。
【0006】
上記目的を達成するために、本発明に係る半導体レーザ素子は、底面として設けられた(100)面と、(100)面の両縁からそれぞれ側面として斜め上方に向かう(N11)A面(N;整数)とからなる凹部を(100)面に有する段差基板として形成されたGaAs基板と、
GaAs基板上に直接、又はGaAs基板上に化合物半導体層を介して、GaAs基板の(100)面上に形成されたAlAs(N)層と、(N11)A面に形成され、AlAs(N)層よりN含有率が高く、As含有率が低いAl(As)N層とからなるAlAsN電流狭窄構造と
を備えていることを特徴としている。
【0007】
実用的には、(N11)A面(N;整数)のNが1であって、(100)面上にはAlAs(N)層が形成され、段差基板の(111)A面上にはAl(As)N層が形成されている。
【0008】
本発明の好適な実施態様では、半導体レーザ素子の活性層を、GaInP、AlGaInP、AlGaAs、GaAs、GaInAs、GaInAsSb、GaInNAs及びGaInNAsSbのいずれかで形成することにより、発光波長0.6μmから1.65μmの帯域の半導体レーザ素子を作製することができる。
【0009】
本発明に係る半導体レーザ素子では、凹部の(100)面には低N含有率の低電気絶縁性のAlAsN層が形成されているので、注入電流が(100)面を通過して流れるものの、(N11)A面、例えば(111)A面には、高N含有率、低As含有率の高電気絶縁性のAlN(As)層が形成されているいるので、注入電流は(111)A面に阻まれて流れない。
この結果、狭い、例えば2μm幅の平坦な(100)面領域と(111)A面領域の組み合わせは、内部電流狭窄構造を構成するので、活性層を内部電流狭窄構造に近接して配置することにより、(100)面領域にのみ電流が流れて、余分な漏れ電流が(100)面領域以外に流れなくなるので、しきい値電流は、埋め込みヘテロ型ストライプ半導体レーザ素子と同程度に小さくなる。
つまり、本発明では、凹部の(100)面の幅が電流注入領域の幅に相当し、凹部の(100)面の幅を狭くして、狭ストライプ型半導体レーザ素子を形成することにより、しきい値電流を低下させることができる。
好適には、凹部の(100)面の幅は2μm以下であり、(N11)A面の下端と上端との高低差は、2μm以上である。
【0010】
また、AlNは、AlAsに比べて、バンドギャップが大きく、屈折率が小さい。凹部を有するGaAs基板上に凹部に沿ってGaInAs活性層を形成し、凹部に存在するGaInAs活性層をAlAs(N)層で囲むような形にすることにより、屈折率が小さい層でGaInAs活性層を囲んだ屈折率導波路型半導体レーザ素子となる。これにより、横モードを安定な単一モードで発振する半導体レーザ素子を実現している。
【0011】
本発明に係る半導体レーザの作製方法は、AlAs(N)層とAl(As)N層との組み合わせによる電流狭窄構造を有する半導体レーザ素子の作製方法であって、
底面として設けられた(100)面と、(100)面の両縁からそれぞれ側面として斜め上方に向かう(N11)A面(N;整数)とからなる凹部をGaAs基板の(100)面に形成する工程と、
GaAs基板上に直接、又はGaAs基板上に化合物半導体層を介して、クラッキングしたAH3 を照射しつつ、ラジカル窒素及びアルミニウム原子を同時に照射して、(100)面上にAlAs(N)層を成膜し、(N11)A面上にAlAs(N)層よりN含有率が高く、As含有率が低いAl(As)N層を成膜する工程と
を備えていることを特徴としている。
【0012】
本発明方法に係る半導体レーザ素子の作製方法では、埋め込みヘテロ型半導体レーザ素子の場合のように、半導体レーザ素子の作製プロセス中に、活性層をエッチングすることにより活性層を大気に晒すというようなことがないので、活性層を酸化させないというメリットがあり、高信頼性の半導体レーザ素子を実現することができる。
【0013】
【発明の実施の形態】
以下に、添付図面を参照し、実施形態例を挙げて本発明の実施の形態を具体的かつ詳細に説明する。
半導体レーザ素子の実施形態例
本実施形態例は、本発明に係る半導体レーザ素子の実施形態の一例であって、図1は本実施形態例の半導体レーザ素子の構成を示す断面図である。
本実施形態例の半導体レーザ素子10は、発光波長980nm帯の半導体レーザ素子であって、半導体基板12として、底面として設けられた(100)面14aと、(100)面14aの両縁からそれぞれ側面として斜め上方に向かう(111)A面14bとからなる凹部14を(100)面に備える80μm程度の板厚のGaAs基板を有する。
(100)面14aの幅は2μm、(111)A面14bの下端と上端との高低差は2μm、凹部のピッチは250μmである。
【0014】
半導体レーザ素子10は、GaAs基板12上に、凹部14に沿って、膜厚0.3μmで、キャリア濃度が1×1018cm-3のn−GaAsバッファ層16、及び、膜厚1.5μmで、キャリア濃度が1×1018cm-3のn−Al0.3Ga0.7Asクラッド層18を有する。
また、半導体レーザ素子10は、電流狭窄構造として、n−AlGaAsクラッド層18の(100)面に形成され、Nを殆ど含まない膜厚20nmのAlAs(N)層20と、(111)A面に形成され、N含有率が高く、As含有率が低いAlN(As)層22とを備えている。AlN(As)層22は、Nを選択的に取り込み、その結果、逆にAsを殆ど含んでいない。
【0015】
半導体レーザ素子10は、AlAs(N)層20及びAlN(As)層22に沿って、更に、膜厚0.1μmのGaAs光閉じ込め層、Ga0.8In0.2As量子井戸活性層、及び膜厚0.1μmのGaAs光閉じ込め層からなるSCH−MQW24、キャリア濃度が1×1018cm-3で膜厚1.5μmのp−Al0.3Ga0.7Asクラッド層26、及びp−AlGaAsクラッド層26の凹部の底面(100)面に沿って設けられた幅2μmの、キャリア濃度が3×1019cm-3で膜厚0.2μmのp−GaAsコンタクト層28を備えている。
また、半導体レーザ素子10は、p側電極30として、p−GaAsコンタクト層28及びp−AlGaAsクラッド層26上にTi/Pt/Auの積層金属膜を、n型電極32としてGaAs基板12の裏面にAuGeNi/Auの積層金属膜を備えている。
半導体レーザ素子10の共振器長は、300μmであって、レーザ前端面はas−cleave、レーザ後端面はPCVDによりHRコーテイングが施されている。
【0016】
n−AlGaAsクラッド層18の凹部の(100)面に電気絶縁性の低いAlAs(N)層20が形成されているので、注入電流が流れるが、一方、(111)A面には電気絶縁性の高いAl(As)N層22が形成されているために、電流が流れない。この結果、AlAs(N)層20及びAlN(As)層22上に形成されているSCH−MQW24では、凹部底の平坦な2μm幅の活性層領域にのみ電流が流れ、それ以外の領域には余分な漏れ電流が流れなくなる。よって、しきい値電流が、埋め込み型の狭ストライプ型半導体レーザ素子と同じ程度に低くなる。
また、AlNは、AlAsに比べて、バンドギャップが大きいため、屈折率もAlNの方が小さくなる。図1のような構成の半導体レーザ素子10は、凹部のGaInAs活性層が屈折率の低いAlN(As)層22で囲まれているので、活性層が屈折率の低い層で囲まれた屈折率導波路型半導体レーザ素子となる。これにより、横モードも安定な単一モードが得られる。
【0017】
半導体レーザ素子の作製方法の実施形態例
本実施形態例は、本発明に係る半導体レーザ素子の作製方法を上述の半導体レーザ素子10の作製に適用した実施形態の一例であって、図2(a)から(c)及び図3(d)から(e)は、それぞれ、本実施形態例の方法に従って半導体レーザ素子を作製する際の工程毎の断面図である。
まず、n−GaAs基板12にフォトリソグラフィ処理及びエッチング加工を施して、図2(a)に示すように、底面として(100)面14aと、(100)面14aの両縁からそれぞれ斜め上方に向かう側面として(111)A面14bとからなる凹部14を(100)面に形成する。
凹部のピッチは長手方向に250μmとし、凹部の平坦底面である(100)面14aの幅は2μmとし、凹部の高さ方向の段差、即ち(111)A面14bの下端と上端との差は2μmとする。
【0018】
次いで、GaAs基板12をガスソースMBE成長装置に搬入し、サーマルクリーニングの後、エピタキシャル成長を行う。
先ず、図2(b)に示すように、キャリア濃度が1×1018cm-3のn−GaAsバッファ層16を膜厚0.3μmで、続いて、キャリア濃度が1×1018cm-3のn−Al0.3Ga0.7Asクラッド層18を膜厚1.5μmで成長させる。
【0019】
次に、以下の成長プロセス条件で、n−AlGaAsクラッド層18に形成された凹部に沿って、クラッキングしたAsH3を照射しつつ、ラジカル窒素及びアルミニウム原子を同時に照射することにより、図2(c)に示すように、(100)面にはNを殆ど含まないAlAs(N)層20を成膜し、(111)A斜面にはNを選択的に取り込み、その結果、Asを殆ど含まないAlN(As)層22を成膜する。
平坦底面に成膜するNを殆ど含まないAlAs(N)層の膜厚は、3nm以上200nm以下、例えば20nmであるように成長プロセス条件を制御する。
【0020】
成長プロセス条件
成長方法 :ガスソースMBE法
AsH3の分圧 :5×10-5Torr
ラジカル窒素の分圧 :6×10-6Torr
アルミニウム原子の分圧 4×10-7Torr
成長温度 450℃
【0021】
続いて、図3(d)に示すように、AlAs(N)層20及びAl(As)N層22上に、膜厚0.1μmのGaAs光閉じ込め層、Ga0.8In0.2As量子井戸活性層、及び膜厚0.1μmのGaAs光閉じ込め層からなるSCH−MQW24、キャリア濃度が1×1018cm-3で膜厚1.5μmのp−Al0.3Ga0.7Asクラッド層26、及びキャリア濃度が3×1019cm-3で膜厚0.2μmのp−GaAsコンタクト層28を、順次、成長させる。
次いで、図3(e)に示すように、フォトリソグラフィ処理とエッチング加工により、p−AlGaAsクラッド層26の凹部の2μm幅の平坦底面上にのみ、p−GaAsコンタクト層28を残す。
次いで、図1に示すように、p−GaAsコンタクト層28及びp−AlGaAsクラッド層26上にTi/Pt/Auの積層金属膜を蒸着して、p側電極30を形成する。更に、GaAs基板12の裏面を研磨して80μm程度の板厚に調整した後、AuGeNi/Auの積層金属膜を蒸着して、n側電極32を形成する。
【0022】
ストライプ方向に共振器長を、例えば300μmで構成し、レーザ前端面をas−cleave、レーザ後端面をPCVDによりHRコーテイングする。その後、凹部を中心として、250μmピッチで半導体レーザチップを切り出すことにより、半導体レーザ素子を作製することができる。
【0023】
(100)面にはNを殆ど含まないAlAs(N)層が形成されているので、注入電流が(100)面を通過して流れる一方、(111)A面には電気絶縁性の高いAl(As)N層22が形成されているので、電流が(111)A面を通過して流れない。
従って、本実施形態例の方法で作製した半導体レーザ素子では、平坦な2μm幅の活性層領域のみ電流が流れ、余分な漏れ電流が流れなくなるので、しきい値電流が小さい。
【0024】
また、AlAsに比べてAlNはバンドギャップが大きいため、屈折率もAlNの方が小さくなる。よって、本実施形態例の方法で作製した半導体レーザ素子10は、凹部のGaInAs活性層を屈折率の低いAl(As)N層22で囲んだ屈折率導波路型半導体レーザ素子となるので、横モードも安定な単一モードが得られる。このように、本実施形態例の方法によれば、GaAs基板上に屈折率導波型/内部電流狭窄型の半導体レーザ素子を容易に作製することができる。
更には、本実施形態例の半導体レーザ素子の作製方法では、埋め込みヘテロ型半導体レーザ素子の場合のように、半導体レーザ素子の作製プロセス中に、活性層をエッチングすることにより活性層を大気に晒すというようなことがないので、活性層を酸化させないというメリットがあり、高信頼性の半導体レーザ素子を実現することができる。
【0025】
実施形態例では、980nm帯レーザの例を示したが、活性層の材料をGaInP、AlGaInP、GaAs、AlGaAs、GaInAs、GaInAsSb、GaInNAs、GaInNAsSbとして、クラッド層と光閉じ込め層をそれぞれの活性層に適応した材料とすることにより、波長600〜1650nm帯の波長域をカバーできる。この際、AlAsNの電流狭窄技術を実施形態例と同様に使うことができる。
また、本実施形態例では、ガスソースMBE法による成長例を示したが、MBE、CBE、MOCVD法でも良い。
【0026】
【発明の効果】
本発明の半導体レーザ素子は、GaAs基板の(100)面上に形成された導電性のAlAs(N)層と、(N11)A面に形成され、AlAs(N)層よりN含有率が高く、従って電気絶縁性の高いAl(As)N層とからなるAlAsN電流狭窄構造とを備えている。
本発明は、凹部の(100)面の幅を狭くすることにより、注入電流の広がりを防止して、しきい値電流を低下させることができるので、しきい値電流が低い、狭ストライプ型の内部電流狭窄構造を有するGaAs系半導体レーザ素子を実現している。
また、本発明に係る半導体レーザ素子は、凹部のGaInAs活性層を屈折率の低いAl(As)N層22で囲むことにより、屈折率導波路型半導体レーザ素子の構成と同じ構成を有するので、横モードも安定な単一モードが得られる。
本発明方法によれば、GaAs基板上に屈折率導波型/内部電流狭窄型の半導体レーザ素子を容易に作製することができ、しかも、埋め込みヘテロ型半導体レーザ素子の場合のように、半導体レーザ素子の作製プロセス中に、活性層をエッチングすることにより活性層を大気に晒すというようなことがないので、活性層を酸化させないというメリットがあり、動作の高信頼性を実現することができる。
【図面の簡単な説明】
【図1】実施形態例の半導体レーザ素子の構成を示す断面図である。
【図2】図2(a)から(c)は、それぞれ、実施形態例の方法に従って半導体レーザ素子を作製する際の工程毎の断面図である。
【図3】図3(d)から(e)は、それぞれ、図2(c)に続いて、実施形態例の方法に従って半導体レーザ素子を作製する際の工程毎の断面図である。
【符号の説明】
10 実施形態例の半導体レーザ素子
12 GaAs基板
14 凹部
14a (100)面
14b (111)A面
16 n−GaAsバッファ層
18 n−Al0.3Ga0.7Asクラッド層
20 AlAs(N)層
22 AlN(As)層
24 SCH−MQW
26 p−Al0.3Ga0.7Asクラッド層
28 p−GaAsコンタクト層
30 p側電極
32 n型電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor laser device and a method for manufacturing the same, and more particularly, a semiconductor laser device having an internal current confinement structure on a GaAs substrate by a combination of an AlAs (N) layer and an Al (As) N layer, in particular, light emission. The present invention relates to a semiconductor laser element that is optimal as a semiconductor laser element having a wavelength range of 0.6 μm to 1.65 μm and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, in the field of a narrow stripe type semiconductor laser device having an emission wavelength of 980 nm band formed on a GaAs substrate, a ridge waveguide type semiconductor laser device having a current injection region in a stripe ridge formed on an active layer is manufactured. Is typically used because it is easy to operate and has high operational reliability.
[0003]
[Problems to be solved by the invention]
However, the ridge waveguide type semiconductor laser device has a problem that the threshold current is higher than that of a buried stripe semiconductor laser device, that is, a semiconductor laser device having an internal current confinement structure.
The reason why the threshold current of the ridge waveguide type semiconductor laser device becomes higher than that of the buried stripe semiconductor laser device is that the position of the active layer is usually obtained even if the width of the lower portion of the ridge is as narrow as 2 to 3 μm. In this case, the current injected from the current injection region above the ridge is diffused, and the width of the current injection region is expanded from about 3 μm to about 5 μm, which is about 1.5 times that of the bottom of the ridge.
Here, the buried stripe semiconductor laser element refers to a semiconductor laser having a structure in which a double heterostructure having an active layer is formed in a mesa shape by etching, and then both sides of the mesa are buried with a current confinement layer. In particular, a semiconductor laser element having an internal current confinement structure embedded with a compound semiconductor layer having a low refractive index is classified as a refractive index waveguide type semiconductor laser element, and can maintain stable single mode transverse mode oscillation. Therefore, it is considered optimal as a light source in the field of optical communication.
[0004]
Accordingly, an object of the present invention is to provide a GaAs semiconductor laser element having a narrow stripe type internal current confinement structure with a low threshold current in view of such a situation.
[0005]
[Means for Solving the Problems]
The present inventor has found that the AlAsN layer has a phenomenon that the electrical insulation increases as the N content increases, and “GaInNAs / GaAs” published in 29p-T-6 of the 1999 Spring Applied Physics Society Proceedings. Attention was paid to research on the effect of substrate off-angle in MOVPE growth of quantum well structures.
According to the 1999 Spring Applied Physics Society Proceedings 29p-T-6, when the substrate surface of the GaAs substrate is turned off in the A direction, the PL wavelength of the GaInNAs layer grown on the substrate surface increases as the off angle increases. The wavelength shifts, that is, the N content of the GaInNAs layer increases.
Therefore, when a GaNAs layer containing N or an AlAsN layer is grown on a GaAs substrate, it is usually grown on the (100) plane of the GaAs substrate. By using a GaAs substrate having a surface inclined in the A-plane direction, the amount of N incorporation is changed, and an AlAs (N) layer having a low N content, a high As content, and a low electrical insulating property is obtained. The idea is to form a current confinement structure by forming an Al (As) N layer having a high N content, a low As content, and a high electrical insulation on the (111) A surface. did.
And this inventor confirmed this idea experimentally and came to invent this invention.
[0006]
In order to achieve the above object, a semiconductor laser device according to the present invention includes a (100) plane provided as a bottom surface, and (N11) A plane (N A GaAs substrate formed as a stepped substrate having a recess formed on the (100) plane;
An AlAs (N) layer formed on the (100) plane of the GaAs substrate via a compound semiconductor layer directly on the GaAs substrate or an AlAs (N) layer formed on the (N11) A plane. And an AlAsN current confinement structure including an Al (As) N layer having a higher N content and a lower As content.
[0007]
Practically, N on the (N11) A plane (N; integer) is 1, an AlAs (N) layer is formed on the (100) plane, and on the (111) A plane of the stepped substrate. An Al (As) N layer is formed.
[0008]
In a preferred embodiment of the present invention, the active layer of the semiconductor laser element is formed of any one of GaInP, AlGaInP, AlGaAs, GaAs, GaInAs, GaInAsSb, GaInNAs, and GaInNAsSb, so that the emission wavelength is 0.6 μm to 1.65 μm. A semiconductor laser device of the band can be manufactured.
[0009]
In the semiconductor laser device according to the present invention, since a low electrical insulating AlAsN layer having a low N content is formed on the (100) surface of the recess, the injected current flows through the (100) surface, On the (N11) A plane, for example, the (111) A plane, a highly electrically insulating AlN (As) layer having a high N content and a low As content is formed, so that the injection current is (111) A It is blocked by the surface and does not flow.
As a result, the combination of a narrow (for example, 2 μm wide) flat (100) plane region and (111) A plane region constitutes an internal current confinement structure, so that the active layer is disposed close to the internal current confinement structure. As a result, current flows only in the (100) plane region, and excess leakage current does not flow outside the (100) plane region, so that the threshold current becomes as small as that of the buried hetero stripe semiconductor laser element.
In other words, in the present invention, the width of the (100) plane of the recess corresponds to the width of the current injection region, and the width of the (100) plane of the recess is reduced to form a narrow stripe type semiconductor laser device. The threshold current can be reduced.
Preferably, the width of the (100) plane of the recess is 2 μm or less, and the height difference between the lower end and the upper end of the (N11) A plane is 2 μm or more.
[0010]
In addition, AlN has a larger band gap and a lower refractive index than AlAs. A GaInAs active layer is formed on a GaAs substrate having a recess along the recess, and the GaInAs active layer existing in the recess is surrounded by an AlAs (N) layer, thereby forming a GaInAs active layer having a low refractive index. A refractive index waveguide type semiconductor laser device surrounded by. This realizes a semiconductor laser element that oscillates the transverse mode in a stable single mode.
[0011]
A method of manufacturing a semiconductor laser according to the present invention is a method of manufacturing a semiconductor laser element having a current confinement structure by a combination of an AlAs (N) layer and an Al (As) N layer,
A concave portion is formed on the (100) surface of the GaAs substrate, which includes a (100) surface provided as a bottom surface and a (N11) A surface (N; integer) heading obliquely upward from both edges of the (100) surface. And a process of
While irradiating cracked AH 3 directly on the GaAs substrate or via the compound semiconductor layer on the GaAs substrate, simultaneously irradiating radical nitrogen and aluminum atoms, an AlAs (N) layer is formed on the (100) plane. And forming an Al (As) N layer having a higher N content and a lower As content on the (N11) A surface than the AlAs (N) layer.
[0012]
In the method of manufacturing a semiconductor laser device according to the method of the present invention, the active layer is exposed to the atmosphere by etching the active layer during the manufacturing process of the semiconductor laser device, as in the case of a buried hetero semiconductor laser device. Therefore, there is a merit that the active layer is not oxidized, and a highly reliable semiconductor laser device can be realized.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below specifically and in detail with reference to the accompanying drawings.
Embodiment of Semiconductor Laser Element This embodiment is an example of an embodiment of a semiconductor laser element according to the present invention, and FIG. 1 is a cross-sectional view showing the configuration of the semiconductor laser element of this embodiment. It is.
The semiconductor laser device 10 of the present embodiment is a semiconductor laser device having an emission wavelength of 980 nm band, and the (100) surface 14a provided as the bottom surface as the semiconductor substrate 12 and both edges of the (100) surface 14a, respectively. A GaAs substrate having a plate thickness of about 80 μm is provided on the (100) plane with the concave portion 14 formed of a (111) A surface 14b obliquely upward as a side surface.
The width of the (100) surface 14a is 2 μm, the height difference between the lower end and the upper end of the (111) A surface 14b is 2 μm, and the pitch of the recesses is 250 μm.
[0014]
The semiconductor laser element 10 includes an n-GaAs buffer layer 16 having a film thickness of 0.3 μm and a carrier concentration of 1 × 10 18 cm −3 along a recess 14 on a GaAs substrate 12 and a film thickness of 1.5 μm. The n-Al 0.3 Ga 0.7 As cladding layer 18 has a carrier concentration of 1 × 10 18 cm −3 .
In addition, the semiconductor laser element 10 is formed on the (100) plane of the n-AlGaAs cladding layer 18 as a current confinement structure, and has a 20 nm thick AlAs (N) layer 20 containing almost no N, and a (111) A plane. And an AlN (As) layer 22 having a high N content and a low As content. The AlN (As) layer 22 selectively takes in N, and as a result, hardly contains As.
[0015]
The semiconductor laser element 10 further includes a GaAs optical confinement layer having a thickness of 0.1 μm, a Ga 0.8 In 0.2 As quantum well active layer, and a thickness of 0 along the AlAs (N) layer 20 and the AlN (As) layer 22. SCH-MQW 24 comprising a 1 μm GaAs optical confinement layer, p-Al 0.3 Ga 0.7 As clad layer 26 having a carrier concentration of 1 × 10 18 cm −3 and a film thickness of 1.5 μm, and a recess of p-AlGaAs clad layer 26 A p-GaAs contact layer 28 having a width of 2 μm and a carrier concentration of 3 × 10 19 cm −3 and a film thickness of 0.2 μm is provided along the bottom surface (100).
In the semiconductor laser device 10, a laminated metal film of Ti / Pt / Au is used as the p-side electrode 30 on the p-GaAs contact layer 28 and the p-AlGaAs cladding layer 26, and the back surface of the GaAs substrate 12 is used as the n-type electrode 32. Are provided with a laminated metal film of AuGeNi / Au.
The cavity length of the semiconductor laser element 10 is 300 μm, the laser front end face is as-cleaved, and the laser rear end face is HR coated by PCVD.
[0016]
Since the AlAs (N) layer 20 having a low electrical insulation property is formed on the (100) surface of the recess of the n-AlGaAs cladding layer 18, an injection current flows, whereas the (111) A surface has an electrical insulation property. Since the high Al (As) N layer 22 is formed, no current flows. As a result, in the SCH-MQW 24 formed on the AlAs (N) layer 20 and the AlN (As) layer 22, current flows only in the flat active layer region having a width of 2 μm at the bottom of the recess, and in other regions. Excessive leakage current will not flow. Therefore, the threshold current becomes as low as that of the embedded narrow stripe semiconductor laser element.
Moreover, since AlN has a larger band gap than AlAs, the refractive index of AlN is also smaller. In the semiconductor laser device 10 having the configuration as shown in FIG. 1, since the GaInAs active layer in the recess is surrounded by the AlN (As) layer 22 having a low refractive index, the active layer is surrounded by a layer having a low refractive index. It becomes a waveguide type semiconductor laser element. Thereby, a stable single mode can be obtained.
[0017]
Embodiment of Method for Manufacturing Semiconductor Laser Device This embodiment is an example of an embodiment in which the method for manufacturing a semiconductor laser device according to the present invention is applied to the manufacturing of the semiconductor laser device 10 described above. 2 (a) to 2 (c) and FIGS. 3 (d) to 3 (e) are cross-sectional views for each process in fabricating a semiconductor laser device according to the method of this embodiment.
First, the n-GaAs substrate 12 is subjected to a photolithography process and an etching process, and as shown in FIG. 2 (a), the bottom surface is obliquely upward from both edges of the (100) surface 14a and the (100) surface 14a. A concave portion 14 composed of the (111) A surface 14b is formed on the (100) surface as the side surface to face.
The pitch of the recesses is 250 μm in the longitudinal direction, the width of the (100) surface 14a that is the flat bottom surface of the recess is 2 μm, and the difference in height between the recesses, that is, the difference between the lower end and the upper end of the (111) A surface 14b is 2 μm.
[0018]
Next, the GaAs substrate 12 is carried into a gas source MBE growth apparatus, and epitaxial growth is performed after thermal cleaning.
First, as shown in FIG. 2 (b), the n-GaAs buffer layer 16 having a carrier concentration of 1 × 10 18 cm -3 with a thickness of 0.3 [mu] m, followed by a carrier concentration of 1 × 10 18 cm -3 The n-Al 0.3 Ga 0.7 As cladding layer 18 is grown to a thickness of 1.5 μm.
[0019]
Next, under the following growth process conditions, radical nitrogen and aluminum atoms are irradiated at the same time while irradiating cracked AsH 3 along the recess formed in the n-AlGaAs cladding layer 18, as shown in FIG. ), An AlAs (N) layer 20 containing almost no N is formed on the (100) plane, and N is selectively taken into the (111) A slope, and as a result, contains almost no As. An AlN (As) layer 22 is formed.
The growth process conditions are controlled so that the film thickness of the AlAs (N) layer containing almost no N formed on the flat bottom surface is 3 nm to 200 nm, for example, 20 nm.
[0020]
Growth process condition Growth method: Gas source MBE method AsH 3 partial pressure: 5 × 10 −5 Torr
Radical nitrogen partial pressure: 6 × 10 −6 Torr
Partial pressure of aluminum atom 4 × 10 -7 Torr
Growth temperature 450 ° C
[0021]
Subsequently, as shown in FIG. 3D, on the AlAs (N) layer 20 and the Al (As) N layer 22, a GaAs optical confinement layer having a film thickness of 0.1 μm, a Ga 0.8 In 0.2 As quantum well active layer. SCH-MQW24 composed of a GaAs optical confinement layer with a thickness of 0.1 μm, a p-Al 0.3 Ga 0.7 As cladding layer 26 with a carrier concentration of 1 × 10 18 cm −3 and a thickness of 1.5 μm, and a carrier concentration of A p-GaAs contact layer 28 having a thickness of 3 × 10 19 cm −3 and a thickness of 0.2 μm is sequentially grown.
Next, as shown in FIG. 3E, the p-GaAs contact layer 28 is left only on the 2 μm-wide flat bottom surface of the recess of the p-AlGaAs cladding layer 26 by photolithography and etching.
Next, as shown in FIG. 1, a laminated metal film of Ti / Pt / Au is deposited on the p-GaAs contact layer 28 and the p-AlGaAs cladding layer 26 to form a p-side electrode 30. Furthermore, after the back surface of the GaAs substrate 12 is polished and adjusted to a plate thickness of about 80 μm, an AuGeNi / Au laminated metal film is deposited to form the n-side electrode 32.
[0022]
The resonator length in the stripe direction is, for example, 300 μm, the laser front end face is as-cleaved, and the laser rear end face is HR coated by PCVD. Thereafter, the semiconductor laser element can be manufactured by cutting out the semiconductor laser chip with a pitch of 250 μm around the concave portion.
[0023]
Since the AlAs (N) layer containing almost no N is formed on the (100) plane, the injected current flows through the (100) plane, while the (111) A plane has a highly electrically insulating Al. Since the (As) N layer 22 is formed, no current flows through the (111) A plane.
Therefore, in the semiconductor laser device manufactured by the method of this embodiment, current flows only in the flat active layer region having a width of 2 μm, and excess leakage current does not flow, so the threshold current is small.
[0024]
In addition, since AlN has a larger band gap than AlAs, the refractive index of AlN is smaller. Therefore, the semiconductor laser device 10 manufactured by the method of this embodiment is a refractive index waveguide type semiconductor laser device in which the GaInAs active layer in the recess is surrounded by the Al (As) N layer 22 having a low refractive index. A stable single mode can be obtained. As described above, according to the method of this embodiment, a refractive index waveguide type / internal current confinement type semiconductor laser element can be easily fabricated on a GaAs substrate.
Furthermore, in the method of manufacturing the semiconductor laser device of this embodiment, the active layer is exposed to the atmosphere by etching the active layer during the manufacturing process of the semiconductor laser device, as in the case of the buried hetero semiconductor laser device. Therefore, there is a merit that the active layer is not oxidized, and a highly reliable semiconductor laser device can be realized.
[0025]
In the embodiment, an example of a 980 nm band laser is shown. However, the material of the active layer is GaInP, AlGaInP, GaAs, AlGaAs, GaInAs, GaInAsSb, GaInNAs, and GaInNAsSb, and the cladding layer and the optical confinement layer are adapted to each active layer. By using this material, it is possible to cover the wavelength range of 600 to 1650 nm. At this time, the AlAsN current confinement technique can be used in the same manner as in the embodiment.
In this embodiment, an example of growth by the gas source MBE method is shown, but MBE, CBE, or MOCVD method may be used.
[0026]
【The invention's effect】
The semiconductor laser device of the present invention is formed on a conductive AlAs (N) layer formed on the (100) surface of a GaAs substrate and an (N11) A surface, and has a higher N content than the AlAs (N) layer. Therefore, the AlAsN current confinement structure including the Al (As) N layer having high electrical insulation is provided.
In the present invention, by narrowing the width of the (100) surface of the recess, the spread of the injection current can be prevented and the threshold current can be lowered. A GaAs semiconductor laser element having an internal current confinement structure is realized.
In addition, since the semiconductor laser device according to the present invention has the same configuration as that of the refractive index waveguide type semiconductor laser device by surrounding the GaInAs active layer of the recess with the Al (As) N layer 22 having a low refractive index, A stable single mode can be obtained in the transverse mode.
According to the method of the present invention, a refractive index waveguide type / internal current confinement type semiconductor laser device can be easily fabricated on a GaAs substrate, and a semiconductor laser as in the case of a buried hetero semiconductor laser device. Since the active layer is not exposed to the atmosphere by etching the active layer during the device manufacturing process, there is a merit that the active layer is not oxidized, and high operation reliability can be realized.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of a semiconductor laser device according to an embodiment.
FIGS. 2A to 2C are cross-sectional views for each step in fabricating a semiconductor laser device according to the method of the embodiment.
FIGS. 3D to 3E are cross-sectional views for each process in manufacturing a semiconductor laser device according to the method of the embodiment, following FIG. 2C. FIGS.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Semiconductor laser element 12 Example GaAs substrate 14 Recess 14a (100) surface 14b (111) A surface 16 n-GaAs buffer layer 18 n-Al 0.3 Ga 0.7 As cladding layer 20 AlAs (N) layer 22 AlN (As ) Layer 24 SCH-MQW
26 p-Al 0.3 Ga 0.7 As cladding layer 28 p-GaAs contact layer 30 p-side electrode 32 n-type electrode

Claims (5)

底面として設けられた(100)面と、(100)面の両縁からそれぞれ側面として斜め上方に向かう(N11)A面(N;整数)とからなる凹部を(100)面に有する段差基板として形成されたGaAs基板と、
GaAs基板上に直接、又はGaAs基板上に化合物半導体層を介して、GaAs基板の(100)面上に形成されたAlAs(N)層と、(N11)A面に形成され、AlAs(N)層よりN含有率が高く、As含有率が低いAl(As)N層とからなるAlAsN電流狭窄構造と
を備えていることを特徴とする半導体レーザ素子。
As a stepped substrate having a recess on the (100) plane, which has a (100) plane provided as a bottom surface and a (N11) A plane (N; integer) heading diagonally upward from both edges of the (100) plane. A formed GaAs substrate;
An AlAs (N) layer formed on the (100) plane of the GaAs substrate via a compound semiconductor layer directly on the GaAs substrate or on the (N11) A plane, and AlAs (N) A semiconductor laser device comprising: an AlAsN current confinement structure including an Al (As) N layer having a higher N content and a lower As content than the layers.
(N11)A面(N;整数)のNが1であって、(100)面上にはAlAs(N)層が形成され、段差基板の(111)A面上にはAl(As)N層が形成されていることを特徴とする請求項1に記載の半導体レーザ素子。(N11) N of the A plane (N; integer) is 1, an AlAs (N) layer is formed on the (100) plane, and Al (As) N is formed on the (111) A plane of the stepped substrate. 2. The semiconductor laser device according to claim 1, wherein a layer is formed. 凹部の(100)面の幅は2μm以下であり、(N11)A面の下端と上端との高低差は2μm以上であることを特徴とする請求項1又は2に記載の半導体レーザ素子。3. The semiconductor laser device according to claim 1, wherein a width of the (100) plane of the recess is 2 μm or less, and a height difference between a lower end and an upper end of the (N11) A plane is 2 μm or more. 半導体レーザ素子の活性層が、GaInP、AlGaInP、AlGaAs、GaAs、GaInAs、GaInAsSb、GaInNAs及びGaInNAsSbのいずれかで形成されていることを特徴とする請求項1に記載の半導体レーザ素子。2. The semiconductor laser device according to claim 1, wherein the active layer of the semiconductor laser device is formed of any one of GaInP, AlGaInP, AlGaAs, GaAs, GaInAs, GaInAsSb, GaInNAs, and GaInNAsSb. AlAs(N)層とAl(As)N層との組み合わせによる電流狭窄構造を有する半導体レーザ素子の作製方法であって、
底面として設けられた(100)面と、(100)面の両縁からそれぞれ側面として斜め上方に向かう(N11)A面(N;整数)とからなる凹部をGaAs基板の(100)面に形成する工程と、
GaAs基板上に直接、又はGaAs基板上に化合物半導体層を介して、クラッキングしたAH3 を照射しつつ、ラジカル窒素及びアルミニウム原子を同時に照射して、(100)面上にAlAs(N)層を成膜し、(N11)A面上にAlAs(N)層よりN含有率が高く、As含有率が低いAl(As)N層を成膜する工程と
を備えていることを特徴とする半導体レーザ素子の作製方法。
A method of manufacturing a semiconductor laser device having a current confinement structure by a combination of an AlAs (N) layer and an Al (As) N layer,
A concave portion is formed on the (100) surface of the GaAs substrate, which includes a (100) surface provided as a bottom surface and a (N11) A surface (N; integer) heading obliquely upward from both edges of the (100) surface. And the process of
While irradiating cracked AH 3 directly on the GaAs substrate or via the compound semiconductor layer on the GaAs substrate, simultaneously irradiating radical nitrogen and aluminum atoms, an AlAs (N) layer is formed on the (100) plane. And a step of forming an Al (As) N layer having a higher N content and a lower As content on the (N11) A surface than the AlAs (N) layer. A method for manufacturing a laser element.
JP2000266796A 2000-09-04 2000-09-04 Semiconductor laser device and manufacturing method thereof Expired - Fee Related JP4531955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000266796A JP4531955B2 (en) 2000-09-04 2000-09-04 Semiconductor laser device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000266796A JP4531955B2 (en) 2000-09-04 2000-09-04 Semiconductor laser device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002076517A JP2002076517A (en) 2002-03-15
JP4531955B2 true JP4531955B2 (en) 2010-08-25

Family

ID=18753824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000266796A Expired - Fee Related JP4531955B2 (en) 2000-09-04 2000-09-04 Semiconductor laser device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4531955B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259566A (en) * 1992-03-11 1993-10-08 Fujitsu Ltd Semiconductor light emitting device
JPH0645708A (en) * 1991-09-20 1994-02-18 Fujitsu Ltd Stripe laser diode and manufacture thereof
JPH0715088A (en) * 1993-04-28 1995-01-17 Sharp Corp Semiconductor laser element and fabrication thereof
JPH08274376A (en) * 1995-03-15 1996-10-18 Texas Instr Inc <Ti> Iii-v compound semiconductor emitter latice-matched with silicon
JPH09283857A (en) * 1996-04-11 1997-10-31 Ricoh Co Ltd Semiconductor manufacturing method and semiconductor element
JP2000124553A (en) * 1998-10-16 2000-04-28 Fujitsu Ltd Semiconductor laser device and manufacture thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645708A (en) * 1991-09-20 1994-02-18 Fujitsu Ltd Stripe laser diode and manufacture thereof
JPH05259566A (en) * 1992-03-11 1993-10-08 Fujitsu Ltd Semiconductor light emitting device
JPH0715088A (en) * 1993-04-28 1995-01-17 Sharp Corp Semiconductor laser element and fabrication thereof
JPH08274376A (en) * 1995-03-15 1996-10-18 Texas Instr Inc <Ti> Iii-v compound semiconductor emitter latice-matched with silicon
JPH09283857A (en) * 1996-04-11 1997-10-31 Ricoh Co Ltd Semiconductor manufacturing method and semiconductor element
JP2000124553A (en) * 1998-10-16 2000-04-28 Fujitsu Ltd Semiconductor laser device and manufacture thereof

Also Published As

Publication number Publication date
JP2002076517A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
US7026182B2 (en) Semiconductor device, semiconductor laser, their manufacturing methods and etching methods
JP3653169B2 (en) Gallium nitride semiconductor laser device
US7687290B2 (en) Method for manufacturing semiconductor optical device
JPH07235732A (en) Semiconductor laser
US8802468B2 (en) Semiconductor light emitting device and fabrication method for semiconductor light emitting device
US20090168827A1 (en) Nitride semiconductor laser chip and method of fabricating same
JP3206555B2 (en) Gallium nitride based semiconductor light emitting device and method of manufacturing the same
JPH07162086A (en) Manufacture of semiconductor laser
JP3864634B2 (en) Semiconductor light emitting device and manufacturing method thereof
US6333946B1 (en) Semiconductor laser device and process for manufacturing the same
JPH1070338A (en) Manufacture of semiconductor laser element
JP3933637B2 (en) Gallium nitride semiconductor laser device
JP4028158B2 (en) Semiconductor optical device equipment
JP3655066B2 (en) Gallium nitride compound semiconductor laser and manufacturing method thereof
JP4531955B2 (en) Semiconductor laser device and manufacturing method thereof
JP2001057458A (en) Semiconductor light-emitting device
WO2023281741A1 (en) Semiconductor optical element
JP2004103679A (en) Semiconductor light emitting element and semiconductor light emitting element module
JPH0992936A (en) Semiconductor laser element
JPH1168226A (en) Semiconductor laser element and manufacture thereof
JP2973215B2 (en) Semiconductor laser device
JP2000332359A (en) Semiconductor light emitting device
JPH07235725A (en) Semiconductor laser element and its manufacture
JP2001024281A (en) Semiconductor light emitting device
JP4240085B2 (en) Semiconductor light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20100409

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees