JP4526861B2 - Zinc based complex oxide - Google Patents

Zinc based complex oxide Download PDF

Info

Publication number
JP4526861B2
JP4526861B2 JP2004128038A JP2004128038A JP4526861B2 JP 4526861 B2 JP4526861 B2 JP 4526861B2 JP 2004128038 A JP2004128038 A JP 2004128038A JP 2004128038 A JP2004128038 A JP 2004128038A JP 4526861 B2 JP4526861 B2 JP 4526861B2
Authority
JP
Japan
Prior art keywords
hours
zinc
oxide
purity
mobility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004128038A
Other languages
Japanese (ja)
Other versions
JP2005306684A (en
Inventor
眞 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2004128038A priority Critical patent/JP4526861B2/en
Publication of JP2005306684A publication Critical patent/JP2005306684A/en
Application granted granted Critical
Publication of JP4526861B2 publication Critical patent/JP4526861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Iron (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Silicon Compounds (AREA)

Description

本発明は、亜鉛系複合酸化物に関する。   The present invention relates to a zinc-based composite oxide.

酸化亜鉛(ZnO)は、古くからセンサー、透明導電体、表面弾性波素子として利用されている材料であり、近年においても、原料が豊富で安価なこと等から用途開発が盛んに行われている。最近では、透明電界トランジスターや希薄磁性半導体及び熱電変換材料としての研究開発も盛んである。   Zinc oxide (ZnO) is a material that has been used as a sensor, a transparent conductor, and a surface acoustic wave device for a long time. In recent years, its application has been actively developed because it is abundant and inexpensive. . Recently, research and development as a transparent field transistor, a diluted magnetic semiconductor, and a thermoelectric conversion material are also active.

酸化亜鉛をこれらの分野に応用する場合、電子の移動度を上げることは性能向上のために必須のことである。例えば、トランジスターにおいては、そのスイッチング周波数を高めるために高移動度とする必要がある。
また、酸化亜鉛に透明導電性を付与するためには、少ない伝導電子数とすることで透明性を上げ、また、移動度を増加させることで導電性を確保することが望ましい。
さらに、熱電変換材料においては、熱電変換性能を向上させるために熱起電力と電気伝導度の両方を上げることが望ましいが、酸化亜鉛のような縮退型半導体では、一般に電気伝導度を上げるために伝導電子の数を増やすと、熱起電力が低下してしまう。従って、熱起電力を下げないで電気伝導度を向上させるには、移動度を増加させる必要がある。
When applying zinc oxide to these fields, increasing the mobility of electrons is essential for improving the performance. For example, a transistor needs to have high mobility in order to increase its switching frequency.
In addition, in order to impart transparent conductivity to zinc oxide, it is desirable to increase transparency by setting the number of conduction electrons to be small and to ensure conductivity by increasing mobility.
Furthermore, in thermoelectric conversion materials, it is desirable to increase both thermoelectromotive force and electrical conductivity in order to improve thermoelectric conversion performance, but degenerate semiconductors such as zinc oxide generally increase electrical conductivity. Increasing the number of conduction electrons decreases the thermoelectromotive force. Therefore, to improve the electrical conductivity without lowering the thermoelectromotive force, it is necessary to increase the mobility.

導電性酸化亜鉛の製造方法としては、例えば、特許文献1−6に開示されている様に、酸化亜鉛粉末に、活性化剤としてアルミニウム、ガリウム、インジウム等の金属の酸化物を添加混合し、還元性雰囲気下で600〜1,200℃の温度において加熱焼成する方法が知られている。
しかし、これらの方法は、いずれも伝導電子を増加させて導電性を向上させる方法であり、移動度を向上させる方法としては役立たない。
一方、酸化亜鉛の移動度を向上させるには、結晶の欠陥を少なくするため、多結晶体を単結晶化させることが通常行われるが、酸化亜鉛を単結晶化するには、多くのエネルギーと時間が必要となる。
特開昭58−161923号公報 特開昭58−145620号公報 特開昭55−162477号公報 特公昭55−19897号公報 特開昭59−97531号公報 米国特許3,538,022号明細書
As a method for producing conductive zinc oxide, for example, as disclosed in Patent Documents 1-6, an oxide of a metal such as aluminum, gallium, or indium as an activator is added to and mixed with zinc oxide powder, There is known a method of heating and firing at a temperature of 600 to 1,200 ° C. in a reducing atmosphere.
However, any of these methods is a method for improving conductivity by increasing conduction electrons and is not useful as a method for improving mobility.
On the other hand, in order to improve the mobility of zinc oxide, a polycrystal is usually made into a single crystal in order to reduce crystal defects. However, in order to make a single crystal of zinc oxide, much energy and Time is needed.
JP 58-161923 A JP 58-145620 A Japanese Patent Laid-Open No. 55-162477 Japanese Patent Publication No.55-19897 JP 59-97531 A US Patent 3,538,022

本発明は、上記事情に鑑みなされたものであり、多結晶体であっても移動度が大きな亜鉛系複合酸化物を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a zinc-based composite oxide having a high mobility even if it is a polycrystalline body.

上記目的を達成するため、本発明者等は鋭意検討を重ねた結果、亜鉛と、特定の金属元素を、特定のモル比で含む亜鉛系複合酸化物の移動度が大きくなることを見出し、本発明を完成させた。   In order to achieve the above object, the present inventors have conducted extensive studies and found that the mobility of zinc-based composite oxide containing zinc and a specific metal element in a specific molar ratio is increased. Completed the invention.

本発明によれば、以下の亜鉛系複合酸化物等が提供される。
1.亜鉛、及び
ランタノイド、Sn、Scから選ばれる少なくとも一種の第一の金属元素、
の複合酸化物からなり、亜鉛と第一の金属元素のモル比が1:0.0001〜0.5である亜鉛系複合酸化物。
2.亜鉛、
ランタノイド、Sn、Scから選ばれる少なくとも一種の第一の金属元素、及び
Mg、Si、Ca、Mn、Fe、Co、Ni、Mo、Rhから選ばれる少なくとも一種の第二の金属元素、
の複合酸化物からなり、亜鉛、第一の金属元素及び第二の金属元素のモル比が1:0.0001〜0.5:0.0001〜0.3である亜鉛系複合酸化物。
3.移動度が40cm/Vs以上である1又は2に記載の亜鉛系複合酸化物。
4.前記第一の金属元素がランタノイドである1〜3のいずれかに記載の亜鉛系複合酸化物。
5.前記ランタノイドが、Ce、Nd、Eu、Ga、Ho、Er、Ybである1〜4のいずれかに記載の亜鉛系複合酸化物。
6.酸化亜鉛に、ランタノイド、Sn、Scから選ばれる少なくとも一種の第一の金属元素を含む材料を、亜鉛と第一の金属元素のモル比が1:0.0001〜0.5となるように、添加する酸化亜鉛の移動度向上方法。
7.酸化亜鉛に、ランタノイド、Sn、Scから選ばれる少なくとも一種の第一の金属元素を含む材料、及びMg、Si、Ca、Mn、Fe、Co、Ni、Mo、Rhから選ばれる少なくとも一種の第二の金属元素を含む材料を、亜鉛、第一の金属元素及び第二の金属元素のモル比が1:0.0001〜0.5:0.0001〜0.3となるように、添加する酸化亜鉛の移動度向上方法。
8.1〜5のいずれかに記載の亜鉛系複合酸化物からなる熱電変換材料。
According to the present invention, the following zinc-based composite oxide and the like are provided.
1. Zinc, and at least one first metal element selected from lanthanoid, Sn, and Sc,
A zinc-based composite oxide having a molar ratio of zinc to the first metal element of 1: 0.0001 to 0.5.
2. zinc,
At least one first metal element selected from lanthanoid, Sn, Sc, and at least one second metal element selected from Mg, Si, Ca, Mn, Fe, Co, Ni, Mo, Rh,
A zinc-based composite oxide having a molar ratio of zinc, the first metal element, and the second metal element of 1: 0.0001 to 0.5: 0.0001 to 0.3.
3. 3. The zinc-based composite oxide according to 1 or 2, having a mobility of 40 cm 2 / Vs or higher.
4). The zinc-based composite oxide according to any one of 1 to 3, wherein the first metal element is a lanthanoid.
5). The zinc-based composite oxide according to any one of 1 to 4, wherein the lanthanoid is Ce, Nd, Eu, Ga, Ho, Er, or Yb.
6). A material containing at least one first metal element selected from lanthanoid, Sn, and Sc in zinc oxide, so that the molar ratio of zinc to the first metal element is 1: 0.0001 to 0.5. A method for improving the mobility of zinc oxide to be added.
7). A material containing at least one first metal element selected from lanthanoid, Sn, and Sc in zinc oxide, and at least one second selected from Mg, Si, Ca, Mn, Fe, Co, Ni, Mo, and Rh Oxidation to be added so that the molar ratio of zinc, the first metal element and the second metal element is 1: 0.0001 to 0.5: 0.0001 to 0.3 A method for improving the mobility of zinc.
A thermoelectric conversion material comprising the zinc-based composite oxide according to any one of 8.1 to 5.

本発明によれば、多結晶体であっても移動度が大きな亜鉛系複合酸化物が提供できる。   According to the present invention, a zinc-based composite oxide having a high mobility can be provided even if it is a polycrystal.

本発明の亜鉛系複合酸化物は、亜鉛、及びランタノイド、Sn、Scから選ばれる少なくとも一種の第一の金属元素、の複合酸化物である。亜鉛と第一の金属元素のモル比は、1:0.0001〜0.5、好ましくは1:0.001〜0.2である。第一の金属元素のモル比がこの範囲より少ないと効果が少なく、この範囲より多いと第一の金属元素の酸化物が散乱原因となり、移動度が逆に低下してしまう。   The zinc-based composite oxide of the present invention is a composite oxide of zinc and at least one first metal element selected from lanthanoids, Sn, and Sc. The molar ratio of zinc to the first metal element is 1: 0.0001 to 0.5, preferably 1: 0.001 to 0.2. If the molar ratio of the first metal element is less than this range, the effect is small, and if it is more than this range, the oxide of the first metal element causes scattering, and the mobility is reduced.

また、本発明の亜鉛系複合酸化物は、亜鉛、ランタノイド、Sn、Scから選ばれる少なくとも一種の第一の金属元素、及びMg、Si、Ca、Mn、Fe、Co、Ni、Mo、Rhから選ばれる少なくとも一種の第二の金属元素、の複合酸化物である。亜鉛、第一の金属元素及び第二の金属元素のモル比は、1:0.0001〜0.5:0.0001〜0.3、好ましくは1:0.001〜0.2:0.001〜0.2である。第一及び第二の金属元素のモル比がこの範囲より少ないと効果が少なく、この範囲より多いと第一及び第二の金属元素の酸化物が散乱原因となり、移動度が逆に低下してしまう。   The zinc-based composite oxide of the present invention is composed of at least one first metal element selected from zinc, lanthanoid, Sn, and Sc, and Mg, Si, Ca, Mn, Fe, Co, Ni, Mo, and Rh. It is a composite oxide of at least one second metal element selected. The molar ratio of zinc, the first metal element and the second metal element is 1: 0.0001 to 0.5: 0.0001 to 0.3, preferably 1: 0.001 to 0.2: 0. 001 to 0.2. If the molar ratio of the first and second metal elements is less than this range, the effect is small, and if it exceeds this range, the oxides of the first and second metal elements cause scattering and the mobility decreases conversely. End up.

第一の金属元素のうち、好ましくはランタノイドであり、中でもCe、Nd、Eu、Ga、Ho、Er、Ybがより好ましい。   Of the first metal elements, lanthanoids are preferable, and Ce, Nd, Eu, Ga, Ho, Er, and Yb are more preferable.

本発明の亜鉛系複合酸化物は、移動度が、好ましくは40cm/Vs以上、より好ましくは50cm/Vs以上である。
尚、本発明において、「移動度」とは電子移動度を意味する。
The mobility of the zinc-based composite oxide of the present invention is preferably 40 cm 2 / Vs or more, more preferably 50 cm 2 / Vs or more.
In the present invention, “mobility” means electron mobility.

本発明の亜鉛系複合酸化物は、亜鉛源に、第一の金属元素を含む材料、又は第一の金属元素を含む材料及び第二の金属元素を含む材料を、上記のモル比となるように添加して、均一に混合し、焼成することにより製造できる。このとき、亜鉛源、第一及び第二の金属元素を含む材料は、粉末等として混合することが好ましい。
第一及び第二の金属元素を含む材料を上記のモル比で添加することにより、酸化亜鉛の移動度を向上させることができる。
In the zinc-based composite oxide of the present invention, the material containing the first metal element or the material containing the first metal element and the material containing the second metal element in the zinc source have the above molar ratio. It can be manufactured by adding to and mixing uniformly and firing. At this time, the zinc source and the material containing the first and second metal elements are preferably mixed as a powder or the like.
By adding the material containing the first and second metal elements in the above molar ratio, the mobility of zinc oxide can be improved.

本発明の亜鉛系複合酸化物の製造に際して用いられる原料としては、各成分元素、各成分元素の酸化物又はその焼成時に酸化物となる原料が使用できる。 本発明では、亜鉛源として、例えば、金属(Zn)、酸化物(ZnO)、水酸化物〔Zn(OH)〕、硝酸塩〔Zn(NO〕等が用いられる。 As a raw material used in the production of the zinc-based composite oxide of the present invention, each component element, an oxide of each component element, or a raw material that becomes an oxide at the time of firing can be used. In the present invention, for example, metal (Zn), oxide (ZnO), hydroxide [Zn (OH) 2 ], nitrate [Zn (NO 3 ) 2 ] and the like are used as the zinc source.

第一の金属元素のうち、ランタノイドを含む材料としては、Ce源として、例えば、金属(Ce)、酸化物(CeO)、炭酸化物〔Ce(CO・8HO〕、硝酸塩〔Ce(NO・6HO〕〕、酢酸塩〔(CHCOO)Ce・HO〕等が用いられる。Nd源としては、例えば、酸化物(Nd)、炭酸化物〔Nd(CO〕、硝酸塩〔Nd(NO〕等が用いられる。Yb源としては、例えば、酸化物(Yb)、炭酸化物〔Yb(CO〕、硝酸塩〔Yb(NO〕等が用いられる。Eu源としては、例えば、酸化物(Eu)等が用いられる。Ga源としては、例えば、酸化物(Ga)等が用いられる。Ho源としては、例えば、酸化物(Ho)等が用いられる。Er源としては、例えば、酸化物(Er)等が用いられる。
また、Snを含む材料としては、例えば、酸化物(SnO)等が用いられる。Scを含む材料としては、例えば、酸化物(Sc)等が用いられる。
Among the first metal elements, the lanthanoid-containing material includes, for example, a metal (Ce), oxide (CeO 2 ), carbonate [Ce 2 (CO 3 ) 3 · 8H 2 O], and nitrate as a Ce source. [Ce (NO 3 ) 3 · 6H 2 O]], acetate [(CH 3 COO) 3 Ce · H 2 O] and the like are used. As the Nd source, for example, oxide (Nd 2 O 3 ), carbonate [Nd 2 (CO 3 ) 3 ], nitrate [Nd (NO 3 ) 3 ] and the like are used. As the Yb source, for example, oxide (Yb 2 O 3 ), carbonate [Yb 2 (CO 3 ) 3 ], nitrate [Yb (NO 3 ) 3 ] and the like are used. For example, an oxide (Eu 2 O 3 ) or the like is used as the Eu source. As the Ga source, for example, an oxide (Ga 2 O 3 ) or the like is used. As the Ho source, for example, an oxide (Ho 2 O 3 ) or the like is used. As the Er source, for example, an oxide (Er 2 O 3 ) or the like is used.
As the material containing Sn, for example, oxide (SnO) or the like is used. As the material containing Sc, for example, an oxide (Sc 2 O 3 ) or the like is used.

第二の金属元素を含む材料としては、Mg源として、例えば、酸化物(MgO)等が、Si源として、例えば、酸化物(SiO)等が、Ca源として、例えば、酸化物(CaO)、水酸化物〔Ca(OH)〕等が、Mn源として、例えば、酸化物(Mn)等が、Fe源として、例えば、酸化物(Fe、Fe)等が、Co源として、例えば、酸化物(Co、Co)等が、Ni源として、例えば、酸化物(NiO)等が、Mo源として、例えば、酸化物(MoO)等が、Rh源として、例えば、酸化物(Rh)等が、それぞれ用いられる。 Examples of the material containing the second metal element include an Mg source such as an oxide (MgO), an Si source such as an oxide (SiO 2 ), and a Ca source such as an oxide (CaO). ), Hydroxide [Ca (OH) 2 ] and the like as the Mn source, for example, oxide (Mn 2 O 3 ) and the like as the Fe source, for example, oxides (Fe 2 O 3 and Fe 3 O 4). ) Or the like as a Co source, for example, an oxide (Co 2 O 3 , Co 3 O 4 ) or the like, and as a Ni source, for example, an oxide (NiO) or the like as a Mo source, for example, an oxide (MoO) 3 ) and the like are used as the Rh source, for example, an oxide (Rh 2 O 3 ) or the like.

本発明の亜鉛系複合酸化物は、亜鉛及び第一の金属元素、又は亜鉛、第一の金属元素及び第二の金属元素、の複合酸化物であるが、本発明の効果を損なわない範囲で、微量の不純物等を含むことができる。   The zinc-based composite oxide of the present invention is a composite oxide of zinc and the first metal element, or zinc, the first metal element and the second metal element, but within a range not impairing the effects of the present invention. , Trace amounts of impurities and the like.

また、本発明では、亜鉛系複合酸化物の製造に際し、各種添加剤、例えば、ポリエチレングリコール、ポリビニルアルコール、ステアリン酸等を必要に応じて添加することができる。   In the present invention, various additives such as polyethylene glycol, polyvinyl alcohol, stearic acid, and the like can be added as necessary when producing the zinc-based composite oxide.

以下、実施例に基づき本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されない。
実施例1
酸化亜鉛粉(純度99.9%、平均粒径約2μm)11.752g、酸化セリウム(純度99.9%、平均粒径約0.4μm)0.248g、及びポリエチレングリコール0.24gを秤量し、乳鉢で混合した後、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけて冷間等方圧加圧法(CIP)成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、ZnとCeのモル比は、Zn1モルに対してCeが0.01モルであり、配合比とほぼ等しかった。また、密度は5.54g/cmであった。
EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, this invention is not limited to these Examples.
Example 1
Weigh out 11.752 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm), 0.248 g of cerium oxide (purity 99.9%, average particle size of about 0.4 μm), and 0.24 g of polyethylene glycol. After mixing with a mortar, the mixture was pulverized with a planetary ball mill for 2 hours. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The compact was further subjected to cold isostatic pressing (CIP) molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of the composition analysis of the obtained sintered body, the molar ratio of Zn and Ce was 0.01 mol with respect to 1 mol of Zn, which was almost equal to the compounding ratio. The density was 5.54 g / cm 3 .

得られた焼結体の表面を約1mm研磨し、3mm角の角柱とした後、厚さ0.6mmの薄片を切り出してホール係数測定用の試料とした。ホール係数測定のための電極は、薄片の四隅に金スパッタした後、銀ペーストでリード線を接着し形成した。ホール係数測定装置(東洋テクニカ株式会社製ResiTest8300)を用い、室温で、キャリア数、移動度、比抵抗(電気伝導度の逆数)を測定した。尚、電気伝導度(σ)、キャリア数(n)、移動度(μ)は、σ=nμeの関係にあり、eは電荷を表す。
結果を表1に示したが、移動度は、焼結体としては非常に高い値が得られ、比較例1のZnO焼結体に比べ、移動度の大幅な向上が見られた。
The surface of the obtained sintered body was polished by about 1 mm to form a 3 mm square prism, and then a 0.6 mm thick slice was cut out to obtain a sample for Hall coefficient measurement. Electrodes for measuring the Hall coefficient were formed by sputtering gold at the four corners of a thin piece and then bonding the lead wire with silver paste. The number of carriers, mobility, and specific resistance (reciprocal of electrical conductivity) were measured at room temperature using a Hall coefficient measuring device (ResiTest 8300 manufactured by Toyo Technica Co., Ltd.). The electrical conductivity (σ), the number of carriers (n), and the mobility (μ) are in a relationship of σ = nμe, and e represents electric charge.
The results are shown in Table 1. As for the mobility, a very high value was obtained for the sintered body, and the mobility was significantly improved as compared with the ZnO sintered body of Comparative Example 1.

実施例2
酸化亜鉛粉(純度99.9%、平均粒径約2μm)9.594g、酸化セリウム(純度99.9%、平均粒径約0.4μm)0.406g、及びポリエチレングリコール0.2gを秤量し、乳鉢で混合した後、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、ZnとCeのモル比は、Zn1モルに対してCeが0.019モルであり、配合比とほぼ等しかった。また、密度は5.65g/cmであった。ホール係数測定装置による移動度、キャリア数及び電気伝導度の測定は、実施例1と同様に行った。以下の実施例及び比較例についても同様である。
結果を表1に示したが、移動度は、焼結体としては非常に高い値が得られ、比較例1のZnO焼結体に比べ、移動度の大幅な向上が見られた。
Example 2
Weigh 9.594 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm), 0.406 g of cerium oxide (purity 99.9%, average particle size of about 0.4 μm), and 0.2 g of polyethylene glycol. After mixing with a mortar, the mixture was pulverized with a planetary ball mill for 2 hours. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of compositional analysis of the obtained sintered body, the molar ratio of Zn and Ce was 0.019 mol of Ce with respect to 1 mol of Zn, which was almost equal to the blending ratio. The density was 5.65 g / cm 3 . The measurement of the mobility, the number of carriers, and the electrical conductivity using the Hall coefficient measuring device was performed in the same manner as in Example 1. The same applies to the following examples and comparative examples.
The results are shown in Table 1. As for the mobility, a very high value was obtained for the sintered body, and the mobility was significantly improved as compared with the ZnO sintered body of Comparative Example 1.

実施例3
酸化亜鉛粉(純度99.9%、平均粒径約2μm)9.044g、酸化セリウム(純度99.9%、平均粒径約0.4μm)0.956g、及びポリエチレングリコール0.2gを秤量し、乳鉢で混合した後、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、ZnとCeのモル比は、Zn1モルに対してCeが0.049モルであり、配合比とほぼ等しかった。また、密度は5.70g/cmであった。
結果を表1に示したが、移動度は、焼結体としては非常に高い値が得られ、比較例1のZnO焼結体に比べ、移動度の大幅な向上が見られた。
Example 3
Weighed 9.044 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm), 0.956 g of cerium oxide (purity 99.9%, average particle size of about 0.4 μm), and 0.2 g of polyethylene glycol. After mixing with a mortar, the mixture was pulverized with a planetary ball mill for 2 hours. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of the composition analysis of the obtained sintered body, the molar ratio of Zn and Ce was 0.049 mol of Ce with respect to 1 mol of Zn, which was almost equal to the compounding ratio. The density was 5.70 g / cm 3 .
The results are shown in Table 1. As for the mobility, a very high value was obtained for the sintered body, and the mobility was significantly improved as compared with the ZnO sintered body of Comparative Example 1.

実施例4
酸化亜鉛粉(純度99.9%、平均粒径約2μm)9.886g、酸化ネオジウム(純度99.9%)0.114g、及びポリエチレングリコール0.2gを秤量し、乳鉢で混合した後、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、ZnとNdのモル比は、Zn1モルに対してNdが0.009モルであり、配合比とほぼ等しかった。また、密度は5.56g/cmであった。
結果を表1に示したが、移動度は、焼結体としては非常に高い値が得られ、比較例1のZnO焼結体に比べ、移動度の大幅な向上が見られた。
Example 4
9.886 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm), 0.114 g of neodymium oxide (purity 99.9%), and 0.2 g of polyethylene glycol were weighed and mixed in a mortar, then the planet The mixture was pulverized for 2 hours with a ball mill. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of the composition analysis of the obtained sintered body, the molar ratio of Zn and Nd was 0.009 mol of Nd with respect to 1 mol of Zn, which was almost equal to the compounding ratio. The density was 5.56 g / cm 3 .
The results are shown in Table 1. As for the mobility, a very high value was obtained for the sintered body, and the mobility was significantly improved as compared with the ZnO sintered body of Comparative Example 1.

実施例5
酸化亜鉛粉(純度99.9%、平均粒径約2μm)9.763g、酸化イッテルビウム(純度99.9%)0.237g、及びポリエチレングリコール0.2gを秤量し、乳鉢で混合した後、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、ZnとYbのモル比は、Zn1モルに対してYbが0.01モルであり、配合比と等しかった。また、密度は5.67g/cmであった。
結果を表1に示したが、移動度は焼結体としては非常に高い値が得られ、比較例1のZnO焼結体に比べ、移動度の大幅な向上が見られた。
Example 5
Zinc oxide powder (purity 99.9%, average particle size of about 2 μm) 9.763 g, ytterbium oxide (purity 99.9%) 0.237 g, and polyethylene glycol 0.2 g were weighed and mixed in a mortar, and then planets The mixture was pulverized for 2 hours with a ball mill. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of the composition analysis of the obtained sintered body, the molar ratio of Zn and Yb was 0.01 mol with respect to 1 mol of Zn, which was equal to the compounding ratio. The density was 5.67 g / cm 3 .
The results are shown in Table 1. As for the mobility, a very high value was obtained for the sintered body, and the mobility was significantly improved as compared with the ZnO sintered body of Comparative Example 1.

比較例1
酸化亜鉛粉(純度99.9%、平均粒径約2μm)10g、ポリエチレングリコール0.2gを秤量し、乳鉢で混合した後、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1425℃まで昇温し、7時間保持した後、2時間かけて冷却した。得られた焼結体の密度は5.54g/cmであった。結果を表1に示す。
Comparative Example 1
10 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm) and 0.2 g of polyethylene glycol were weighed and mixed in a mortar, and then mixed and ground in a planetary ball mill for 2 hours. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours. The density of the obtained sintered body was 5.54 g / cm 3 . The results are shown in Table 1.

Figure 0004526861
Figure 0004526861

比較例2
酸化亜鉛粉(純度99.9%,平均粒径約2μm)19.901g、酸化マグネシウム(純度99.9%)0.099g、及びポリエチレングリコール0.4gを秤量し、乳鉢で混合した後、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、ZnとMgのモル比は、Zn1モルに対してMgが0.009モルであり、配合比とほぼ等しかった。また、密度は5.53g/cmであった。
結果を表2に示したが、移動度は比較的小さく、比較例1のZnO焼結体とほぼ同等であり、キャリヤー数も少ないため、電気伝導性は向上しなかった。
Comparative Example 2
Zinc oxide powder (purity 99.9%, average particle size about 2 μm) 19.901 g, magnesium oxide (purity 99.9%) 0.099 g, and polyethylene glycol 0.4 g were weighed and mixed in a mortar, and then planets The mixture was pulverized for 2 hours with a ball mill. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of composition analysis of the obtained sintered body, the molar ratio of Zn and Mg was 0.009 mol of Mg with respect to 1 mol of Zn, which was almost equal to the blending ratio. The density was 5.53 g / cm 3 .
The results are shown in Table 2. The mobility was relatively small, almost the same as that of the ZnO sintered body of Comparative Example 1, and the number of carriers was small, so the electrical conductivity was not improved.

実施例6
酸化亜鉛粉(純度99.9%、平均粒径約2μm)19.18g及び酸化マグネシウム(純度99.9%)0.095gに、さらにCe源として酢酸セリウム1水和物を0.787g加え、これにポリエチレングリコール0.4gを秤量して加え、乳鉢で混合し、次いで、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、Zn、Mg、Ceのモル比は、Zn1モルに対してMgが0.009モル、Ceが0.01モルであり、配合比とほぼ等しかった。また、密度は5.45g/cmであった。
結果を表2に示したが、移動度は、比較例2のCe無添加試料に較べて大きく増大していることが明らかになった。
Example 6
0.787 g of cerium acetate monohydrate was added as a Ce source to 19.18 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm) and magnesium oxide (purity 99.9%) 0.095 g, To this, 0.4 g of polyethylene glycol was weighed and added, mixed in a mortar, and then mixed and ground in a planetary ball mill for 2 hours. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of composition analysis of the obtained sintered body, the molar ratio of Zn, Mg, and Ce was 0.009 mol of Mg and 0.01 mol of Ce with respect to 1 mol of Zn, which was almost equal to the blending ratio. The density was 5.45 g / cm 3 .
The results are shown in Table 2. It was revealed that the mobility was greatly increased as compared with the Ce-free sample of Comparative Example 2.

比較例3
酸化亜鉛粉(純度99.9%、平均粒径約2μm)19.853g、二酸化ケイ素(純度99.9%)0.147g、及びポリエチレングリコール0.4gを秤量し、乳鉢で混合した後、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、ZnとSiのモル比は、Zn1モルに対してSiが0.01モルであり、配合比と等しかった。また、密度は4.89g/cmと非常に小さかった。
結果を表2に示したが、移動度は極めて小さく、キャリヤー数も少ないため、電気伝導性は向上しなかった。
Comparative Example 3
Zinc oxide powder (purity 99.9%, average particle size about 2 μm) 19.853 g, silicon dioxide (purity 99.9%) 0.147 g and polyethylene glycol 0.4 g were weighed and mixed in a mortar, then The mixture was pulverized for 2 hours with a ball mill. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of the composition analysis of the obtained sintered body, the molar ratio of Zn and Si was 0.01 mole of Si with respect to 1 mole of Zn, which was equal to the blending ratio. Further, the density was very small as 4.89 g / cm 3 .
The results are shown in Table 2. As the mobility was extremely small and the number of carriers was small, the electrical conductivity was not improved.

実施例7
酸化亜鉛粉(純度99.9%、平均粒径約2μm)19.074g及び酸化ケイ素(純度99.9%)0.141gに、さらにCe源として酢酸セリウム1水和物を0.786g加え、これにポリエチレングリコール0.4gを秤量し加えて乳鉢で混合し、次いで、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、Zn、Si、Ceのモル比は、Zn1モルに対してSiが0.01モル、Ceが0.01モルであり、配合比とほぼ等しかった。また、密度は5.29g/cmであった。
結果を表2に示したが、移動度は、比較例3のCe無添加試料に較べて大きく増大していることが明らかになった。
Example 7
Add 0.786 g of cerium acetate monohydrate as Ce source to 19.074 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm) and 0.141 g of silicon oxide (purity 99.9%), 0.4 g of polyethylene glycol was weighed and added thereto, mixed in a mortar, and then mixed and ground in a planetary ball mill for 2 hours. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of compositional analysis of the obtained sintered body, the molar ratio of Zn, Si, and Ce was 0.01 mol of Si and 0.01 mol of Ce with respect to 1 mol of Zn, which was almost equal to the compounding ratio. The density was 5.29 g / cm 3 .
The results are shown in Table 2, and it was revealed that the mobility was greatly increased as compared with the Ce-free sample of Comparative Example 3.

比較例4
酸化亜鉛粉(純度99.9%、平均粒径約2μm)19.839g、水酸化カルシウム(純度99.9%)0.161g、及びポリエチレングリコール0.4gを秤量し、乳鉢で混合した後、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、ZnとCaのモル比は、Zn1モルに対してCaが0.01モルであり、配合比と等しかった。また、密度は5.53g/cmであった。
結果を表2に示したが、移動度は極めて小さい値であった。
Comparative Example 4
After weighing 19.839 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm), 0.161 g of calcium hydroxide (purity 99.9%) and 0.4 g of polyethylene glycol, they were mixed in a mortar, The mixture was pulverized for 2 hours using a planetary ball mill. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of composition analysis of the obtained sintered body, the molar ratio of Zn and Ca was 0.01 mol of Ca with respect to 1 mol of Zn, which was equal to the blending ratio. The density was 5.53 g / cm 3 .
The results are shown in Table 2, and the mobility was extremely small.

実施例8
酸化亜鉛粉(純度99.9%、平均粒径約2μm)19.060g及び水酸化カルシウム(純度99.9%)0.155gに、さらにCe源として酢酸セリウム1水和物を0.785g加え、これにポリエチレングリコール0.4gを秤量して加え、乳鉢で混合し、次いで、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、Zn、Ca、Ceのモル比は、Zn1モルに対してCaが0.01モル、Ceが0.01モルであり、配合比とほぼ等しかった。また、密度は5.44g/cmであった。
結果を表2に示したが、移動度は、比較例4のCe無添加試料に較べて大きく増大していることが明らかになった。
Example 8
Add 0.785 g of cerium acetate monohydrate as Ce source to 19.060 g of zinc oxide powder (purity 99.9%, average particle size about 2 μm) and calcium hydroxide (purity 99.9%) 0.155 g Then, 0.4 g of polyethylene glycol was weighed and added thereto, mixed in a mortar, and then mixed and ground in a planetary ball mill for 2 hours. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of the composition analysis of the obtained sintered body, the molar ratio of Zn, Ca, and Ce was 0.01 mol of Ca and 0.01 mol of Ce with respect to 1 mol of Zn, which was almost equal to the compounding ratio. The density was 5.44 g / cm 3 .
The results are shown in Table 2, and it was revealed that the mobility was greatly increased as compared with the Ce-free sample of Comparative Example 4.

比較例5
酸化亜鉛粉(純度99.9%、平均粒径約2μm)9.904g、酸化マンガン(Mn、純度99.9%)0.096g、及びポリエチレングリコール0.2gを秤量し、乳鉢で混合した後、遊星ボールミルで3時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、ZnとMnのモル比は、Zn1モルに対してMnが0.01モルであり、配合比と等しかった。また、密度は5.28g/cmであった。
結果を表2に示したが、移動度は極めて小さい値であった。
Comparative Example 5
Weigh 9.904 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm), 0.096 g of manganese oxide (Mn 2 O 3 , purity 99.9%), and 0.2 g of polyethylene glycol in a mortar. After mixing, the mixture was pulverized by a planetary ball mill for 3 hours. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of the compositional analysis of the obtained sintered body, the molar ratio of Zn and Mn was 0.01 mol with respect to 1 mol of Zn, which was equal to the compounding ratio. The density was 5.28 g / cm 3 .
The results are shown in Table 2, and the mobility was extremely small.

実施例9
酸化亜鉛粉(純度99.9%、平均粒径約2μm)9.516g及び酸化マンガン(Mn、純度99.9%)0.092gに、さらにCe源として酢酸セリウム1水和物を0.392g加え、これにポリエチレングリコール0.2gを秤量して加え、乳鉢で混合し、次いで、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、Zn、Mn、Ceのモル比は、Zn1モルに対してMnが0.01モル、Ceが0.009モルであり、配合比とほぼ等しかった。また、密度は5.38g/cmであった。
結果を表2に示したが、移動度は、比較例5のCe無添加試料に較べて大きく増大していることが明らかになった。
Example 9
To 9.516 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm) and 0.092 g of manganese oxide (Mn 2 O 3 , purity 99.9%), cerium acetate monohydrate was added as a Ce source. 0.392 g was added, 0.2 g of polyethylene glycol was weighed and added thereto, mixed in a mortar, and then mixed and ground in a planetary ball mill for 2 hours. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of the composition analysis of the obtained sintered body, the molar ratio of Zn, Mn, and Ce was 0.01 mole of Mn and 0.009 mole of Ce with respect to 1 mole of Zn, which was almost equal to the blending ratio. The density was 5.38 g / cm 3 .
The results are shown in Table 2. It was revealed that the mobility was greatly increased as compared with the Ce-free sample of Comparative Example 5.

比較例6
酸化亜鉛粉(純度99.9%、平均粒径約2μm)19.806g、酸化鉄(Fe、純度99.9%)0.194g、及びポリエチレングリコール0.4gを秤量し、乳鉢で混合した後、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、ZnとFeのモル比は、Zn1モルに対してFeが0.01モルであり、配合比と等しかった。また、密度は5.63g/cmであった。
結果を表2に示したが、移動度は極めて小さい値であった。
Comparative Example 6
Weigh 19.806 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm), 0.194 g of iron oxide (Fe 2 O 3 , purity 99.9%), and 0.4 g of polyethylene glycol in a mortar. After mixing, the mixture was pulverized by a planetary ball mill for 2 hours. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of the compositional analysis of the obtained sintered body, the molar ratio of Zn and Fe was 0.01 mole of Fe with respect to 1 mole of Zn, which was equal to the blending ratio. The density was 5.63 g / cm 3 .
The results are shown in Table 2, and the mobility was extremely small.

実施例10
酸化亜鉛粉(純度99.9%、平均粒径約2μm)19.029g及び酸化鉄(Fe、純度99.9%)0.187gに、さらにCe源として酢酸セリウム1水和物を0.724g加え、これにポリエチレングリコール0.4gを秤量して加え、乳鉢で混合し、次いで、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、Zn、Fe、Ceのモル比は、Zn1モルに対してFeが0.01モル、Ceが0.009モルであり、配合比とほぼ等しかった。また、密度は5.50g/cmであった。
結果を表2に示したが、移動度は、比較例6のCe無添加試料に較べて大きく増大していることが明らかになった。
Example 10
To 19.029 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm) and 0.187 g of iron oxide (Fe 2 O 3 , purity 99.9%), further cerium acetate monohydrate as a Ce source. 0.724 g was added, 0.4 g of polyethylene glycol was weighed and added thereto, mixed in a mortar, and then mixed and ground in a planetary ball mill for 2 hours. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of the compositional analysis of the obtained sintered body, the molar ratio of Zn, Fe, and Ce was 0.01 mole Fe and 0.009 mole Ce with respect to 1 mole Zn, which was almost equal to the blending ratio. The density was 5.50 g / cm 3 .
The results are shown in Table 2, and it was revealed that the mobility was greatly increased as compared with the Ce-free sample of Comparative Example 6.

比較例7
酸化亜鉛粉(純度99.9%、平均粒径約2μm)19.798g、酸化コバルト(Co、純度99.9%)0.202g、及びポリエチレングリコール0.4gを秤量し、乳鉢で混合した後、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、ZnとCoのモル比は、Zn1モルに対してCoが0.009モルであり、配合比とほぼ等しかった。また、密度は5.54g/cmであった。
結果を表2に示したが、移動度は小さい値であった。
Comparative Example 7
Weigh 19.798 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm), 0.202 g of cobalt oxide (Co 2 O 3 , purity 99.9%), and 0.4 g of polyethylene glycol in a mortar. After mixing, the mixture was pulverized for 2 hours using a planetary ball mill. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of composition analysis of the obtained sintered body, the molar ratio of Zn and Co was 0.009 mol of Co with respect to 1 mol of Zn, which was almost equal to the compounding ratio. The density was 5.54 g / cm 3 .
The results are shown in Table 2, and the mobility was a small value.

実施例11
酸化亜鉛粉(純度99.9%、平均粒径約2μm)19.029g及び酸化コバルト(Co、純度99.9%)0.194gに、さらにCe源として酢酸セリウム1水和物を0.784g加え、これにポリエチレングリコール0.4gを秤量して加え、乳鉢で混合し、次いで、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、Zn、Co、Ceのモル比は、Zn1モルに対してCoが0.01モル、Ceが0.009モルであり、配合比とほぼ等しかった。また、密度は5.44g/cmであった。
結果を表2に示したが、移動度は、比較例7のCe無添加試料に較べて大きく増大していることが明らかになった。
Example 11
To 19.029 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm) and 0.194 g of cobalt oxide (Co 2 O 3 , purity 99.9%), further cerium acetate monohydrate as a Ce source. 0.784 g was added, 0.4 g of polyethylene glycol was weighed and added thereto, mixed in a mortar, and then mixed and ground in a planetary ball mill for 2 hours. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of compositional analysis of the obtained sintered body, the molar ratio of Zn, Co, and Ce was 0.01 mol of Co and 0.009 mol of Ce with respect to 1 mol of Zn, which was almost equal to the compounding ratio. The density was 5.44 g / cm 3 .
The results are shown in Table 2. It was revealed that the mobility was greatly increased as compared with the Ce-free sample of Comparative Example 7.

比較例8
酸化亜鉛粉(純度99.9%、平均粒径約2μm)19.818g、酸化ニッケル(NiO、純度99.9%)0.182g、及びポリエチレングリコール0.4gを秤量し、乳鉢で混合した後、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、ZnとNiのモル比は、Zn1モルに対してNiが0.01モルであり、配合比とほぼ等しかった。また、密度は5.59g/cmであった。
結果を表2に示したが、移動度は小さい値であった。
Comparative Example 8
After weighing 19.818 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm), 0.182 g of nickel oxide (NiO, purity 99.9%), and 0.4 g of polyethylene glycol, and mixing them in a mortar The mixture was pulverized with a planetary ball mill for 2 hours. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of the composition analysis of the obtained sintered body, the molar ratio of Zn and Ni was 0.01 mol with respect to 1 mol of Zn, and was almost equal to the blending ratio. The density was 5.59 g / cm 3 .
The results are shown in Table 2, and the mobility was a small value.

実施例12
酸化亜鉛粉(純度99.9%、平均粒径約2μm)19.041g及び酸化ニッケル(NiO、純度99.9%)0.175gに、さらにCe源として酢酸セリウム1水和物を0.784g加え、これにポリエチレングリコール0.4gを秤量して加え、乳鉢で混合し、次いで、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、Zn、Ni、Ceのモル比は、Zn1モルに対してNiが0.01モル、Ceが0.009モルであり、配合比とほぼ等しかった。また、密度は5.46g/cmであった。
結果を表2に示したが、移動度は、比較例8のCe無添加試料に較べて大きく増大していることが明らかになった。
Example 12
Zinc oxide powder (purity 99.9%, average particle size about 2 μm) 19.041 g and nickel oxide (NiO, purity 99.9%) 0.175 g, and further 0.784 g of cerium acetate monohydrate as Ce source In addition, 0.4 g of polyethylene glycol was weighed and added thereto, mixed in a mortar, and then mixed and ground in a planetary ball mill for 2 hours. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of the compositional analysis of the obtained sintered body, the molar ratio of Zn, Ni, and Ce was 0.01 mol of Ni and 0.009 mol of Ce with respect to 1 mol of Zn. The density was 5.46 g / cm 3 .
The results are shown in Table 2. It was revealed that the mobility was greatly increased as compared with the Ce-free sample of Comparative Example 8.

比較例9
酸化亜鉛粉(純度99.9%、平均粒径約2μm)19.652g、酸化モリブデン(純度99.9%)0.348g、及びポリエチレングリコール0.4gを秤量し、乳鉢で混合した後、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、ZnとMoのモル比は、Zn1モルに対してMoが0.008モルであり、配合比とほぼ等しかった。また、密度は5.18g/cmであった。
結果を表2に示したが、移動度は小さい値であった。
Comparative Example 9
Zinc oxide powder (purity 99.9%, average particle size about 2 μm) 19.652 g, molybdenum oxide (purity 99.9%) 0.348 g, and polyethylene glycol 0.4 g were weighed and mixed in a mortar, and then planets The mixture was pulverized for 2 hours with a ball mill. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of composition analysis of the obtained sintered body, the molar ratio of Zn and Mo was 0.008 mol of Mo with respect to 1 mol of Zn, which was almost equal to the blending ratio. The density was 5.18 g / cm 3 .
The results are shown in Table 2, and the mobility was a small value.

実施例13
酸化亜鉛粉(純度99.9%、平均粒径約2μm)18.888g及び酸化モリブデン(純度99.9%)0.334gに、さらにCe源として酢酸セリウム1水和物を0.778g加え、これにポリエチレングリコール0.4gを秤量して加え、乳鉢で混合し、次いで、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、Zn、Mo、Ceのモル比は、Zn1モルに対してMoが0.009モル、Ceが0.01モルであり、配合比とほぼ等しかった。また、密度は5.08g/cmであった。
結果を表2に示したが、移動度は、比較例9のCe無添加試料に較べて大きく増大していることが明らかになった。
Example 13
0.778 g of cerium acetate monohydrate was added as a Ce source to 18.888 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm) and molybdenum oxide (purity 99.9%) 0.334 g, To this, 0.4 g of polyethylene glycol was weighed and added, mixed in a mortar, and then mixed and ground in a planetary ball mill for 2 hours. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of composition analysis of the obtained sintered body, the molar ratio of Zn, Mo, and Ce was 0.009 mol of Mo and 0.01 mol of Ce with respect to 1 mol of Zn, which was almost equal to the blending ratio. The density was 5.08 g / cm 3 .
The results are shown in Table 2. It was revealed that the mobility was greatly increased as compared with the Ce-free sample of Comparative Example 9.

比較例10
酸化亜鉛粉(純度99.9%、平均粒径約2μm)19.693g、酸化ロジウム(Rh、純度99.9%)0.307g、及びポリエチレングリコール0.4gを秤量し、乳鉢で混合した後、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、ZnとRhのモル比は、Zn1モルに対してRhが0.009モルであり、配合比とほぼ等しかった。また、密度は5.55g/cmであった。
結果を表2に示したが、移動度は小さい値であった。
Comparative Example 10
Weigh 19.693 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm), rhodium oxide (Rh 2 O 3 , purity 99.9%) 0.307 g, and 0.4 g of polyethylene glycol in a mortar. After mixing, the mixture was pulverized for 2 hours using a planetary ball mill. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of compositional analysis of the obtained sintered body, the molar ratio of Zn and Rh was 0.009 mol of Rh with respect to 1 mol of Zn, which was almost equal to the compounding ratio. The density was 5.55 g / cm 3 .
The results are shown in Table 2, and the mobility was a small value.

実施例14
酸化亜鉛粉(純度99.9%、平均粒径約2μm)18.925g及び酸化ロジウム(Rh、純度99.9%)0.295gに、さらにCe源として酢酸セリウム1水和物を0.780g加え、これにポリエチレングリコール0.4gを秤量して加え、乳鉢で混合し、次いで、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、Zn、Rh、Ceのモル比は、Zn1モルに対してRhが0.01モル、Ceが0.009モルであり、配合比とほぼ等しかった。また、密度は5.42g/cmであった。
結果を表2に示したが、移動度は、比較例10のCe無添加試料に較べて大きく増大していることが明らかになった。
Example 14
To 18.925 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm) and rhodium oxide (Rh 2 O 3 , purity 99.9%) 0.295 g, further cerium acetate monohydrate as a Ce source. 0.780 g was added, 0.4 g of polyethylene glycol was weighed and added thereto, mixed in a mortar, and then mixed and ground in a planetary ball mill for 2 hours. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of the composition analysis of the obtained sintered body, the molar ratio of Zn, Rh, and Ce was 0.01 mol and 0.19 mol of Ce with respect to 1 mol of Zn, which was almost equal to the compounding ratio. The density was 5.42 g / cm 3 .
The results are shown in Table 2, and it was revealed that the mobility was greatly increased as compared with the Ce-free sample of Comparative Example 10.

実施例15
酸化亜鉛粉(純度99.9%、平均粒径約2μm)9.672g及び酸化マンガン(Mn、純度99.9%)0.094gに、さらに酸化イッテルビウム(Yb、純度99.9%)0.234gを加え、これにポリエチレングリコール0.2gを秤量して加え、乳鉢で混合し、次いで、遊星ボールミルで3時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、Zn、Mn、Ybのモル比は、Zn1モルに対してMnが0.01モル、Ybが0.01モルであり、配合比とほぼ等しかった。また、密度は5.42g/cmであった。
結果を表2に示したが、移動度は、比較例5のYb無添加試料に較べて大きく増大していることが明らかになった。
Example 15
Zinc oxide powder (purity 99.9%, average particle size about 2 μm) 9.672 g and manganese oxide (Mn 2 O 3 , purity 99.9%) 0.094 g, and further ytterbium oxide (Yb 2 O 3 , purity 99 .9%) 0.234 g was added, 0.2 g of polyethylene glycol was weighed and added thereto, mixed in a mortar, and then mixed and ground in a planetary ball mill for 3 hours. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of the compositional analysis of the obtained sintered body, the molar ratio of Zn, Mn, and Yb was 0.01 mole of Mn and 0.01 mole of Yb with respect to 1 mole of Zn, which was almost equal to the blending ratio. The density was 5.42 g / cm 3 .
The results are shown in Table 2, and it was revealed that the mobility was greatly increased as compared with the Yb-free sample of Comparative Example 5.

Figure 0004526861
Figure 0004526861

実施例16
酸化亜鉛粉(純度99.9%、平均粒径約2μm)19.674g及び酸化錫(SnO、純度99.9%)0.326gに、ポリエチレングリコール0.4gを秤量して加え、乳鉢で混合し、次いで、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、Zn、Snのモル比は、Zn1モルに対してSnが0.01モルであり、配合比とほぼ等しかった。また、密度は5.67g/cmであった。
結果を表3に示したが、移動度は、比較例1のZnO焼結体に較べて大きく増大していることが明らかになった。
Example 16
To 19.674 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm) and tin oxide (SnO, purity 99.9%) 0.326 g, weigh 0.4 g of polyethylene glycol and add in a mortar. Then, the mixture was pulverized by a planetary ball mill for 2 hours. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of the composition analysis of the obtained sintered body, the molar ratio of Zn and Sn was 0.01 mol with respect to 1 mol of Zn, which was almost equal to the compounding ratio. The density was 5.67 g / cm 3 .
The results are shown in Table 3, and it was revealed that the mobility was greatly increased as compared with the ZnO sintered body of Comparative Example 1.

実施例17
酸化亜鉛粉(純度99.9%、平均粒径約2μm)18.758g及び酸化錫(SnO、純度99.9%)1.242gに、ポリエチレングリコール0.4gを秤量して加え、乳鉢で混合し、次いで、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、Zn、Snのモル比は、Zn1モルに対してSnが0.038モルであり、配合比とほぼ等しかった。また、密度は5.73g/cmであった。
結果を表3に示したが、移動度は、比較例1のZnO焼結体に較べて大きく増大していることが明らかになった。
Example 17
Weighing and adding 0.4 g of polyethylene glycol to 18.758 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm) and 1.242 g of tin oxide (SnO, purity 99.9%), and mixing in a mortar Then, the mixture was pulverized by a planetary ball mill for 2 hours. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of the composition analysis of the obtained sintered body, the molar ratio of Zn and Sn was 0.038 mol of Sn with respect to 1 mol of Zn, which was almost equal to the compounding ratio. The density was 5.73 g / cm 3 .
The results are shown in Table 3, and it was revealed that the mobility was greatly increased as compared with the ZnO sintered body of Comparative Example 1.

実施例18
酸化亜鉛粉(純度99.9%、平均粒径約2μm)19.832g及び酸化スカンジウム(Sc、純度99.9%)0.168gに、ポリエチレングリコール0.4gを秤量して加え、乳鉢で混合し、次いで、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、Zn、Scのモル比は、Zn1モルに対してScが0.009モルであり、配合比とほぼ等しかった。また密度は5.60g/cmであった。
結果を表3に示したが、移動度は、比較例1のZnO焼結体に較べて大きく増大していることが明らかになった。
Example 18
To 19.832 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm) and scandium oxide (Sc 2 O 3 , purity 99.9%) 0.168 g, weighed and added 0.4 g of polyethylene glycol, The mixture was mixed in a mortar and then mixed and ground in a planetary ball mill for 2 hours. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of the composition analysis of the obtained sintered body, the molar ratio of Zn and Sc was 0.009 mol of Sc with respect to 1 mol of Zn, which was almost equal to the compounding ratio. The density was 5.60 g / cm 3 .
The results are shown in Table 3, and it was revealed that the mobility was greatly increased as compared with the ZnO sintered body of Comparative Example 1.

実施例19
酸化亜鉛粉(純度99.9%、平均粒径約2μm)9.79g及び酸化マグネシウム(純度99.9%)0.048gに、さらに酸化錫(SnO、純度99.9%)0.162gを加え、これにポリエチレングリコール0.2gを加えて乳鉢で混合し、次いで、遊星ボールミルで2時間混合粉砕した。得られた混合粉を100メッシュの篩にかけ、粒度を揃え、金型に入れて、約幅5mm厚さ5mm長さ20mmの棒状に加圧成形した。成形体をさらに1t/cmの水圧をかけてCIP成形した。こうして得られた成形体を、室温から4時間かけて1,425℃まで昇温し、7時間保持した後、2時間かけて冷却した。
得られた焼結体の組成分析の結果、Zn、Mg、Snのモル比は、Zn1モルに対してMgが0.009モル、Snが0.001モルであり、配合比とほぼ等しかった。また、密度は5.63g/cmであった。
結果を表3に示したが、移動度は、比較例2の亜鉛−マグネシウム酸化物焼結体に較べて大きく増大していることが明らかになった。
Example 19
Zinc oxide powder (purity 99.9%, average particle size of about 2 μm) 9.79 g and magnesium oxide (purity 99.9%) 0.048 g, and further tin oxide (SnO, purity 99.9%) 0.162 g In addition, 0.2 g of polyethylene glycol was added thereto and mixed in a mortar, and then mixed and ground in a planetary ball mill for 2 hours. The obtained mixed powder was passed through a 100-mesh sieve, the particle sizes were made uniform, placed in a mold, and pressure-formed into a rod shape having a width of about 5 mm, a thickness of 5 mm, and a length of 20 mm. The molded body was further subjected to CIP molding by applying a water pressure of 1 t / cm 2 . The molded body thus obtained was heated from room temperature to 1,425 ° C. over 4 hours, held for 7 hours, and then cooled over 2 hours.
As a result of composition analysis of the obtained sintered body, the molar ratio of Zn, Mg, and Sn was 0.009 mol of Mg and 0.001 mol of Sn with respect to 1 mol of Zn, and was almost equal to the blending ratio. The density was 5.63 g / cm 3 .
The results are shown in Table 3, and it was revealed that the mobility was greatly increased as compared with the zinc-magnesium oxide sintered body of Comparative Example 2.

Figure 0004526861
Figure 0004526861

本発明の亜鉛系複合酸化物を用いることにより、性能の良い透明導電材料、透明導電膜、熱電変換材料、半導体素子(発光素子、トランジスタ)、導電性フィラー、透明トランジスター等が作製可能となる。   By using the zinc-based composite oxide of the present invention, it is possible to produce a transparent conductive material, a transparent conductive film, a thermoelectric conversion material, a semiconductor element (light emitting element, transistor), a conductive filler, a transparent transistor, and the like with good performance.

Claims (8)

亜鉛、及び
ランタノイド、Sn、Scから選ばれる少なくとも一種の第一の金属元素、
の複合酸化物からなり、亜鉛と第一の金属元素のモル比が1:0.001〜0.2である亜鉛系複合酸化物。
Zinc, and at least one first metal element selected from lanthanoid, Sn, and Sc,
A zinc-based composite oxide having a molar ratio of zinc to the first metal element of 1: 0.001 to 0.2 .
亜鉛、
ランタノイド、Sn、Scから選ばれる少なくとも一種の第一の金属元素、及び
Mg、Si、Ca、Mn、Fe、Co、Ni、Mo、Rhから選ばれる少なくとも一種の第二の金属元素、
の複合酸化物からなり、亜鉛、第一の金属元素及び第二の金属元素のモル比が1:0.001〜0.2:0.001〜0.2である亜鉛系複合酸化物。
zinc,
At least one first metal element selected from lanthanoid, Sn, Sc, and at least one second metal element selected from Mg, Si, Ca, Mn, Fe, Co, Ni, Mo, Rh,
A zinc-based composite oxide having a molar ratio of zinc, the first metal element and the second metal element of 1: 0.001-0.2: 0.001-0.2 .
電子移動度が40cm/Vs以上である請求項1又は2に記載の亜鉛系複合酸化物。 The zinc-based composite oxide according to claim 1 or 2, wherein the electron mobility is 40 cm 2 / Vs or more. 前記第一の金属元素がランタノイドである請求項1〜3のいずれか一項に記載の亜鉛系複合酸化物。   The zinc-based composite oxide according to any one of claims 1 to 3, wherein the first metal element is a lanthanoid. 前記ランタノイドが、Ce、Nd、Eu、Ga、Ho、Er、Ybである請求項1〜4のいずれか一項に記載の亜鉛系複合酸化物。   The zinc-based composite oxide according to any one of claims 1 to 4, wherein the lanthanoid is Ce, Nd, Eu, Ga, Ho, Er, or Yb. 酸化亜鉛に、ランタノイド、Sn、Scから選ばれる少なくとも一種の第一の金属元素を含む材料を、亜鉛と第一の金属元素のモル比が1:0.001〜0.2となるように、添加する酸化亜鉛の電子移動度向上方法。 A material containing at least one first metal element selected from lanthanoid, Sn, and Sc in zinc oxide, so that the molar ratio of zinc to the first metal element is 1: 0.001 to 0.2 . A method for improving the electron mobility of zinc oxide to be added. 酸化亜鉛に、ランタノイド、Sn、Scから選ばれる少なくとも一種の第一の金属元素を含む材料、及びMg、Si、Ca、Mn、Fe、Co、Ni、Mo、Rhから選ばれる少なくとも一種の第二の金属元素を含む材料を、亜鉛、第一の金属元素及び第二の金属元素のモル比が1:0.001〜0.2:0.001〜0.2となるように、添加する酸化亜鉛の電子移動度向上方法。 A material containing at least one first metal element selected from lanthanoid, Sn, and Sc in zinc oxide, and at least one second selected from Mg, Si, Ca, Mn, Fe, Co, Ni, Mo, and Rh Oxidation to be added so that the molar ratio of zinc, the first metal element and the second metal element is 1: 0.001-0.2: 0.001-0.2 A method for improving electron mobility of zinc. 請求項1〜5のいずれか一項に記載の亜鉛系複合酸化物からなる熱電変換材料。   A thermoelectric conversion material comprising the zinc-based composite oxide according to any one of claims 1 to 5.
JP2004128038A 2004-04-23 2004-04-23 Zinc based complex oxide Expired - Fee Related JP4526861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004128038A JP4526861B2 (en) 2004-04-23 2004-04-23 Zinc based complex oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004128038A JP4526861B2 (en) 2004-04-23 2004-04-23 Zinc based complex oxide

Publications (2)

Publication Number Publication Date
JP2005306684A JP2005306684A (en) 2005-11-04
JP4526861B2 true JP4526861B2 (en) 2010-08-18

Family

ID=35435860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004128038A Expired - Fee Related JP4526861B2 (en) 2004-04-23 2004-04-23 Zinc based complex oxide

Country Status (1)

Country Link
JP (1) JP4526861B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8389135B2 (en) * 2006-06-08 2013-03-05 Sumitomo Metal Mining Co., Ltd. Oxide sintered body, target, transparent conductive film obtained by using the same, and transparent conductive substrate
JP2008192604A (en) * 2007-01-12 2008-08-21 Sumitomo Chemical Co Ltd Transparent conductive film material
JP5125162B2 (en) * 2007-03-16 2013-01-23 住友化学株式会社 Transparent conductive material
KR101117797B1 (en) * 2009-04-24 2012-03-09 (주)석경에이티 Preparation method of transparent conductive complex comprising Yb doped ZnO, transparent conductive composition, coating film and optical device comprising the same
KR20150084834A (en) * 2012-11-19 2015-07-22 토소가부시키가이샤 Oxide sinter, sputtering target using same, and oxide film
JP5613805B2 (en) * 2013-09-02 2014-10-29 学校法人金沢工業大学 Zinc oxide-based transparent conductive film, sintered compact target for magnetron sputtering, liquid crystal display and touch panel, and equipment comprising zinc oxide-based transparent conductive film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3538022A (en) * 1967-07-28 1970-11-03 St Joseph Lead Co Electrically conductive zinc oxide
JP2000012915A (en) * 1998-06-22 2000-01-14 Daiken Kagaku Kogyo Kk Thermoelectric conversion material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199862A (en) * 1978-07-17 1980-04-29 Westinghouse Electric Corp. Method of constructing an electrical winding assembly
JPS55162477A (en) * 1979-06-02 1980-12-17 Honshu Chemical Manufacture of electroconductive zinc oxide
JPS58145620A (en) * 1982-02-24 1983-08-30 Honjiyou Chem Kk Preparation of electrically-conductive zinc oxide
JPS58161923A (en) * 1982-03-17 1983-09-26 Hakusui Kagaku Kogyo Kk Manufacture of electrically conductive zinc oxide
JPS5997531A (en) * 1982-11-22 1984-06-05 Sumitomo Alum Smelt Co Ltd Manufacture of electrically conductive white filler
JPH0843841A (en) * 1994-07-27 1996-02-16 Toppan Printing Co Ltd Formation of transparent conductive film
JPH08277112A (en) * 1995-04-06 1996-10-22 Central Glass Co Ltd Transparent conductive oxide material
JP3881407B2 (en) * 1996-07-31 2007-02-14 Hoya株式会社 Conductive oxide thin film, article having this thin film, and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3538022A (en) * 1967-07-28 1970-11-03 St Joseph Lead Co Electrically conductive zinc oxide
JP2000012915A (en) * 1998-06-22 2000-01-14 Daiken Kagaku Kogyo Kk Thermoelectric conversion material

Also Published As

Publication number Publication date
JP2005306684A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
JP4488184B2 (en) Indium oxide-zinc oxide-magnesium oxide sputtering target and transparent conductive film
US8569192B2 (en) Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film
CN104671771A (en) High voltage gradient zinc oxide based varistor material and preparation method thereof
TW201116637A (en) Oxide sintered body, method for producing same, and starting material powder for producing oxide sintered body
JP4526861B2 (en) Zinc based complex oxide
CN109071359A (en) Oxide sintered body, sputtering target, and oxide semiconductor film
WO2016182011A1 (en) Alumina sintered body and optical element base substrate
JP5095517B2 (en) Aluminum-containing zinc oxide n-type thermoelectric conversion material
Park et al. Influence of SnO2 addition on the thermoelectric properties of Zn1− xSnxO (0.01≤ x≤ 0.05)
JP2006347861A (en) Manufacturing method of zinc-based oxide and zinc-based oxide manufactured by the method
JP5673794B2 (en) Thermoelectric conversion material and thermoelectric conversion element
JP5087605B2 (en) Indium oxide-zinc oxide-magnesium oxide sputtering target and transparent conductive film
JP6146773B2 (en) Oxide sintered body and manufacturing method thereof
JP2008115024A (en) Conductive oxide powder and method of manufacturing conductive oxide powder
JP5234861B2 (en) Oxide sintered body sputtering target and method of manufacturing the same
JP3379745B2 (en) Transparent conductive oxide material
KR102484797B1 (en) p-type oxide material, method for fabricating the same, transparent electrode and electric device
JP5562000B2 (en) Oxide sintered body and manufacturing method thereof
JP3379743B2 (en) Transparent conductive oxide material
JP2001284661A (en) n-TYPE THERMOELECTRIC ELEMENT COMPOSITION FOR HIGH TEMPERATURE
JP7493688B1 (en) Sputtering target for forming oxide semiconductor thin film, method for manufacturing sputtering target for forming oxide semiconductor thin film, oxide semiconductor thin film, thin film semiconductor device and method for manufacturing same
JP6356290B2 (en) Oxide sintered body and manufacturing method thereof
JP2010238894A (en) SOLAR CELL WHOSE STRUCTURE LAYER IS (Zn, In, Al)O BASED TRANSPARENT ELECTRODE LAYER, AND ZnO-In2O3-Al BASED SPUTTERING TARGET USED FOR FORMING THE (Zn, In, Al)O BASED TRANSPARENT ELECTRODE LAYER
JPH08277112A (en) Transparent conductive oxide material
JPH0971419A (en) Electrically conductive transparent oxide material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees