JP4528485B2 - Tool alignment method, tool alignment apparatus, and energization apparatus for alignment - Google Patents

Tool alignment method, tool alignment apparatus, and energization apparatus for alignment Download PDF

Info

Publication number
JP4528485B2
JP4528485B2 JP2002501612A JP2002501612A JP4528485B2 JP 4528485 B2 JP4528485 B2 JP 4528485B2 JP 2002501612 A JP2002501612 A JP 2002501612A JP 2002501612 A JP2002501612 A JP 2002501612A JP 4528485 B2 JP4528485 B2 JP 4528485B2
Authority
JP
Japan
Prior art keywords
tool
spherical
contact
spherical member
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002501612A
Other languages
Japanese (ja)
Inventor
邦彦 小久保
武 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Application granted granted Critical
Publication of JP4528485B2 publication Critical patent/JP4528485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • B23Q17/2233Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work for adjusting the tool relative to the workpiece
    • B23Q17/2266Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work for adjusting the tool relative to the workpiece of a tool relative to a workpiece-axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Description

技術分野
本発明は、工具の先端を加工対象の棒材の中心軸線に対して予め位置合せするための工具位置合せ方法及び工具位置合せ装置に関する。さらに本発明は、工具の先端を加工対象の棒材の中心軸線に対して予め位置合せするために使用できる位置合せ用通電装置に関する。
背景技術
旋盤で棒状の被加工素材(以下、棒材と称する)の外周面を加工する際には、通常、刃物台に装着したバイト等の工具の先端を、棒材の中心軸線に対して位置合せした後に加工作業を開始する。例えば、NC旋盤等の、旋削を主とした種々の自動加工を実施できる工作機械(以下、自動旋盤と称する)に、複数の工具を並列配置で支持する刃物台(以下、くし歯刃物台と称する)を設置する場合、一般にくし歯刃物台は、回転主軸に把持された棒材の中心軸線に直交する平面内で、直交2軸(例えばX軸及びY軸)方向へ平行移動できるように構成される。この構成において、所望の工具で棒材を加工する際には、旋盤機台上のXY座標系における棒材の中心軸線の位置座標を基準すなわち原点として、当該工具先端の移動位置がXY座標上に設定される。
例えば工具の選択時には、くし歯刃物台に装着した複数の工具の刃先が棒材に接触しない位置で、くし歯刃物台をY軸方向(すなわち工具の並列方向)へ平行移動する。そして、選択対象の所望の工具の先端と棒材の中心軸線とがX軸方向へ整列して配置された時点で、工具選択が完了する。その状態から、くし歯刃物台をX軸方向へ平行移動し、選択した工具の先端ないし刃先を棒材に当接して加工を実施する。このとき、選択した工具が例えばバイトである場合は、くし歯刃物台のX軸移動量を制御することにより、棒材に対するバイトの切込量及びバイト不使用中の刃先の後退待機位置が決定される。なお、本明細書における「工具の先端」又は「工具の刃先」という用語は、工具が加工作業に際して棒材に最初に接触する部位を示すものである。
くし歯刃物台の上記したY軸移動(工具選択時)及びX軸移動(加工時)は、くし歯刃物台上での選択工具の位置及び加工作業中の選択工具の先端移動位置の各設定座標データに従って遂行される。したがって高精度の加工を実施するためには、選択した工具の種類によらず、当該工具の位置座標データが、棒材中心を基準に正確に設定されている必要がある。しかし、工具の刃先形状や先端摩耗度の差異により、設定データ通りにくし歯刃物台を移動させたとしても、実際の工具刃先の移動位置が設定座標からずれてしまうことがある。このような不都合を排除するために、加工作業開始前に、各工具の設定座標データを補正することが要求される。本明細書における「位置合せ」という用語の意味は、こうした設定座標データの補正作業を含むものである。
工具のこのような事前位置合せ作業は、例えば1つの棒材の加工に複数の工具を使用する場合には通常、工具を交換する度に実施される。したがって、自動旋盤による一連の自動加工作業における予備段階として、所定の制御フロー下で自動的に実施することが有利である。例えば特開平8−118103号公報(JP−A−8−118103)は、加工作業に先立つ上記した工具先端の位置合せ作業を自動的に実施するための装置を開示する。
この公知の装置は、棒材の外周面にバイトを接触させる工具接触手段と、棒材とバイトとの接触位置を確定する接触位置確定手段と、確定した接触位置データに基づき棒材の中心軸線の位置を演算する演算手段とを備えて構成される。工具接触手段は、回転する棒材の外周面上の周方向及び軸線方向へ異なる少なくとも3箇所に、バイトの刃先を順次接触させ、その都度、接触位置確定手段が接触位置を確定する。そして演算手段が、確定したバイト刃先の少なくとも3個の接触位置データに基づいて棒材の中心軸線の位置(演算中心値)を求める。バイトは、この演算中心値を基準として設定した位置に移動される。バイトを交換する際には、新たなバイトに対して上記手順で演算中心値を求め、その都度、演算中心値を書き換える。
上記した従来の工具先端位置合せ装置では、棒材の演算中心値を求めるために、回転する棒材の外周面にバイトの刃先を直接に接触させて接触位置を確定している。したがって、棒材がその加工開始前に外周面を僅かに切削されてしまうことになる。棒材を回転させずに接触位置を確定しようとしても、バイトの刃先により棒材外周面に傷痕が付く懸念は残される。したがって、そのような切削や傷痕を許容する位置に刃先を当接しなければならず、工具接触位置の選定作業が不可欠である。また、加工作業の予備的作業である工具先端の位置合せ中に、バイトの刃先の摩耗や損傷が生じる危惧があり、実際の加工作業におけるバイトの寿命を短縮することが懸念される。
特に、棒材が円筒素材(すなわち丸棒)以外の異形材(すなわち角棒)である場合には、回転する棒材の外周面にバイトの刃先を直接に接触させる方法では、上記した加工作業前の無駄な切削を回避することはできない。さらに、異形材を回転させずに、バイト刃先を異形材表面の複数箇所に接触させて演算中心値を求めようとすると、刃先接触位置を無作為に選定した場合には異形材の中心軸線からそれら刃先接触位置までの距離を特定することが困難になり、結果として、バイト刃先の接触位置データに基づいて棒材の演算中心値を正確に求めることが困難になる。そこで、異形材に対して上記方法で工具位置合せを行う場合には、加工対象の異形材を用いる代わりに、加工対象ではない丸棒を仮に使用することを提案できる。しかしこの方法では、自動旋盤に装備されるチャックやガイドブッシュ等の棒材把持部材も、丸棒専用のものを仮に使用する必要があり、したがって、演算中心値を求めた後には仮の把持部材を加工対象の異形材専用の把持部材に交換しなければならない。その結果、演算中心値の信頼性が低下するとともに、段取作業に無益な時間が消費され、製品の生産性に悪影響を及ぼすことが危惧される。
発明の開示
したがって本発明の目的は、棒材外周面や工具を損傷することなく、しかも加工対象の棒材が異形材の場合にも、工具先端を対象棒材の中心軸線に対して容易かつ正確に事前位置合せできる工具の位置合せ方法及び位置合せ装置を提供することにある。
本発明の他の目的は、そのような工具の事前位置合せ作業に使用でき、特に加工対象の棒材が異形材の場合に有利に適用できる位置合せ用通電装置を提供することにある。
上記目的を達成するために、本発明は、工具の先端を加工対象の棒材の中心軸線に対して予め位置合せするための工具位置合せ方法であって、導電性表面領域を有する球状部材を用意し、球状部材を、加工対象の棒材を把持できる把持部材の先端開口の周縁に当接して、先端開口に同心配置で部分的に受容させ、位置合せ対象の工具を球状部材の導電性表面領域に接触させ、相互接触時の工具と球状部材の導電性表面領域との間の導通を検出して、工具の接触部位の位置を確定し、確定した工具の接触部位の位置に基づいて、加工作業時の工具の先端の位置を決定する工具位置合せ方法を提供する。
この工具位置合せ方法において、球状部材を把持部材の先端開口に同心配置で部分的に受容させることは、把持部材と導電性表面領域との間を電気的に絶縁した状態で球状部材を先端開口の周縁に当接する作業を含むことができる。
この場合、球状部材が、導電性表面領域を形成する第1表面部分と、第1表面部分に隣接して電気絶縁性表面領域を形成する第2表面部分とを備え、第2表面部分が把持部材の先端開口の周縁に当接されることが有利である。
また、工具の先端の位置を決定することは、確定した工具の接触部位の位置に基づいて球状部材の中心の位置を求める作業と、予め定めた工具の加工位置データを、求められた中心の位置に対応して適宜補正する作業とを含むことができる。
さらに本発明は、工具の先端を加工対象の棒材の中心軸線に対して予め位置合せするための工具位置合せ装置であって、導電性表面領域を有する球状部材と、球状部材を、加工対象の棒材を把持できる把持部材の先端開口の周縁に当接して、先端開口に同心配置で部分的に受容させた状態に保持する当接機構と、位置合せ対象の工具を球状部材の導電性表面領域に接触させる駆動機構と、相互接触時の工具と球状部材の導電性表面領域との間に電流を流す通電機構と、通電機構による工具と球状部材の導電性表面領域との間の導通を検出して、工具の接触部位の位置を確定する接触位置確定部と、確定した工具の接触部位の位置に基づいて球状部材の中心の位置を求めるとともに、予め定めた工具の加工位置データを、求められた中心の位置に対応して適宜補正する補正演算部とを具備する工具位置合せ装置を提供する。
この工具位置合せ装置においては、球状部材の導電性表面領域と把持部材との間を電気的に絶縁する絶縁要素をさらに具備することができる。
この場合、球状部材が、導電性表面領域を形成する第1表面部分と、第1表面部分に隣接して電気絶縁性表面領域を形成する第2表面部分とを備え、絶縁要素が球状部材の第2表面部分からなり、第2表面部分が把持部材の先端開口の周縁に当接されるようになっていることが有利である。
この構成では、球状部材は、導電性材料からなる球状本体と、球状本体の表面の一部分を被覆する絶縁層とからなり、第1表面部分が球状本体の露出部分によって形成されるとともに、第2表面部分が絶縁層によって形成される構成とすることができる。
或いは、球状部材は、電気絶縁性材料からなる球状本体と、球状本体の表面の一部分を被覆する導電層とからなり、第1表面部分が導電層によって形成されるとともに、第2表面部分が球状本体の露出部分によって形成される構成とすることができる。
当接機構は、球状部材自体に組み込まれて把持部材に対し磁気吸引力を発揮できる永久磁石材料を備えることが有利である。
また、当接機構は、球状部材を把持部材の先端開口に押し付ける押圧ユニットを備えることができる。
この場合、押圧ユニットは、球状部材の導電性表面領域に接触する導電性の押圧部材を備え、通電機構が、押圧部材を介して導電性表面領域に通電する構成とすることができる。
また、この場合、把持部材が自動旋盤の主軸に関連して設置され、押圧ユニットが自動旋盤の背面主軸に装着されることが有利である。
上記した工具位置合せ装置は、自動旋盤の刃物台に装着される工具に対して使用されるものであって、駆動機構を自動旋盤の刃物台駆動機構として構成することが有利である。
また、接触位置確定部が自動旋盤の制御部を含むことが好都合である。
同様に、補正演算部が自動旋盤の制御部を含むことが好都合である。
さらに本発明は、工具の先端を加工対象の棒材の中心軸線に対して予め位置合せするための工具位置合せ用の通電装置であって、導電性表面領域を有する球状部材と、球状部材を、加工対象の棒材を把持できる把持部材の先端開口の周縁に当接して、先端開口に同心配置で部分的に受容させた状態に保持する当接機構と、球状部材の導電性表面領域に電気的に接続される通電機構とを具備することを特徴とする通電装置を提供する。
発明を実施するための最良の形態
図面を参照すると、図1及び図2は、本発明の第1の実施形態による工具位置合せ装置10と、工具位置合せ装置10に組み込まれる本発明の第1の実施形態による通電装置12とを示す。図示実施形態による工具位置合せ装置10は、自動旋盤に搭載されるくし歯刃物台14に関連して設置されている。しかしこれに限らず、本発明に係る工具位置合せ装置を、タレット刃物台等の他の刃物台に関連して設置することもできる。
図1及び図2に示すように、通電装置12は、導電性表面領域16aを備える球状部材16と、球状部材16を、加工対象の棒材(図示せず)を把持できる把持部材18の先端開口20の内周縁20aに当接して、先端開口20に同心配置で部分的に受容させた状態に保持する当接機構22と、球状部材16の導電性表面領域16aに電気的に接続される通電機構24とを備えて構成される。図示実施形態では、球状部材16は、導電性表面領域を形成する第1表面部分16aと、第1表面部分16aに隣接して電気絶縁性表面領域を形成する第2表面部分16bとを備え、第2表面部分16bで、把持部材18の先端開口20の内周縁20aに導通可能に当接されるようになっている。球状部材16の第2表面部分16bは、導電性の第1表面部分16aと、一般に導電性金属材料からなる把持部材18との間を、電気的に絶縁する絶縁要素として作用する。なお、把持部材18は、自動旋盤の回転主軸26の先端領域に装着されるコレットチャックとして示されている。
通電装置12を組み込んで備える工具位置合せ装置10は、上記した球状部材16、当接機構22及び通電機構24に加えて、くし歯刃物台14に装着されたバイト28やドリル30等の複数種類の工具のうち位置合せ対象の工具28、30を、把持部材18の先端開口20に部分的に受容された球状部材16の第1表面部分16aに接触させる駆動機構32と、通電機構24による工具28、30と球状部材16の第1表面部分16aとの間の相互接触時の導通を検出して、工具28、30の接触部位の位置を確定する接触位置確定部34と、確定した工具28、30の接触部位の位置に基づいて球状部材16の中心16cの位置を求めるとともに、予め定めた工具28、30の加工位置データを、求められた中心16cの位置に対応して適宜補正する補正演算部36とを備えて構成される。後述するように通電機構24は、位置合せ対象の工具28、30と球状部材16の第1表面部分16aとが互いに非接触状態にあるときに両者間に電位差を与えるとともに、工具28、30と球状部材16の第1表面部分16aとが相互接触したときに両者間に電流を流すように作用する。
このように、工具位置合せ装置10は、加工対象棒材の中心軸線の位置ではなく、加工対象棒材を把持する把持部材18に同心配置される球状部材16の中心16cの位置を特定することにより、工具28、30の事前位置合せを行うように構成される。通常、把持部材(図示の例ではコレットチャック)18は、把持対象の棒材の横断面形状(円又は正多角形)に対応する断面形状を呈するすり割り構造の棒材把持部38を先端領域に備え、棒材把持部38を把持部材18の中心軸線18aへ向かって径方向へ一様に弾性変形させることにより、棒材を強固に固定的に把持する構成を有する。したがって、把持部材18の先端開口20の内周縁20aは、同様に把持対象の棒材の横断面形状に対応する環状輪郭(円又は正多角形)を有する。このような輪郭を有する把持部材18の先端開口20の内周縁20aに、球状部材16の表面を平衡状態で(すなわち中心軸線18aに関して対称に)当接して、球状部材16の一部分を先端開口20に挿入すると、球状部材16の中心16cが把持部材18の中心軸線18a上に自動的に位置決めされる。そこで後述するように、球状部材16の中心16cを加工対象棒材の中心軸線と見なすことによって、工具28、30の事前位置合せを実施できるのである。
このような工具位置合せ方法を可能にするために、球状部材16は、工具位置合せ対象の把持部材18の先端開口20の内接円直径よりも大きな直径を有する球体であるとともに、先端開口20の内周縁20aに当接されたときに容易には変形しない程度の剛性を有する。また、球状部材16の第2表面部分16bは、球状部材16の表面上で、先端開口20の内周縁20aに平衡状態で当接可能な領域に形成される必要がある。特に、後述するように、位置合せ対象の工具28、30を球状部材16の第1表面部分16aに比較的容易に接触させ得るようにするためには、球状部材16の表面の過半領域に第1表面部分16aを形成することが有利である。
図3Aに示すように、球状部材16は、導電性材料からなる球状本体40と、球状本体40の表面の一部分を被覆する絶縁層42とから構成できる。この場合、第1表面部分16aは球状本体40の露出表面部分によって形成され、第2表面部分16bは絶縁層42の外面によって形成される。この構成では、球状本体40は、銅、アルミニウム等の電気良導性金属材料や、合金系磁石等のそれ自体に導電性を有する永久磁石材料から形成できる。また絶縁層42は、シリカ(SiO)、アルミナ(Al)等の絶縁性酸化物の蒸着皮膜や、ポリエチレン、フッ素樹脂等の有機物の塗膜から形成できる。或いは絶縁層42を、ダイヤモンドライクカーボン(DLC)の蒸着皮膜から形成することもできる。DLC皮膜からなる絶縁層42は、球状本体40と絶縁層42との間にチタン/炭化珪素(Ti/SiC)の中間層を形成することにより、絶縁性、耐摩耗性等を向上させることができる。なお、絶縁層42の蒸着方法としては、スパッタリング法や化学蒸着法を採用できる。
或いは図3Bに示すように、球状部材16を、電気絶縁性材料からなる球状本体44と、球状本体44の表面の一部分を被覆する導電層46とから構成することもできる。この場合、第1表面部分16aは導電層46の外面によって形成され、第2表面部分16bは球状本体44の露出表面部分によって形成される。この構成では、球状本体44は、プラスチック、セラミックス等の電気絶縁性材料や、それ自体に導電性を有しない永久磁石材料、例えばフェライト磁石から形成できる。また導電層46は、金、銅等のメッキ又は蒸着皮膜や、酸化インジウムスズ(ITO)等の導電性酸化物又は窒化チタン(TiN)や炭化チタン(TiC)等の窒化物や炭化物の蒸着皮膜から形成できる。導電層46の蒸着方法としては、スパッタリング法や化学蒸着法を採用できる。或いは、放電プラズマ焼結機等を用いて、セラミックス製球状本体44の表面に金属製導電層46を接合形成することもできる。
さらに、図示しないが、それぞれが電気良導性材料及び電気絶縁性材料からなる一対のドーム形半体を、接着剤や溶接により互いに接合して、球状部材16を構成することもできる。
当接機構22は、図示実施形態では、球状部材16自体に組み込まれて、把持部材18に対し磁気吸引力を発揮する永久磁石材料から構成される。この場合、当接機構22は上記したように、導電性を有する永久磁石材料からなる球状本体40(図3A)又は導電性を有しない永久磁石材料からなる球状本体44(図3B)から構成されることが有利である。或いは、電気良導性材料からなる球状本体40又は電気絶縁性材料からなる球状本体44の一部を、そのような永久磁石材料に置き換えることにより、当接機構22を構成することもできる。この当接機構22によれば、球状部材16自体が発揮する磁気吸引力により、第2表面部分16bを把持部材18の先端開口20の内周縁20aに当接して、球状部材16を先端開口20に同心配置で部分的に受容させた状態に保持することができるので、装置構成及び位置合せ作業が簡略化される利点がある。
通電機構24は、図示実施形態では、球状部材16の第1表面部分16aに接続される端子48と、端子48とくし歯刃物台14との間を電気的に接続する線路50と、線路50内に設置される電源52とを備えて構成される。端子48は例えば、電気良導性のボルトから形成できる。この場合、端子48は、球状部材16の導電性球状本体40に直接に螺着される(図3A)か、又は球状部材16の導電層46に密接して絶縁性球状本体44に螺着される(図3B)。端子48及び線路50は、球状部材16の第1表面部分16aと電源52との間を電気的に接続するように作用する。
駆動機構32は、くし歯刃物台14を、自動旋盤の回転主軸26に装着された把持部材18の中心軸線18aに直交する平面内で、直交2軸方向(例えば旋盤機台上の所与の直交3軸座標系におけるX軸及びY軸方向)へ平行移動させる。この場合、駆動機構32は、加工作業に際してくし歯刃物台14を駆動する自動旋盤の駆動機構(各軸サーボモータ、送りねじ装置等)から構成されることが有利である。くし歯刃物台14は、複数のバイト28及びドリル30を並列配置で着脱可能に支持する複数の工具装着部54、56と、それら工具装着部54、56を一体的に設けた基台58とを備え、自動旋盤の回転主軸26の周辺で旋盤機台上に設置される。
位置合せ対象の工具の選択時には、複数のバイト28の刃先28a及びドリル30の先端30aが、把持部材18の先端開口20に当接された球状部材16に接触しない位置で、駆動機構32がくし歯刃物台14をY軸方向(バイト28及びドリル30の並列方向)へ平行移動する。そして、位置合せ対象のバイト28の刃先28a又はドリル30の先端30aが、把持部材18の中心軸線18aに対しX軸方向へ実質的に整列して配置された時点で、工具選択が完了する。この状態から、駆動機構32がくし歯刃物台14をX軸方向へ平行移動し、選択したバイト28又はドリル30を後述するようにして球状部材16に接触させる。
くし歯刃物台14の複数の工具装着部54には、棒材に外丸削り、突切り等の外面加工を施すための種々のバイト28を装着することができる。この場合、各バイト28が工具選択完了時に、把持部材18の中心軸線18aから常に略同一距離の位置に刃先28aを配置できるように装着することが肝要である。そこで加工作業に先立ち、くし歯刃物台14に装着した複数のバイト28の刃先位置を、把持部材18の中心軸線18aに平行なZ軸及び前述したY軸の両軸に平行な基準面(すなわちYZ平面)上にほぼ揃えて配置することが有利である。なお、本明細書で「バイトの刃先」とは、特に断りの無い限り刃部のコーナ部を示すものとする。また、くし歯刃物台14の複数の工具装着部56には、専用の回転駆動源(図示せず)の駆動により棒材の側面に穴明け加工を施す種々のドリル30を装着できる。
加工対象の棒材の中心軸線に対するバイト28やドリル30の事前位置合せ作業は、例えば1つの棒材の加工に複数のバイト28やドリル30を使用する場合には通常、工具交換の度に実施される。さらに、例えば同一のバイト28であっても、旋削加工により刃先28aが摩耗すると、刃先28aと把持部材18の中心軸線18aとの相対位置関係が変化するので、被加工製品に高い寸法精度が要求される場合は、定期的に事前位置合せ作業を実施する必要がある。したがってこのような事前位置合せ作業は、自動旋盤による一連の自動加工作業における予備段階として、所定の制御フロー下で自動的に実施することが有利である。そこで工具位置合せ装置10では、以下のように自動旋盤の制御部(例えばNC制御部)60に関連して、駆動機構32、接触位置確定部34及び補正演算部36を動作させることにより、複数の工具28、30の事前位置合せ作業を自動的に実施する。
接触位置確定部34は、通電機構24の線路50内に設置される導通センサ(例えば電流計)62と、導通センサ62に接続される自動旋盤の制御部60とから構成される。駆動機構32の駆動により、位置合せ対象の工具28、30が、把持部材18の先端開口20に当接された球状部材16の第1表面部分16aに接触すると、工具28、30と第1表面部分16aとの間が、導電体からなるくし歯刃物台14の基台58を介して導通する。このとき、電源52により線路50内に電流が流れ、この電流が導通センサ62によって検出される。制御部60は、導通センサ62による電流検出信号を受けると同時に演算処理を開始して、工具28、30の接触部位の位置を、旋盤機台上のXY座標系における座標データとして確定する。
補正演算部36は、自動旋盤の制御部60と、制御部60に接続される演算部64とから構成される。演算部64は、制御部60によって確定された工具28、30の接触部位の座標データに基づき、所定の演算を実施して、球状部材16の中心16cすなわち把持部材18の中心軸線18aの位置を、旋盤機台上のXY座標系における座標データとして確定する。制御部60は、その記憶部に予め入力された個々の工具28、30の所定の加工位置データ(選択完了時の工具先端の位置、加工中の切込量、加工待機時の後退位置等)を、演算部64により確定された球状部材16の中心16cの座標データを基準として補正する(NC旋盤の場合はオフセットデータ記憶領域を書き換える)。それにより、加工作業に際する各工具28、30の先端ないし刃先の実際の位置が、球状部材16の中心16cすなわち把持部材18の中心軸線18aの位置に従って決定される。そこで制御部60は、このようにして補正された加工位置データに基づき、駆動機構32を制御してくし歯刃物台14を駆動し、前述した工具選択作業を経て、把持部材18に把持された棒材の加工作業を所望の工具28、30により実施する。 次に図4〜図5Bを参照して、工具位置合せ装置10による工具の事前位置合せ作業のフローをより具体的に説明する。
まず、加工に必要な所望種類の複数のバイト28及びドリル30をくし歯刃物台14に装着するとともに、加工対象の棒材を把持する把持部材18を、自動旋盤の回転主軸26に装着する(ステップS1)。ここで、好ましくは専用のゲージすなわち刃先揃え装置を用いて、複数のバイト28の刃先28aを旋盤機台上で、Y軸及びZ軸の両軸に平行な基準面(YZ平面)上に実質的に揃えて配置する。
次に、通電装置12の球状部材16を、それ自体の磁気吸引力により、把持部材18の先端開口20に同心配置で部分的に受容させるとともに、その第2表面部分16bを先端開口20の内周縁20aに当接した状態に保持する(ステップS2)。このとき球状部材16は、線路50を介して、電源52及びくし歯刃物台14の基台58に電気的に接続される(図1)。
続いて、くし歯刃物台14に装着した複数のバイト28及びドリル30のうち、加工作業を実施すべく選択されているバイト28又はドリル30のみを、その選択の都度、事前位置合せする第1のプログラムと、加工開始に先立って全てのバイト28を連続して事前位置合せする第2のプログラムとのいずれかを選択する(ステップS3)。なおドリル30は、第1のプログラムにのみ対応可能である。また、図示しないが、くし歯刃物台14と同様にX軸方向及びY軸方向へ移動できるタレット刃物台に対しては、工具位置合せ装置10は、タレットの割出回転で工具を選択した後に、タレット刃物台をX軸方向及びY軸方向へ移動させることにより、タレット装着工具の事前位置合せ作業を同様のフローで実施できる。この場合も、加工作業に際して選択された工具のみを選択の度に位置合せする第1のプログラムと、加工開始に先立って全ての工具を連続して位置合せする第2のプログラムとのいずれかを選択する。
次にステップS4で、制御部60の制御下で駆動機構32がくし歯刃物台14を駆動し、位置合せ対象のバイト28又はドリル30を選択するとともに、バイト28の刃先28a又はドリル30の先端30aを、球状部材16の第1表面部分16aの例えば所望3箇所に順次接触させる(図5A、図5B)。このとき、接触位置確定部34の導通センサ62により、バイト28又はドリル30と球状部材16の第1表面部分16aとの導通が検出される都度、制御部60が駆動機構32によりくし歯刃物台14を停止し、次の接触位置へ反復的に移動させる。それにより、前述したように接触位置確定部34が、バイト28の刃先28a又はドリル30の先端30aと球状部材16の第1表面部分16aとの3箇所の接触位置を順次、XY座標データとして確定する(ステップS5)。次いで補正演算部36が、確定した3箇所の接触位置の座標データに基づき、所定の演算を実施して、球状部材16の中心16cすなわち把持部材18の中心軸線18aの位置をXY座標上に確定する(ステップS6)。
上記したステップS4〜S6において、駆動機構32、接触位置確定部34及び補正演算部36は、球状部材16の中心16cの位置をXY座標上の原点(0,0)と仮定して、くし歯刃物台14の駆動、接触位置座標データの確定及び球状部材中心座標の確定を実行できる(図5A及び図5B参照)。この場合、ステップS4で駆動機構32はまず、球状部材16の中心16cの位置を原点(0,0)として指定したY座標(Y1)に従い、くし歯刃物台14をY軸方向へ平行移動させて、位置合せ対象の工具28、30を球状部材16に対しX軸方向へ実質的に整列する所望位置に配置する。この工具選択完了時のくし歯刃物台14の位置を、原点位置と称する。続いて、くし歯刃物台14を原点位置からX軸方向へ平行移動させて、選択したバイト28の刃先28a又はドリル30の先端30aを、球状部材16の第1表面部分16aに接触させる。
次いでステップS5で、接触位置確定部34は、通電装置12によるバイト28又はドリル30と球状部材16の第1表面部分16aとの間の導通を検出して、くし歯刃物台14を停止させ、バイト28又はドリル30の接触部位のX座標(X1)を算出する。このとき、くし歯刃物台14の原点位置座標、及び原点位置にあるくし歯刃物台14上の選択した工具28、30の先端28a、30aから原点位置までのX軸方向距離を、既定値として制御部60の記憶部に格納しておけば、工具接触に至るくし歯刃物台14のX軸方向移動距離を基に接触部位のX座標が算出され、その結果、1つの接触位置の座標データ(X1,Y1)が確定する。続けてこのような作業を、他の2つのY座標(Y2)、(Y3)の指定下で順次実施することにより、他の2つの接触位置の座標データ(X2,Y2)、(X3,Y3)が確定する。なお、位置合せ精度を一層向上させるためには、工具先端28a、30aが球状部材16に導通接触してからくし歯刃物台14が実際に停止するまでの時間遅れを考慮に入れて、接触位置確定演算を行うことが好ましい。
次いでステップS6で、補正演算部36は、3箇所の接触位置の座標データ(X1,Y1)、(X2,Y2)、(X3,Y3)から、実際の工具先端28a、30aに対応する球状部材16の中心16cの位置座標(X0,Y0)を演算する。ここで、選択した工具28、30の種類や摩耗程度によっては、先端28a、30aの位置がくし歯刃物台14上でZ軸方向に変動する場合があるので、工具接触位置を確定するXY平面(図5B)の位置をZ軸上で特定できず、したがって球状部材16のXY断面における直径を既定値として制御部60に格納しておくことができない。しかし、上記したように少なくとも3箇所の接触位置の座標データが得られれば、球状部材16のXY断面直径が不明であっても、補正演算部36はその演算部64にて、それら少なくとも3箇所の接触位置の座標データから三角関数を用いて演算を行い、球状部材16の中心16cの位置座標(X0,Y0)を求めることができる。なお、前述したように球状部材16の表面の過半領域に第1表面部分16aを形成することは、工具種類等によって変動する工具接触位置への対応を、Z軸方向へ可及的に広い範囲に渡って可能にする点で有利である。
再び図4のフローチャートを参照すると、ステップS7で制御部60は、前述したように、予め記憶部に格納された位置合せ対象のバイト28又はドリル30の所定の加工位置データ(選択完了時の工具先端の位置、加工中の切込量、加工待機時の後退位置等)を、演算部64により求められた球状部材16の中心16cの座標データを基準として(すなわち(X0,Y0)を原点とすべく)補正する。このようにして、対象工具28、30の位置合せが完了する。最後に、通電装置12の球状部材16を把持部材18の先端開口20から取外す(ステップS8)。その後、把持部材18に加工対象の棒材を強固に把持させて、補正された加工位置データに基づき、制御部60が駆動機構32を制御してくし歯刃物台14を駆動し、バイト28又はドリル30を把持部材18の中心軸線18aすなわち棒材の回転軸線に対し自動的に位置合せした状態で、棒材を加工する。
なお、ステップS3で第1のプログラムを選択した場合は、それ以降のステップS4〜S7を、直後の加工作業に使用される1つのバイト28又はドリル30に対してのみ実施して、当該工具の加工位置データを補正する。この場合、既に把持部材18に把持されている棒材を、位置合せ作業の度に、把持部材18の棒材把持部38に一時的に引き込ませることになる。また、ステップS3で第2のプログラムを選択した場合は、それ以降のステップS4〜S7を、くし歯刃物台14上の全てのバイト28に対して実施して、予め全てのバイト28の加工位置データの補正を完了する。この場合、棒材の加工中にいずれかのバイト28を選択する都度、そのバイト28が、上記手順で把持部材18の中心軸線18aに対し自動的に位置合せされた加工位置データに基づき、棒材を加工する。
以上の説明から理解されるように、工具位置合せ装置10では、旋盤機台上での実際の工具先端位置に対応する加工対象棒材の中心軸線の位置を求めようとする際に、加工対象棒材を使用する代わりに、当該棒材を把持する把持部材18の先端開口20に球状部材16を同心配置し、その状態で球状部材16の導電性の第1表面部分16aの所望位置に工具28、30を導通接触させて、その接触位置座標を確定する構成とした。したがって、工具位置合せ作業に起因して、加工対象棒材の外周面を損傷したり、工具刃先の無用な摩耗を生じたりすることが未然に防止される。
また、工具位置合せ装置10によれば、加工対象棒材を把持する把持部材18の先端開口20の内周縁20aに球状部材16の表面を平衡状態で当接することにより、球状部材16の中心16cを把持部材18の中心軸線18a上に自動的に位置決めする構成としたから、加工対象棒材が丸棒以外の異形材である場合にも、その異形材を実際に把持する把持部材18の、異形断面の先端開口20に球状部材16を確実に同心配置できる。したがって、工具位置合せ時の把持部材18の交換等によって製品の生産性に悪影響が及ぼされる懸念は排除され、工具先端を異形材の中心軸線に対しても、容易かつ正確に事前位置合せすることが可能になる。
さらに、工具位置合せ装置10によれば、例えば導通センサ62の故障により、工具28、30と球状部材16との相互接触を検出できず、その時点でくし歯刃物台14の駆動を停止できなかった場合に、球状部材16は工具28、30に押されて把持部材18の先端開口20から容易に脱落する。したがってこのような場合にも、工具28、30の損傷を効果的に防止できる。
上記した工具位置合せ方法及び工具位置合せ装置10は、図6に示すように、自動旋盤の回転主軸の前方位置に設置される回転型ガイドブッシュからなる把持部材68に対しても適用できる。通常、回転型ガイドブッシュからなる把持部材68は、把持対象の棒材の横断面形状(円又は正多角形)に対応する断面形状を呈するすり割り構造の棒材把持部70を先端領域に備え、棒材把持部70を把持部材68の中心軸線68aへ向かって径方向へ一様に弾性変形させることにより、棒材を加工部位近傍領域で補助的に把持する構成を有する。したがって、把持部材68の先端開口72の内周縁72aは、同様に把持対象の棒材の横断面形状に対応する環状輪郭(円又は正多角形)を有する。このような輪郭を有する把持部材68の先端開口72の内周縁72aに、球状部材16の表面を平衡状態で(すなわち中心軸線68aに関して対称に)当接して、球状部材16の一部分を先端開口72に挿入すると、球状部材16の中心16cが把持部材68の中心軸線68a上に自動的に位置決めされる。そこで、前述した把持部材18に対する工具位置合せ方法と同様に、球状部材16の中心16cを加工対象棒材の中心軸線と見なすことによって、工具28、30の事前位置合せを実施できる。
ところで、前述したように工具位置合せ装置10を自動旋盤において使用する際には、接触位置確定部34の導通センサ62が、通電機構24による工具28、30と球状部材16の第1表面部分16aとの間の相互接触時の導通を正確に検出できるようにするために、相互接触前の状態で工具28、30と球状部材16の第1表面部分16aとの間に、自動旋盤を構成する多くの導電性金属部品を介して電流が流れてしまうことを確実に阻止する必要がある。その目的で図示実施形態では、球状部材16の第1表面部分16aと把持部材18とを絶縁する第2表面部分16bが、第1表面部分16aに隣接して球状部材16に設けられている。しかし、例えば図3Aに示す構成において、第2表面部分16bを形成する絶縁層42を設ける代わりに、樹脂フィルム等の独立した絶縁要素を球状部材16と把持部材18との間に介在させたり、把持部材18の先端開口20の内周縁20aに絶縁被覆を設けたりする構成を採用することもできる。或いは、他の何らかの手段で、自動旋盤におけるくし歯刃物台14と把持部材18との間を電気的に絶縁できさえすれば、このような絶縁要素を省略することもできる。
図7は、本発明の第2の実施形態による工具位置合せ装置80と、工具位置合せ装置80に組み込まれる本発明の第2の実施形態による通電装置82とを、自動旋盤の回転主軸26(図1)に関連して設置される前述した回転型ガイドブッシュからなる把持部材68への適用例で示す。工具位置合せ装置80及び通電装置82は、球状部材16を把持部材68の先端開口72の内周縁72aに当接する当接機構84の構成以外は、図1に示す工具位置合せ装置10及び通電装置12と実質的同一の構成を有する。したがって、同一又は類似の構成要素には共通の参照符号を付して、その説明を省略する。
工具位置合せ装置80及び通電装置82の当接機構84は、球状部材16を把持部材68の先端開口72に機械的に押し付ける押圧ユニット84から構成される。押圧ユニット84は、一端に平坦な端板部分86を一体的に有する棒状の導電性の押圧部材88と、押圧部材88の棒状部分の所望長さ領域を軸線方向摺動自在に被覆する電気絶縁性のスリーブ90と、押圧部材88の端板部分86とスリーブ90との間に配置され、端板部分86をスリーブ90から離れる方向へ弾性的に付勢する付勢部材92とを備える。押圧部材88の棒状部分の他端には、スリーブ90からの押圧部材88の脱落を防止する抜け止め94が固定される。
押圧ユニット84は、自動旋盤の把持部材(ガイドブッシュ)68に軸線方向へ同心状に対向して位置決め可能な背面主軸96に装着される。背面主軸96は、回転主軸26に装着した把持部材(コレットチャック)18(図1)と同様の構成を有するチャック98を備え、把持部材68に対向した位置で、回転主軸26から送り出される棒材を受け取ってチャック98に強固に固定的に把持することにより、当該棒材の送り方向後端領域の加工を可能にするものである。押圧ユニット84は、そのスリーブ90がチャック98のすり割り構造の棒材把持部100に固定的に把持されることにより、押圧部材88の端板部分86をチャック98から把持部材68に向かって突出させた状態で背面主軸96に装着される。
上記構成を有する当接機構すなわち押圧ユニット84は、自動旋盤の駆動機構によって背面主軸96を把持部材(ガイドブッシュ)68の前方に同心状に対向配置した状態で、その押圧部材88により、球状部材16を把持部材68の先端開口72に弾性的に押し付けることができる。このとき押圧ユニット84は、押圧部材88の端板部分86を球状部材16の導電性の第1表面部分16aに導通可能に接触させるとともに、付勢部材92の弾性的付勢力により、球状部材16の第2表面部分16bを把持部材68の先端開口72の内周縁72aに当接するように作用し、それにより球状部材16を、先端開口72に同心配置で部分的に受容させた状態に保持する。したがってこの構成では、球状部材16に前述した永久磁石材料を組み込む必要が無くなる。
工具位置合せ装置80の通電機構24は、その線路50の一端が、押圧ユニット84の押圧部材88に電気的に接続される。したがって通電機構24の線路50は、上記したように押圧ユニット84が押圧部材88により球状部材16の第2表面部分16bを把持部材68の先端開口72の内周縁72aに当接している間、導電性の押圧部材88を介して、球状部材16の第1表面部分16aと電源52との間を電気的に接続する。それにより通電機構24は、工具位置合せ工程中、位置合せ対象の工具28、30と球状部材16の第1表面部分16aとが互いに非接触状態にあるときに両者間に電位差を与えるとともに、工具28、30と球状部材16の第1表面部分16aとが相互接触したときに両者間に電流を流すように作用する。
上記構成を有する工具位置合せ装置80は、図1の工具位置合せ装置10と同様に、図4に示すフローチャートに従って、工具の事前位置合せ作業を遂行できる。この場合、ステップS2で、押圧ユニット84を自動旋盤の背面主軸96に装着する作業が追加される代わりに、球状部材16に端子48を接続する手間が省かれる。或いは、押圧ユニット84を用いる場合にも、図1の工具位置合せ装置10と同様に、通電機構24の線路50を端子48を介して球状部材16の第1表面部分16aに接続してもよい。また、工具28、30と球状部材16の第1表面部分16aとが相互接触していない状態で、両者間に背面主軸96を構成する導電性金属部品を介して電流が流れてしまうことを確実に阻止できる絶縁手段を、押圧ユニット84の電気絶縁性のスリーブ90の代わりに採用することもできる。さらに、押圧ユニット84に加えて、前述した永久磁石材料を組み込んだ球状部材16を使用することもできる。
上記構成を有する工具位置合せ装置80及び通電装置82によっても、図1の工具位置合せ装置10及び通電装置12と同様の作用効果が奏されることは理解されよう。
なお、工具位置合せ装置80を、背面主軸を持たない自動旋盤に適用する場合は、図示しないマグネットスタンド等の移動可能な支持部材を用いることにより、旋盤機台上に押圧ユニット84を設置して球状部材16を保持させることができる。
以上、本発明の幾つかの好適な実施形態を説明したが、本発明はこれら実施形態に限定されず、請求の範囲の開示内で様々な変更及び修正を為し得るものである。
産業上の利用可能性
本発明は、加工対象棒材の外周面や工具を損傷することなく、しかも加工対象の棒材が異形材の場合にも、工具先端を対象棒材の中心軸線に対して容易かつ正確に事前位置合せできる工具の位置合せ方法及び位置合せ装置を提供するものである。さらに本発明は、そのような工具の事前位置合せ作業に使用することにより、特に加工対象の棒材が異形材の場合に有利に適用できる位置合せ用通電装置を提供する。このような工具の位置合せ方法及び位置合せ装置、並びに通電装置は、自動旋盤に適用されることにより、製品の高精度加工を実現することができる。
【図面の簡単な説明】
本発明の上記並びに他の目的、特徴及び利点は、添付図面に関連した以下の好適な実施形態の説明により一層明らかになろう。同添付図面において、
図1は、本発明の第1の実施形態による通電装置を組み込んだ工具位置合せ装置を一部ブロック図で示す断面側面図で、自動旋盤の回転主軸に対する使用形態を示す図、
図2は、図1の工具位置合せ装置の正面図、
図3Aは、図1の工具位置合せ装置で使用可能な球状部材の拡大断面図で、絶縁層の厚みを強調して示す図、
図3Bは、図1の工具位置合せ装置で使用可能な他の球状部材の拡大断面図で、導電層の厚みを強調して示す図、
図4は、図1の工具位置合せ装置を用いた事前位置合せ作業のフローチャート、
図5Aは、図4の位置合せ作業フローにおける工具接触ステップを説明する概念図で、工具位置合せ装置の正面から見た図、
図5Bは、この工具接触ステップを説明する概念図で、工具位置合せ装置の側面から見た図、
図6は、図1の工具位置合せ装置を一部ブロック図で示す断面側面図で、自動旋盤のガイドブッシュに対する使用形態を示す図、及び
図7は、本発明の第2の実施形態による通電装置を組み込んだ工具位置合せ装置を一部ブロック図で示す断面側面図である。
Technical field
The present invention relates to a tool alignment method and a tool alignment apparatus for previously aligning the tip of a tool with respect to the central axis of a bar to be processed. Furthermore, the present invention relates to an alignment energization device that can be used for previously aligning the tip of a tool with respect to the central axis of a bar to be processed.
Background art
When machining the outer peripheral surface of a bar-shaped workpiece (hereinafter referred to as a bar) with a lathe, the tip of a tool such as a tool mounted on the tool post is usually aligned with the central axis of the bar After that, the machining work is started. For example, a turret (hereinafter referred to as a comb tooth turret) that supports a plurality of tools in parallel arrangement on a machine tool (hereinafter referred to as an automatic lathe) such as an NC lathe capable of performing various automatic machining mainly for turning. In general, the comb tooth turret can be translated in the direction of two orthogonal axes (for example, the X axis and the Y axis) in a plane orthogonal to the central axis of the bar gripped by the rotating spindle. Composed. In this configuration, when machining a bar with a desired tool, the moving position of the tool tip on the XY coordinate system is based on the position coordinate of the central axis of the bar in the XY coordinate system on the lathe machine base as a reference, that is, the origin. Set to
For example, when the tool is selected, the comb tooth turret is translated in the Y-axis direction (that is, the tool parallel direction) at a position where the cutting edges of a plurality of tools mounted on the comb tooth turret do not contact the bar. The tool selection is completed when the tip of the desired tool to be selected and the central axis of the bar are aligned in the X-axis direction. From this state, the comb tooth turret is translated in the X-axis direction, and the tip or cutting edge of the selected tool is brought into contact with the bar material to perform processing. At this time, when the selected tool is, for example, a cutting tool, the cutting amount of the cutting tool with respect to the bar and the retraction standby position of the cutting edge when the cutting tool is not used are determined by controlling the X-axis movement amount of the comb tooth tool post. Is done. Note that the terms “tool tip” or “tool edge” in this specification indicate a portion where the tool first contacts the bar during the machining operation.
The above-mentioned Y-axis movement (when the tool is selected) and X-axis movement (when machining) of the comb tooth turret are the settings of the position of the selected tool on the comb tooth turret and the tip movement position of the selected tool during the machining operation. Performed according to coordinate data. Therefore, in order to perform high-precision machining, the position coordinate data of the tool needs to be set accurately with reference to the bar center regardless of the type of the selected tool. However, even if the comb tooth turret is moved according to the setting data due to the difference in the cutting edge shape and the tip wear degree of the tool, the actual movement position of the tool cutting edge may deviate from the set coordinates. In order to eliminate such inconvenience, it is required to correct the set coordinate data of each tool before starting the machining operation. The meaning of the term “alignment” in this specification includes such a correction operation of the set coordinate data.
Such a pre-alignment operation of the tool is usually performed every time the tool is changed, for example, when a plurality of tools are used for processing one bar. Therefore, it is advantageous to carry out automatically under a predetermined control flow as a preliminary stage in a series of automatic machining operations by an automatic lathe. For example, Japanese Patent Laid-Open No. 8-118103 (JP-A-8-118103) discloses an apparatus for automatically performing the above-described tool tip alignment work prior to the machining work.
This known apparatus includes a tool contact means for bringing a cutting tool into contact with the outer peripheral surface of the bar, contact position determining means for determining a contact position between the bar and the cutting tool, and a central axis of the bar based on the determined contact position data. And a calculation means for calculating the position of the. The tool contact means sequentially contacts the cutting edge of the cutting tool at at least three different points in the circumferential direction and the axial direction on the outer peripheral surface of the rotating bar, and the contact position determination means determines the contact position each time. Then, the calculation means obtains the position (calculation center value) of the central axis of the bar based on at least three contact position data of the confirmed cutting edge. The byte is moved to a position set based on this calculation center value. When exchanging bytes, the operation center value is obtained for a new byte by the above procedure, and the operation center value is rewritten each time.
In the conventional tool tip alignment apparatus described above, in order to obtain the calculation center value of the bar, the cutting edge of the bite is brought into direct contact with the outer peripheral surface of the rotating bar to determine the contact position. Therefore, the outer peripheral surface of the bar is slightly cut before the processing starts. Even if an attempt is made to determine the contact position without rotating the bar, there is still a concern that the outer peripheral surface of the bar will be damaged by the cutting edge of the cutting tool. Therefore, the cutting edge must be brought into contact with a position where such cutting and scratches are allowed, and the work for selecting the tool contact position is indispensable. In addition, there is a concern that the cutting edge of the tool may be worn or damaged during the alignment of the tool tip, which is a preliminary work of the processing work, and there is a concern that the tool life in the actual processing work may be shortened.
In particular, when the bar is a deformed material (that is, a square bar) other than a cylindrical material (that is, a round bar), the above-described machining operation is performed by the method in which the cutting edge of the tool is brought into direct contact with the outer peripheral surface of the rotating bar. Previous wasteful cutting cannot be avoided. Furthermore, if you try to obtain the calculation center value by contacting the cutting edge with multiple locations on the surface of the deformed material without rotating the deformed material, if the cutting edge contact position is selected at random, the center axis of the deformed material It becomes difficult to specify the distance to these blade edge contact positions, and as a result, it becomes difficult to accurately determine the calculation center value of the bar based on the contact position data of the cutting edge edge. Therefore, when the tool alignment is performed on the deformed material by the above-described method, it can be proposed to temporarily use a round bar that is not the object to be processed, instead of using the deformed material to be processed. However, with this method, it is necessary to temporarily use a rod gripping member such as a chuck or a guide bush mounted on an automatic lathe, so that a temporary gripping member must be used after the calculation center value is obtained. Must be replaced with a gripping member dedicated to the profiled material to be processed. As a result, the reliability of the calculation center value is lowered, and useless time is consumed in the setup work, and there is a concern that the productivity of the product may be adversely affected.
Disclosure of the invention
Therefore, the object of the present invention is to easily and accurately advance the tool tip with respect to the center axis of the target bar without damaging the outer peripheral surface of the bar and the tool, and even when the bar to be processed is an irregular shape. It is an object of the present invention to provide a tool alignment method and an alignment apparatus capable of alignment.
Another object of the present invention is to provide an energizing apparatus for alignment that can be used for the pre-alignment work of such a tool and can be advantageously applied particularly when the bar to be processed is a deformed material.
In order to achieve the above object, the present invention provides a tool alignment method for previously aligning the tip of a tool with respect to the center axis of a bar to be processed, comprising a spherical member having a conductive surface region. Prepare and contact the spherical member with the peripheral edge of the tip opening of the gripping member that can grip the bar to be processed, and accept it partially in the tip opening in a concentric arrangement. Contact the surface area, detect the continuity between the tool and the conductive surface area of the spherical member at the time of mutual contact, determine the position of the contact area of the tool, based on the determined position of the contact area of the tool Provided is a tool alignment method for determining the position of the tip of a tool during a machining operation.
In this tool alignment method, the spherical member is partially received concentrically with the tip opening of the gripping member by opening the tip of the spherical member in a state where the gripping member and the conductive surface region are electrically insulated. The operation | work which contact | abuts to the periphery of this can be included.
In this case, the spherical member includes a first surface portion that forms a conductive surface region and a second surface portion that forms an electrically insulating surface region adjacent to the first surface portion, and the second surface portion grips the second surface portion. Advantageously, it is abutted against the periphery of the tip opening of the member.
In addition, determining the position of the tip of the tool means that the center position of the spherical member is determined based on the determined position of the contact portion of the tool and the processing position data of the predetermined tool is determined based on the determined center position. And an operation of appropriately correcting the position corresponding to the position.
Furthermore, the present invention relates to a tool alignment device for previously aligning the tip of a tool with respect to the central axis of a bar to be processed, the spherical member having a conductive surface region, and the spherical member. A contact mechanism that contacts the periphery of the tip opening of the gripping member that can grip the bar material and that is held partially concentrically in the tip opening, and the conductivity of the tool to be aligned is the conductivity of the spherical member A drive mechanism for contacting the surface region, a current-carrying mechanism for passing a current between the tool and the conductive surface region of the spherical member at the time of mutual contact, and a conduction between the tool and the conductive surface region of the spherical member by the current-carrying mechanism And determining the position of the center of the spherical member based on the determined position of the contact portion of the tool, and determining the processing position data of the tool in advance. The desired center position Providing a corresponding tool alignment apparatus for and a correction calculating section for appropriately corrected.
The tool alignment apparatus can further include an insulating element that electrically insulates between the conductive surface region of the spherical member and the gripping member.
In this case, the spherical member includes a first surface portion that forms a conductive surface region, and a second surface portion that forms an electrically insulating surface region adjacent to the first surface portion, and the insulating element is a spherical member. Advantageously, it comprises a second surface portion, the second surface portion being in contact with the periphery of the tip opening of the gripping member.
In this configuration, the spherical member includes a spherical main body made of a conductive material and an insulating layer covering a part of the surface of the spherical main body, the first surface portion is formed by the exposed portion of the spherical main body, and the second The surface portion may be formed of an insulating layer.
Alternatively, the spherical member includes a spherical main body made of an electrically insulating material and a conductive layer covering a part of the surface of the spherical main body, the first surface portion is formed by the conductive layer, and the second surface portion is spherical. It can be set as the structure formed of the exposed part of a main body.
The abutment mechanism is advantageously provided with a permanent magnet material that is incorporated in the spherical member itself and can exert a magnetic attractive force on the gripping member.
Further, the contact mechanism can include a pressing unit that presses the spherical member against the tip opening of the gripping member.
In this case, the pressing unit may include a conductive pressing member that contacts the conductive surface region of the spherical member, and the energization mechanism may supply current to the conductive surface region via the pressing member.
Further, in this case, it is advantageous that the gripping member is installed in relation to the main spindle of the automatic lathe and the pressing unit is mounted on the rear main spindle of the automatic lathe.
The above-described tool alignment apparatus is used for a tool mounted on a tool rest of an automatic lathe, and it is advantageous to configure the drive mechanism as a tool rest drive mechanism for an automatic lathe.
Further, it is convenient that the contact position determining unit includes a control unit of an automatic lathe.
Similarly, it is convenient that the correction calculation unit includes a control unit of an automatic lathe.
Furthermore, the present invention is an energization device for tool alignment for previously aligning the tip of a tool with respect to the central axis of a bar to be processed, comprising a spherical member having a conductive surface region, and a spherical member. An abutment mechanism that abuts the peripheral edge of the tip opening of the gripping member capable of gripping the rod to be processed and is held in a state of being partially received concentrically with the tip opening; and a conductive surface region of the spherical member Provided is an energization device comprising an energization mechanism that is electrically connected.
BEST MODE FOR CARRYING OUT THE INVENTION
Referring to the drawings, FIGS. 1 and 2 show a tool alignment device 10 according to a first embodiment of the present invention and an energization device 12 according to the first embodiment of the present invention incorporated in the tool alignment device 10. Show. The tool alignment apparatus 10 according to the illustrated embodiment is installed in association with a comb tooth tool rest 14 mounted on an automatic lathe. However, the present invention is not limited to this, and the tool alignment apparatus according to the present invention can be installed in association with another tool post such as a turret tool post.
As shown in FIGS. 1 and 2, the energizing device 12 includes a spherical member 16 having a conductive surface region 16 a and a tip of a gripping member 18 that can grip the spherical member 16 and a bar (not shown) to be processed. An abutment mechanism 22 that abuts against the inner peripheral edge 20a of the opening 20 and is held in a state of being partially received by the tip opening 20 in a concentric manner, and is electrically connected to the conductive surface region 16a of the spherical member 16. And an energization mechanism 24. In the illustrated embodiment, the spherical member 16 includes a first surface portion 16a that forms a conductive surface region, and a second surface portion 16b that forms an electrically insulating surface region adjacent to the first surface portion 16a. The second surface portion 16b comes into contact with the inner peripheral edge 20a of the tip opening 20 of the gripping member 18 so as to be conductive. The second surface portion 16b of the spherical member 16 acts as an insulating element that electrically insulates between the conductive first surface portion 16a and the gripping member 18 generally made of a conductive metal material. Note that the gripping member 18 is shown as a collet chuck attached to the tip region of the rotary main shaft 26 of the automatic lathe.
In addition to the spherical member 16, the contact mechanism 22, and the energizing mechanism 24, the tool alignment apparatus 10 including the energizing apparatus 12 includes a plurality of types such as a cutting tool 28 and a drill 30 attached to the comb tooth tool post 14. Among the above tools, a drive mechanism 32 for bringing the tools 28 and 30 to be aligned into contact with the first surface portion 16a of the spherical member 16 partially received in the tip opening 20 of the gripping member 18, and a tool by the energizing mechanism 24 28 and 30 and the first surface portion 16a of the spherical member 16 are detected when they are in contact with each other to determine the position of the contact portion of the tools 28 and 30, and the determined tool 28. The position of the center 16c of the spherical member 16 is obtained based on the positions of the contact portions 30 and the machining position data of the tools 28 and 30 determined in advance corresponding to the obtained position of the center 16c. Constructed and a correction calculator 36 to Yibin corrected. As will be described later, the energizing mechanism 24 gives a potential difference between the tools 28 and 30 when the tools 28 and 30 to be aligned and the first surface portion 16a of the spherical member 16 are not in contact with each other. When the first surface portion 16a of the spherical member 16 comes into contact with each other, it acts so that a current flows between them.
Thus, the tool alignment apparatus 10 specifies the position of the center 16c of the spherical member 16 arranged concentrically with the gripping member 18 that grips the processing target bar, not the position of the central axis of the processing target bar. Thus, the tool 28 and 30 are configured to be pre-aligned. Usually, the gripping member (the collet chuck in the example shown in the figure) 18 has a bar-shaped gripping portion 38 having a cross-sectional shape corresponding to the cross-sectional shape (circle or regular polygon) of the bar to be gripped. In order to prepare for the above, the bar holding portion 38 is elastically deformed uniformly in the radial direction toward the central axis 18a of the holding member 18, thereby firmly holding the bar. Accordingly, the inner peripheral edge 20a of the tip opening 20 of the gripping member 18 similarly has an annular contour (circle or regular polygon) corresponding to the cross-sectional shape of the bar to be gripped. The surface of the spherical member 16 is brought into contact with the inner peripheral edge 20a of the tip opening 20 of the gripping member 18 having such a contour in a balanced state (that is, symmetrically with respect to the central axis 18a), and a part of the spherical member 16 is brought into contact with the tip opening 20. When inserted into the center, the center 16 c of the spherical member 16 is automatically positioned on the center axis 18 a of the gripping member 18. Therefore, as will be described later, the tools 28 and 30 can be pre-aligned by regarding the center 16c of the spherical member 16 as the center axis of the bar to be processed.
In order to enable such a tool alignment method, the spherical member 16 is a sphere having a diameter larger than the inscribed circle diameter of the tip opening 20 of the gripping member 18 to be tool aligned, and the tip opening 20. It has such a rigidity that it is not easily deformed when it is brought into contact with the inner peripheral edge 20a. Further, the second surface portion 16 b of the spherical member 16 needs to be formed on the surface of the spherical member 16 in a region that can contact the inner peripheral edge 20 a of the tip opening 20 in an equilibrium state. In particular, as will be described later, in order to allow the tools 28 and 30 to be aligned to come into contact with the first surface portion 16a of the spherical member 16 relatively easily, a second region is formed on the surface of the spherical member 16. It is advantageous to form one surface portion 16a.
As shown in FIG. 3A, the spherical member 16 can be composed of a spherical body 40 made of a conductive material and an insulating layer 42 that covers a part of the surface of the spherical body 40. In this case, the first surface portion 16 a is formed by the exposed surface portion of the spherical body 40, and the second surface portion 16 b is formed by the outer surface of the insulating layer 42. In this configuration, the spherical main body 40 can be formed from an electrically conductive metal material such as copper or aluminum, or a permanent magnet material having conductivity in itself such as an alloy magnet. The insulating layer 42 is made of silica (SiO 2 2 ), Alumina (Al 2 O 3 ) Or the like, or an organic coating such as polyethylene or fluororesin. Alternatively, the insulating layer 42 can be formed from a deposited film of diamond-like carbon (DLC). The insulating layer 42 made of the DLC film can improve insulation, wear resistance, and the like by forming an intermediate layer of titanium / silicon carbide (Ti / SiC) between the spherical body 40 and the insulating layer 42. it can. In addition, as a vapor deposition method of the insulating layer 42, a sputtering method or a chemical vapor deposition method can be adopted.
Alternatively, as shown in FIG. 3B, the spherical member 16 can be composed of a spherical main body 44 made of an electrically insulating material and a conductive layer 46 covering a part of the surface of the spherical main body 44. In this case, the first surface portion 16 a is formed by the outer surface of the conductive layer 46, and the second surface portion 16 b is formed by the exposed surface portion of the spherical body 44. In this configuration, the spherical body 44 can be formed of an electrically insulating material such as plastic or ceramic, or a permanent magnet material that does not have electrical conductivity by itself, such as a ferrite magnet. The conductive layer 46 is made of gold or copper, or a deposited film of a conductive oxide such as indium tin oxide (ITO) or a nitride or carbide of titanium nitride (TiN) or titanium carbide (TiC). Can be formed from As a method for depositing the conductive layer 46, a sputtering method or a chemical vapor deposition method can be employed. Alternatively, the metal conductive layer 46 can be bonded to the surface of the ceramic spherical main body 44 using a discharge plasma sintering machine or the like.
Furthermore, although not shown, the spherical member 16 can be configured by joining a pair of dome-shaped halves each made of an electrically conductive material and an electrically insulating material by an adhesive or welding.
In the illustrated embodiment, the contact mechanism 22 is formed of a permanent magnet material that is incorporated in the spherical member 16 itself and that exerts a magnetic attraction force with respect to the gripping member 18. In this case, as described above, the contact mechanism 22 includes the spherical body 40 (FIG. 3A) made of a permanent magnet material having conductivity or the spherical body 44 (FIG. 3B) made of a permanent magnet material having no conductivity. It is advantageous. Alternatively, the contact mechanism 22 can be configured by replacing a part of the spherical main body 40 made of an electrically conductive material or the spherical main body 44 made of an electrically insulating material with such a permanent magnet material. According to this contact mechanism 22, the second surface portion 16 b is brought into contact with the inner peripheral edge 20 a of the distal end opening 20 of the gripping member 18 by the magnetic attractive force exerted by the spherical member 16 itself, and the spherical member 16 is brought into contact with the distal end opening 20. Therefore, there is an advantage that the apparatus configuration and the alignment operation are simplified.
In the illustrated embodiment, the energizing mechanism 24 includes a terminal 48 connected to the first surface portion 16 a of the spherical member 16, a line 50 that electrically connects the terminal 48 and the comb tooth tool base 14, And a power supply 52 installed in the apparatus. The terminal 48 can be formed from, for example, an electrically conductive bolt. In this case, the terminal 48 is directly screwed to the conductive spherical body 40 of the spherical member 16 (FIG. 3A), or is screwed to the insulating spherical main body 44 in close contact with the conductive layer 46 of the spherical member 16. (FIG. 3B). The terminal 48 and the line 50 act so as to electrically connect the first surface portion 16 a of the spherical member 16 and the power source 52.
The drive mechanism 32 moves the comb tooth turret 14 in a biaxial direction (for example, a given position on a lathe machine base) in a plane perpendicular to the central axis 18a of the gripping member 18 attached to the rotation main shaft 26 of the automatic lathe. Translate in the X-axis and Y-axis directions in the orthogonal triaxial coordinate system. In this case, the drive mechanism 32 is advantageously composed of an automatic lathe drive mechanism (each axis servo motor, feed screw device, etc.) that drives the comb tooth tool post 14 during machining operations. The comb tooth turret 14 includes a plurality of tool mounting portions 54 and 56 that detachably support the plurality of tools 28 and the drill 30 in a parallel arrangement, and a base 58 integrally provided with the tool mounting portions 54 and 56. And is installed on a lathe table around the rotation spindle 26 of the automatic lathe.
When the tool to be aligned is selected, the drive mechanism 32 has a comb tooth at a position where the cutting edges 28a of the plurality of cutting tools 28 and the tips 30a of the drills 30 do not come into contact with the spherical member 16 that is in contact with the tip opening 20 of the gripping member 18. The tool post 14 is translated in the Y-axis direction (the parallel direction of the cutting tool 28 and the drill 30). The tool selection is completed when the cutting edge 28a of the bit 28 to be aligned or the tip 30a of the drill 30 is arranged substantially aligned with the central axis 18a of the gripping member 18 in the X-axis direction. From this state, the drive mechanism 32 translates the comb tooth turret 14 in the X-axis direction and brings the selected cutting tool 28 or drill 30 into contact with the spherical member 16 as described later.
Various tools 28 for performing external surface processing such as outer rounding and parting off on the bar can be mounted on the plurality of tool mounting portions 54 of the comb tool post 14. In this case, it is important that each cutting tool 28 is mounted so that the cutting edge 28a can be disposed at a position substantially the same distance from the central axis 18a of the gripping member 18 when the tool selection is completed. Therefore, prior to the machining operation, the cutting edge positions of the plurality of cutting tools 28 mounted on the comb tooth tool post 14 are set to reference planes parallel to both the Z axis parallel to the central axis 18a of the gripping member 18 and the Y axis described above (that is, It is advantageous to arrange them substantially on the (YZ plane). In this specification, “the cutting edge of the cutting tool” indicates the corner portion of the cutting edge unless otherwise specified. In addition, various drills 30 for drilling holes on the side surfaces of the bar by driving a dedicated rotational drive source (not shown) can be mounted on the plurality of tool mounting portions 56 of the comb tooth tool post 14.
The pre-alignment operation of the cutting tool 28 and the drill 30 with respect to the central axis of the bar to be processed is usually performed every time the tool is changed when a plurality of cutting tools 28 and the drill 30 are used for processing one bar, for example. Is done. Further, for example, even if the cutting tool 28 is the same, if the cutting edge 28a is worn by turning, the relative positional relationship between the cutting edge 28a and the center axis 18a of the gripping member 18 changes, so that high dimensional accuracy is required for the workpiece. If necessary, it is necessary to perform pre-alignment work periodically. Therefore, it is advantageous that such a pre-alignment operation is automatically performed under a predetermined control flow as a preliminary stage in a series of automatic machining operations by an automatic lathe. Therefore, in the tool alignment apparatus 10, a plurality of units are operated by operating the drive mechanism 32, the contact position determination unit 34, and the correction calculation unit 36 in association with the control unit (for example, NC control unit) 60 of the automatic lathe as described below. The pre-alignment work of the tools 28 and 30 is automatically performed.
The contact position determination unit 34 includes a continuity sensor (for example, an ammeter) 62 installed in the line 50 of the energization mechanism 24 and an automatic lathe control unit 60 connected to the continuity sensor 62. When the tools 28 and 30 to be aligned come into contact with the first surface portion 16a of the spherical member 16 in contact with the tip opening 20 of the gripping member 18 by driving of the drive mechanism 32, the tools 28 and 30 and the first surface The portion 16a is electrically connected to the portion 16a via the base 58 of the comb tooth turret 14 made of a conductor. At this time, a current flows in the line 50 by the power source 52, and this current is detected by the continuity sensor 62. The control unit 60 starts arithmetic processing upon receiving the current detection signal from the continuity sensor 62, and determines the position of the contact portion of the tools 28 and 30 as coordinate data in the XY coordinate system on the lathe machine base.
The correction calculation unit 36 includes an automatic lathe control unit 60 and a calculation unit 64 connected to the control unit 60. The calculation unit 64 performs a predetermined calculation based on the coordinate data of the contact parts of the tools 28 and 30 determined by the control unit 60, and determines the position of the center 16c of the spherical member 16, that is, the center axis 18a of the gripping member 18. Then, it is determined as coordinate data in the XY coordinate system on the lathe machine base. The control unit 60 has predetermined machining position data of the individual tools 28 and 30 input in advance in the storage unit (the position of the tool tip when selection is completed, the cutting amount during machining, the retracted position when waiting for machining, etc.). Is corrected with reference to the coordinate data of the center 16c of the spherical member 16 determined by the calculation unit 64 (in the case of an NC lathe, the offset data storage area is rewritten). Thereby, the actual positions of the tips or cutting edges of the tools 28 and 30 during the machining operation are determined according to the position of the center 16c of the spherical member 16, that is, the center axis 18a of the gripping member 18. Therefore, the control unit 60 controls the drive mechanism 32 based on the machining position data corrected in this way, drives the tooth tool post 14, and is gripped by the gripping member 18 through the tool selection operation described above. The processing work of the bar is performed with the desired tools 28 and 30. Next, with reference to FIGS. 4 to 5B, the flow of the tool pre-alignment work by the tool alignment apparatus 10 will be described more specifically.
First, a plurality of tools 28 and a drill 30 of a desired type necessary for processing are mounted on the comb tooth turret 14, and a gripping member 18 that grips a bar to be processed is mounted on a rotary spindle 26 of an automatic lathe ( Step S1). Here, it is preferable that the cutting edges 28a of the plurality of cutting tools 28 are substantially formed on a reference plane (YZ plane) parallel to both the Y-axis and the Z-axis by using a dedicated gauge, that is, a cutting edge aligning device. To align.
Next, the spherical member 16 of the current-carrying device 12 is partially received concentrically by the tip opening 20 of the gripping member 18 by its own magnetic attraction force, and the second surface portion 16b is received inside the tip opening 20. The state is held in contact with the peripheral edge 20a (step S2). At this time, the spherical member 16 is electrically connected to the power source 52 and the base 58 of the comb tooth tool post 14 via the line 50 (FIG. 1).
Subsequently, among the plurality of cutting tools 28 and drills 30 mounted on the comb tooth turret 14, only the cutting tool 28 or the drill 30 selected to perform the machining operation is pre-aligned each time the selection is made. And a second program for continuously pre-aligning all the bytes 28 prior to the start of machining (step S3). Note that the drill 30 is compatible only with the first program. Although not shown, for the turret tool post that can move in the X-axis direction and the Y-axis direction in the same manner as the comb tooth tool post 14, the tool alignment device 10 selects the tool by indexing rotation of the turret. By moving the turret tool post in the X-axis direction and the Y-axis direction, the pre-alignment work of the turret mounting tool can be performed in the same flow. In this case, either the first program for aligning only the tool selected at the time of the machining operation each time selected or the second program for aligning all the tools continuously prior to the start of machining is selected. select.
Next, in step S4, the drive mechanism 32 drives the comb tooth tool base 14 under the control of the control unit 60, selects the tool 28 or drill 30 to be aligned, and also sets the cutting edge 28a of the tool 28 or the tip 30a of the drill 30. Are sequentially brought into contact with, for example, three desired positions of the first surface portion 16a of the spherical member 16 (FIGS. 5A and 5B). At this time, each time the conduction between the cutting tool 28 or the drill 30 and the first surface portion 16 a of the spherical member 16 is detected by the conduction sensor 62 of the contact position determination unit 34, the control unit 60 uses the drive mechanism 32 to comb the comb tooth turret. 14 is stopped and moved repeatedly to the next contact position. Thereby, as described above, the contact position determination unit 34 sequentially determines the three contact positions of the cutting edge 28a of the cutting tool 28 or the tip 30a of the drill 30 and the first surface portion 16a of the spherical member 16 as XY coordinate data. (Step S5). Next, the correction calculation unit 36 performs a predetermined calculation based on the determined coordinate data of the three contact positions, and determines the position of the center 16c of the spherical member 16, that is, the center axis 18a of the gripping member 18 on the XY coordinates. (Step S6).
In the above-described steps S4 to S6, the drive mechanism 32, the contact position determination unit 34, and the correction calculation unit 36 assume that the position of the center 16c of the spherical member 16 is the origin (0, 0) on the XY coordinates, and comb teeth The driving of the tool post 14, the determination of the contact position coordinate data, and the determination of the spherical member center coordinates can be executed (see FIGS. 5A and 5B). In this case, in step S4, the drive mechanism 32 first translates the comb tooth tool post 14 in the Y-axis direction according to the Y coordinate (Y1) designated with the position of the center 16c of the spherical member 16 as the origin (0, 0). Thus, the tools 28 and 30 to be aligned are arranged at desired positions substantially aligned with the spherical member 16 in the X-axis direction. The position of the comb tooth turret 14 when the tool selection is completed is referred to as an origin position. Subsequently, the comb tool post 14 is translated from the origin position in the X-axis direction, and the cutting edge 28 a of the selected cutting tool 28 or the tip 30 a of the drill 30 is brought into contact with the first surface portion 16 a of the spherical member 16.
Next, in step S5, the contact position determination unit 34 detects the conduction between the cutting tool 28 or the drill 30 and the first surface portion 16a of the spherical member 16 by the energization device 12, and stops the comb tooth turret 14, The X coordinate (X1) of the contact part of the cutting tool 28 or the drill 30 is calculated. At this time, the origin position coordinates of the comb tooth tool post 14 and the distance in the X-axis direction from the tips 28a, 30a of the selected tools 28, 30 on the comb tooth tool base 14 at the origin position to the origin position are set as default values. If stored in the storage unit of the control unit 60, the X coordinate of the contact part is calculated based on the movement distance in the X-axis direction of the comb tooth turret 14 leading to the tool contact, and as a result, coordinate data of one contact position (X1, Y1) is determined. Subsequently, by sequentially performing such operations under the designation of the other two Y coordinates (Y2) and (Y3), the coordinate data (X2, Y2), (X3, Y3) of the other two contact positions. ) Is confirmed. In order to further improve the alignment accuracy, the contact position is taken into account the time delay from when the tool tips 28a, 30a are brought into conductive contact with the spherical member 16 until the comb tooth post 14 actually stops. It is preferable to perform a definite calculation.
Next, in step S6, the correction calculation unit 36 calculates the spherical member corresponding to the actual tool tips 28a, 30a from the coordinate data (X1, Y1), (X2, Y2), (X3, Y3) of the three contact positions. The position coordinates (X0, Y0) of the center 16c of 16 are calculated. Here, depending on the type and degree of wear of the selected tools 28 and 30, the positions of the tips 28 a and 30 a may fluctuate in the Z-axis direction on the comb tooth turret 14, so the XY plane for determining the tool contact position ( The position of FIG. 5B) cannot be specified on the Z-axis, and therefore the diameter of the spherical member 16 in the XY cross section cannot be stored in the control unit 60 as a default value. However, as long as the coordinate data of at least three contact positions can be obtained as described above, even if the XY cross-sectional diameter of the spherical member 16 is unknown, the correction calculation unit 36 uses the calculation unit 64 to determine at least the three positions. The position coordinates (X0, Y0) of the center 16c of the spherical member 16 can be obtained by performing a calculation using the trigonometric function from the coordinate data of the contact position. As described above, the formation of the first surface portion 16a in the majority region of the surface of the spherical member 16 means that the correspondence to the tool contact position that varies depending on the tool type or the like is as wide as possible in the Z-axis direction. This is advantageous in that it can be performed over a wide range.
Referring to the flowchart of FIG. 4 again, in step S7, as described above, the control unit 60, as described above, the predetermined machining position data (tool at the time of selection completion) of the alignment target bit 28 or drill 30 stored in advance in the storage unit. The position of the tip, the depth of cut during machining, the retracted position during machining standby, etc.) are based on the coordinate data of the center 16c of the spherical member 16 obtained by the calculation unit 64 (ie, (X0, Y0) is the origin. Correct) In this way, the alignment of the target tools 28 and 30 is completed. Finally, the spherical member 16 of the energization device 12 is removed from the tip opening 20 of the gripping member 18 (step S8). Thereafter, the gripping member 18 is made to grip the bar to be processed firmly, and based on the corrected processing position data, the control unit 60 controls the drive mechanism 32 to drive the tooth turret 14, and the tool 28 or The bar is processed while the drill 30 is automatically aligned with the central axis 18a of the gripping member 18, that is, the rotation axis of the bar.
When the first program is selected in step S3, the subsequent steps S4 to S7 are performed only for one bit 28 or drill 30 used for the immediately subsequent machining operation, and the tool is selected. Correct the machining position data. In this case, the bar already gripped by the gripping member 18 is temporarily drawn into the bar gripping portion 38 of the gripping member 18 every time the positioning operation is performed. If the second program is selected in step S3, the subsequent steps S4 to S7 are performed on all the cutting tools 28 on the comb tooth tool base 14 so that the machining positions of all the cutting tools 28 are preliminarily processed. Complete data correction. In this case, every time one of the cutting tools 28 is selected during the processing of the bar material, the cutting tool 28 is automatically aligned with the central axis 18a of the gripping member 18 in the above procedure. Process the material.
As will be understood from the above description, the tool alignment apparatus 10 determines the position of the center axis of the bar to be processed corresponding to the actual tool tip position on the lathe machine base. Instead of using the bar material, the spherical member 16 is concentrically disposed in the tip opening 20 of the gripping member 18 that grips the bar material, and the tool is placed at a desired position of the conductive first surface portion 16a of the spherical member 16 in this state. 28 and 30 are brought into conductive contact, and the contact position coordinates are determined. Therefore, it is possible to prevent the outer peripheral surface of the processing target bar from being damaged or the tool blade edge from being worn unnecessarily due to the tool alignment operation.
Moreover, according to the tool alignment apparatus 10, the center 16c of the spherical member 16 is brought into contact with the inner peripheral edge 20a of the tip opening 20 of the gripping member 18 that grips the processing target bar material in a balanced state. Is automatically positioned on the central axis 18a of the gripping member 18, so that the gripping member 18 that actually grips the deformed material even when the processing target bar is a deformed material other than a round bar. The spherical member 16 can be reliably concentrically disposed in the distal end opening 20 having an irregular cross section. Therefore, the concern that the product productivity is adversely affected by the replacement of the gripping member 18 at the time of tool alignment is eliminated, and the tool tip can be easily and accurately pre-aligned with the center axis of the deformed material. Is possible.
Furthermore, according to the tool alignment apparatus 10, the contact between the tools 28, 30 and the spherical member 16 cannot be detected due to, for example, a failure of the continuity sensor 62, and the driving of the comb tooth turret 14 cannot be stopped at that time. In this case, the spherical member 16 is pushed by the tools 28 and 30 and easily falls off from the tip opening 20 of the gripping member 18. Therefore, in such a case, the tools 28 and 30 can be effectively prevented from being damaged.
The above-described tool alignment method and tool alignment apparatus 10 can also be applied to a gripping member 68 made of a rotary guide bush installed at a position in front of the rotation main shaft of an automatic lathe as shown in FIG. Usually, the gripping member 68 made of a rotary guide bush is provided with a bar gripping portion 70 having a slot structure having a cross-sectional shape corresponding to the cross-sectional shape (circle or regular polygon) of the bar to be gripped in the tip region. The bar gripping portion 70 is elastically deformed uniformly in the radial direction toward the central axis 68a of the gripping member 68, whereby the bar is supplementarily gripped in the region near the processing site. Accordingly, the inner peripheral edge 72a of the tip opening 72 of the gripping member 68 has an annular contour (circle or regular polygon) corresponding to the cross-sectional shape of the bar to be gripped. The surface of the spherical member 16 is brought into contact with the inner peripheral edge 72a of the tip opening 72 of the gripping member 68 having such a contour in a balanced state (that is, symmetrically with respect to the central axis 68a), and a part of the spherical member 16 is brought into contact with the tip opening 72. The center 16c of the spherical member 16 is automatically positioned on the center axis 68a of the gripping member 68. Therefore, in the same manner as the above-described tool alignment method with respect to the gripping member 18, the tools 28 and 30 can be pre-aligned by regarding the center 16c of the spherical member 16 as the center axis of the workpiece bar.
By the way, as described above, when the tool alignment apparatus 10 is used in an automatic lathe, the conduction sensor 62 of the contact position determination unit 34 includes the tools 28 and 30 by the energization mechanism 24 and the first surface portion 16a of the spherical member 16. An automatic lathe is configured between the tools 28 and 30 and the first surface portion 16a of the spherical member 16 in a state before mutual contact so that conduction during mutual contact can be accurately detected. There is a need to reliably prevent current from flowing through many conductive metal parts. For this purpose, in the illustrated embodiment, a second surface portion 16b that insulates the first surface portion 16a of the spherical member 16 from the gripping member 18 is provided on the spherical member 16 adjacent to the first surface portion 16a. However, for example, in the configuration shown in FIG. 3A, instead of providing the insulating layer 42 that forms the second surface portion 16b, an independent insulating element such as a resin film is interposed between the spherical member 16 and the gripping member 18, A configuration in which an insulating coating is provided on the inner peripheral edge 20a of the tip opening 20 of the gripping member 18 can also be employed. Alternatively, such an insulating element can be omitted as long as it is possible to electrically insulate between the comb tool post 14 and the gripping member 18 in the automatic lathe by some other means.
FIG. 7 shows a tool aligning device 80 according to the second embodiment of the present invention and an energizing device 82 according to the second embodiment of the present invention incorporated in the tool aligning device 80. An example of application to the gripping member 68 composed of the above-described rotary guide bush installed in connection with FIG. The tool alignment device 80 and the energization device 82 are the same as the tool alignment device 10 and the energization device shown in FIG. 1 except for the configuration of the abutment mechanism 84 that abuts the spherical member 16 on the inner peripheral edge 72a of the tip opening 72 of the gripping member 68. 12 substantially the same configuration. Therefore, the same or similar components are denoted by common reference numerals, and the description thereof is omitted.
The abutment mechanism 84 of the tool alignment device 80 and the energization device 82 includes a pressing unit 84 that mechanically presses the spherical member 16 against the tip opening 72 of the gripping member 68. The pressing unit 84 has a rod-shaped conductive pressing member 88 integrally having a flat end plate portion 86 at one end, and an electric insulation that covers a desired length region of the rod-shaped portion of the pressing member 88 so as to be slidable in the axial direction. And an urging member 92 that is disposed between the end plate portion 86 of the pressing member 88 and the sleeve 90 and elastically urges the end plate portion 86 in a direction away from the sleeve 90. A stopper 94 that prevents the pressing member 88 from falling off the sleeve 90 is fixed to the other end of the bar-shaped portion of the pressing member 88.
The pressing unit 84 is mounted on a back main shaft 96 that can be positioned concentrically facing the gripping member (guide bush) 68 of the automatic lathe in the axial direction. The back main shaft 96 includes a chuck 98 having the same configuration as the gripping member (collet chuck) 18 (FIG. 1) attached to the rotary main shaft 26, and a bar material fed from the rotary main shaft 26 at a position facing the gripping member 68. , And firmly and firmly gripped by the chuck 98, the rear end region in the feed direction of the bar can be processed. In the pressing unit 84, the end plate portion 86 of the pressing member 88 protrudes from the chuck 98 toward the gripping member 68 when the sleeve 90 is fixedly gripped by the bar gripping portion 100 of the slit structure of the chuck 98. In this state, the rear main shaft 96 is mounted.
The abutting mechanism, that is, the pressing unit 84 having the above-described configuration is a spherical member formed by the pressing member 88 in a state where the back main shaft 96 is concentrically opposed to the front of the gripping member (guide bush) 68 by a driving mechanism of an automatic lathe. 16 can be elastically pressed against the tip opening 72 of the gripping member 68. At this time, the pressing unit 84 brings the end plate portion 86 of the pressing member 88 into contact with the conductive first surface portion 16a of the spherical member 16 so as to be conductive, and the spherical member 16 by the elastic biasing force of the biasing member 92. The second surface portion 16b of the holding member 68 is brought into contact with the inner peripheral edge 72a of the tip opening 72 of the gripping member 68, thereby holding the spherical member 16 in a state of being partially received by the tip opening 72 in a concentric arrangement. . Therefore, in this configuration, it is not necessary to incorporate the permanent magnet material described above into the spherical member 16.
One end of the line 50 of the energization mechanism 24 of the tool alignment device 80 is electrically connected to the pressing member 88 of the pressing unit 84. Accordingly, the line 50 of the energization mechanism 24 is electrically conductive while the pressing unit 84 abuts the second surface portion 16b of the spherical member 16 against the inner peripheral edge 72a of the tip opening 72 of the gripping member 68 by the pressing member 88 as described above. The first surface portion 16 a of the spherical member 16 and the power source 52 are electrically connected via the pressing member 88 having a sex. As a result, the energizing mechanism 24 gives a potential difference between the tools 28 and 30 to be aligned and the first surface portion 16a of the spherical member 16 in a non-contact state during the tool alignment process. When the 28, 30 and the first surface portion 16a of the spherical member 16 are in contact with each other, an electric current flows between them.
The tool alignment apparatus 80 having the above-described configuration can perform the tool pre-alignment work according to the flowchart shown in FIG. 4 in the same manner as the tool alignment apparatus 10 of FIG. In this case, instead of adding the operation of mounting the pressing unit 84 to the back spindle 96 of the automatic lathe in step S2, the trouble of connecting the terminal 48 to the spherical member 16 is saved. Alternatively, when the pressing unit 84 is used, the line 50 of the energizing mechanism 24 may be connected to the first surface portion 16a of the spherical member 16 via the terminal 48, as in the tool alignment apparatus 10 of FIG. . In addition, in a state where the tools 28 and 30 and the first surface portion 16a of the spherical member 16 are not in contact with each other, it is ensured that an electric current flows through the conductive metal parts constituting the back main shaft 96 therebetween. It is also possible to employ an insulating means capable of preventing the above in place of the electrically insulating sleeve 90 of the pressing unit 84. Furthermore, in addition to the pressing unit 84, the spherical member 16 incorporating the above-described permanent magnet material can also be used.
It will be understood that the tool aligning device 80 and the energizing device 82 having the above-described configuration can achieve the same effects as the tool aligning device 10 and the energizing device 12 of FIG.
When the tool alignment device 80 is applied to an automatic lathe that does not have a back spindle, a pressing unit 84 is installed on a lathe machine base by using a movable support member such as a magnet stand (not shown). The spherical member 16 can be held.
While several preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various changes and modifications can be made within the scope of the claims.
Industrial applicability
The present invention makes it possible to easily and accurately advance the tool tip with respect to the center axis of the target bar without damaging the outer peripheral surface of the bar to be processed and the tool, and even when the bar to be processed is an irregular shape. A tool alignment method and an alignment apparatus capable of alignment are provided. Furthermore, the present invention provides an alignment energization device that can be advantageously applied to a tool to be processed in particular when the bar to be processed is a deformed material by being used for such a pre-alignment operation of the tool. Such a tool alignment method, alignment apparatus, and energization apparatus can be applied to an automatic lathe to achieve high-precision machining of a product.
[Brief description of the drawings]
The above and other objects, features and advantages of the present invention will become more apparent from the following description of preferred embodiments with reference to the accompanying drawings. In the attached drawing,
FIG. 1 is a cross-sectional side view partially showing a tool alignment device incorporating an energization device according to a first embodiment of the present invention in a block diagram, showing a use form for a rotary spindle of an automatic lathe,
FIG. 2 is a front view of the tool alignment apparatus of FIG.
FIG. 3A is an enlarged cross-sectional view of a spherical member that can be used in the tool alignment apparatus of FIG.
FIG. 3B is an enlarged cross-sectional view of another spherical member that can be used in the tool alignment apparatus of FIG.
FIG. 4 is a flowchart of a pre-alignment operation using the tool alignment apparatus of FIG.
FIG. 5A is a conceptual diagram for explaining a tool contact step in the alignment work flow of FIG. 4, a diagram seen from the front of the tool alignment device;
FIG. 5B is a conceptual diagram illustrating this tool contact step, and is a view seen from the side of the tool alignment device;
FIG. 6 is a cross-sectional side view partially showing the tool alignment apparatus of FIG. 1 in a block diagram, and a diagram showing a usage pattern for a guide bush of an automatic lathe;
FIG. 7 is a cross-sectional side view partially showing in block diagram a tool alignment device incorporating an energization device according to a second embodiment of the present invention.

Claims (22)

工具の先端を加工対象の棒材の中心軸線に対して予め位置合せするための工具位置合せ方法であって、
導電性表面領域を有する球状部材を用意し、
前記球状部材を、加工対象の棒材を把持できる把持部材の先端開口の周縁に、該把持部材と前記導電性表面領域との間を電気的に絶縁した状態で当接して、該先端開口に同心配置で部分的に受容させ、
位置合せ対象の工具を前記球状部材の前記導電性表面領域に接触させ、
相互接触時の前記工具と前記球状部材の前記導電性表面領域との間の導通を検出して、該工具の接触部位の位置を確定し、
確定した前記工具の接触部位の位置に基づいて、加工作業時の前記工具の先端の位置を決定する、
工具位置合せ方法。
A tool alignment method for previously aligning the tip of a tool with respect to the center axis of a bar to be processed,
Prepare a spherical member having a conductive surface area,
The spherical member is brought into contact with a peripheral edge of a tip opening of a gripping member capable of gripping a rod to be processed in a state where the gripping member and the conductive surface region are electrically insulated , Partially accept in a concentric arrangement,
Bringing the tool to be aligned into contact with the conductive surface region of the spherical member;
Detecting conduction between the tool and the conductive surface region of the spherical member during mutual contact to determine the position of the contact portion of the tool;
Based on the determined position of the contact portion of the tool, determine the position of the tip of the tool at the time of machining operation,
Tool alignment method.
前記球状部材が、前記導電性表面領域を形成する第1表面部分と、該第1表面部分に隣接して電気絶縁性表面領域を形成する第2表面部分とを備え、該第2表面部分が前記把持部材の先端開口の周縁に当接される請求項に記載の工具位置合せ方法。The spherical member includes a first surface portion that forms the conductive surface region, and a second surface portion that forms an electrically insulating surface region adjacent to the first surface portion, and the second surface portion is The tool alignment method according to claim 1 , wherein the tool is brought into contact with a peripheral edge of a tip opening of the gripping member. 前記工具の先端の位置を決定することは、確定した前記工具の接触部位の位置に基づいて前記球状部材の中心の位置を求める作業と、予め定めた該工具の加工位置データを、求められた該中心の位置に対応して適宜補正する作業とを含む請求項1に記載の工具位置合せ方法。  Determining the position of the tip of the tool is obtained by determining the position of the center of the spherical member based on the determined position of the contact portion of the tool and machining position data of the tool determined in advance. The tool alignment method according to claim 1, further comprising an operation of appropriately correcting the position corresponding to the center position. 工具の先端を加工対象の棒材の中心軸線に対して予め位置合せするための工具位置合せ装置であって、
導電性表面領域を有する球状部材と、
前記球状部材を、加工対象の棒材を把持できる把持部材の先端開口の周縁に当接して、該先端開口に同心配置で部分的に受容させた状態に保持する当接機構と、
前記球状部材の前記導電性表面領域と前記把持部材との間を電気的に絶縁する絶縁要素と、
位置合せ対象の工具を前記球状部材の前記導電性表面領域に接触させる駆動機構と、
相互接触時の前記工具と前記球状部材の前記導電性表面領域との間に電流を流す通電機構と、
前記通電機構による前記工具と前記球状部材の前記導電性表面領域との間の導通を検出して、該工具の接触部位の位置を確定する接触位置確定部と、
確定した前記工具の接触部位の位置に基づいて前記球状部材の中心の位置を求めるとともに、予め定めた該工具の加工位置データを、求められた該中心の位置に対応して適宜補正する補正演算部と、
を具備する工具位置合せ装置。
A tool alignment device for previously aligning the tip of a tool with respect to the central axis of a bar to be processed,
A spherical member having a conductive surface region;
An abutting mechanism for abutting the spherical member on a peripheral edge of a tip opening of a gripping member capable of gripping a rod to be processed, and holding the spherical member in a state of being partially received by the tip opening;
An insulating element that electrically insulates between the conductive surface region of the spherical member and the gripping member;
A drive mechanism for bringing a tool to be aligned into contact with the conductive surface region of the spherical member;
An energization mechanism for passing a current between the tool and the conductive surface region of the spherical member at the time of mutual contact;
A contact position determination unit that detects conduction between the tool and the conductive surface region of the spherical member by the energization mechanism, and determines a position of a contact portion of the tool;
A correction calculation for determining the position of the center of the spherical member based on the determined position of the contact portion of the tool and appropriately correcting the predetermined machining position data of the tool in accordance with the determined position of the center And
A tool alignment apparatus comprising:
前記球状部材が、前記導電性表面領域を形成する第1表面部分と、該第1表面部分に隣接して電気絶縁性表面領域を形成する第2表面部分とを備え、前記絶縁要素が該球状部材の該第2表面部分からなり、該第2表面部分が前記把持部材の先端開口の周縁に当接されるようになっている請求項に記載の工具位置合せ装置。The spherical member includes a first surface portion that forms the conductive surface region and a second surface portion that forms an electrically insulating surface region adjacent to the first surface portion, and the insulating element is the spherical surface The tool alignment apparatus according to claim 4 , comprising the second surface portion of a member, wherein the second surface portion is brought into contact with a peripheral edge of a tip opening of the gripping member. 前記球状部材が、導電性材料からなる球状本体と、該球状本体の表面の一部分を被覆する絶縁層とからなり、前記第1表面部分が該球状本体の露出部分によって形成されるとともに、前記第2表面部分が該絶縁層によって形成される請求項に記載の工具位置合せ装置。The spherical member includes a spherical main body made of a conductive material and an insulating layer covering a part of the surface of the spherical main body, the first surface portion is formed by an exposed portion of the spherical main body, and the first The tool alignment apparatus according to claim 5 , wherein two surface portions are formed by the insulating layer. 前記球状部材が、電気絶縁性材料からなる球状本体と、該球状本体の表面の一部分を被覆する導電層とからなり、前記第1表面部分が該導電層によって形成されるとともに、前記第2表面部分が該球状本体の露出部分によって形成される請求項に記載の工具位置合せ装置。The spherical member comprises a spherical body made of an electrically insulating material and a conductive layer covering a part of the surface of the spherical body, the first surface portion is formed by the conductive layer, and the second surface The tool alignment apparatus of claim 5 , wherein the portion is formed by an exposed portion of the spherical body. 前記当接機構が、前記球状部材自体に組み込まれて前記把持部材に対し磁気吸引力を発揮できる永久磁石材料を備える請求項に記載の工具位置合せ装置。The tool alignment apparatus according to claim 4 , wherein the contact mechanism includes a permanent magnet material that is incorporated in the spherical member itself and can exert a magnetic attractive force to the gripping member. 前記当接機構が、前記球状部材を前記把持部材の先端開口に押し付ける押圧ユニットを備える請求項に記載の工具位置合せ装置。The tool alignment apparatus according to claim 4 , wherein the contact mechanism includes a pressing unit that presses the spherical member against a tip opening of the gripping member. 前記押圧ユニットが、前記球状部材の前記導電性表面領域に接触する導電性の押圧部材を備え、前記通電機構が、該押圧部材を介して該導電性表面領域に通電する請求項に記載の工具位置合せ装置。The pressing unit, wherein comprises a conductive pressing member for contact with the conductive surface region of the spherical member, said energizing mechanism, according to claim 9 for energizing the conductive surface region through the pressing member Tool alignment device. 前記把持部材が自動旋盤の主軸に関連して設置され、前記押圧ユニットが該自動旋盤の背面主軸に装着される請求項に記載の工具位置合せ装置。The tool alignment apparatus according to claim 9 , wherein the gripping member is installed in association with a main spindle of an automatic lathe, and the pressing unit is mounted on a rear main spindle of the automatic lathe. 前記工具が自動旋盤の刃物台に装着され、前記駆動機構が該自動旋盤の刃物台駆動機構からなる請求項に記載の工具位置合せ装置。The tool alignment apparatus according to claim 4 , wherein the tool is mounted on a tool rest of an automatic lathe, and the driving mechanism is a tool rest driving mechanism of the automatic lathe. 前記接触位置確定部が、自動旋盤の制御部を含む請求項に記載の工具位置合せ装置。The tool alignment apparatus according to claim 4 , wherein the contact position determination unit includes a control unit of an automatic lathe. 前記補正演算部が、自動旋盤の制御部を含む請求項に記載の工具位置合せ装置。The tool alignment apparatus according to claim 4 , wherein the correction calculation unit includes a control unit of an automatic lathe. 工具の先端を加工対象の棒材の中心軸線に対して予め位置合せするための工具位置合せ用の通電装置であって、
導電性表面領域を有する球状部材と、
前記球状部材を、加工対象の棒材を把持できる把持部材の先端開口の周縁に当接して、該先端開口に同心配置で部分的に受容させた状態に保持する当接機構と、
前記球状部材の前記導電性表面領域と前記把持部材との間を電気的に絶縁する絶縁要素と、
前記球状部材の前記導電性表面領域に電気的に接続される通電機構と、
を具備することを特徴とする通電装置。
An energization device for tool alignment for previously aligning the tip of a tool with respect to the center axis of a bar to be processed,
A spherical member having a conductive surface region;
An abutting mechanism for abutting the spherical member on a peripheral edge of a tip opening of a gripping member capable of gripping a rod to be processed, and holding the spherical member in a state of being partially received by the tip opening;
An insulating element that electrically insulates between the conductive surface region of the spherical member and the gripping member;
An energization mechanism electrically connected to the conductive surface region of the spherical member;
An energizing device comprising:
前記球状部材が、前記導電性表面領域を形成する第1表面部分と、該第1表面部分に隣接して電気絶縁性表面領域を形成する第2表面部分とを備え、前記絶縁要素が該球状部材の該第2表面部分からなり、該第2表面部分が前記把持部材の先端開口の周縁に当接されるようになっている請求項1に記載の通電装置。The spherical member includes a first surface portion that forms the conductive surface region and a second surface portion that forms an electrically insulating surface region adjacent to the first surface portion, and the insulating element is the spherical surface made from the second surface portion of the member, conduction device according to with which claims 1 to 5, adapted to the second surface portion is brought into contact with the periphery of the distal end opening of the gripping member. 前記球状部材が、導電性材料からなる球状本体と、該球状本体の表面の一部分を被覆する絶縁層とからなり、前記第1表面部分が該球状本体の露出部分によって形成されるとともに、前記第2表面部分が該絶縁層によって形成される請求項1に記載の通電装置。The spherical member includes a spherical main body made of a conductive material and an insulating layer covering a part of the surface of the spherical main body, the first surface portion is formed by an exposed portion of the spherical main body, and the first The energization device according to claim 16 , wherein two surface portions are formed by the insulating layer. 前記球状部材が、電気絶縁性材料からなる球状本体と、該球状本体の表面の一部分を被覆する導電層とからなり、前記第1表面部分が該導電層によって形成されるとともに、前記第2表面部分が該球状本体の露出部分によって形成される請求項1に記載の通電装置。The spherical member comprises a spherical body made of an electrically insulating material and a conductive layer covering a part of the surface of the spherical body, the first surface portion is formed by the conductive layer, and the second surface The energization device according to claim 16 , wherein the portion is formed by an exposed portion of the spherical body. 前記当接機構が、前記球状部材自体に組み込まれて前記把持部材に対し磁気吸引力を発揮できる永久磁石材料を備える請求項1に記載の通電装置。The energization device according to claim 15 , wherein the contact mechanism includes a permanent magnet material that is incorporated in the spherical member itself and can exert a magnetic attractive force to the gripping member. 前記当接機構が、前記球状部材を前記把持部材の先端開口に押し付ける押圧ユニットを備える請求項1に記載の通電装置。The energization device according to claim 15 , wherein the contact mechanism includes a pressing unit that presses the spherical member against a tip opening of the gripping member. 前記押圧ユニットが、前記球状部材の前記導電性表面領域に接触する導電性の押圧部材を備え、前記通電機構が、該押圧部材を介して該導電性表面領域に通電する請求項2に記載の通電装置。The pressing unit comprises a conductive pressing member for contact with the conductive surface region of the spherical member, said energizing mechanism, according to claim 2 0 to be supplied to the conductive surface region through the pressing member Energizing device. 前記把持部材が自動旋盤の主軸に関連して設置され、前記押圧ユニットが該自動旋盤の背面主軸に装着される請求項2に記載の通電装置。The grasping member is placed in connection with the automatic lathe spindle, said pressing unit is energized device of claim 2 0 to be mounted on the back spindle of the automatic lathe.
JP2002501612A 2000-06-02 2000-06-02 Tool alignment method, tool alignment apparatus, and energization apparatus for alignment Expired - Fee Related JP4528485B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/003606 WO2001094061A1 (en) 2000-06-02 2000-06-02 Method and apparatus for positioning cutting tool, and electrical device for tool positioning

Publications (1)

Publication Number Publication Date
JP4528485B2 true JP4528485B2 (en) 2010-08-18

Family

ID=11736110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002501612A Expired - Fee Related JP4528485B2 (en) 2000-06-02 2000-06-02 Tool alignment method, tool alignment apparatus, and energization apparatus for alignment

Country Status (2)

Country Link
JP (1) JP4528485B2 (en)
WO (1) WO2001094061A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101528413B (en) * 2006-10-26 2013-07-24 株式会社津上 Lathe and method of machining by lathe
CN102246249A (en) * 2008-12-12 2011-11-16 爱知制钢株式会社 Rare earth-based bonded magnet
JP7316200B2 (en) * 2019-11-26 2023-07-27 株式会社ツガミ Tool position detector and machine tool
KR20230069911A (en) * 2020-09-20 2023-05-19 시티즌 도케이 가부시키가이샤 Machine tool, location information correction method, and location information correction program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216751A (en) * 1988-02-25 1989-08-30 Okuma Mach Works Ltd Method for detecting center of rotary shaft
JPH08118103A (en) * 1994-10-20 1996-05-14 Seiko Seiki Co Ltd Centering device for tool
JPH09131645A (en) * 1995-11-06 1997-05-20 Okuma Mach Works Ltd Nc machine tool provided with collision prevention device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3283278B2 (en) * 1992-01-13 2002-05-20 スター精密株式会社 Automatic lathe
JP2574031Y2 (en) * 1992-12-24 1998-06-11 オークマ株式会社 Cutting edge detection device
JPH1190788A (en) * 1997-09-24 1999-04-06 Okuma Corp Tool blade tip position measuring device and method for numerically controlled machine tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216751A (en) * 1988-02-25 1989-08-30 Okuma Mach Works Ltd Method for detecting center of rotary shaft
JPH08118103A (en) * 1994-10-20 1996-05-14 Seiko Seiki Co Ltd Centering device for tool
JPH09131645A (en) * 1995-11-06 1997-05-20 Okuma Mach Works Ltd Nc machine tool provided with collision prevention device

Also Published As

Publication number Publication date
WO2001094061A1 (en) 2001-12-13

Similar Documents

Publication Publication Date Title
CN107206563A (en) Method for determining position of the workpiece in lathe
JP4528485B2 (en) Tool alignment method, tool alignment apparatus, and energization apparatus for alignment
EP1177846B1 (en) Tool-positioning method, tool-positioning device and power feeder for tool positioning
JP4719345B2 (en) Tool position control method and apparatus for machine tools
JP2002120129A (en) Cutting tool with electrically conductive film and its use
JPS61274851A (en) Positioning device in cutting machine
JPH08197309A (en) Ion implanted diamond cutting tool
JP2002283162A (en) Shrink fitting tool holder
JPH10249676A (en) Machining method for work by numerically controlled machine tool
JP3297463B2 (en) Electric discharge machine
JPH11188572A (en) Blade tip positioning method in tool change of nc machine tool and nc machine tool executing this method
JPH06264925A (en) Rotating apparatus with static pressure air bearing and manufacture of inner tube thereof
JP5251429B2 (en) Grinder
TW452518B (en) Tool positioning method, tool positioning apparatus and excitation device for tool-positioning
JPH10309653A (en) Method for detecting displacement of cutting edge position, machine tool provided with cutting edge position displacement detecting function, and tool holder for machine tool
JP2005025668A (en) Profiling method and profiling program
JP2000061782A (en) Longitudinal standard position measuring method of grooved axial work
JPH1190788A (en) Tool blade tip position measuring device and method for numerically controlled machine tool
JPS6331877Y2 (en)
JP2965418B2 (en) Tool changer
JP7090018B2 (en) Machine Tools
JP2005131731A (en) Method for manufacturing solid end mill
TW201900301A (en) Method for driving mill-turn multi-tasking machine using milling machine dedicated controller capable of driving mill-turn multi-tasking machine for lathe operation
JPS60177848A (en) Correction of original point in nc machine tool
JP2023056720A (en) Machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150611

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees