JP4529700B2 - Grain quality discrimination device - Google Patents

Grain quality discrimination device Download PDF

Info

Publication number
JP4529700B2
JP4529700B2 JP2005010706A JP2005010706A JP4529700B2 JP 4529700 B2 JP4529700 B2 JP 4529700B2 JP 2005010706 A JP2005010706 A JP 2005010706A JP 2005010706 A JP2005010706 A JP 2005010706A JP 4529700 B2 JP4529700 B2 JP 4529700B2
Authority
JP
Japan
Prior art keywords
unit
correlation coefficient
reference plate
section
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005010706A
Other languages
Japanese (ja)
Other versions
JP2006200945A (en
Inventor
裕樹 石突
貴広 土井
恵久 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Corp
Original Assignee
Satake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Corp filed Critical Satake Corp
Priority to JP2005010706A priority Critical patent/JP4529700B2/en
Publication of JP2006200945A publication Critical patent/JP2006200945A/en
Application granted granted Critical
Publication of JP4529700B2 publication Critical patent/JP4529700B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、米粒等の穀粒品位を判別する穀粒品位判別装置に係り、特に光学検出部に関するものである。 The present invention relates to a grain quality discriminating apparatus that discriminates grain quality such as rice grains, and more particularly to an optical detection unit.

従来の穀粒品位判別装置は、被測定物の穀粒(以下「米粒」という)を1粒ずつ光学検出部に搬送し、検出された受光データ(撮像データ)に基づいて穀粒品位判別を行うものとして知られている。具体的には、前記搬送手段は、米粒が入る複数の溝を周縁部に形成した円板をモータにより回転させるように構成し、前記溝に米粒を1粒ずつ入れて前記光学検出部に搬送する。前記光学検出部は、搬送された各米粒に光を照射するとともに米粒から得られる反射光及び透過光を前記受光データとして取得し、判定部に送る。該判定部は、受光データに基づいて米粒の品位判定を1粒ずつ行なう。そしてこの判定結果は表示部に表示し、さらに、米粒を判定品位ごとに選別する選別部を構成したものもある。 Conventional grain quality discriminating devices convey the grain (hereinafter referred to as “rice grain”) of an object to be measured to an optical detection unit one by one and perform grain quality discrimination based on detected light reception data (imaging data). Known to do. Specifically, the conveying means is configured to rotate a disk in which a plurality of grooves containing rice grains are formed in the peripheral portion by a motor, and the rice grains are put into the grooves one by one and conveyed to the optical detection unit. To do. The optical detection unit irradiates each conveyed rice grain with light, acquires reflected light and transmitted light obtained from the rice grain as the received light data, and sends the received light data to the determination unit. The determination unit determines the quality of rice grains one by one based on the received light data. And this determination result is displayed on a display part, and also what constituted the selection part which sorts a rice grain for every judgment grade.

ところで、米粒測定を何度も繰り返している間に、前記光学検出部においては、照射光源等からの放射熱により測定米粒近傍(光学検出位置近傍)の温度等の変化(判定環境変化)が生じることがある。この判定環境変化が生じると、光学検出位置における照射光量がそれまでと変化し正確な品位判別が行えないので、従来、この光量変化による判定精度の低下対策が講じられている。この対策は、光量変化に対応した補正係数を求め、該補正係数を取得した受光データに掛け合わすことにより光量変化を補正し判別精度の低下を防止するものである。具体的構成は、前記円板の何れか一つの溝に任意濃度の基準板を設置し、未だ測定に使われていないときの基準板の受光データを「初期データ」として記憶しておく。一方で、米粒測定を繰り返し行っている際の任意時期に、前記基準板の受光データを「測定データ」として取得する。そして、測定データと初期データとを比較し、測定データと初期データの明度差(濃度差)を求め、該濃度差に基づいて前記補正係数の演算が行われている。 By the way, while the rice grain measurement is repeated many times, in the optical detection unit, a change in the temperature or the like in the vicinity of the measurement rice grain (near the optical detection position) (determination environment change) occurs due to radiant heat from an irradiation light source or the like. Sometimes. When this determination environment change occurs, the amount of irradiation light at the optical detection position changes so far and accurate quality determination cannot be performed, and conventionally, measures for lowering the determination accuracy due to this light amount change have been taken. This measure is to obtain a correction coefficient corresponding to the change in the light quantity, and correct the change in the light quantity by multiplying the obtained light reception data to prevent a decrease in discrimination accuracy. Specifically, a reference plate having an arbitrary concentration is installed in any one of the grooves of the disk, and light reception data of the reference plate when not used for measurement is stored as “initial data”. On the other hand, the light reception data of the reference plate is acquired as “measurement data” at an arbitrary time when the rice grain measurement is repeatedly performed. Then, the measurement data and the initial data are compared to obtain a brightness difference (density difference) between the measurement data and the initial data, and the correction coefficient is calculated based on the density difference.

実開平5−90353号公報Japanese Utility Model Publication No. 5-90353

しかしながら、上記穀粒品位判別装置においては、前記基準板の汚れによる問題点があった。この問題点とは、前記円板周縁(溝)上には各溝に米粒を供給するための米粒滞留部が構成されており、溝に埋設した前記基準板も米粒滞留部を通過することになる。このため基準板には米粒滞留部を通過する際に米ぬか等が付着し汚れてしまう。もちろん、この基準板の汚れは、円板の搬送途中に設置した清掃用のブラシ等により対策を講じているが、一度に約1000粒の測定を繰り返し行う共同乾燥施設等での使用例からすると、基準板の汚れを完全に除去することは困難であり、また基準板の汚れ状態をチェックするにしてもオペレータ任せとなるので、判定精度の安定性が問題視されてきた。
そこで本発明はこの問題点にかんがみ、基準板の汚れに影響を受けることなく安定的に正確な品位判別が行える穀粒品位判別装置を提供することを技術的課題とする。
However, the grain quality discrimination device has a problem due to contamination of the reference plate. This problem is that a rice grain retention part for supplying rice grains to each groove is formed on the peripheral edge (groove) of the disk, and the reference plate embedded in the groove also passes through the rice grain retention part. Become. For this reason, rice bran or the like adheres to the reference plate when it passes through the rice grain retention portion and becomes dirty. Of course, this reference plate is contaminated with a cleaning brush installed in the middle of the disk transport, but it is used in a common drying facility that repeatedly measures about 1000 grains at a time. However, it is difficult to completely remove the contamination of the reference plate, and even if the contamination state of the reference plate is checked, it is left to the operator, and thus the stability of the determination accuracy has been regarded as a problem.
In view of this problem, an object of the present invention is to provide a grain quality discriminating apparatus that can stably and accurately discriminate quality without being affected by dirt on the reference plate.

上記課題を解決するため、請求項1によると、
回転円板の周縁に設けた複数の溝により穀粒を一粒ずつ搬送する穀粒搬送部と、
該穀粒搬送部により搬送された穀粒に光を照射して受光データを得る光学検出部と、
該光学検出部からの光学データに基づいて穀粒の品位判定を行う判定部と、
前記光学検出部によって検出した前記溝に設けた基準板からの測定受光データと初期受光データとに基づき光学検出部の照射光量変化に対応した光量調整又は補正係数演算による調整を行う調整部と、
を備えた穀粒品位判別装置において、
前記溝には明度の異なる基準板を配設し、前記調整部は、前記光学検出部が撮像した基準板の測定画像と初期画像から相関係数を演算し、該相関係数が所定の条件を満たしているときには当該調整部による前記調整を行い、一方、前記条件を満たしてないときには、該条件を満たすようになるまで前記基準板の濃く汚れた部分と推定される画像を測定画像及び初期画像から削除して相関係数を再演算し調整部による調整を行う、という技術的手段を講じる。
In order to solve the above problem, according to claim 1,
A grain transport unit that transports the grains one by one through a plurality of grooves provided on the periphery of the rotating disk;
An optical detection unit for obtaining light reception data by irradiating the grain conveyed by the grain conveyance unit;
A determination unit that performs grain quality determination based on optical data from the optical detection unit;
An adjustment unit that performs adjustment by light amount adjustment or correction coefficient calculation corresponding to a change in irradiation light amount of the optical detection unit based on measured light reception data and initial light reception data from a reference plate provided in the groove detected by the optical detection unit;
In the grain quality discrimination device with
A reference plate having a different brightness is provided in the groove, and the adjustment unit calculates a correlation coefficient from a measurement image of the reference plate captured by the optical detection unit and an initial image, and the correlation coefficient is a predetermined condition. When the condition is satisfied, the adjustment by the adjustment unit is performed. On the other hand, when the condition is not satisfied, an image estimated to be a darkly soiled portion of the reference plate until the condition is satisfied The technical means of deleting from the image, recalculating the correlation coefficient, and adjusting by the adjusting unit is taken.

前記調整部によると、基準板の測定画像と初期画像から求められた相関係数が所定の条件を満たしているか否かにより、測定中の基準板(測定画像)に濃く汚れた部分(他の部分よりも目立って汚れている部分)が存在するか否かが判定される。条件を例えば、相関係数が所定のしきい値(例えば0.9)を超えるか否かとし、該条件を満たしていれば調整部による調整(光量調整又は補正係数演算による調整)が行われる。一方、条件を満たさないときには、濃く汚れた部分が基準板に生じているとし、この場合は相関係数が条件を満たす値になるまで、基準板に生じた濃く汚れた部分を推定しこの部分の画像を測定画像及び初期画像から除外し相関係数を演算する。これにより、濃く汚れた部分を含まない測定画像及び初期画像に基づいて調整部による調整が行われるので調整が正確となる。前記相関係数に関し、測定画像と初期画像との相関係数が大きくなるということは、未使用状態(本装置が新品で汚れの無い状態)の基準板の初期画像と、既に何度も測定を行っているときの基準板の測定画像とが全体的に同じ傾向(均一な濃度)であることを示す。つまり、全体的に薄く汚れているが部分的に濃く汚れている部分は存在しないと推測するので、正確な測定画像による調整ができる。一方、相関係数の値が小さくなるときは、相関係数値を低下させる要因となる部分的に濃く汚れた部分が存在することになり、この場合には、前述のように相関係数が前記条件を満たすようになるまで、濃く汚れた部分に相当する画像を測定画像及び初期画像から削除し相関係数の演算を行う。 According to the adjustment unit, the reference plate (measurement image) that is being measured is heavily soiled depending on whether the correlation coefficient obtained from the measurement image of the reference plate and the initial image satisfies a predetermined condition (others) It is determined whether or not there is a part that is conspicuous and dirty than the part. The condition is, for example, whether or not the correlation coefficient exceeds a predetermined threshold value (for example, 0.9). If the condition is satisfied, adjustment by the adjustment unit (adjustment by light amount adjustment or correction coefficient calculation) is performed. . On the other hand, if the condition is not satisfied, it is assumed that a darkly soiled portion is generated on the reference plate. In this case, the darkly soiled portion generated on the reference plate is estimated until the correlation coefficient reaches a value satisfying the condition. Are excluded from the measurement image and the initial image, and the correlation coefficient is calculated. As a result, the adjustment by the adjustment unit is performed based on the measurement image and the initial image that do not include the dark and dirty part, so that the adjustment becomes accurate. Regarding the correlation coefficient, the fact that the correlation coefficient between the measured image and the initial image is large means that the initial image of the reference plate in an unused state (the device is new and free from dirt) and has already been measured many times. It shows that the measurement image of the reference plate when performing the same overall tendency (uniform density). That is, since it is assumed that there is no portion that is thinly soiled as a whole but partially darkly soiled, an accurate measurement image adjustment can be performed. On the other hand, when the value of the correlation coefficient is small, there will be a part that is partially dark and dirty, which causes the correlation coefficient value to be reduced. Until the condition is satisfied, the image corresponding to the darkly soiled portion is deleted from the measurement image and the initial image, and the correlation coefficient is calculated.

請求項2により、前記調整部は、測定画像及び初期画像をそれぞれ複数画素からなる区画に分け、相関係数の演算は測定画像の区画画素データ及び初期画像の区画画素データから演算し、また、濃く汚れた部分の削除は区画単位で行う、という技術的手段を講じる。このように、測定画像及び初期画像を同じく複数の区画に分けることにより、相関係数を演算する際には、例えば、各区画における一つ又は複数の画素データを基に演算できるので、全ての画素データに基づいた演算を行わなくてよい。よって、演算効率がよい。 According to claim 2, the adjustment unit divides the measurement image and the initial image into sections each composed of a plurality of pixels, the correlation coefficient is calculated from the section pixel data of the measurement image and the section pixel data of the initial image, and A technical measure is taken to delete dark and dirty parts in units of sections. Thus, when the correlation coefficient is calculated by dividing the measurement image and the initial image into a plurality of sections, for example, since the calculation can be performed based on one or a plurality of pixel data in each section, The calculation based on the pixel data need not be performed. Therefore, the calculation efficiency is good.

請求項3により、前記区画は複数の特定の区画とする、という技術的手段を講じる。これにより、相関係数の演算を全区画に基づいて行わなくてよいので、更に演算効率がよくなる。また、区画の削除に関しても、全ての区画を対象としないので効率がよい。 According to claim 3, a technical means is provided in which the section is a plurality of specific sections. Thereby, since it is not necessary to perform the calculation of the correlation coefficient based on all the sections, the calculation efficiency is further improved. In addition, the deletion of a partition is efficient because not all the partitions are targeted.

請求項4により、前記区画画素データは該当区画の画素データの平均濃度値とする、という技術的手段を講じる。これにより、区画における全画素データ、つまり、RGBの明度平均値等を加味できるので、より正確な相関係数が得られ基準板の汚れ部分の検出精度が向上する。 According to a fourth aspect of the present invention, technical means is adopted in which the partition pixel data is set to an average density value of pixel data of the corresponding partition. As a result, all pixel data in the section, that is, RGB lightness average values, and the like can be taken into account, so that a more accurate correlation coefficient is obtained and the accuracy of detecting the dirty portion of the reference plate is improved.

請求項5により、前記調整部が行う区画の削除は、自区画を除いた区画での相関係数を演算し、該相関係数のうち最も値の大きい相関係数における自区画を一番に削除し、その次に大きい相関係数における自区画を二番に削除するように順次行う、という技術的手段を講じる。これにより、濃い汚れ部分の順に区画を特定することができるので、この順に従うことにより的確で効率的な区画削除ができる。 According to claim 5, the section deletion performed by the adjustment unit is to calculate a correlation coefficient in a section excluding the own section, and to set the own section in the correlation coefficient having the largest value among the correlation coefficients first. Technical measures are taken to delete and then sequentially delete the self-partition at the next largest correlation coefficient in the second order. As a result, the sections can be specified in the order of dark stains, so that the sections can be accurately and efficiently deleted by following this order.

請求項6により、前記調整部が削除する区画の数が所定数になった場合には、基準板の汚れによる異常を知らせる報知部を有する、という技術的手段を講じる。これにより、正確な相関係数を求めるために必要な測定画像と初期画像の最低限度が報知される。この報知により、オペレータは装置を停止し基準板の清掃を行うことができる。 According to a sixth aspect of the present invention, there is provided a technical means for providing a notifying unit for notifying abnormality due to dirt on the reference plate when the number of sections to be deleted by the adjusting unit reaches a predetermined number. Thereby, the minimum level of the measurement image and the initial image necessary for obtaining an accurate correlation coefficient is notified. By this notification, the operator can stop the apparatus and clean the reference plate.

請求項7により、前記区画は、基準板の撮像画素を縦と横に任意の区画数で分けたものとする、という技術的手段を講じる。穀粒搬送部の回転円盤は回転にムラが生じるので、撮像した基準板画像の画素は回転方向に向かって長短が生じ基準板をイメージした画素数が異なってしまう。このような場合にでも、基準板の撮像画素を縦と横に任意の区画数で分割することにより、初期画像と、随時撮像する測定画像の対応する区画位置を同じにすることがきるので、相関係数の値が更に正確になる。 According to a seventh aspect of the present invention, the section takes a technical means in which the imaging pixels of the reference plate are divided vertically and horizontally by an arbitrary number of sections. Since the rotating disk of the grain transport unit is uneven in rotation, the pixels of the captured reference plate image are longer and shorter in the rotation direction, and the number of pixels that image the reference plate is different. Even in such a case, by dividing the imaging pixels of the reference plate vertically and horizontally by an arbitrary number of partitions, the corresponding partition positions of the initial image and the measurement image captured at any time can be made the same. The correlation coefficient value becomes more accurate.

本発明によれば、測定画像と初期画像との相関係数を求め、該相関係数が所定条件を満たすか否かにより基準板に濃く汚れた部分が生じているか否かの判定が行われる。このとき相関係数が所定のしきい値以上であれば基準板に濃く汚れた部分が生じてないとし、調整部により、測定画像と初期画像とに基づき光学検出部の照射光量変化に対応した光量調整又は補正係数演算に基づく調整を行う。一方、前記条件を満たさないときには、基準板に濃く汚れた部分が存在していると判断し、この濃く汚れた部分に該当する画像を除外し残りの画像で相関係数を演算し前記条件を満たすようにする。したがって、基準板に濃く汚れた部分の存在が推定された場合でもこの部分の測定画像及び初期画像の画像を削除するので、正確な測定画像及び初期画像に基づいた相関係数の演算が行われて調整部による調整が正確になり、よって、判定部による品位判定精度が安定向上する。 According to the present invention, the correlation coefficient between the measurement image and the initial image is obtained, and it is determined whether or not a darkly stained portion is generated on the reference plate depending on whether or not the correlation coefficient satisfies a predetermined condition. . At this time, if the correlation coefficient is equal to or greater than a predetermined threshold value, it is assumed that there is no darkly stained portion on the reference plate, and the adjustment unit responds to a change in the amount of light emitted from the optical detection unit based on the measurement image and the initial image. Adjustment based on light amount adjustment or correction coefficient calculation is performed. On the other hand, when the above condition is not satisfied, it is determined that a darkly soiled portion exists on the reference plate, images corresponding to this darkly soiled portion are excluded, and a correlation coefficient is calculated with the remaining images to calculate the above condition. Try to meet. Therefore, even when the presence of a darkly soiled portion is estimated on the reference plate, the measurement image and the initial image of this portion are deleted, so the correlation coefficient is calculated based on the accurate measurement image and the initial image. Thus, the adjustment by the adjustment unit becomes accurate, and thus the quality determination accuracy by the determination unit is stably improved.

以下、本発明の穀粒品位判別装置1は被測定物の穀粒(以下「米粒S」という)を光学検出部2に搬送する搬送部3を構成する。該搬送部3は、公知の円板搬送方式のものであって、米粒Sが1粒ずつ入る溝4aを周囲に複数設けた円板4を有する。該円板4は、架台6bによって傾斜状に支持されたベース板6上に配設され、その中心部に、前記架台6bに固着したモータ5の出力軸5aが軸着されて回転自在としてある(図1及び図2参照)。本実施例において、円板4は時計回り方向(矢印Y)に回転するものとしてある。前記各溝4aは、底部4bを透明材料で構成するとともに周縁部分を開放部4cで構成する。前記ベース板6上には、前記溝4a内の米粒Sが前記開放部4cから放出されるのを防止するための堰部6aが、円板4の周縁部に沿って構成してある。また、米粒供給部7が、円板4の傾斜下方位置に構成してある。この米粒供給部7は、円板4の周縁部上部に米粒Sが滞留できるように、前記堰部6aと連結した広幅状の平面を有してなる。なお、この米粒供給部7を円板4の搬送始端側とすると、搬送終端側は、前記堰部6aを切り欠いた切欠部6cで形成し測定の終わった米粒Sを溝4aから落下させる構成になっている。 Hereinafter, the grain quality discriminating apparatus 1 of the present invention constitutes a transport unit 3 that transports a grain (hereinafter referred to as “rice grain S”) of an object to be measured to the optical detection unit 2. The transport unit 3 is of a known disk transport system, and includes a disk 4 provided with a plurality of grooves 4a around which rice grains S enter one by one. The disc 4 is disposed on a base plate 6 supported in an inclined manner by a gantry 6b, and an output shaft 5a of a motor 5 fixed to the gantry 6b is attached to the center of the disc 4 so as to be rotatable. (See FIGS. 1 and 2). In this embodiment, the disc 4 is assumed to rotate in the clockwise direction (arrow Y). Each groove 4a has a bottom portion 4b made of a transparent material and a peripheral edge portion made of an open portion 4c. On the base plate 6, weir portions 6 a for preventing the rice grains S in the grooves 4 a from being released from the open portions 4 c are formed along the peripheral edge of the disc 4. Moreover, the rice grain supply part 7 is comprised in the inclination downward position of the disc 4. As shown in FIG. The rice grain supply unit 7 has a wide flat surface connected to the weir part 6a so that the rice grains S can stay in the upper part of the peripheral edge of the disc 4. In addition, when this rice grain supply part 7 is made into the conveyance start end side of the disc 4, the conveyance termination | terminus side is formed in the notch part 6c which notched the said dam part 6a, and the structure which makes the rice grain S which measurement completed fall from the groove | channel 4a It has become.

前記光学検出部2は、第1光学検出部2aと第2光学検出部2bから構成し、円板4の傾斜上方位置に配設する(図1,2参照)。前記第1光学検出部2aは、搬送されてきた米粒Sの上面及び側面を光学検出(撮像)できる構成にしてある(図3参照)。前記第1光学検出部2aは、溝4a(米粒S)の上方に、集光レンズ8、CCDリニアセンサー(受光センサー)9及び照射部10としての赤(R)・緑(G)・青(B)の発光ダイオードを構成し、溝4aの側方には、集光レンズ11及びCCDリニアセンサー(受光センサー)12を構成してある。また、溝4aの下方には、前記ベース板6を凹状にしたその内部空間に、米粒Sを下方から照射する照射部(発光ダイオード)13を構成する。なお、前記第1光学検出部2aにおいて、溝4aの側方の堰部6aは透明材料とし、米粒Sからの光りがCCDリニアセンサー12に入光可能となるようにしてある。前記CCDリニアセンサー9,12は、赤(R)・緑(G)・青(B)の各光を受光することのできるものを用い、米粒Sの搬送方向(前記矢印Y)と直交する方向を走査するように配設する。 The optical detection unit 2 includes a first optical detection unit 2a and a second optical detection unit 2b, and is disposed at a position above the tilt of the disc 4 (see FIGS. 1 and 2). The first optical detection unit 2a is configured to optically detect (image) the upper and side surfaces of the rice grain S that has been conveyed (see FIG. 3). The first optical detection unit 2a has a condenser lens 8, a CCD linear sensor (light receiving sensor) 9, and red (R) / green (G) / blue (irradiation unit 10) above the groove 4a (rice grains S). A light-emitting diode B) is formed, and a condensing lens 11 and a CCD linear sensor (light-receiving sensor) 12 are formed on the side of the groove 4a. Further, below the groove 4a, an irradiation portion (light emitting diode) 13 for irradiating the rice grains S from below is formed in the internal space where the base plate 6 is recessed. In the first optical detector 2a, the weir 6a on the side of the groove 4a is made of a transparent material so that light from the rice grains S can enter the CCD linear sensor 12. The CCD linear sensors 9 and 12 are capable of receiving red (R), green (G), and blue (B) light and are orthogonal to the conveying direction of the rice grains S (the arrow Y). Are arranged to scan.

次に前記第2光学検出部2bの構成であるが、該第2光学検出部2bは米粒Sの下面(底面)を光学検出(撮像)するための構成がなされている(図4参照)。第2光学検出部2bは、前記ベース板6を凹状にしたその内部空間に、集光レンズ14、CCDリニアセンサー(受光センサー)15及び照射部16としての赤(R)・緑(G)・青(B)の発光ダイオードを構成し、一方溝4aの上方には、米粒Sを上方から照射する照射部(発光ダイオード)17が構成してある。前記CCDリニアセンサー15も、赤(R)・緑(G)・青(B)の各光を受光することのできるものを用い、米粒Sの搬送方向(前記矢印Y)と直交する方向を走査するように配設する。 Next, regarding the configuration of the second optical detection unit 2b, the second optical detection unit 2b is configured to optically detect (image) the lower surface (bottom surface) of the rice grain S (see FIG. 4). The second optical detection unit 2b includes a condenser lens 14, a CCD linear sensor (light receiving sensor) 15, and red (R), green (G), A blue (B) light emitting diode is formed, and an irradiation part (light emitting diode) 17 for irradiating the rice grain S from above is formed above the groove 4a. The CCD linear sensor 15 is also capable of receiving red (R), green (G), and blue (B) light, and scans in a direction perpendicular to the conveying direction of the rice grains S (the arrow Y). It arrange | positions so that it may do.

次に本発明の特徴構成を説明する。 Next, the characteristic configuration of the present invention will be described.

前記円板4の溝4aに、明度(濃度)の異なる2種類の基準板を構成する。該基準板は、白色の第1基準板18と半透明の第2基準板19から構成し、連続した溝4a内にそれぞれ埋設した(図5参照)。次に、前記CCDリニアセンサー9,12,15からの受光信号を受けて信号処理を行う信号処理部(制御部)20につき、その一例を説明する(図6参照)。該信号処理部20は、中央演算処理部(以下「CPU」という)21を構成の中心とし、該CPU21と電気的に接続した入出力回路(以下「I/O」という)22、読み込み専用記憶部(以下「ROM」という)23及び読み込み・書き込み用記憶部(以下「RAM」という)24から構成する。前記I/O22は、前記CCDリニアセンサー9,12,15と電気的に接続するとともに、前記CPU21で品位判定された結果等を表示する表示部25及び設定開始ボタン22aとも同様に接続する。前記ROM23には、後述する前記初期画像取得プログラム(プログラムA)、測定画像取得兼補正係数決定プログラム(プログラムB)及びルックアップテーブルが記憶してある。また、前記信号処理部20は、前記モータ5の始動制御や前記照射部10,13,16,17の点灯出力制御を行なう回路(図示せず)とも電気的に接続してある(公知手段につき詳細説明省略)。 Two kinds of reference plates having different brightness (density) are formed in the groove 4a of the disk 4. The reference plate was composed of a white first reference plate 18 and a semi-transparent second reference plate 19, and each was embedded in a continuous groove 4a (see FIG. 5). Next, an example of the signal processing unit (control unit) 20 that receives the light reception signals from the CCD linear sensors 9, 12, and 15 and performs signal processing will be described (see FIG. 6). The signal processing unit 20 has a central processing unit (hereinafter referred to as “CPU”) 21 as a central component, an input / output circuit (hereinafter referred to as “I / O”) 22 electrically connected to the CPU 21, and a read-only memory. Section (hereinafter referred to as “ROM”) 23 and a read / write storage section (hereinafter referred to as “RAM”) 24. The I / O 22 is electrically connected to the CCD linear sensors 9, 12, and 15 and is similarly connected to the display unit 25 and the setting start button 22a for displaying the result of the quality determination by the CPU 21. The ROM 23 stores an initial image acquisition program (program A), a measurement image acquisition / correction coefficient determination program (program B), and a lookup table, which will be described later. The signal processing unit 20 is also electrically connected to a circuit (not shown) for controlling the start-up of the motor 5 and the lighting output control of the irradiating units 10, 13, 16, 17 (per known means). Detailed explanation omitted).

本発明の作用を説明する。 The operation of the present invention will be described.

まず、前記初期画像取得プログラム(以後「プログラムA」という)を実行する(図7参照)。該プログラムAの実行目的は、本発明の穀粒品位判別装置1が新品状態で、まだ汚れていない前記第1,第2基準板18,19の画像(初期画像)を取得することにある。まず、本体電源を入れ(ステップ1)前記設定開始ボタン22aを押す(ステップ2)。次にステップ3では、該設定開始ボタン22aからのON信号を受けたCPU21は、モータ5の駆動により円板4の回転を開始させるとともに、前記第1、第2光学検出部2a,2bの照射部10,13,16,17を点灯させる。次にステップ4は、前記第1光学検出部2aにおいて、円板4の回転により到達した前記第1基準板18(白色)に対し照射部10,13から光を照射する。CCDリニアセンサー9は、第1基準板18を、該第1基準板18の進行方向と直交する方向(矢印X)に走査し撮像し、順次、画像(撮像)データをCPU21に送る。 First, the initial image acquisition program (hereinafter referred to as “program A”) is executed (see FIG. 7). The execution purpose of the program A is to acquire the images (initial images) of the first and second reference plates 18 and 19 that are not dirty yet when the grain quality discriminating apparatus 1 of the present invention is in a new state. First, the main body is turned on (step 1) and the setting start button 22a is pushed (step 2). Next, in step 3, upon receiving the ON signal from the setting start button 22a, the CPU 21 starts rotation of the disk 4 by driving the motor 5, and irradiates the first and second optical detection units 2a and 2b. The parts 10, 13, 16, and 17 are turned on. Next, in step 4, the first optical detection unit 2a irradiates light from the irradiation units 10 and 13 to the first reference plate 18 (white color) reached by the rotation of the disc 4. The CCD linear sensor 9 scans and images the first reference plate 18 in a direction (arrow X) orthogonal to the traveling direction of the first reference plate 18, and sequentially sends image (imaging) data to the CPU 21.

次にステップ5では、該CPU21は、第1基準板18の画像を、複数の画素Kからなる特定区画G(1a,2a,・・・,23a)にそれぞれ区画分けを行う(図8,9参照)。CPU21は、前記特定区画Gごとに画素Kの赤(R)画像データ平均値(明度)を求め、求まった各特定区画Gの演算値(赤の平均値)は、順次、RAM24に「初期画像」としてRAM24に数列として記憶される。次にステップ6,7では、ステップ4、5と同様にして、第2基準板19(半透明)の画像測定を行い、予め定めた特定区画G(1b,2b,・・・,23b)ごとに、画素Kの赤(R)画像データ平均値(明度)を求め、各特定区画Gの演算値(赤の平均値)を、順次、RAM24の「初期画像」への追加記憶を行う。以上でプログラムA終了とし円板停止となる(ステップ8)。 Next, in step 5, the CPU 21 divides the image of the first reference plate 18 into specific sections G (1a, 2a,..., 23a) composed of a plurality of pixels K (FIGS. 8 and 9). reference). The CPU 21 obtains the red (R) image data average value (lightness) of the pixel K for each specific section G, and the calculated value (average value of red) of each specific section G is sequentially stored in the RAM 24 as “initial image. As a sequence of numbers in the RAM 24. Next, in Steps 6 and 7, as in Steps 4 and 5, image measurement of the second reference plate 19 (semi-transparent) is performed and every predetermined specific section G (1b, 2b,..., 23b). In addition, the red (R) image data average value (brightness) of the pixel K is obtained, and the calculated value (red average value) of each specific section G is sequentially stored in the “initial image” in the RAM 24. Thus, the program A is completed and the disk is stopped (step 8).

次に、測定画像取得兼補正係数決定プログラム(以後「プログラムB」という)を説明する(図10参照)。該プログラムBの実行目的は、基準板に濃く汚れた部分があっても、この部分から影響を受けることなく正確な補正係数を求めるためのものである。実行は、米粒供給部7に米粒Sを供給前の設定段階に行う。 Next, a measurement image acquisition / correction coefficient determination program (hereinafter referred to as “program B”) will be described (see FIG. 10). The purpose of executing the program B is to obtain an accurate correction coefficient without being affected by a darkly dirty portion on the reference plate. The execution is performed in the setting stage before supplying the rice grain S to the rice grain supply unit 7.

前記プログラムBの説明では、前記プログラムAの「ステップ」との区別のため以下、「STEP」とする。STEP1は、本体電源を入れた状態で前記設定開始ボタン22aを押す。STEP2は、前記プログラムAで述べたステップ3〜7と略同様にして行われ、すなわち、円板4が回転し、照射部10,13,16,17が点灯する。そして、第1基準板18(白)を撮像し、取得した画像から、米粒S面積に略相当する前記特定区画G(1a,2a,・・・,23a)ごとの赤の平均値(明度)を演算し、この演算値をプログラムBでは「測定画像」としてRAM24に数列として記憶する。同様に、第2基準板19(半透明)を撮像し、取得した画像から前記特定区画G(1b,2b,・・・,23b)ごとの赤の平均値(明度)を演算し、順次、この演算値をRAM24内の「測定画像」に追加記憶する。 In the description of the program B, it is hereinafter referred to as “STEP” for distinction from the “step” of the program A. In STEP1, the setting start button 22a is pressed with the main unit powered on. STEP 2 is performed in substantially the same manner as steps 3 to 7 described in the program A, that is, the disk 4 rotates and the irradiation units 10, 13, 16, and 17 are turned on. And the 1st reference board 18 (white) is imaged, and the average value (lightness) of red for every said specific division G (1a, 2a, ..., 23a) substantially equivalent to the rice grain S area from the acquired image. In the program B, the calculated value is stored as a “measurement image” in the RAM 24 as a numerical sequence. Similarly, the second reference plate 19 (translucent) is imaged, and the average value (brightness) of red for each specific section G (1b, 2b,..., 23b) is calculated from the acquired image, This calculated value is additionally stored in the “measurement image” in the RAM 24.

次にSTEP3では、これまでのSTEPで取得した、特定区画(46区画)における「初期画像」と「測定画像」との「相関係数A」をCPU21により演算する。該演算は、前記RAM24に記憶した前記初期画像及び測定画像を読み出し、公知の演算式により行う(図11参照)。本発明においては、明度(濃度)の異なる2種類の基準板、すなわち、例えば白色の第1基準板18と半透明の第2基準板19を用いているので、初期画像及び測定画像における個々のデータが、散布図において一定の直線方向に帯状に分布し、このため、両者間における正確な相関係数を求めることができる。これは、明度が一種類の基準板であった場合には、帯状のデータ分布が得られず相関係数を求めることができないのである。   Next, in STEP 3, the CPU 21 calculates the “correlation coefficient A” between the “initial image” and the “measurement image” in the specific section (46 sections) acquired in the previous STEP. The calculation is performed by reading the initial image and the measurement image stored in the RAM 24 and using a known calculation formula (see FIG. 11). In the present invention, two types of reference plates having different brightness (density), that is, for example, a white first reference plate 18 and a translucent second reference plate 19 are used. The data is distributed in a band shape in a certain linear direction in the scatter diagram, so that an accurate correlation coefficient between the two can be obtained. This is because, when the brightness is one type of reference plate, a band-shaped data distribution cannot be obtained and a correlation coefficient cannot be obtained.

次にSTEP4ではSTEP3で求めた相関係数Aに基づき、「相関係数A>0.9」の判定を行う。このときYESであれば、前記初期画像と測定画像との相関が高いので、第1、第2基準板18,19には濃く汚れた部分はないと判定しSTEP10(後述する)に進む。一方、NOなら、相関が低いので濃く汚れた部分が基準板にあると認定し、STEP5に進む。   Next, in STEP 4, “correlation coefficient A> 0.9” is determined based on the correlation coefficient A obtained in STEP 3. If YES at this time, since the correlation between the initial image and the measurement image is high, it is determined that there are no darkly contaminated portions on the first and second reference plates 18 and 19, and the process proceeds to STEP 10 (described later). On the other hand, if NO, since the correlation is low, it is recognized that there is a dark and dirty part on the reference plate, and the process proceeds to STEP5.

前記STEP5以降では濃く汚れた部分を特定し、順次、この部分の除外を行い相関係数の再演算を行う。具体的手順は、前記初期画像と測定画像を構成する特定区画について、自己区画以外の区画での相関係数を演算する。例えば、初期画像及び測定画像における区画1aを自己区画とし、これ以外の45区画(2a,・・・,23a,1b,・・・,23b)を基に相関係数を演算し、該演算値を「相関係数B」とする。続いて同様にし、自己区画とする区画2aを除外した残りの区画により相関係数Bを演算し、その次は区画3aを自己区画とし相関係数Bを演算し、のようにして46区画について順次演算を行う。次にSTEP6に進む。 In STEP 5 and later, a dark and dirty portion is specified, and this portion is sequentially excluded and the correlation coefficient is recalculated. The specific procedure is to calculate a correlation coefficient in a section other than the self section for the specific section constituting the initial image and the measurement image. For example, the section 1a in the initial image and the measurement image is set as a self section, and the correlation coefficient is calculated based on the other 45 sections (2a,..., 23a, 1b,. Is “correlation coefficient B”. Subsequently, in the same manner, the correlation coefficient B is calculated with the remaining sections excluding the section 2a as the self section, and then the correlation coefficient B is calculated with the section 3a as the self section. Perform sequential calculations. Next, go to STEP6.

前記STEP6では、まずSTEP5で求まった46の区画ごとの相関係数Bを大きい順に並べる。並べ替え後、一番大きい相関係数Bを前記相関係数Aとして記憶するとともに、該相関係数Bにおける自己区画を「濃く汚れた区画」と認定して該区画を「除外区画」とする。次にSTEP7に進む。   In STEP 6, the correlation coefficients B for each of the 46 sections obtained in STEP 5 are first arranged in descending order. After the rearrangement, the largest correlation coefficient B is stored as the correlation coefficient A, and the self section in the correlation coefficient B is recognized as a “dark and dirty section” and the section is set as an “exclusion section”. . Next, proceed to STEP7.

前記STEP7では、STEP5で認定した除外区画を前記特定区画から除外する。これにより、残った45区画が特定区画となる。次にSTEP8に進む。   In STEP7, the excluded section recognized in STEP5 is excluded from the specific section. Thereby, the remaining 45 sections become specific sections. Next, the process proceeds to STEP8.

前記STEP8では、「除外区画=8」の条件を満たすか否かの判定を行う。これは、これまでに除外した区画の数が8つの区画に達したか否かをチェックし、濃く汚れた区画の数(除外区画)が多すぎて第1、第2基準板18,19の面積の減少による、正確な相関係数演算を行うための測定画像(区画)の確保ができるか否かのチェックを目的とする。除外区画=8であれば(YESであれば)、第1、第2基準板18,19が汚れ過ぎている(除外区画が多い)とし、表示部25に、「基準板を清掃してください」等のメッセージを出し円板4の回転を停止させる。一方、NOであれば前記STEP4に戻り、「相関係数A>0.9」の判定を行う。該判定により、再度、NOであったときには、特定区画内にまだ濃く汚れた区画が存在すると判断し、前述の前記STEP5,6,7,8を行う。これにより、他の濃く汚れた1区画を特定区画から除外し残った特定区画に基づいて再度相関係数Aを求めてSTEP4に戻り、「相関係数A>0.9」の判定を行う。このように「相関係数A>0.9」の条件が満たされるまで、「除外区画=8」となるまで、濃く汚れた区画を上記方法により特定し順次削除し、再演算による相関係数Aとの比較が繰り返される。   In STEP 8, it is determined whether or not the condition of “excluded section = 8” is satisfied. This is to check whether the number of sections excluded so far has reached eight sections, and the number of the first and second reference plates 18 and 19 is too large because there are too many dark sections (excluded sections). The purpose is to check whether or not a measurement image (section) for accurate correlation coefficient calculation can be secured by reducing the area. If the exclusion zone = 8 (if YES), the first and second reference plates 18 and 19 are too dirty (there are many exclusion zones), and the display section 25 reads “Clean the reference plate. "Is displayed and the rotation of the disk 4 is stopped. On the other hand, if NO, the process returns to STEP 4 and the determination of “correlation coefficient A> 0.9” is made. If the determination is NO again, it is determined that there is still a dark and dirty section in the specific section, and the above-described STEPs 5, 6, 7, and 8 are performed. As a result, one other dark and dirty section is excluded from the specific section and the correlation coefficient A is obtained again based on the remaining specific section, and the process returns to STEP 4 to determine “correlation coefficient A> 0.9”. In this way, until the condition “correlation coefficient A> 0.9” is satisfied, until the “excluded section = 8”, the dark and dirty sections are identified and sequentially deleted, and the correlation coefficient by recalculation is determined. The comparison with A is repeated.

次に、前記STEP10では、これまでのSTEPにおいて除外されなかった特定区画を「最終区画」として認定する。   Next, in STEP 10, the specific section that has not been excluded in the previous STEP is recognized as the “final section”.

次に、前記STEP11では、初期画像と測定画像の各最終区画のデータ(赤の明度平均値)を読み出し、初期画像と測定画像の各明度平均値を求める。すなわち、初期画像の最終区画における赤の明度平均値Yと、測定画像の最終区画における赤の明度平均値Xとを求める。   Next, in STEP 11, the data (red lightness average value) of each final section of the initial image and the measurement image is read, and each lightness average value of the initial image and the measurement image is obtained. That is, the average red brightness value Y in the final section of the initial image and the average red brightness value X in the final section of the measurement image are obtained.

次に、前記STEP12では、補正係数を決定する。該補正係数の決定は、予め設定した前記ルックアップテーブル(対応表)により行う。該ルックアップテーブルは、明度平均値Y(初期画像)と明度平均値X(測定画像)の各値の組み合わせにおける補正係数を予め求めたものである。当該STEP12のルックアップテーブルにより、前記明度平均値Yと明度平均値Xにおける補正係数を、演算処理等を行うことなく即時決定することができる。   Next, in STEP 12, the correction coefficient is determined. The correction coefficient is determined by the preset lookup table (correspondence table). The lookup table is obtained in advance with correction coefficients for combinations of values of the lightness average value Y (initial image) and the lightness average value X (measurement image). According to the lookup table of STEP 12, the correction coefficient for the lightness average value Y and the lightness average value X can be immediately determined without performing arithmetic processing or the like.

以上により補正係数が決定し、この後、円板4の自動停止及び本プログラムBの終了となる(STEP13)。   The correction coefficient is determined as described above, and thereafter, the disk 4 is automatically stopped and the program B is terminated (STEP 13).

このようにして補正係数が決定されると、次は米粒Sの測定である。米粒測定にあたり、まず、米粒供給部7に米粒Sを供給し測定開始ボタン(図示せず)をONにする。すると円板4が回転し、米粒供給部7の米粒Sは1粒ずつ溝4aに入って前記第1、第2光学検出部2a,2bに搬送される。前記第1光学検出部2aでは、照射部10,13から米粒Sに照射光が当り当該米粒Sを前記CCDリニアセンサー9,12により走査される。これによって、米粒Sの平面画像と側面画像が得られ、各画像データは順次前記RAM24に記憶される。前記第1光学検出部2aを経た米粒Sは前記第2光学検出部2bで撮像される。すなわち、前記第2光学検出部2bでは、照射部16,17から米粒Sに照射光が当り当該米粒Sを前記CCDリニアセンサー15により走査される。これによって、米粒Sの裏面画像が得られ、該画像データは順次前記RAM24に記憶される。前記CPU21は、前記RAM24に記憶した各米粒Sの画像データを順次読み出して品位判別し、該判別データをRAM24に記憶する。そして、前記第1、第2光学検出部2a,2bによる撮像、及びCPU21による品位判別が終了すると、CPU21はRAM24に記憶した品位判別データを集計し、集計結果を表示部25に表示させる。以上により、米粒1ロットの品位判別の終了となり、次のロット米粒を再び供給し品位判別を開始する。なお、本発明のプログラムBの実行(補正係数の演算)時期は、所定ロットの測定後に実行したり、数時間ごとに実行するようにしてもよい。   After the correction coefficient is determined in this way, the next measurement is the rice grain S. In measuring rice grains, first, rice grains S are supplied to the rice grain supply unit 7 and a measurement start button (not shown) is turned ON. Then, the disk 4 rotates, and the rice grains S of the rice grain supply unit 7 enter the groove 4a one by one and are conveyed to the first and second optical detection units 2a and 2b. In the first optical detection unit 2a, the irradiated light hits the rice grains S from the irradiation units 10 and 13, and the rice linear S is scanned by the CCD linear sensors 9 and 12. Thereby, a plane image and a side image of the rice grain S are obtained, and each image data is sequentially stored in the RAM 24. Rice grains S that have passed through the first optical detection unit 2a are imaged by the second optical detection unit 2b. That is, in the second optical detection unit 2b, the irradiated light hits the rice grain S from the irradiation units 16 and 17, and the rice linear S 15 is scanned by the CCD linear sensor 15. Thereby, a back image of the rice grain S is obtained, and the image data is sequentially stored in the RAM 24. The CPU 21 sequentially reads the image data of each rice grain S stored in the RAM 24 to determine the quality, and stores the determination data in the RAM 24. When the imaging by the first and second optical detection units 2a and 2b and the quality determination by the CPU 21 are completed, the CPU 21 totals the quality determination data stored in the RAM 24 and causes the display unit 25 to display the total result. Thus, the quality discrimination of one lot of rice grains is completed, the next lot of rice grains is supplied again, and the quality discrimination is started. Note that the execution time of the program B of the present invention (correction coefficient calculation) may be executed after measurement of a predetermined lot, or may be executed every several hours.

本発明の特徴事項を更に記述する。プログラムBの実行に関し、以下の方法により、円板4の回転ムラによる悪影響を受け難くすることができる。円板4の回転速度は常に一定とはいえず、第1、第2基準板18,19をCCDリニアセンサー9で撮像した際、回転方向Yの1画素の幅が実際には異なってしまう。これは、1回の走査時に円板(第1、第2基準板18,19)がどれくらいのスピードで通過するかにより画素の幅は変化する。具体的には、回転速度が速いと画素幅が短くなり、回転速度が遅いと画素幅が長くなってしまう。本発明は、撮像した第1、第2基準板18,19の画像により溝4aのY方向とX方向の各画素を等分して区画分けするようにしている(図8参照)。つまり、1区画におけるY方向とX方向の各画素数を予め決定しておくのではなく、測定された溝画像における画素を等分するようにしてある。これにより、プログラムBを実行(補正係数の演算)するごとに前記特定区画(1a,・・・、1b,・・・)の位置がY方向に前後することなく常に同じになる。このため、回転ムラが生じても正確な相関係数を求めることができ、ついては補正係数にバラツキを生じることがないという作用効果を有する。   The features of the present invention will be further described. Regarding the execution of the program B, it is possible to make it less likely to be adversely affected by uneven rotation of the disk 4 by the following method. The rotation speed of the disc 4 is not always constant, and when the first and second reference plates 18 and 19 are imaged by the CCD linear sensor 9, the width of one pixel in the rotation direction Y actually differs. This is because the pixel width changes depending on how fast the disks (first and second reference plates 18, 19) pass during one scan. Specifically, when the rotation speed is high, the pixel width becomes short, and when the rotation speed is low, the pixel width becomes long. In the present invention, each pixel in the Y direction and X direction of the groove 4a is equally divided by the captured images of the first and second reference plates 18 and 19 (see FIG. 8). That is, the number of pixels in the Y direction and the X direction in one section is not determined in advance, but the pixels in the measured groove image are equally divided. Thereby, every time the program B is executed (correction coefficient calculation), the position of the specific section (1a,..., 1b,...) Is always the same without moving back and forth in the Y direction. For this reason, even if rotation unevenness occurs, an accurate correlation coefficient can be obtained, and there is an effect that the correction coefficient does not vary.

以下、本発明の実施の形態における変形例を説明する。上述では、相関係数Aの演算を行う際に、特定区画における赤の平均値をのみを使用したが、本発明はこれに限定されるものではなく、さらに緑の平均値及び/又は青の平均値を使用するようにし、より正確な補正係数を求めことができる。また、更に正確な補正係数を求めるために、前記CCDリニアセンサー15も使用し、第1、第2基準板18,19の裏側の画像も利用するようにしてもよい。   Hereinafter, modifications of the embodiment of the present invention will be described. In the above description, when the correlation coefficient A is calculated, only the average value of red in a specific section is used. However, the present invention is not limited to this, and the average value of green and / or blue By using an average value, a more accurate correction coefficient can be obtained. In order to obtain a more accurate correction coefficient, the CCD linear sensor 15 may also be used, and the images on the back side of the first and second reference plates 18 and 19 may be used.

また、本発明の基準板は、上記実施例では異なる明度の第1、第2の基準板を別々の溝4aに設けたが、これに限定するものではなく、例えば、半分を前記第1基準板26aとし残る半分を前記第1基準板26aとは異なる明度の第2基準板26bとし、異なる明度部分を備えた一つの基準板26としてもよい(図12参照)。   In the reference plate of the present invention, the first and second reference plates having different brightness levels are provided in the separate grooves 4a in the above embodiment. However, the present invention is not limited to this. For example, half of the reference plate is the first reference plate. The remaining half of the plate 26a may be a second reference plate 26b having a lightness different from that of the first reference plate 26a, and may be a single reference plate 26 having different lightness portions (see FIG. 12).

さらに、前記調整部に関しては、上記説明では、基準板からの測定受光データ(測定画像)と初期受光データ(初期画像)とに基づき光学検出部の照射光量変化に対応した補正係数演算を演算し、該演算値によって各米粒からの光学検出データを補正する内容のものであった。しかし、調整部は補正係数による調整に限定したものではなく、前記初期画像と測定画像の濃度差に基づいて光量自体を調整するものであってもよい。つまり、前記濃度差に基づいて照射部の出力を変更し米粒への照射光量を変えるのである。   Further, regarding the adjustment unit, in the above description, the correction coefficient calculation corresponding to the change in the amount of light emitted from the optical detection unit is calculated based on the measurement light reception data (measurement image) and the initial light reception data (initial image) from the reference plate. The optical detection data from each rice grain is corrected by the calculated value. However, the adjustment unit is not limited to the adjustment by the correction coefficient, and may adjust the light amount itself based on the density difference between the initial image and the measurement image. That is, the output of the irradiation unit is changed based on the density difference to change the amount of light irradiated to the rice grains.

また、上記において相関係数の条件は相関係数A>0.9と比較したが、この比較する値は適宜変更可能であり、正の値であって1に近い値ほど前記初期画像と測定画像の相関が強いものとなる。   In the above, the condition of the correlation coefficient is compared with correlation coefficient A> 0.9. However, the value to be compared can be changed as appropriate, and a positive value closer to 1 is measured with the initial image. The correlation of the image is strong.

本発明の穀粒品位判別装置の縦側断面図を示す。The longitudinal cross-sectional view of the grain quality discrimination | determination apparatus of this invention is shown. 本発明の穀粒品位判別装置の平面図を示す。The top view of the grain quality discrimination device of the present invention is shown. 本発明の第1光学検出部の縦側断面図を示す。FIG. 3 is a longitudinal sectional view of a first optical detection unit of the present invention. 本発明の第2光学検出部の縦側断面図を示す。The longitudinal cross-sectional view of the 2nd optical detection part of this invention is shown. 本発明の基準板を示す。The reference board of this invention is shown. 本発明の信号処理部を示す。The signal processing part of this invention is shown. 本発明のプログラムAのフローを示す。The flow of the program A of this invention is shown. 本発明における第1基準板及び第2基準板を示す。The 1st reference board and 2nd reference board in this invention are shown. 本発明における区画を示す。The division in this invention is shown. 本発明のプログラムBのフローを示す。The flow of the program B of this invention is shown. 本発明において初期画像及び測定画像から相関係数を演算する説明図である。It is explanatory drawing which calculates a correlation coefficient from an initial image and a measurement image in this invention. 本発明における基準板の変形例を示す。The modification of the reference | standard board in this invention is shown.

符号の説明Explanation of symbols

1 穀粒品位判別装置
2 光学検出部
2a 第1光学検出部
2b 第2光学検出部
3 搬送部
4 円板
4a 溝
4b 底部
4c 開放部
5 モータ
5a 出力軸
6 ベース板
6a 堰部
6b 架台
6c 切欠部
7 米粒供給部
8 集光レンズ
9 CCDリニアセンサー
10 照射部
11 集光レンズ
12 CCDリニアセンサー
13 照射部
14 集光レンズ
15 CCDリニアセンサー
16 照射部
17 照射部
18 第1基準板(白色)
19 第2基準板(半透明)
20 信号処理部
21 中央演算処理部(CPU)
22 入出力回路(I/O)
22a 設定開始ボタン
23 読み込み専用記憶部(ROM)
24 読み込み・書き込み用記憶部(RAM)
25 表示部
26 基準板
26a 第1基準板
26b 第2基準板
G 区画
K 画素
S 米粒(穀粒)
DESCRIPTION OF SYMBOLS 1 Grain quality discrimination | determination apparatus 2 Optical detection part 2a 1st optical detection part 2b 2nd optical detection part 3 Conveyance part 4 Disk 4a Groove 4b Bottom part 4c Opening part 5 Motor 5a Output shaft 6 Base board 6a Weir part 6b Base 6c Notch Unit 7 Rice grain supply unit 8 Condensing lens 9 CCD linear sensor 10 Irradiating unit 11 Condensing lens 12 CCD linear sensor 13 Irradiating unit 14 Condensing lens 15 CCD linear sensor 16 Irradiating unit 17 Irradiating unit 18 First reference plate (white)
19 Second reference plate (translucent)
20 signal processing unit 21 central processing unit (CPU)
22 Input / output circuit (I / O)
22a Setting start button 23 Read-only memory (ROM)
24 Read / write memory (RAM)
25 Display unit 26 Reference plate 26a First reference plate 26b Second reference plate G Section K Pixel S Rice grain (grain)

Claims (7)

回転円板の周縁に設けた複数の溝により穀粒を一粒ずつ搬送する穀粒搬送部と、
該穀粒搬送部により搬送された穀粒に光を照射して受光データを得る光学検出部と、
該光学検出部からの光学データに基づいて穀粒の品位判定を行う判定部と、
前記光学検出部によって検出した前記溝に設けた基準板からの測定受光データと初期受光データとに基づき光学検出部の照射光量変化に対応した光量調整又は補正係数演算による調整を行う調整部と、
を備えた穀粒品位判別装置において、
前記溝には明度の異なる基準板を配設し、前記調整部は、前記光学検出部が撮像した基準板の測定画像と初期画像とから相関係数を演算し、該相関係数が所定の条件を満たしているときには当該調整部による前記調整を行い、一方、前記条件を満たしてないときには、該条件を満たすようになるまで前記基準板の濃く汚れた部分と推定される画像を測定画像及び初期画像から削除して相関係数を再演算し調整部による調整を行うことを特徴とする穀粒品位判別装置。
A grain transport unit that transports the grains one by one through a plurality of grooves provided on the periphery of the rotating disk;
An optical detection unit for obtaining light reception data by irradiating the grain conveyed by the grain conveyance unit;
A determination unit that performs grain quality determination based on optical data from the optical detection unit;
An adjustment unit that performs adjustment by light amount adjustment or correction coefficient calculation corresponding to a change in irradiation light amount of the optical detection unit based on measured light reception data and initial light reception data from a reference plate provided in the groove detected by the optical detection unit;
In the grain quality discrimination device with
A reference plate having a different brightness is provided in the groove, and the adjustment unit calculates a correlation coefficient from a measurement image of the reference plate captured by the optical detection unit and an initial image, and the correlation coefficient is a predetermined value. When the condition is satisfied, the adjustment by the adjustment unit is performed. On the other hand, when the condition is not satisfied, an image that is estimated to be a darkly soiled portion of the reference plate is satisfied until the condition is satisfied. A grain quality discriminating apparatus which is deleted from an initial image, recalculates a correlation coefficient, and performs adjustment by an adjustment unit.
前記調整部は、測定画像及び初期画像をそれぞれ複数画素からなる区画に分け、相関係数の演算は測定画像の区画画素データ及び初期画像の区画画素データから演算し、また、濃く汚れた部分の削除は区画単位で行うことを特徴とする請求項1に記載の穀粒品位判別装置。 The adjustment unit divides the measurement image and the initial image into sections each composed of a plurality of pixels, and the correlation coefficient is calculated from the section pixel data of the measurement image and the section pixel data of the initial image. 2. The grain quality discrimination device according to claim 1, wherein the deletion is performed in units of sections. 前記区画は複数の特定の区画とすることを特徴とする請求項2に記載の穀粒品位判別装置。 The grain quality discriminating apparatus according to claim 2, wherein the section is a plurality of specific sections. 前記区画画素データは該当区画の画素データの平均濃度値とすることを特徴とする請求項2又は請求項3に記載の穀粒品位判別装置。 The grain quality determination device according to claim 2 or 3, wherein the partition pixel data is an average density value of pixel data of a corresponding partition. 前記調整部が行う区画の削除は、自区画を除いた区画での相関係数を演算し、該相関係数のうち最も値の大きい相関係数における自区画を一番に削除し、その次に大きい相関係数における自区画を二番に削除するように順次行うことを特徴とする請求項3又は請求項4に記載の穀粒品位判別装置。 The section deletion performed by the adjustment unit is to calculate a correlation coefficient in a section excluding the section itself, delete the section in the correlation coefficient having the largest value among the correlation coefficients, and then The grain quality discrimination device according to claim 3 or 4, which is sequentially performed so as to delete the self-compartment in the correlation coefficient that is larger than the second. 前記調整部が削除する区画の数が所定数になった場合には、基準板の汚れによる異常を知らせる報知部を有することを特徴とする請求項2又は請求項5に記載の穀粒品位判別装置。 The grain quality determination according to claim 2 or 5, further comprising a notifying unit for notifying abnormality due to dirt on the reference plate when the number of sections to be deleted by the adjusting unit reaches a predetermined number. apparatus. 前記区画は、基準板の撮像画素を縦と横に任意の区画数で分けたものとすることを特徴とする請求項2から請求項6のいずれかに記載の穀粒品位判別装置。
The grain quality discriminating apparatus according to any one of claims 2 to 6, wherein the sections are obtained by dividing the imaging pixels of the reference plate vertically and horizontally by an arbitrary number of sections.
JP2005010706A 2005-01-18 2005-01-18 Grain quality discrimination device Expired - Fee Related JP4529700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005010706A JP4529700B2 (en) 2005-01-18 2005-01-18 Grain quality discrimination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005010706A JP4529700B2 (en) 2005-01-18 2005-01-18 Grain quality discrimination device

Publications (2)

Publication Number Publication Date
JP2006200945A JP2006200945A (en) 2006-08-03
JP4529700B2 true JP4529700B2 (en) 2010-08-25

Family

ID=36959095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005010706A Expired - Fee Related JP4529700B2 (en) 2005-01-18 2005-01-18 Grain quality discrimination device

Country Status (1)

Country Link
JP (1) JP4529700B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5539626B2 (en) * 2008-05-09 2014-07-02 アイ・ディ・ケイ株式会社 Continuous inspection device for tablet shape and composition
JP5605234B2 (en) * 2011-01-18 2014-10-15 三菱マテリアル株式会社 How to identify rust
JP6024949B2 (en) 2012-06-27 2016-11-16 株式会社サタケ Grain appearance measuring device
JP6435858B2 (en) * 2014-12-26 2018-12-12 株式会社サタケ Grain quality discrimination device
JP6435847B2 (en) * 2014-12-19 2018-12-12 株式会社サタケ Grain quality discrimination device
US10578557B2 (en) 2014-12-19 2020-03-03 Satake Corporation Grain quality level discrimination device
JP6435856B2 (en) * 2014-12-26 2018-12-12 株式会社サタケ Grain quality discrimination device
JP6805506B2 (en) * 2016-03-07 2020-12-23 株式会社サタケ Granular appearance grade determination device
JP2021143831A (en) * 2018-06-18 2021-09-24 シャープ株式会社 Measurement apparatus and measurement method
JP7044150B1 (en) * 2020-12-18 2022-03-30 株式会社サタケ Reference member and grain discriminator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310107A (en) * 1989-06-08 1991-01-17 Murata Mfg Co Ltd Inspecting method utilizing gradation pattern matching
JPH0590353U (en) * 1992-05-08 1993-12-10 静岡製機株式会社 Quality judgment machine with reference plate on disk
JPH06331444A (en) * 1993-05-25 1994-12-02 Yokogawa Electric Corp On-line color meter
JP2001236500A (en) * 2000-02-21 2001-08-31 Hitachi Ltd Image-deciding method and defect-inspecting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310107A (en) * 1989-06-08 1991-01-17 Murata Mfg Co Ltd Inspecting method utilizing gradation pattern matching
JPH0590353U (en) * 1992-05-08 1993-12-10 静岡製機株式会社 Quality judgment machine with reference plate on disk
JPH06331444A (en) * 1993-05-25 1994-12-02 Yokogawa Electric Corp On-line color meter
JP2001236500A (en) * 2000-02-21 2001-08-31 Hitachi Ltd Image-deciding method and defect-inspecting device

Also Published As

Publication number Publication date
JP2006200945A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
JP4529700B2 (en) Grain quality discrimination device
US20200364491A1 (en) Image detection scanning method for object surface defects and image detection scanning system thereof
KR101298957B1 (en) Wood knot detecting method, device, and program
US8253793B2 (en) Lumber inspection method, device and program
JP5875186B2 (en) Agricultural product inspection device and agricultural product inspection method
JP5432911B2 (en) Ambient light level detection in vision systems
US10327614B2 (en) Device for treating a surface
JP2017198717A5 (en) Sensor and sensor determination method
JP7112420B2 (en) Lateral flow test system
CN110448225B (en) Cleaning strategy adjusting method and system and cleaning equipment
JP2001037367A (en) Automatic selection system for egg and detection system for defective egg
US20200184620A1 (en) Wetwood detection in sawn or planed wood products
KR101671112B1 (en) Image processing apparatus, image acquiring apparatus, image processing method, and image acquiring method
JP2001027616A (en) Machine for inspecting wall of bottle
US10823682B2 (en) Water measurement apparatus
US7427749B2 (en) Method for correcting butting zone artifacts with an x-ray detector and an x-ray detector
JP2018189433A (en) Inspection device of egg
CN115349778B (en) Control method and device of sweeping robot, sweeping robot and storage medium
JP5438301B2 (en) Button front / back determination method and button front / back determination apparatus
JP6805506B2 (en) Granular appearance grade determination device
JP2002365222A (en) Rice grain quality-sorting apparatus
US20060291626A1 (en) Method for equalizing a butting structure and x-ray system
JP2005291869A (en) Residual rice bran measuring method of polished rice
JP2015200604A (en) Defect detection method and defect detection apparatus
JP6435858B2 (en) Grain quality discrimination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Ref document number: 4529700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees