JP4529332B2 - Acetanilide benzimidazolone azo pigment solid solution - Google Patents

Acetanilide benzimidazolone azo pigment solid solution Download PDF

Info

Publication number
JP4529332B2
JP4529332B2 JP2001263579A JP2001263579A JP4529332B2 JP 4529332 B2 JP4529332 B2 JP 4529332B2 JP 2001263579 A JP2001263579 A JP 2001263579A JP 2001263579 A JP2001263579 A JP 2001263579A JP 4529332 B2 JP4529332 B2 JP 4529332B2
Authority
JP
Japan
Prior art keywords
pigment
solid solution
acetanilide
ray diffraction
pigment solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001263579A
Other languages
Japanese (ja)
Other versions
JP2003073582A (en
Inventor
裕二 大橋
俊夫 武井
正喜 保坂
博志 牧
祥友 米原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2001263579A priority Critical patent/JP4529332B2/en
Publication of JP2003073582A publication Critical patent/JP2003073582A/en
Application granted granted Critical
Publication of JP4529332B2 publication Critical patent/JP4529332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特定の2種類の顔料からなる新規アセトアニリドベンツイミダゾロン系アゾ顔料固溶体に関する。
【0002】
【従来の技術】
アゾ系顔料は古くから広く使用されており、現在においても有機顔料生産量の1/2を占めるといわれている。アゾ系顔料は色相が鮮明で着色力も大きく、その色調は黄色から紫まで広い範囲にわたっている。
一般に顔料は、化学組成が同一であっても結晶型が異なるとその色相も異なることが多い。したがって、所望の色相を得るためには、色相の異なる2種以上の顔料を混合する調色工程が必要となる。通常、異種顔料を混合して調色した場合、調色後の顔料の色相は、含有されるそれぞれの顔料の色相、およびそれぞれの顔料の含有比率に従って連続的に変化するが、単なる物理的な混合であるため、しばしば凝集により色別れしたり、彩度や透明性が低下するという問題点があった。
【0003】
【発明が解決しようとする課題】
本発明の課題は、彩度が高く、透明性に優れ、かつ黄色から橙色の範囲内で、異種顔料を混合して調色することなく、簡便な方法で所望の色相を発色させることのできる、新規なアゾ系顔料を提供することにある。
【0004】
【課題を解決するための手段】
本発明は、下記式(I)で表される顔料(a)と、下記式(II)で表される顔料(b)からなるアセトアニリドベンツイミダゾロン系アゾ顔料固溶体を提供することによって上記課題を解決した。
【0005】
【化3】

Figure 0004529332
式(I)
【0006】
【化4】
Figure 0004529332
式(II)
【0007】
【発明の実施の形態】
本発明のアセトアニリドベンツイミダゾロン系アゾ顔料固溶体は、上記式(I)で表される黄色の顔料(a)、および上記式(II)で表される橙色の顔料(b)からなる。以下、「本発明のアセトアニリドベンツイミダゾロン系アゾ顔料固溶体」を「本発明の顔料固溶体」と、「式(I)で表される黄色の顔料(a)」を「顔料(a)」と、「式(II)で表される橙色の顔料(b)」を「顔料(b)」と、それぞれ略記する。
【0008】
本発明の顔料固溶体は、その色相を、該顔料固溶体の構成成分比率を変えることによって、黄色から橙色まで連続的に変化させることができるという特徴を有している。そのため、異種顔料を混合して調色する必要がなく、彩度が高く透明性にも優れている。
本発明の顔料固溶体の成分である、顔料(a)は、X線回折角2θが、(26.1±0.2)°に最大ピークを示す結晶構造を有しており、また、顔料(b)は、X線回折角2θが、(27.4±0.2)°に最大ピークを示す結晶構造を有している。
【0009】
一般に、固溶体の結晶構造は、固溶体を構成する成分の比率変化に伴い、連続的に変化することが知られている。MiXed Crystals, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984の210ページには、立方晶系固溶体の結晶格子定数は、通常、固溶体構成成分の比率変化に比例して線形的に変化するとするVegardの法則に従うことが記載されている。
【0010】
本発明の顔料固溶体の結晶構造は、固溶体を構成する成分の比率、すなわち、顔料(a)と顔料(b)の比率を変えることにより、連続的に変化する。このような、固溶体構成成分の比率変化に伴う結晶構造の連続的変化は、粉末X線回折測定によって観察される。本発明の顔料固溶体の粉末X線回折における最大ピークの位置(X線回折角2θ)は、構成成分の比率を変えることにより、顔料(a)の粉末X線回折における最大ピークの位置である(26.1±0.2)°と、顔料(b)の粉末X線回折における最大ピークの位置である(27.4±0.2)°の間で、連続的に変化する。
【0011】
本発明の顔料固溶体の粉末X線回折における最大ピークの位置の変化が、前記Vegardの法則に従って線形的に連続変化すると仮定した場合、顔料(a)Xmol%、および顔料(b)(100−X)mol%からなる本発明の顔料固溶体の粉末X線回折における最大ピークの位置は、理論的には{(27.4−0.013X)±0.2}°となる。
【0012】
本発明者らは、本発明の顔料固溶体の結晶構造が、固溶体構成成分の比率変化に対してどのように変化するかについて検討した結果、下記の知見を得た。
1)本発明の顔料固溶体の粉末X線回折パターンは、ホスト顔料の粉末X線パターンに類似すること。
2)本発明の顔料固溶体の粉末X線回折により現れる複数のピーク位置は、顔料(a)と、顔料(b)の比率によって連続的に変化するが、X線回折角2θの変化の大きさ、およびその変化の方向は、ピークごとに異なること。
3)前項の現象にもかかわらず、顔料(a)Xmol%、および顔料(b)(100−X)mol%からなる本発明の顔料固溶体の粉末X線回折における最大ピークの実測位置は、前記Vegardの法則が成立すると仮定した場合のX線回折角2θ、{(27.4−0.013X)±0.2}°に完全には一致しないものの、{(27.4−0.013X)±0.3}°の範囲でほぼ一致すること。
4)前項に記載した、本発明の顔料固溶体の粉末X線回折における最大ピークの実測位置と、前記Vegardの法則が成立すると仮定した場合の最大ピークの位置とのわずかなズレは、固溶体の作成方法や、結晶成長処理方法によって生ずること。
5)本発明の顔料固溶体の色相は、黄色から橙色の範囲内で、粉末X線回折における最大ピークの位置の変化に対応して、連続的に変化すること。
【0013】
以上の知見から、本発明の顔料固溶体の粉末X線回折における最大ピークの位置と、該顔料固溶体を構成する顔料(a)と顔料(b)の比率との関係は、ほぼ線形の関係にあり、顔料(a)と顔料(b)の比率を制御することにより、黄色から橙色の範囲内で、所望の色相を有する本発明の顔料固溶体が得られることが明らかとなった。
【0014】
本発明の顔料固溶体は、有機顔料固溶体の製造方法として公知の方法によって製造することができる。有機顔料固溶体の一般的な製造方法は、溶解析出法、合成法、摩砕法に大別される。本発明の顔料固溶体は、そのいずれの方法によっても製造することができるが、本発明においては、結晶性の高い顔料固溶体が得られる溶解析出法を使用するのが好ましい。
【0015】
溶解析出法について、特開平5−339512号公報には、複数の顔料を硫酸に溶解した後、水中に滴下して顔料固溶体を析出させる方法が、特開平8−120189号公報には、複数の顔料をアルカリ性ジメチルスルフォキシドに溶解した後、中和または、アルコール中に滴下して顔料固溶体を析出させる方法が、特開平2−229867号公報には、複数の顔料をニトロベンゼンに加熱溶解した後、冷却して顔料固溶体を析出させる方法が、特開平7−196939号公報には、t−ブトキシカルボニル基を導入した複数の顔料をトルエンやジフェニルエーテルなどの非極性溶剤に溶解した後、加熱処理することによって顔料固溶体を析出させる方法が記載されている。
【0016】
上記のような溶解析出法により作成した顔料固溶体は、しばしば結晶が細かく、結晶構造に由来する粉末X線パターンが必ずしも明確に観察されない場合がある。本発明の顔料固溶体は、溶剤中に分散させた状態で、撹拌しながら加熱することによって結晶成長させ、顔料固溶体結晶の粒子径を大きくすることができる。溶剤としては、たとえば、メタノール、エタノール、イソプロパノール、イソブタノール、エチレングリコールモノブチレエーテルなどのアルコール類、トルエン、キシレン、ニトロベンゼンなどの芳香族系溶剤、酢酸エチル、酢酸ブチル、2−エトキシエチルアセテートなどのエステル類、ジメチルフォルムアミド、ジメチルスルフォキシド、N−メチルピロリドンなどの非プロトン性極性溶剤などを使用するのが好ましく、加熱温度は50℃以上が好ましい。
要求される顔料の粒子径は、その用途によって異なるが、印刷インキ、塗料、プラスチックなどの色材として用いられる顔料の1次粒子径は数十から数百nmが一般的である。
【0017】
結晶成長させた本発明の顔料固溶体の粉末X線回折パターンは、固溶体マトリックスである顔料(a)、または顔料(b)の粉末X線回折パターンに類似するが、該顔料固溶体の各ピーク位置は、顔料(a)あるいは顔料(b)の各ピーク位置とは異なり、顔料(a)と顔料(b)との比率によって連続的にシフトし、各ピーク位置のX線回折角2θのシフト幅、およびシフト方向はピーク毎に異なる。
【0018】
顔料(a)Xmol%、および顔料(b)(100−X)mol%からなる本発明の顔料固溶体は、X線回折角2θが{(27.4−0.013X)±0.3}°の範囲内に最大ピークを示す結晶構造を有しており、顔料(a)と顔料(b)の仕込み比率を変えることで、(26.1±0.3)°から(27.4±0.3)°の範囲内で、黄色から橙色の所望の色相を得ることができる。
【0019】
また、本発明の顔料固溶体は、一般の黄色アゾ系顔料の調色物に比べて、彩度が高く、透明性に優れており、耐光性、耐熱性、および耐溶剤性にも優れている。これらの特長を生かして、本発明の顔料固溶体を、トラフィックペイント、自動車用塗料、印刷インキ、あるいはプラスチック着色剤などの用途に広く使用することができる。
【0020】
【実施例】
以下、実施例により本発明をさらに詳しく説明する。なお、特に断らない限り、「部」および「%」は、それぞれ「質量部」および「質量%」を表す。
【0021】
(実施例1)
顔料(a)として、大日本インキ化学工業社製「Symuler Fast Yellow 4192」)(C.I.Pigment Yellow 154)10.6部、および顔料(b)として、大日本インキ化学工業社製「Symuler Fast Orange 4183H」(C.I.Pigment Orange 36)1.6部を、0℃の95%濃硫酸300mlに溶解した。該溶液を、1000部の氷水中に攪拌しながら滴下し、アセトアニリドベンツイミダゾロン系アゾ顔料固溶体を析出させた。析出した該顔料固溶体を吸引濾過し、洗浄液が中性になるまで水洗した。得られた含水圧搾ケーキを、3000部の水に分散し、室温で2時間攪拌した。吸引濾過、水洗後、130℃2時間加熱し乾燥させた。さらに、イソブタノール200ml中で4時間攪拌しながら還流し、結晶成長処理した。放冷後、該顔料固溶体を吸引濾過し、メタノール、水の順に洗浄し、得られた含水圧搾ケーキを、130℃で2時間加熱乾燥し、橙みの黄色顔料11.2部を得た。この場合の顔料(a)の仕込み比率(X)は87.5mol%である。
【0022】
得られたアセトアニリドベンツイミダゾロン系アゾ顔料固溶体の元素分析測定結果を以下に示す。なおカッコ内の数値は理論値を示す。一般に、含フッ素化合物の元素分析測定値の誤差範囲は、理論値に対して±0.4%であることが知られており、本測定値はすべてこの誤差範囲内に入っている。
C : 52.4% (52.8%)
H : 3.4% ( 3.4%)
N : 17.3% (17.6%)
【0023】
得られたアセトアニリドベンツイミダゾロン系アゾ顔料固溶体の粉末X線回折による分析の結果を表1に示す。
ただし、粉末X線回折による分析は、CuKα放射線を使用し、リガク(株)製「広角X線測定装置RINT型」を用いて行った。なお、2θ測定誤差は±0.2°である。
【0024】
【表1】
Figure 0004529332
【0025】
また、顔料(a)(「Symuler Fast Yellow 4192」)の粉末X線回折による分析の結果を表2に示す。
【0026】
【表2】
Figure 0004529332
【0027】
表1および表2の結果から、アセトアニリドベンツイミダゾロン系アゾ顔料固溶体の粉末X線回折パターンは、ホスト顔料である顔料(a)の粉末X線回折パターンに類似していることが、また表1からは、アセトアニリドベンツイミダゾロン系アゾ顔料固溶体のX線回折角2θが、{(27.4−0.013X)±0.3}°=(26.26±0.3)°(X=87.5)に最大ピークを示す結晶構造を有することがわかる。
【0028】
(実施例2)
実施例1における、顔料(a)10.6部を9.1部に、顔料(b)1.6部を3.1部に、また結晶成長処理時間4時間を2時間に変更した以外は、実施例1と同様にして、黄みの橙色顔料11.6部を得た。この場合の顔料(a)の仕込み比率(X)は75mol%である。
【0029】
得られたアセトアニリドベンツイミダゾロン系アゾ顔料固溶体の元素分析測定結果を以下に示す。なおカッコ内の数値は理論値を示す。元素分析測定値は、理論値に対して±0.4%の誤差範囲内に入っている。
C : 51.9% (52.2%)
H : 3.4% ( 3.4%)
N : 17.6% (18.0%)
得られたアセトアニリドベンツイミダゾロン系アゾ顔料固溶体の粉末X線回折による分析の結果を表3に示す。
【0030】
【表3】
Figure 0004529332
【0031】
表2および表3の結果から、アセトアニリドベンツイミダゾロン系アゾ顔料固溶体の粉末X線回折パターンは、ホスト顔料である顔料(a)の粉末X線回折パターンに類似していることが、また表3からは、アセトアニリドベンツイミダゾロン系アゾ顔料固溶体のX線回折角2θが、{(27.4−0.013X)±0.3}°=(26.43±0.3)°(X=75)に最大ピークを示す結晶構造を有することがわかる。
【0032】
(実施例3)
実施例1における、顔料(a)10.6部を9.1部に、顔料(b)1.6部を3.1部に、またイソブタノール200ml中で4時間行った結晶成長処理を、m−キシレン200ml中で7時間に変更した以外は、実施例1と同様にして黄みの橙色顔料11.7部を得た。この場合の顔料(a)の仕込み比率(X)は75mol%である。
【0033】
得られたアセトアニリドベンツイミダゾロン系アゾ顔料固溶体の元素分析測定結果を以下に示す。なおカッコ内の数値は理論値を示す。元素分析測定値は、理論値に対して±0.4%の誤差範囲内に入っている。
C : 51.9% (52.2%)
H : 3.4% ( 3.4%)
N : 17.8% (18.0%)
得られたアセトアニリドベンツイミダゾロン系アゾ顔料固溶体の粉末X線回折による分析の結果を表4に示す。
【0034】
【表4】
Figure 0004529332
【0035】
表4および表2の結果から、アセトアニリドベンツイミダゾロン系アゾ顔料固溶体の粉末X線回折パターンは、ホスト顔料である顔料(a)の粉末X線回折パターンに類似していることが、また表4からは、アセトアニリドベンツイミダゾロン系アゾ顔料固溶体のX線回折角2θが、{(27.4−0.013X)±0.3}°=26.43±0.3°(X=75)に最大ピークを示す結晶構造を有することがわかる。
【0036】
なお、実施例2と実施例3で得られたアセトアニリドベンツイミダゾロン系アゾ顔料固溶体は、顔料(a)の仕込み比率(X)がともに75mol%と同一であり、結晶成長処理溶剤が異なるものであるが、表3および表4の結果から、粉末X線回折における最大ピークの実測位置が、ともに誤差範囲内で一致していることがわかる。
【0037】
(実施例4)
ジメチルスルフォキシド300mlに、顔料(a)3.0部、および顔料(b)9.3部を加え、攪拌しながら加熱還流して溶解した。放冷後、析出した沈殿を濾別した後、濾液を、撹拌しながら1lの水中に注ぎ、析出したオレンジ色のアセトアニリドベンツイミダゾロン系アゾ顔料固溶体を吸引濾過した。該顔料固溶体をメタノール、水の順に洗浄し、得られた含水圧搾ケーキを、130℃で2時間加熱乾燥し、黄味の橙色顔料4.2部を得た。この場合の顔料(a)の仕込み比率(X)は25mol%である。
【0038】
得られたアセトアニリドベンツイミダゾロン系アゾ顔料固溶体の元素分析測定結果を以下に示す。なおカッコ内の数値は理論値を示す。元素分析測定値は、理論値に対して±0.4%の誤差範囲内に入っている。
C : 50.4% (50.1%)
H : 3.4% ( 3.2%)
N : 19.1% (19.5%)
得られたアセトアニリドベンツイミダゾロン系アゾ顔料固溶体の粉末X線回折による分析の結果を表5に示す。
【0039】
【表5】
Figure 0004529332
【0040】
また、顔料(b)(「Symuler Fast Orange 4183H」)の粉末X線回折による分析の結果を表6に示す。
【0041】
【表6】
Figure 0004529332
【0042】
表5および表6の結果から、アセトアニリドベンツイミダゾロン系アゾ顔料固溶体の粉末X線回折パターンは、ホスト顔料である顔料(b)の粉末X線回折パターンに類似していることが、また表5からは、アセトアニリドベンツイミダゾロン系アゾ顔料固溶体のX線回折角2θが、{(27.4−0.013X)±0.3}°=27.08±0.3°(X=25)に最大ピークを示す結晶構造を有することがわかる。
【発明の効果】
顔料(a)および顔料(b)からなる本発明の新規顔料固溶体は、公知の顔料固溶体製造方法、たとえば溶解析出法により簡便に製造でき、しかも顔料(a)および顔料(b)の仕込み比率を変えることによって、黄色から橙色までの範囲で連続的に色相を変えることができる。したがって、異種顔料を混合して調色する従来の方法でしばしば発生した、凝集による色別れを生じることなく、簡便な方法で、彩度と透明性に優れ、所望の色相を有するアセトアニリドベンツイミダゾロン系アゾ顔料固溶体が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel acetanilide benzimidazolone azo pigment solid solution comprising two specific types of pigments.
[0002]
[Prior art]
Azo pigments have been widely used for a long time, and even today, it is said to occupy half the organic pigment production. Azo pigments have a clear hue and a high tinting strength, and their color tone ranges from yellow to purple.
In general, pigments often have different hues even if they have the same chemical composition but have different crystal forms. Therefore, in order to obtain a desired hue, a toning process for mixing two or more pigments having different hues is required. Normally, when toning is performed by mixing different types of pigments, the hue of the pigment after toning changes continuously according to the hue of each pigment contained and the content ratio of each pigment, but is merely a physical Since they are mixed, they often have problems such as color separation due to aggregation, and decrease in saturation and transparency.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to develop a desired hue with a simple method without high color saturation, excellent transparency, and mixing and mixing different types of pigments within a range from yellow to orange. It is to provide a novel azo pigment.
[0004]
[Means for Solving the Problems]
The present invention provides the above-mentioned problem by providing an acetanilide benzimidazolone azo pigment solid solution comprising a pigment (a) represented by the following formula (I) and a pigment (b) represented by the following formula (II). Settled.
[0005]
[Chemical 3]
Figure 0004529332
Formula (I)
[0006]
[Formula 4]
Figure 0004529332
Formula (II)
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The acetanilide benzimidazolone azo pigment solid solution of the present invention comprises a yellow pigment (a) represented by the above formula (I) and an orange pigment (b) represented by the above formula (II). Hereinafter, “the acetanilide benzimidazolone azo pigment solid solution of the present invention” is “the pigment solid solution of the present invention”, “the yellow pigment (a) represented by the formula (I)” is “pigment (a)”, “Orange pigment (b) represented by formula (II)” is abbreviated as “pigment (b)”.
[0008]
The pigment solid solution of the present invention is characterized in that the hue can be continuously changed from yellow to orange by changing the component ratio of the pigment solid solution. For this reason, it is not necessary to mix different colors and toning, and the chroma is high and the transparency is excellent.
The pigment (a), which is a component of the pigment solid solution of the present invention, has a crystal structure in which the X-ray diffraction angle 2θ has a maximum peak at (26.1 ± 0.2) °, and the pigment ( b) has a crystal structure in which the X-ray diffraction angle 2θ has a maximum peak at (27.4 ± 0.2) °.
[0009]
In general, it is known that the crystal structure of a solid solution changes continuously with a change in the ratio of components constituting the solid solution. On page 210 of MiXed Crystals, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984 It is stated to follow Vegard's law.
[0010]
The crystal structure of the pigment solid solution of the present invention continuously changes by changing the ratio of the components constituting the solid solution, that is, the ratio of the pigment (a) and the pigment (b). Such a continuous change in the crystal structure accompanying a change in the ratio of the solid solution constituents is observed by powder X-ray diffraction measurement. The position of the maximum peak (X-ray diffraction angle 2θ) in the powder X-ray diffraction of the pigment solid solution of the present invention is the position of the maximum peak in the powder X-ray diffraction of the pigment (a) by changing the ratio of the constituent components ( It changes continuously between 26.1 ± 0.2) ° and (27.4 ± 0.2) °, which is the position of the maximum peak in the powder X-ray diffraction of the pigment (b).
[0011]
When it is assumed that the change of the position of the maximum peak in the powder X-ray diffraction of the pigment solid solution of the present invention linearly and continuously changes according to the Vegard's law, the pigment (a) Xmol% and the pigment (b) (100-X ) The position of the maximum peak in powder X-ray diffraction of the pigment solid solution of the present invention consisting of mol% is theoretically {(27.4-0.013X) ± 0.2} °.
[0012]
As a result of studying how the crystal structure of the pigment solid solution of the present invention changes with respect to the ratio change of the solid solution constituents, the present inventors have obtained the following knowledge.
1) The powder X-ray diffraction pattern of the pigment solid solution of the present invention is similar to the powder X-ray pattern of the host pigment.
2) A plurality of peak positions appearing by powder X-ray diffraction of the pigment solid solution of the present invention continuously change depending on the ratio of the pigment (a) and the pigment (b), but the magnitude of the change in the X-ray diffraction angle 2θ. , And the direction of the change must be different for each peak.
3) Despite the phenomenon of the preceding paragraph, the actual measurement position of the maximum peak in the powder X-ray diffraction of the pigment solid solution of the present invention consisting of pigment (a) Xmol% and pigment (b) (100-X) mol% is Although it does not completely coincide with the X-ray diffraction angle 2θ, {(27.4-0.013X) ± 0.2} °, assuming that Vegard's law is established, {(27.4-0.013X) It should be almost the same in the range of ± 0.3} °.
4) The slight deviation between the measured position of the maximum peak in the powder X-ray diffraction of the pigment solid solution of the present invention described in the previous section and the position of the maximum peak when the Vegard's law is assumed to be satisfied is the production of the solid solution. Caused by the method and crystal growth treatment method.
5) The hue of the pigment solid solution of the present invention continuously changes within the range from yellow to orange corresponding to the change in the position of the maximum peak in powder X-ray diffraction.
[0013]
From the above knowledge, the relationship between the position of the maximum peak in the powder X-ray diffraction of the pigment solid solution of the present invention and the ratio of the pigment (a) and the pigment (b) constituting the pigment solid solution is almost linear. By controlling the ratio of the pigment (a) and the pigment (b), it was revealed that the pigment solid solution of the present invention having a desired hue within the yellow to orange range can be obtained.
[0014]
The pigment solid solution of the present invention can be produced by a method known as a method for producing an organic pigment solid solution. General production methods of organic pigment solid solutions are roughly classified into dissolution precipitation methods, synthesis methods, and grinding methods. The pigment solid solution of the present invention can be produced by any of these methods, but in the present invention, it is preferable to use a solution precipitation method that provides a highly crystalline pigment solid solution.
[0015]
Regarding the dissolution precipitation method, Japanese Patent Laid-Open No. 5-339512 discloses a method in which a plurality of pigments are dissolved in sulfuric acid and then dropped into water to precipitate a pigment solid solution. Japanese Patent Laid-Open No. 8-120189 discloses a plurality of methods. JP-A-2-229867 discloses a method in which a pigment is dissolved in alkaline dimethyl sulfoxide and then neutralized or dropped into an alcohol to precipitate a pigment solid solution. JP-A-2-229867 discloses a method in which a plurality of pigments are heated and dissolved in nitrobenzene. A method for precipitating a pigment solid solution by cooling is disclosed in Japanese Patent Application Laid-Open No. 7-196939, in which a plurality of pigments having a t-butoxycarbonyl group are dissolved in a nonpolar solvent such as toluene or diphenyl ether, followed by heat treatment. Describes a method for precipitating a pigment solid solution.
[0016]
The pigment solid solution prepared by the dissolution precipitation method as described above often has fine crystals, and the powder X-ray pattern derived from the crystal structure may not always be clearly observed. The pigment solid solution of the present invention can be crystal-grown by heating with stirring in a state of being dispersed in a solvent, and the particle size of the pigment solid solution crystal can be increased. Examples of the solvent include alcohols such as methanol, ethanol, isopropanol, isobutanol and ethylene glycol monobutyl ether, aromatic solvents such as toluene, xylene and nitrobenzene, ethyl acetate, butyl acetate and 2-ethoxyethyl acetate. It is preferable to use aprotic polar solvents such as esters, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, etc., and the heating temperature is preferably 50 ° C. or higher.
The required particle size of the pigment varies depending on the application, but the primary particle size of the pigment used as a color material for printing ink, paint, plastic, etc. is generally several tens to several hundreds of nm.
[0017]
The powder X-ray diffraction pattern of the pigment solid solution of the present invention that has been crystal-grown is similar to the powder X-ray diffraction pattern of pigment (a) or pigment (b) that is a solid solution matrix, but each peak position of the pigment solid solution is Unlike the peak positions of the pigment (a) or the pigment (b), the peak shifts continuously depending on the ratio of the pigment (a) and the pigment (b), and the shift width of the X-ray diffraction angle 2θ at each peak position, The shift direction is different for each peak.
[0018]
The pigment solid solution of the present invention consisting of pigment (a) Xmol% and pigment (b) (100-X) mol% has an X-ray diffraction angle 2θ of {(27.4-0.013X) ± 0.3} °. The crystal structure has a maximum peak within the range of (26.1 ± 0.3) ° to (27.4 ± 0) by changing the charging ratio of the pigment (a) and the pigment (b). .3) A desired hue of yellow to orange can be obtained within a range of 3 °.
[0019]
In addition, the pigment solid solution of the present invention has high chroma and excellent transparency as compared to a general yellow azo pigment toned product, and also has excellent light resistance, heat resistance, and solvent resistance. . Taking advantage of these features, the pigment solid solution of the present invention can be widely used in applications such as traffic paint, automotive paint, printing ink, or plastic colorant.
[0020]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. Unless otherwise specified, “parts” and “%” represent “parts by mass” and “% by mass”, respectively.
[0021]
Example 1
As pigment (a), Dainippon Ink & Chemicals, Inc. “Symler Fast Yellow 4192” (CI Pigment Yellow 154) 10.6 parts, and as pigment (b), Dainippon Ink & Chemicals, Inc. “Symuler” 1.6 parts of “Fast Orange 4183H” (CI Pigment Orange 36) was dissolved in 300 ml of 95% concentrated sulfuric acid at 0 ° C. The solution was added dropwise to 1000 parts of ice water with stirring to precipitate an acetanilide benzimidazolone azo pigment solid solution. The pigment solid solution thus precipitated was suction filtered and washed with water until the washing solution became neutral. The obtained hydrous press cake was dispersed in 3000 parts of water and stirred at room temperature for 2 hours. After suction filtration and washing with water, it was dried by heating at 130 ° C. for 2 hours. Further, the mixture was refluxed in 200 ml of isobutanol with stirring for 4 hours to carry out crystal growth treatment. After allowing to cool, the pigment solid solution was suction filtered, washed with methanol and water in this order, and the resulting hydrous press cake was heat-dried at 130 ° C. for 2 hours to obtain 11.2 parts of an orange yellow pigment. In this case, the charging ratio (X) of the pigment (a) is 87.5 mol%.
[0022]
The elemental analysis measurement results of the obtained acetanilide benzimidazolone azo pigment solid solution are shown below. The numerical values in parentheses indicate theoretical values. In general, it is known that the error range of elemental analysis measurement values of fluorine-containing compounds is ± 0.4% of the theoretical value, and all of these measurement values are within this error range.
C: 52.4% (52.8%)
H: 3.4% (3.4%)
N: 17.3% (17.6%)
[0023]
Table 1 shows the results of analysis by powder X-ray diffraction of the obtained acetanilide benzimidazolone azo pigment solid solution.
However, analysis by powder X-ray diffraction was performed using CuKα radiation and using a “wide-angle X-ray measuring device RINT type” manufactured by Rigaku Corporation. The 2θ measurement error is ± 0.2 °.
[0024]
[Table 1]
Figure 0004529332
[0025]
In addition, Table 2 shows the results of analysis by X-ray powder diffraction of the pigment (a) (“Simulator Fast Yellow 4192”).
[0026]
[Table 2]
Figure 0004529332
[0027]
From the results of Tables 1 and 2, it is found that the powder X-ray diffraction pattern of the acetanilide benzimidazolone azo pigment solid solution is similar to the powder X-ray diffraction pattern of the pigment (a) as the host pigment. , The X-ray diffraction angle 2θ of the solid solution of the acetanilide benzimidazolone azo pigment is {(27.4-0.013X) ± 0.3} ° = (26.26 ± 0.3) ° (X = 87). 5) has a crystal structure showing the maximum peak.
[0028]
(Example 2)
In Example 1, except that 10.6 parts of pigment (a) was changed to 9.1 parts, 1.6 parts of pigment (b) was changed to 3.1 parts, and the crystal growth treatment time was changed to 4 hours. In the same manner as in Example 1, 11.6 parts of a yellowish orange pigment was obtained. In this case, the charging ratio (X) of the pigment (a) is 75 mol%.
[0029]
The elemental analysis measurement results of the obtained acetanilide benzimidazolone azo pigment solid solution are shown below. The numerical values in parentheses indicate theoretical values. The elemental analysis measurement value is within an error range of ± 0.4% with respect to the theoretical value.
C: 51.9% (52.2%)
H: 3.4% (3.4%)
N: 17.6% (18.0%)
Table 3 shows the results of analysis by powder X-ray diffraction of the obtained acetanilide benzimidazolone azo pigment solid solution.
[0030]
[Table 3]
Figure 0004529332
[0031]
From the results of Table 2 and Table 3, it is found that the powder X-ray diffraction pattern of the acetanilide benzimidazolone azo pigment solid solution is similar to the powder X-ray diffraction pattern of the pigment (a) as the host pigment. The X-ray diffraction angle 2θ of the acetanilide benzimidazolone azo pigment solid solution is {(27.4-0.013X) ± 0.3} ° = (26.43 ± 0.3) ° (X = 75). It can be seen that it has a crystal structure exhibiting a maximum peak at
[0032]
(Example 3)
In Example 1, 10.6 parts of pigment (a) to 9.1 parts, 1.6 parts of pigment (b) to 3.1 parts, and crystal growth treatment performed in 200 ml of isobutanol for 4 hours, 11.7 parts of a yellowish orange pigment were obtained in the same manner as in Example 1 except that the time was changed to 7 hours in 200 ml of m-xylene. In this case, the charging ratio (X) of the pigment (a) is 75 mol%.
[0033]
The elemental analysis measurement results of the obtained acetanilide benzimidazolone azo pigment solid solution are shown below. The numerical values in parentheses indicate theoretical values. The elemental analysis measurement value is within an error range of ± 0.4% with respect to the theoretical value.
C: 51.9% (52.2%)
H: 3.4% (3.4%)
N: 17.8% (18.0%)
Table 4 shows the results of analysis by powder X-ray diffraction of the obtained acetanilide benzimidazolone azo pigment solid solution.
[0034]
[Table 4]
Figure 0004529332
[0035]
From the results of Table 4 and Table 2, it is found that the powder X-ray diffraction pattern of the acetanilide benzimidazolone azo pigment solid solution is similar to the powder X-ray diffraction pattern of the pigment (a) as the host pigment. The X-ray diffraction angle 2θ of the solid solution of the acetanilide benzimidazolone azo pigment is {(27.4−0.013X) ± 0.3} ° = 26.43 ± 0.3 ° (X = 75). It can be seen that the crystal structure has the maximum peak.
[0036]
The acetanilide benzimidazolone-based azo pigment solid solution obtained in Example 2 and Example 3 has the same charge ratio (X) of the pigment (a) as 75 mol% and different crystal growth treatment solvents. However, from the results of Tables 3 and 4, it can be seen that the measured positions of the maximum peaks in the powder X-ray diffraction are both within the error range.
[0037]
Example 4
To 300 ml of dimethyl sulfoxide, 3.0 parts of pigment (a) and 9.3 parts of pigment (b) were added and dissolved by heating under reflux with stirring. After allowing to cool, the deposited precipitate was filtered off, and the filtrate was poured into 1 l of water with stirring, and the precipitated orange acetanilide benzimidazolone azo pigment solid solution was suction filtered. The pigment solid solution was washed with methanol and water in this order, and the resulting hydrous press cake was heat-dried at 130 ° C. for 2 hours to obtain 4.2 parts of a yellowish orange pigment. In this case, the charging ratio (X) of the pigment (a) is 25 mol%.
[0038]
The elemental analysis measurement results of the obtained acetanilide benzimidazolone azo pigment solid solution are shown below. The numerical values in parentheses indicate theoretical values. The elemental analysis measurement value is within an error range of ± 0.4% with respect to the theoretical value.
C: 50.4% (50.1%)
H: 3.4% (3.2%)
N: 19.1% (19.5%)
Table 5 shows the results of powder X-ray diffraction analysis of the obtained acetanilide benzimidazolone azo pigment solid solution.
[0039]
[Table 5]
Figure 0004529332
[0040]
In addition, Table 6 shows the results of the powder X-ray diffraction analysis of the pigment (b) (“Simler Fast Orange 4183H”).
[0041]
[Table 6]
Figure 0004529332
[0042]
From the results of Table 5 and Table 6, it is found that the powder X-ray diffraction pattern of the acetanilide benzimidazolone azo pigment solid solution is similar to the powder X-ray diffraction pattern of the pigment (b) as the host pigment. Shows that the X-ray diffraction angle 2θ of the solid solution of acetanilide benzimidazolone azo pigment is {(27.4−0.013X) ± 0.3} ° = 27.08 ± 0.3 ° (X = 25). It can be seen that the crystal structure has the maximum peak.
【The invention's effect】
The novel pigment solid solution of the present invention comprising the pigment (a) and the pigment (b) can be easily produced by a known pigment solid solution production method, for example, a dissolution precipitation method. By changing the hue, the hue can be continuously changed in a range from yellow to orange. Therefore, acetanilide benzimidazolone having a desired hue and excellent color saturation and transparency is produced in a simple manner without causing color separation due to aggregation, which often occurs in conventional methods of color mixing by mixing different types of pigments. A azo pigment solid solution is obtained.

Claims (2)

下記式(I)で表される顔料(a)と、下記式(II)で表される顔料(b)からなることを特徴とするアセトアニリドベンツイミダゾロン系アゾ顔料固溶体。
Figure 0004529332
式(I)
Figure 0004529332
式(II)
An acetanilide benzimidazolone azo pigment solid solution comprising a pigment (a) represented by the following formula (I) and a pigment (b) represented by the following formula (II):
Figure 0004529332
Formula (I)
Figure 0004529332
Formula (II)
上記式(I)で表される顔料(a)Xmol%、および上記式(II)で表される顔料(b)(100−X)mol%からなる顔料固溶体のX線回折角2θが、{(27.4−0.013X)±0.3}°に最大ピークを示す結晶構造を有する請求項1に記載のアセトアニリドベンツイミダゾロン系アゾ顔料固溶体。The X-ray diffraction angle 2θ of the pigment solid solution consisting of the pigment (a) Xmol% represented by the above formula (I) and the pigment (b) (100-X) mol% represented by the above formula (II) is { The acetanilide benzimidazolone azo pigment solid solution according to claim 1, which has a crystal structure exhibiting a maximum peak at (27.4-0.013X) ± 0.3} °.
JP2001263579A 2001-08-31 2001-08-31 Acetanilide benzimidazolone azo pigment solid solution Expired - Fee Related JP4529332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001263579A JP4529332B2 (en) 2001-08-31 2001-08-31 Acetanilide benzimidazolone azo pigment solid solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001263579A JP4529332B2 (en) 2001-08-31 2001-08-31 Acetanilide benzimidazolone azo pigment solid solution

Publications (2)

Publication Number Publication Date
JP2003073582A JP2003073582A (en) 2003-03-12
JP4529332B2 true JP4529332B2 (en) 2010-08-25

Family

ID=19090311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001263579A Expired - Fee Related JP4529332B2 (en) 2001-08-31 2001-08-31 Acetanilide benzimidazolone azo pigment solid solution

Country Status (1)

Country Link
JP (1) JP4529332B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026303A1 (en) * 1998-10-31 2000-05-11 Ciba Specialty Chemicals Holding Inc. Solid solutions of monoazo pigments

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064776B2 (en) * 1984-11-15 1994-01-19 東ソー株式会社 Method for producing pigment composition
JPH02136865A (en) * 1988-11-18 1990-05-25 Dainippon Ink & Chem Inc Yellow toner for developing electrostatic charge image
JPH08295808A (en) * 1995-04-26 1996-11-12 Toyo Ink Mfg Co Ltd Pigment and coloring composition for color filter
JP3275671B2 (en) * 1995-12-04 2002-04-15 東洋インキ製造株式会社 Ink jet recording liquid and method for producing the same
JP3496473B2 (en) * 1997-09-01 2004-02-09 東洋インキ製造株式会社 Toner base particles, and toner and developer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026303A1 (en) * 1998-10-31 2000-05-11 Ciba Specialty Chemicals Holding Inc. Solid solutions of monoazo pigments

Also Published As

Publication number Publication date
JP2003073582A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
TWI557189B (en) Fine pigment composition and manufacturing method thereof
EP2735591B1 (en) Greenish blue pigment, colorant composition containing said pigment, and image recording material
KR101873819B1 (en) Fine yellow pigments composition, pigments dispersion containing said composition and method for preparing said composition
JPH10219166A (en) Ink for jet printer
WO2019202939A1 (en) Solid solution of quinacridone and ink composition containing same
KR100704879B1 (en) Benzimidazolone compound
JP4529332B2 (en) Acetanilide benzimidazolone azo pigment solid solution
JP2003026951A (en) Acetanilidobenzimidazolone azo pigment and method for producing the same
AU2009229723A1 (en) Mixed crystal and colored pigment dispersion composition
JPH06145546A (en) Pigment composition and pigment dispersion
KR102594287B1 (en) Blue pigment composition containing c.i. pigment blue 16, method of producing the same, and green-colored composition
JP2004059770A (en) Method for producing pigment composition
JP4517543B2 (en) Quinonoquinolone-isoindolinone solid solution and pigment
JPH04246469A (en) Pigment composition
JP6454252B2 (en) Black compound and method for producing the same
JP3642428B1 (en) Benzimidazolone compounds
EP1706459B1 (en) Triphendioxazine pigments
JPH0723454B2 (en) Method for producing copper phthalocyanine
JP2004168967A (en) Coloring composition containing acetanilidebenzimidazolone-based azo pigment solid solution
JP2019038957A (en) Pyrimidoacridone pigment and production method thereof
JP4905753B2 (en) Applications containing phthalocyanine compounds, pigments and pigments
JPS61133270A (en) Novel isoindoline compound, its metal complex and its use
JP2536563B2 (en) New crystalline copper phthalocyanine
JPH08253696A (en) Pigment dispersing agent and pigment composition using the same
JP2015063625A (en) Pigment dispersant, green pigment composition containing the same, pigment composition for color filter, dispersion resist composition for color filter, and color filter

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees