JP4526494B2 - Natural circulation boiling water reactor water supply controller and nuclear power plant - Google Patents

Natural circulation boiling water reactor water supply controller and nuclear power plant Download PDF

Info

Publication number
JP4526494B2
JP4526494B2 JP2006050914A JP2006050914A JP4526494B2 JP 4526494 B2 JP4526494 B2 JP 4526494B2 JP 2006050914 A JP2006050914 A JP 2006050914A JP 2006050914 A JP2006050914 A JP 2006050914A JP 4526494 B2 JP4526494 B2 JP 4526494B2
Authority
JP
Japan
Prior art keywords
reactor
water level
water
signal
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006050914A
Other languages
Japanese (ja)
Other versions
JP2007232392A (en
Inventor
有俊 水出
真 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2006050914A priority Critical patent/JP4526494B2/en
Priority to US11/657,459 priority patent/US7860206B2/en
Publication of JP2007232392A publication Critical patent/JP2007232392A/en
Application granted granted Critical
Publication of JP4526494B2 publication Critical patent/JP4526494B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明は、沸騰水型原子炉、特に冷却材を自然循環によって循環させる自然循環型沸騰水型原子炉の給水制御装置、及びその給水制御装置によって制御される原子力発電プラントに関する。   The present invention relates to a boiling water reactor, and more particularly to a feed water control device for a natural circulation boiling water reactor that circulates a coolant by natural circulation, and a nuclear power plant controlled by the feed water control device.

一般に、沸騰水型原子炉は、その冷却材(冷却水)の循環方式によって強制循環型と自然循環型とに大別することができる。強制循環型沸騰水型原子炉(以下、強制循環型原子炉と記述する)は、ジェットポンプ又はインターナルポンプ等を備えており、このポンプを用いて強制的に炉心に冷却水を送り込むようになっている。   In general, boiling water reactors can be roughly classified into forced circulation type and natural circulation type depending on the circulation method of the coolant (cooling water). A forced circulation boiling water reactor (hereinafter referred to as a forced circulation nuclear reactor) is equipped with a jet pump or an internal pump, and the pump is used to forcibly feed cooling water into the core. It has become.

一方、自然循環型沸騰水型原子炉(以下、自然循環型原子炉と記述する)は、上記強制循環型原子炉のように強制的に冷却水を循環させるポンプを備えておらず、炉心を取り囲む原子炉シュラウドの外側の冷却水と原子炉シュラウド内側の水と蒸気が混在する気液混合流との密度差(水頭差)に基づく自然循環力によって冷却水が循環されるようになっている。   On the other hand, a natural circulation boiling water reactor (hereinafter referred to as a natural circulation nuclear reactor) does not have a pump for forcibly circulating cooling water like the above forced circulation nuclear reactor, Cooling water is circulated by the natural circulation force based on the density difference (water head difference) between the cooling water outside the surrounding reactor shroud and the gas-liquid mixed flow in which water and steam inside the reactor shroud are mixed. .

このように、自然循環型原子炉においては、自然循環力により冷却水を循環するので、ポンプにより強制的に冷却水を循環させる強制循環型原子炉と同等の炉心内の冷却水流量を得ることが難しく、この結果、強制循環型原子炉と比べて炉心出力密度は小さくなる傾向にある。   In this way, in a natural circulation reactor, cooling water is circulated by natural circulation force, so that a cooling water flow rate in the core equivalent to a forced circulation reactor in which cooling water is forcibly circulated by a pump is obtained. As a result, the core power density tends to be smaller than that of the forced circulation reactor.

このため、炉心内の冷却水流量を増やして炉心出力密度を大きくするために、シュラウドを上方に延長し、炉心上方に沸騰水が充満するチムニと呼ぶ空間を設けることにより、シュラウド内外の密度差を増大させて、炉心内の冷却水流量を増大させることが知られている(例えば、特許文献1参照)。   For this reason, in order to increase the core power density by increasing the coolant flow rate in the core, the shroud is extended upward, and a space called chimney filled with boiling water is provided above the core, thereby creating a density difference between the inside and outside of the shroud. It is known to increase the flow rate of cooling water in the core (see, for example, Patent Document 1).

特開2003−130982号公報Japanese Patent Laid-Open No. 2003-130982

自然循環型原子炉の場合には、強制的に炉心を循環させる再循環ポンプがないため、炉内の炉心流量はダウンカマ部の原子炉水位レベル(静水頭)に依存したものとなる。炉内の炉心流量が増えると炉内に反応度が投入され、原子炉出力が増加することとなるため、自然循環炉では原子炉水位レベルの制御が重要である。   In the case of a natural circulation type nuclear reactor, there is no recirculation pump that forcibly circulates the core, so the core flow rate in the reactor depends on the reactor water level (hydrostatic head) in the downcomer section. When the core flow rate in the reactor increases, the reactivity is introduced into the reactor and the reactor power increases. Therefore, control of the reactor water level is important in natural circulation reactors.

しかしながら、従来の強制循環炉における給水制御装置では、原子炉水位レベルを一定にする制御方式が基本であり、原子炉の出力制御と原子炉水位とを対応して制御することは、従来全く行われていない。   However, the conventional water supply control system in a forced circulation reactor is based on a control method that keeps the reactor water level constant, and it has been conventionally performed to control the reactor power control and the reactor water level correspondingly. I have not been told.

本発明はかかる点に鑑みてなされたものであり、原子炉水位の制御を積極的に利用して、自然循環型原子炉の制御が良好にできるようにすることを目的とする。   The present invention has been made in view of this point, and an object of the present invention is to positively utilize control of the reactor water level so as to satisfactorily control the natural circulation reactor.

本発明は、自然循環型沸騰水型原子炉の給水制御を行う場合に、原子炉から出力される主蒸気流量と、原子炉への給水流量と、原子炉内の水位計測信号と、原子炉の水位設定値との偏差を検出し、この検出した偏差と、全蒸気流量要求信号と原子炉出力設定器の出力との差分の信号である負荷要求偏差信号とから原子炉への給水流量制御信号を演算し、その演算された給水流量制御信号に、原子炉の出力制御信号に対応した信号を加算し、その加算出力により原子炉への給水ポンプの回転速度指令を作成するようにしたものである。 The present invention, when performing feed water control of a natural circulation boiling water reactor, the main steam flow output from the reactor, the feed water flow to the reactor, the water level measurement signal in the reactor, the reactor The deviation from the set water level is detected, and the water flow rate control to the reactor from this detected deviation and the load demand deviation signal which is the difference signal between the total steam flow demand signal and the output of the reactor power setter A signal is calculated, a signal corresponding to the reactor output control signal is added to the calculated feed water flow control signal , and the rotation speed command of the feed pump to the reactor is created by the added output It is.

本発明によると、計測した各値と原子炉の水位設定値との偏差と、負荷要求偏差信号とに基づいて、自然循環型沸騰水型原子炉への給水を行う給水ポンプの給水流量を制御することで、自然循環型沸騰水型原子炉に特有の出力変動のゆらぎを、給水流量の制御で抑えることが可能になり、結果的に原子炉出力の制御を安定化することに貢献する。   According to the present invention, the feed water flow rate of the feed water pump that feeds water to the natural circulation boiling water reactor is controlled based on the deviation between each measured value and the water level setting value of the reactor and the load request deviation signal. By doing so, it becomes possible to suppress fluctuations in the power fluctuation unique to the natural circulation boiling water reactor by controlling the feed water flow rate, and as a result, it contributes to stabilizing the control of the reactor power.

以下、本発明の一実施の形態を、図1〜図9を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

図1は、本例の自然循環型の沸騰水型軽水炉(以下、BWRと略す)及びその制御系統を備えた原子力発電プラントの全体構成を示す模式図である。   FIG. 1 is a schematic diagram showing the overall configuration of a nuclear power plant equipped with a natural circulation boiling water light water reactor (hereinafter abbreviated as BWR) and its control system of this example.

本実施の形態に係る原子力発電プラントは、図1に示すように、自然循環型BWR1と、これに連結されたタービン系2とを備えている。自然循環型BWR1は、複数の燃料棒を整列させた燃料棒集合体4と、燃料棒集合体4の間隙に挿入または抜き出されて炉心の反応度を制御する制御棒5を配置した炉心6を内包する原子炉圧力容器7を有している。原子炉圧力容器7の下部には、図示しないが、炉心6内で制御棒5を上下方向に挿抜可能に駆動する制御棒駆動機構が設けられている。制御棒は原子炉出力、すなわち炉心出力を調整するものであり、制御棒制御装置36により制御される。   As shown in FIG. 1, the nuclear power plant according to the present embodiment includes a natural circulation type BWR 1 and a turbine system 2 connected thereto. The natural circulation type BWR 1 has a core 6 in which a fuel rod assembly 4 in which a plurality of fuel rods are aligned and a control rod 5 that is inserted into or extracted from a gap between the fuel rod assemblies 4 to control the reactivity of the core. The reactor pressure vessel 7 is included. Although not shown, a control rod drive mechanism that drives the control rod 5 in the reactor core 6 so that it can be inserted and removed in the vertical direction is provided below the reactor pressure vessel 7. The control rod adjusts the reactor power, that is, the core power, and is controlled by the control rod controller 36.

原子炉圧力容器7内には、炉心6を囲むようにして円筒状のシュラウド8が配設されている。シュラウド8の内側には、冷却材が上昇するための上昇流路が形成され、またシュラウド8と原子炉圧力容器7との間隙には、冷却材が下降するための下降流路であるダウンカマ13が形成されている。炉心上部には自然循環流量を増加させるための機器であるチムニ9が設置されており、さらにチムニ9の上方には、気水分離器11及び蒸気乾燥器12が設けられている。   A cylindrical shroud 8 is disposed in the reactor pressure vessel 7 so as to surround the core 6. An ascending flow path for the coolant to rise is formed inside the shroud 8, and a downcomer 13, which is a descending flow path for the coolant to descend, is formed in the gap between the shroud 8 and the reactor pressure vessel 7. Is formed. A chimney 9, which is a device for increasing the natural circulation flow rate, is installed in the upper part of the core, and a steam separator 11 and a steam dryer 12 are provided above the chimney 9.

タービン系2では、原子炉圧力容器7に接続された主蒸気管14と冷却材を供給する給水管15を有する。主蒸気管14には原子炉、すなわち原子炉圧力容器7内で発生する蒸気が供給される。この主蒸気管14は、これに繋がる蒸気加減弁16を介して高圧タービン17に接続され、さらに湿分分離器または湿分分離加熱器18を介して低圧タービン19に接続される。各タービン17,19には、発電機20が接続してある。蒸気加減弁16は、主蒸気管14から高圧タービン17に流入する蒸気量を調整する調整弁である。主蒸気管14内の蒸気の流量は、主蒸気流量検出器33で検出されて、その検出信号である原子炉蒸気流量信号S4が、後述する給水制御装置40に供給される。   The turbine system 2 has a main steam pipe 14 connected to the reactor pressure vessel 7 and a water supply pipe 15 for supplying a coolant. The steam generated in the reactor, that is, the reactor pressure vessel 7 is supplied to the main steam pipe 14. The main steam pipe 14 is connected to a high-pressure turbine 17 via a steam control valve 16 connected to the main steam pipe 14, and further connected to a low-pressure turbine 19 via a moisture separator or a moisture separation heater 18. A generator 20 is connected to each turbine 17, 19. The steam control valve 16 is an adjustment valve that adjusts the amount of steam flowing from the main steam pipe 14 into the high-pressure turbine 17. The flow rate of the steam in the main steam pipe 14 is detected by the main steam flow detector 33, and a reactor steam flow signal S4, which is a detection signal thereof, is supplied to the water supply control device 40 described later.

低圧タービン19の出口には、低圧タービン19から排出された蒸気を凝集する復水器21が設置され、復水器21の下流側には低圧給水加熱器22、給水ポンプ23及び高圧給水加熱器24が設置されている。この高圧給水加熱器24の出口に給水管15が接続され、原子炉圧力容器7に供給される。給水管15内の冷却水(冷却材)の流量は、給水流量検出器34で検出されて、その検出信号である原子炉給水流量信号S3が、後述する給水制御装置40に供給される。   A condenser 21 that condenses steam discharged from the low-pressure turbine 19 is installed at the outlet of the low-pressure turbine 19, and a low-pressure feed water heater 22, a feed water pump 23, and a high-pressure feed water heater are disposed downstream of the condenser 21. 24 is installed. A feed water pipe 15 is connected to the outlet of the high pressure feed water heater 24 and supplied to the reactor pressure vessel 7. The flow rate of the cooling water (coolant) in the feed water pipe 15 is detected by the feed water flow rate detector 34, and a reactor feed water flow rate signal S3, which is a detection signal thereof, is supplied to the feed water control device 40 described later.

復水器21の下流側、すなわち復水器21から原子炉圧力容器7に至る給水管15の途上には、順次、復水器21から供給された給水を加熱する低圧給水加熱器22と、給水を加圧して原子炉圧力容器7に供給する給水ポンプ23と、給水を加熱する高圧給水加熱器24が配置されている。給水ポンプ23は、後述するポンプ駆動装置38により給水量に対応した給水ポンプの回転速度が制御される。ポンプ駆動装置38には、給水制御装置40から、ポンプ回転速度指令S7が供給されて、回転速度を制御する。   On the downstream side of the condenser 21, that is, in the middle of the feed pipe 15 from the condenser 21 to the reactor pressure vessel 7, a low-pressure feed water heater 22 that sequentially heats the feed water supplied from the condenser 21, A feed water pump 23 that pressurizes the feed water and supplies it to the reactor pressure vessel 7 and a high-pressure feed water heater 24 that heats the feed water are disposed. In the feed water pump 23, the rotation speed of the feed water pump corresponding to the feed water amount is controlled by a pump drive device 38 to be described later. The pump drive device 38 is supplied with a pump rotation speed command S7 from the water supply control device 40 to control the rotation speed.

自然循環型BWR1では、炉心6で加熱され一部が沸騰して蒸気となった気液二相の冷却材がチムニ9を上昇流で流れ、気水分離器11及び蒸気乾燥器12で気水に分離される。分離されたうちの、気相の蒸気は主蒸気管14に送られ、液相の高温水は再循環水とる。再循環水と、炉心6及びチムニ9を流れる上昇流の冷却材とは、シュラウド8で分離され、互いに混ざり合うことはない。再循環水は下降流として流れ、途中で給水管15の給水ノズル25から供給される給水と混合して、下部プレナム28を通った後に炉心6の下部から供給される。   In the natural circulation type BWR 1, the gas-liquid two-phase coolant heated in the core 6 and partially boiled to become steam flows through the chimney 9 in an upward flow, and the steam-water separator 11 and the steam dryer 12 Separated. Of the separated vapor, the vapor in the vapor phase is sent to the main vapor pipe 14 and the high temperature water in the liquid phase is recirculated water. The recirculated water and the coolant in the upward flow flowing through the core 6 and the chimney 9 are separated by the shroud 8 and do not mix with each other. The recirculated water flows as a downward flow, mixed with water supplied from the water supply nozzle 25 of the water supply pipe 15 on the way, and supplied from the lower part of the core 6 after passing through the lower plenum 28.

原子炉圧力容器7内では、チムニ9内を流れる気液二相の上昇流体の体積密度が液単相より小さく、チムニ9外の下降流体(冷却材)の体積密度が高いことにより、この密度差により、冷却材は自然循環される。   In the reactor pressure vessel 7, the volume density of the gas-liquid two-phase rising fluid flowing in the chimney 9 is smaller than the liquid single phase, and the volume density of the descending fluid (coolant) outside the chimney 9 is high. Due to the difference, the coolant is naturally circulated.

一方、原子炉圧力容器7から主蒸気管14に送られた蒸気は、蒸気加減弁16を通じて高圧タービン17に導かれ、さらに湿分分離器または湿分分離加熱器18を介して低圧タービン19に導かれ、タービン17,19に接続された発電機20を回転させて発電する。   On the other hand, the steam sent from the reactor pressure vessel 7 to the main steam pipe 14 is guided to the high-pressure turbine 17 through the steam control valve 16 and further to the low-pressure turbine 19 via the moisture separator or the moisture separation heater 18. The generator 20 connected to the turbines 17 and 19 is rotated to generate power.

低圧タービン19を回転させた蒸気は、復水器21に導入され、凝縮される。この復水器21で凝縮した冷却水(復水)は、給水ポンプ23により給水管15から原子炉圧力容器7内へ還流される。復水器21からの冷却水(復水)は、給水管15の途中で低圧給水加熱器22及び高圧給水加熱器23により冷却水を適当な温度まで昇温される。   The steam that has rotated the low-pressure turbine 19 is introduced into the condenser 21 and condensed. The cooling water (condensate) condensed in the condenser 21 is returned to the reactor pressure vessel 7 from the feed water pipe 15 by the feed water pump 23. The cooling water (condensate) from the condenser 21 is heated to an appropriate temperature by the low-pressure feed water heater 22 and the high-pressure feed water heater 23 in the middle of the feed water pipe 15.

原子炉圧力容器7内には、2つの原子炉水位検出器31,32が取付けてあり、炉内の水位を検出する。それぞれの水位検出器31,32は、水位を検出する検出レンジが異なるレンジに設定してあり、本例の給水制御のためには、目的とする水位制御範囲に応じて、いずれか一方の検出出力が使用される。水位検出器31は、第1の原子炉水位検出信号S2を出力し、給水制御装置40に供給する。水位検出器32は、第2の原子炉水位検出信号S8を出力し、給水制御装置40に供給する。   Two reactor water level detectors 31 and 32 are attached in the reactor pressure vessel 7 to detect the water level in the reactor. Each of the water level detectors 31 and 32 is set to a range in which the detection range for detecting the water level is different. For the water supply control of this example, either one of the detections is performed according to the target water level control range. Output is used. The water level detector 31 outputs the first reactor water level detection signal S2 and supplies it to the water supply control device 40. The water level detector 32 outputs the second reactor water level detection signal S8 and supplies it to the water supply control device 40.

また、原子炉圧力容器7内の圧力を検出する圧力センサ35を備え、その圧力センサ35が出力する原子炉圧力信号S1を出力制御装置37に供給する。出力制御装置37は、供給される原子炉圧力信号S1により、出力要求信号S5と負荷要求偏差信号S9を出力し、制御棒制御装置36に出力要求信号S5に供給し、給水制御装置40に出力要求信号S5と負荷要求偏差信号S9を供給する。   In addition, a pressure sensor 35 that detects the pressure in the reactor pressure vessel 7 is provided, and a reactor pressure signal S 1 output from the pressure sensor 35 is supplied to the output control device 37. The output control device 37 outputs an output request signal S5 and a load request deviation signal S9 in response to the supplied reactor pressure signal S1, supplies the output request signal S5 to the control rod control device 36, and outputs it to the water supply control device 40. A request signal S5 and a load request deviation signal S9 are supplied.

制御棒制御装置36では、出力要求信号S5に対応して、制御棒駆動指令S6を制御棒5の駆動系に供給する。給水制御装置40では、水位検出信号S2又はS8と、原子炉給水流量信号S3と、原子炉蒸気流量信号S4と、出力要求信号S5と、負荷要求偏差信号S9とに基づいて、ポンプ回転速度指令S7を生成させて、ポンプ駆動装置38に供給する。   The control rod controller 36 supplies a control rod drive command S6 to the drive system of the control rod 5 in response to the output request signal S5. In the water supply control device 40, based on the water level detection signal S2 or S8, the reactor water supply flow signal S3, the reactor steam flow signal S4, the output request signal S5, and the load request deviation signal S9, the pump rotation speed command S7 is generated and supplied to the pump drive unit 38.

図2は、図1に示した給水制御装置40の構成例を示した図である。給水制御装置40は、原子炉水位設定器41を備え、その原子炉水位設定器41が炉内の水位設定信号を出力し、加算器42に供給する。また、出力制御装置37からの出力要求信号S5を、信号変換器43に供給して必要とする特性の出力要求信号とし、その変換された出力要求信号を、加算器42に供給して、水位設定信号と加算する。加算器43の加算出力は、減算器44に供給する。   FIG. 2 is a diagram illustrating a configuration example of the water supply control device 40 illustrated in FIG. 1. The water supply control device 40 includes a reactor water level setting device 41, and the reactor water level setting device 41 outputs a water level setting signal in the reactor and supplies it to the adder 42. Further, the output request signal S5 from the output control device 37 is supplied to the signal converter 43 to be an output request signal having the required characteristics, and the converted output request signal is supplied to the adder 42 so that the water level is Add with the setting signal. The addition output of the adder 43 is supplied to the subtracter 44.

給水制御装置40に供給される第1の原子炉水位検出信号S2と第2の原子炉水位検出信号S8は、切替スイッチ45に供給して、いずれか一方の水位検出信号a1を選択的に減算器44に供給する。切替スイッチ45の切替えは、水位信号切換信号a4により制御される。原子炉給水流量信号S3と原子炉蒸気流量信号S4は、減算器46に供給して、蒸気流量と給水流量との差分を検出し、その差分の検出信号を係数乗算器47に供給して係数乗算された値とし、その係数乗算された差分の検出信号を減算器44に供給する。   The first reactor water level detection signal S2 and the second reactor water level detection signal S8 supplied to the water supply control device 40 are supplied to the changeover switch 45 to selectively subtract one of the water level detection signals a1. To the container 44. Switching of the selector switch 45 is controlled by a water level signal switching signal a4. The reactor feedwater flow rate signal S3 and the reactor steam flow rate signal S4 are supplied to the subtractor 46 to detect the difference between the steam flow rate and the feedwater flow rate, and the difference detection signal is supplied to the coefficient multiplier 47 to obtain the coefficient. A detection signal of a difference obtained by multiplying the coefficient by the multiplied value is supplied to the subtractor 44.

減算器44では、加算器42の出力から、切替スイッチ45が出力する水位検出信号a1と、係数乗算器47の出力とを減算し、減算出力を得る。減算器44の減算出力は、減算器50に供給する。また、負荷要求偏差信号S9を信号変換器48に供給し、負荷要求偏差信号S9の特性を変換し、その変換された負荷要求偏差信号を積分器49に供給して積分させ、積分信号を減算器50に供給する。   In the subtractor 44, the water level detection signal a1 output from the changeover switch 45 and the output of the coefficient multiplier 47 are subtracted from the output of the adder 42 to obtain a subtracted output. The subtraction output of the subtracter 44 is supplied to the subtracter 50. Further, the load request deviation signal S9 is supplied to the signal converter 48, the characteristic of the load request deviation signal S9 is converted, the converted load request deviation signal is supplied to the integrator 49 and integrated, and the integral signal is subtracted. Supply to the vessel 50.

減算器50では、積分器49が出力する負荷要求偏差信号の積分信号から、減算器44の出力を減算し、その減算信号である原子炉水位偏差信号a2を主水位制御器51に供給する。主水位制御器51では、供給される原子炉水位偏差信号a2に基づいて、主水位制御器出力信号a3を出力し、その主水位制御器出力信号a3を、給水制御装置40の出力信号であるポンプ回転速度指令S7として、ポンプ駆動装置38(図1)に供給する。   The subtracter 50 subtracts the output of the subtractor 44 from the integral signal of the load request deviation signal output from the integrator 49 and supplies the reactor water level deviation signal a2 as the subtraction signal to the main water level controller 51. The main water level controller 51 outputs a main water level controller output signal a3 based on the supplied reactor water level deviation signal a2, and the main water level controller output signal a3 is an output signal of the water supply control device 40. The pump rotation speed command S7 is supplied to the pump drive device 38 (FIG. 1).

図3は、図1に示した出力制御装置37の構成例を示した図である。出力制御装置37は、原子炉圧力設定器61を備え、圧力センサ35からの原子炉圧力信号S1と、原子炉圧力設定器61の設定出力信号との差分を、減算器62で得る。得られた差分の信号は、係数乗算器63に供給して、所定の特性の差分信号とし、全蒸気流量要求信号b1を得る。   FIG. 3 is a diagram showing a configuration example of the output control device 37 shown in FIG. The output control device 37 includes a reactor pressure setting device 61, and a subtracter 62 obtains a difference between the reactor pressure signal S 1 from the pressure sensor 35 and the set output signal of the reactor pressure setting device 61. The obtained difference signal is supplied to the coefficient multiplier 63 to obtain a difference signal having a predetermined characteristic to obtain a total steam flow rate request signal b1.

得られた全蒸気流量要求信号b1は、減算器64に供給し、原子炉出力設定器65の出力との差分をとり、得られた差分の信号を、負荷要求偏差信号S9とする。また、原子炉出力設定器65の出力を、そのまま出力要求信号S5として出力する。   The obtained total steam flow rate request signal b1 is supplied to the subtractor 64, takes a difference from the output of the reactor power setting unit 65, and the obtained difference signal is set as a load request deviation signal S9. Further, the output of the reactor power setting unit 65 is output as it is as the output request signal S5.

なお、図2に示した給水制御装置40での原子炉の給水流量制御は、基本的に本例の場合には、原子炉の出力が定格状態で安定した状態で行われる。   Note that the reactor water supply flow rate control by the water supply control device 40 shown in FIG. 2 is basically performed in a state where the output of the reactor is stable in the rated state in the case of this example.

次に、本例の構成にて、給水制御装置40で原子炉への給水制御が行われる状態について説明する。
まず図4は、出力要求信号S5の変化により水位設定を行って、制御する場合の例を示したものである。この例では、原子炉の出力変更指示があった場合の例で、特に図4では出力を増加させる指示があった場合の例である。出力を増加させる指示があることで、図2の信号変換器43に供給される出力要求信号S5が高くなり、図4(a)に示すように、その指示があったタイミングT0で、給水制御装置40での原子炉水位設定値(加算器42の出力)が、その出力増加量に対応した値Δlだけ高くなる。このように高くなると、図4(b)に示すように、原子炉水位が比較的迅速に上昇する。給水流量についても、図4(c)に示すように、原子炉出力が徐々に増加するのに伴い、徐々に増加する。そして、原子炉出力である主蒸気流量についても図4(d)に示すように増加し、出力が徐々に増加していることが判る。
Next, a state where water supply control to the nuclear reactor is performed by the water supply control device 40 in the configuration of this example will be described.
First, FIG. 4 shows an example in which the water level is set and controlled by changing the output request signal S5. In this example, there is an example when there is an instruction to change the output of the reactor, and in particular, FIG. 4 is an example when there is an instruction to increase the output. Since there is an instruction to increase the output, the output request signal S5 supplied to the signal converter 43 in FIG. 2 becomes high, and as shown in FIG. 4A, the water supply control is performed at the timing T0 when the instruction is given. The reactor water level setting value (output of the adder 42) in the device 40 is increased by a value Δl corresponding to the output increase amount. If it becomes high like this, as shown in FIG.4 (b), a reactor water level will rise comparatively rapidly. As shown in FIG. 4C, the feed water flow rate also gradually increases as the reactor power gradually increases. The main steam flow rate, which is the reactor power, also increases as shown in FIG. 4 (d), and it can be seen that the output gradually increases.

この図4に示す制御状態をフローチャートに示したのが図5である。図5のフローチャートについて説明すると、まず、原子炉出力がある程度以上となって、ある程度の範囲内の出力が維持された定格運転状態となっているか否か判断される(ステップS101)。ここで、定格運転状態と判断されて、本例の制御が可能になり、この例では出力増加指示があるか否か判断される(ステップS102)。出力増加指示があると、給水制御装置40では原子炉設定水位の変更処理が行われ(ステップS103)、それに従って給水水量が増加し(ステップS104)、最終的に図4(d)に示すように原子炉出力が徐々に増加する。なお、図4、図5の例は、出力を増加させる場合の例であるが、出力を減少させる制御を、逆の処理で行うようにしてもよい。   FIG. 5 is a flowchart showing the control state shown in FIG. Referring to the flowchart of FIG. 5, first, it is determined whether or not the reactor power is in a rated operation state in which the reactor power is more than a certain level and the power within a certain range is maintained (step S101). Here, the rated operation state is determined, and the control of this example becomes possible. In this example, it is determined whether or not there is an output increase instruction (step S102). When there is an output increase instruction, the water supply control device 40 performs a process for changing the reactor set water level (step S103), the amount of water supply increases accordingly (step S104), and finally, as shown in FIG. The reactor power gradually increases. The examples in FIGS. 4 and 5 are examples in which the output is increased, but the control to decrease the output may be performed by the reverse process.

次に、原子炉出力に変動があった場合に、その変動を抑える処理を給水水量の制御で行う場合の例を、図6を参照して説明する。この例では図6(d)に示すように、定格運転状態で何らかの要因で、一時的に原子炉出力が低下したとする。このような場合には、図6(a)に示すように、原子炉出力の低下に伴って原子炉水位設定値が徐々に高くなり、図6(b)に示すように、原子炉水位も上昇する。給水流量については、図6(c)に示すように一時的に低下する。出力制御装置37が出力する負荷要求偏差信号S9については、図6(e)に示すように、原子炉出力の低下に伴って増加する。   Next, an example in the case where the process for suppressing the fluctuation is performed by controlling the amount of supplied water when there is a fluctuation in the reactor output will be described with reference to FIG. In this example, as shown in FIG. 6 (d), it is assumed that the reactor output temporarily decreases due to some factor in the rated operation state. In such a case, as shown in FIG. 6 (a), the reactor water level set value gradually increases as the reactor power decreases, and as shown in FIG. 6 (b), the reactor water level also increases. To rise. The feed water flow rate temporarily decreases as shown in FIG. As shown in FIG. 6E, the load request deviation signal S9 output from the output control device 37 increases as the reactor output decreases.

このような制御が行われて、図6(a)に示す水位が上昇することで、原子炉出力の低下が抑えられ、徐々に元の出力に復帰していく。出力が復帰した段階では、給水流量が元に戻ると共に、負荷要求偏差信号S9についても徐々に元の値に復帰していく。   When such control is performed and the water level shown in FIG. 6 (a) rises, a decrease in the reactor power is suppressed, and the original power is gradually restored. When the output is restored, the feed water flow rate returns to the original value, and the load request deviation signal S9 gradually returns to the original value.

この図6に示す制御状態をフローチャートに示したのが図7である。図7のフローチャートについて説明すると、まず、原子炉出力がある程度以上となって、ある程度の範囲内の出力が維持された定格運転状態となっているか否か判断される(ステップS201)。ここで、定格運転状態と判断された後に、原子炉出力が低下したか否か判断され(ステップS202)、低下したと判断された場合、その低下に対応した値だけ、原子炉の設定水位を変更(上昇)させる(ステップS203)。そして、出力の低下に対応した図6(c)に示す給水流量の調整が行われ(ステップS204)、結果的に原子炉出力が元の状態に戻るように調整される(ステップS205)。なお、図6、図7の例は、出力が一時的に減少した場合の制御例であるが、出力が一時的に増加した場合の制御を、逆の処理で行うようにしてもよい。   FIG. 7 is a flowchart showing the control state shown in FIG. Referring to the flowchart of FIG. 7, first, it is determined whether or not the reactor power is in a rated operation state in which the reactor power is higher than a certain level and the power within a certain range is maintained (step S201). Here, after determining the rated operation state, it is determined whether or not the reactor power has decreased (step S202). If it is determined that the reactor power has decreased, the set water level of the reactor is set to a value corresponding to the decrease. Change (increase) (step S203). Then, the feed water flow rate shown in FIG. 6C corresponding to the decrease in output is adjusted (step S204), and as a result, the reactor output is adjusted to return to the original state (step S205). 6 and 7 are control examples when the output temporarily decreases, but the control when the output temporarily increases may be performed by the reverse process.

次に、原子炉に取付けられた2つの原子炉水位検出器31,32の切替処理例を、図8を参照して説明する。2つの原子炉水位検出器31,32の内で、原子炉水位検出器31については通常時に使用され、原子炉水位検出器32については、ATWS(Anticipated Trangent Without Scram:スクラム失敗)時に使用される。図8(a)に示すように、通常状態では設定水位レンジHとなり、ATWS時には設定水位レンジLとなる。設定水位レンジH時には、検出レンジが高い範囲の水位検出器31が使用され、設定水位レンジL時には、検出レンジが低い範囲の水位検出器32が使用される。この水位検出器31,32の切替えは、切替スイッチ45(図2)により行われる。   Next, an example of switching processing of the two reactor water level detectors 31 and 32 attached to the reactor will be described with reference to FIG. Of the two reactor water level detectors 31 and 32, the reactor water level detector 31 is used in a normal state, and the reactor water level detector 32 is used in an ATWS (Anticipated Trangent Without Scram). . As shown in FIG. 8A, the set water level range H is set in the normal state, and the set water level range L is set during ATWS. When the set water level range H, the water level detector 31 with a high detection range is used, and when the set water level range L, the water level detector 32 with a low detection range is used. Switching between the water level detectors 31 and 32 is performed by a changeover switch 45 (FIG. 2).

図8(a)に示すように、タイミングT1でATWS状態となって、設定水位レンジLとなると、原子炉水位は図8(b)に示すように比較的大きく低下し、給水水量についても図8(c)に示すように低下して、最終的に原子炉出力である主蒸気流量(図8(d))が低下し、原子炉を安全な状態に維持できるようになる。   As shown in FIG. 8 (a), when the ATWS state is reached at timing T1 and the set water level range L is reached, the reactor water level is relatively lowered as shown in FIG. 8 (b), and the amount of water supply is also shown. As shown in FIG. 8 (c), the main steam flow rate (FIG. 8 (d)), which is the reactor power, is finally reduced, and the reactor can be maintained in a safe state.

この図8に示す制御状態をフローチャートに示したのが図9である。図9のフローチャートについて説明すると、まず、ATWS状態であるか否か判断される(ステップS301)。ATWS状態となったことが判断されると、設定水位を低下させ(ステップS302)、水位検出器を通常用の水位検出器31から水位検出器32に切替えられる(ステップS303)。このようにして設定水位を比較的大きく低下させる制御が行われることで、図8に示すように炉内の水位、給水水量、主蒸気流量のいずれもが低下して、結果的に原子炉出力が低下する(ステップS305)。   FIG. 9 is a flowchart showing the control state shown in FIG. The flowchart of FIG. 9 will be described. First, it is determined whether or not the state is the ATWS state (step S301). If it is determined that the ATWS state has been reached, the set water level is lowered (step S302), and the water level detector is switched from the normal water level detector 31 to the water level detector 32 (step S303). As a result of the control for lowering the set water level relatively in this manner, all of the water level in the reactor, the amount of feed water, and the main steam flow rate are reduced as shown in FIG. Decreases (step S305).

以上説明したように、本例の構成によると、給水制御に基づいて原子炉出力の制御が可能になり、安定して運転している状態での出力の上昇や下降の制御や、安定運転状態中の出力変動の抑制制御ができる。また、ATWS時の出力低下制御も行える。   As described above, according to the configuration of this example, the reactor output can be controlled based on the water supply control, and the control of the increase and decrease of the output in the stable operation state, the stable operation state It is possible to control the fluctuation of output in Further, output reduction control during ATWS can be performed.

なお、図2に示した給水制御装置40としては、原子炉水位設定器41の出力に、出力要求信号S5を加算するようにしたが、主水位制御器51の出力に、出力要求信号S5を加算するようにしてもよい。即ち、例えば図10に示すように、給水制御装置40′として、原子炉水位設定器41の出力は、そのまま減算器44に供給して、他の信号との差分をとるようにする。そして、給水制御装置40′に入力した出力要求信号S5は、信号変換器52で信号特性を変換した後、加算器53に供給し、主水位制御器51の出力信号a3と、信号変換器52の出力とを加算して、その加算信号をポンプ回転速度指令S7とする。その他の部分は、図2に示した給水制御装置40と同様に構成する。   2, the output request signal S5 is added to the output of the reactor water level setter 41, but the output request signal S5 is added to the output of the main water level controller 51. You may make it add. That is, for example, as shown in FIG. 10, the output of the reactor water level setting device 41 as the water supply control device 40 ′ is supplied as it is to the subtractor 44 to take a difference from other signals. The output request signal S5 input to the water supply control device 40 ′ is converted into signal characteristics by the signal converter 52 and then supplied to the adder 53. The output request signal S3 of the main water level controller 51 and the signal converter 52 are supplied. And the added signal is used as a pump rotation speed command S7. The other portions are configured in the same manner as the water supply control device 40 shown in FIG.

この図10に示す制御構成とした場合の制御例を示したのが、図11である。この例では、図11(a)に示すように、原子炉水位設定値をタイミングT2で高くした場合の例である。このように原子炉水位設定値をタイミングT2で高くすることで、図11(b)に示すように原子炉水位が上昇し、図11(c)に示すように給水流量についても増加し、結果的に図11(d)に示すように原子炉出力である主蒸気流量が増加する。原子炉水位設定値を低くすることで、逆に原子炉出力を低下させる制御も可能である。この図10、図11例の場合にも、上述した実施の形態の場合と同様の制御が可能である。   FIG. 11 shows a control example in the case of the control configuration shown in FIG. In this example, as shown in FIG. 11A, the reactor water level set value is increased at timing T2. By increasing the reactor water level set value at the timing T2 in this way, the reactor water level rises as shown in FIG. 11 (b), and the feed water flow rate also increases as shown in FIG. 11 (c). Thus, as shown in FIG. 11 (d), the main steam flow, which is the reactor power, increases. By reducing the reactor water level setting value, it is possible to control the reactor output to decrease. In the cases of FIGS. 10 and 11 as well, the same control as in the above-described embodiment is possible.

なお、ここまで示した図2、図3や図10の制御装置構成については、入力信号の加算などを行うハードウェア構成としたが、例えばコンピュータ装置などのデータ処理演算装置に同様の信号を入力させて、その装置内での演算処理やテーブルの参照などのソフトウェア処理で、同様の制御データを出力させる制御を行うようにしてもよい。   2, 3, and 10, which have been described so far, have been configured with a hardware configuration for adding input signals, for example, a similar signal is input to a data processing arithmetic device such as a computer device. Then, similar control data may be output by software processing such as arithmetic processing or table reference in the apparatus.

本発明の一実施の形態による原子力発電プラント及びその制御系統の例を示す構成図である。It is a block diagram which shows the example of the nuclear power plant and its control system by one embodiment of this invention. 本発明の一実施の形態による給水制御装置の例を示す構成図である。It is a block diagram which shows the example of the water supply control apparatus by one embodiment of this invention. 本発明の一実施の形態による出力制御装置の例を示す構成図である。It is a block diagram which shows the example of the output control apparatus by one embodiment of this invention. 本発明の一実施の形態による水位制御例を示すタイミング図である。It is a timing diagram which shows the example of water level control by one embodiment of this invention. 図4例の制御処理状態を示すフローチャートである。It is a flowchart which shows the control processing state of the example of FIG. 本発明の一実施の形態による水位制御例を示すタイミング図である。It is a timing diagram which shows the example of water level control by one embodiment of this invention. 図6例の制御処理状態を示すフローチャートである。It is a flowchart which shows the control processing state of the example of FIG. 本発明の一実施の形態による水位制御例を示すタイミング図であるIt is a timing diagram which shows the example of water level control by one embodiment of this invention 図8例の制御処理状態を示すフローチャートである。It is a flowchart which shows the control processing state of the example of FIG. 本発明の他の実施の形態による給水制御装置の例を示す構成図である。It is a block diagram which shows the example of the water supply control apparatus by other embodiment of this invention. 本発明の他の実施の形態による水位制御例を示すタイミング図である。It is a timing diagram which shows the example of water level control by other embodiment of this invention.

符号の説明Explanation of symbols

1…自然循環型BWR、2…タービン系、4…燃料棒集合体、5…制御棒、6…炉心、7…原子炉圧力容器、8…シュラウド、9…チムニ、11…気水分離器、12…蒸気乾燥器、13…ダウンカマ、14…主蒸気管、15…給水管、16…蒸気加減弁、17…高圧タービン、18…湿分分離加熱器、19…低圧タービン、20…発電機、21…復水器、22…低圧給水加熱器、23…給水ポンプ、24…高圧給水加熱器、31,32…原子炉水位検出器、33…主蒸気流量検出器、34…給水流量検出器、35…圧力センサ、36…制御棒制御装置、37…出力制御装置、38…ポンプ駆動装置、40,40′…給水制御装置、41…原子炉水位設定器、42…加算器、43…信号変換器、44…減算器、45…切替スイッチ、46…減算器、47…係数乗算器、48…信号変換器、49…積分器、50…減算器、51…主水位制御器、61…原子炉圧力設定器、62…減算器、63…係数乗算器、64…減算器、65…原子炉出力設定器、S1…原子炉圧力信号、S2…第1の水位検出信号、S3…原子炉給水流量信号、S4…原子炉蒸気流量信号、S5…出力要求信号、S6…制御棒駆動指令、S7…ポンプ回転速度指令、S8…第2の水位検出信号、S9…負荷要求偏差信号   DESCRIPTION OF SYMBOLS 1 ... Natural circulation type BWR, 2 ... Turbine system, 4 ... Fuel rod assembly, 5 ... Control rod, 6 ... Reactor core, 7 ... Reactor pressure vessel, 8 ... Shroud, 9 ... Chimney, 11 ... Steam-water separator, DESCRIPTION OF SYMBOLS 12 ... Steam dryer, 13 ... Downcomb, 14 ... Main steam pipe, 15 ... Feed water pipe, 16 ... Steam control valve, 17 ... High pressure turbine, 18 ... Moisture separation heater, 19 ... Low pressure turbine, 20 ... Generator, 21 ... Condenser, 22 ... Low pressure feed water heater, 23 ... Feed water pump, 24 ... High pressure feed water heater, 31, 32 ... Reactor water level detector, 33 ... Main steam flow rate detector, 34 ... Feed water flow rate detector, 35 ... Pressure sensor, 36 ... Control rod control device, 37 ... Output control device, 38 ... Pump drive device, 40, 40 '... Feed water control device, 41 ... Reactor water level setting device, 42 ... Adder, 43 ... Signal conversion 44 ... subtractor 45 ... changeover switch 46 ... subtraction , 47 ... coefficient multiplier, 48 ... signal converter, 49 ... integrator, 50 ... subtractor, 51 ... main water level controller, 61 ... reactor pressure setter, 62 ... subtractor, 63 ... coefficient multiplier, 64 ... subtractor, 65 ... reactor power setter, S1 ... reactor pressure signal, S2 ... first water level detection signal, S3 ... reactor feedwater flow signal, S4 ... reactor steam flow signal, S5 ... output request signal, S6: Control rod drive command, S7: Pump rotation speed command, S8: Second water level detection signal, S9: Load request deviation signal

Claims (8)

原子炉圧力容器の内部に円筒状のチムニを配し、
前記チムニの内側に冷却材の上昇流路と、前記チムニの外側に冷却材の下降流路とを形成し、
前記上昇流路における冷却材と前記下降流路における冷却材との密度差によって冷却材を循環させる自然循環型沸騰水型原子炉の給水制御装置において、
原子炉から出力される主蒸気流量と、原子炉への給水流量と、原子炉内の水位計測信号と、原子炉の水位設定値との偏差を検出し、この検出した偏差と、全蒸気流量要求信号と原子炉出力設定器の出力との差分の信号である負荷要求偏差信号とから原子炉への給水流量制御信号を演算する水位制御手段と、
前記水位制御手段が出力する給水流量制御信号に、原子炉の出力制御信号に対応した信号を加算する加算手段とを備え、
前記加算手段の出力により原子炉への給水ポンプの回転速度指令を作成することを特徴とする自然循環型沸騰水型原子炉の給水制御装置。
Cylindrical chimney is placed inside the reactor pressure vessel,
Forming a coolant ascending channel inside the chimney and a coolant descending channel outside the chimney;
In the water supply control device for a natural circulation boiling water reactor that circulates the coolant by the density difference between the coolant in the ascending channel and the coolant in the descending channel,
Detect the deviation between the main steam flow output from the reactor, the feed water flow to the reactor, the water level measurement signal in the reactor, and the water level setting value of the reactor, and the detected deviation and the total steam flow A water level control means for calculating a feed water flow rate control signal to the reactor from a load request deviation signal which is a difference signal between the request signal and the output of the reactor power setting device ;
Adding means for adding a signal corresponding to the output control signal of the reactor to the feed water flow rate control signal output by the water level control means;
A feed water control device for a natural circulation boiling water reactor, wherein a rotation speed command of a feed water pump to the reactor is created by an output of the adding means .
請求項1記載の自然循環型沸騰水型原子炉の給水制御装置において、
前記原子炉の水位設定値に、原子炉の出力制御信号に対応した信号を加算した加算信号を得、
前記水位制御手段は、前記加算信号と、原子炉から出力される主蒸気流量と、原子炉への給水流量と、原子炉内の水位計測信号と、原子炉の水位設定値との偏差を検出し、この検出した偏差と負荷要求偏差信号とから原子炉への給水流量制御信号を演算することを特徴とする自然循環型沸騰水型原子炉の給水制御装置。
The water supply control device for a natural circulation boiling water reactor according to claim 1,
An addition signal obtained by adding a signal corresponding to the reactor power control signal to the reactor water level setting value,
The water level control means detects a deviation between the addition signal, the main steam flow output from the reactor, the feed water flow rate to the reactor, the water level measurement signal in the reactor, and the water level setting value of the reactor. Then, a feed water control apparatus for a natural circulation boiling water reactor, wherein a feed water flow rate control signal to the reactor is calculated from the detected deviation and the load request deviation signal.
請求項1記載の自然循環型沸騰水型原子炉の給水制御装置において、
前記原子炉内の水位計測信号は、異なる検出レンジの複数の水位計測手段より入力した水位計測信号であり、目的の水位制御範囲に応じて、前記複数の水位計測手段のいずれか一方の水位計測信号を使用することを特徴とする自然循環型沸騰水型原子炉の給水制御装置。
The water supply control device for a natural circulation boiling water reactor according to claim 1,
The water level measurement signal in the nuclear reactor is a water level measurement signal input from a plurality of water level measurement means of different detection ranges, and the water level measurement of any one of the plurality of water level measurement means according to a target water level control range A feed water control device for a natural circulation boiling water reactor characterized by using a signal.
請求項1記載の自然循環型沸騰水型原子炉の給水制御装置において、
前記水位制御手段による前記給水流量制御信号を使用した給水制御は、原子炉出力がほぼ定格状態で安定した運転時に行うことを特徴とする自然循環型沸騰水型原子炉の給水制御装置。
The water supply control device for a natural circulation boiling water reactor according to claim 1,
A water supply control device for a natural circulation boiling water reactor, characterized in that the water supply control using the water supply flow rate control signal by the water level control means is performed at the time of operation in which the reactor power is almost rated and stable.
原子炉圧力容器の内部に円筒状のチムニを配し、前記チムニの内側に冷却材の上昇流路と、前記チムニの外側に冷却材の下降流路とを形成し、前記上昇流路における冷却材と前記下降流路における冷却材との密度差によって冷却材を循環させる自然循環型沸騰水型の原子炉と、
前記原子炉から出力される主蒸気により駆動されるタービンと、
前記主蒸気を復水する復水手段と、
前記復水手段により復水された冷却材を、前記原子炉に送る給水ポンプと、
前記主蒸気流量を計測する主蒸気流量計測手段と、
前記原子炉への給水流量を計測する給水流量計測手段と、
前記原子炉内の水位計測手段と、
前記主蒸気流量計測手段で計測された主蒸気流量と、前記給水流量計測手段で計測された原子炉への給水流量と、前記水位計測手段で検出された原子炉内の水位計測信号と、原子炉の水位設定値との偏差を検出し、この検出した偏差と、全蒸気流量要求信号と原子炉出力設定器の出力との差分の信号である負荷要求偏差信号とから原子炉への給水流量制御信号を演算する水位制御手段と、
前記水位制御手段が出力する給水流量制御信号に、原子炉の出力制御信号に対応した信号を加算する加算手段とを備え、
前記加算手段の出力により前記給水ポンプの回転速度指令を作成することを特徴とする原子力発電プラント。
A cylindrical chimney is disposed inside the reactor pressure vessel, a coolant ascending channel is formed inside the chimney, and a coolant descending channel is formed outside the chimney, and cooling in the ascending channel is performed. A natural circulation boiling water reactor that circulates the coolant according to the density difference between the coolant and the coolant in the downflow path;
A turbine driven by main steam output from the reactor;
Condensing means for condensing the main steam;
A feed water pump for sending the coolant condensed by the condensing means to the reactor;
Main steam flow rate measuring means for measuring the main steam flow rate;
Feed water flow rate measuring means for measuring the feed water flow rate to the reactor;
Water level measuring means in the reactor;
A main steam flow rate measured by the main steam flow rate measurement unit, a feed water flow rate to the reactor measured by the feed water flow rate measurement unit, a water level measurement signal in the reactor detected by the water level measurement unit, and an atom The deviation from the set value of the reactor water level is detected, and the feed water flow rate to the reactor from this detected deviation and the load requirement deviation signal, which is the difference between the total steam flow demand signal and the output of the reactor power setter Water level control means for calculating a control signal ;
Adding means for adding a signal corresponding to the output control signal of the reactor to the feed water flow rate control signal output by the water level control means;
A nuclear power plant characterized in that a rotation speed command of the feed water pump is created by an output of the adding means .
請求項記載の原子力発電プラントにおいて、
前記原子炉の出力制御手段を備え、
前記水位制御手段は、前記原子炉の水位設定値に、前記出力制御手段が出力する原子炉の出力制御信号に対応した信号を加算した加算信号を得、前記主蒸気流量計測手段で計測された主蒸気流量と、前記給水流量計測手段で計測された原子炉への給水流量と、前記水位計測手段で検出された原子炉内の水位計測信号と、原子炉の水位設定値との偏差を検出し、この検出した偏差と負荷要求偏差信号とから原子炉への給水流量制御信号を演算することを特徴とする原子力発電プラント。
In the nuclear power plant according to claim 5 ,
Comprising the reactor power control means,
The water level control means obtains an addition signal obtained by adding a signal corresponding to the reactor power control signal output from the power control means to the water level set value of the reactor, and is measured by the main steam flow rate measuring means. Detects deviations between the main steam flow rate, the feed water flow rate to the reactor measured by the feed water flow rate measuring means, the water level measurement signal in the reactor detected by the water level measuring means, and the water level setting value of the reactor And calculating a feed water flow rate control signal to the reactor from the detected deviation and the load request deviation signal.
請求項記載の原子力発電プラントにおいて、
前記原子炉内の水位計測手段として、それぞれ異なる検出レンジの第1の水位計測手段と第2の水位計測手段とを備え、
前記水位制御手段は、目的の水位制御範囲に応じて、前記複数の水位計測手段のいずれか一方の水位計測信号を使用することを特徴とする原子力発電プラント。
In the nuclear power plant according to claim 5 ,
As the water level measurement means in the nuclear reactor, the first water level measurement means and the second water level measurement means of different detection ranges, respectively,
The nuclear power plant, wherein the water level control means uses a water level measurement signal of any one of the plurality of water level measurement means according to a target water level control range.
請求項記載の原子力発電プラントにおいて、
前記水位制御手段による前記給水流量制御信号を使用した給水制御は、原子炉出力がほぼ定格状態で安定した運転時に行うことを特徴とする原子力発電プラント。
In the nuclear power plant according to claim 5 ,
A nuclear power plant characterized in that the water supply control using the water supply flow rate control signal by the water level control means is performed during an operation in which the reactor power is almost stable at a rated state.
JP2006050914A 2006-02-27 2006-02-27 Natural circulation boiling water reactor water supply controller and nuclear power plant Expired - Fee Related JP4526494B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006050914A JP4526494B2 (en) 2006-02-27 2006-02-27 Natural circulation boiling water reactor water supply controller and nuclear power plant
US11/657,459 US7860206B2 (en) 2006-02-27 2007-01-25 Reactor power control apparatus of a natural circulation boiling water reactor and a feed water control apparatus and nuclear power generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006050914A JP4526494B2 (en) 2006-02-27 2006-02-27 Natural circulation boiling water reactor water supply controller and nuclear power plant

Publications (2)

Publication Number Publication Date
JP2007232392A JP2007232392A (en) 2007-09-13
JP4526494B2 true JP4526494B2 (en) 2010-08-18

Family

ID=38553136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006050914A Expired - Fee Related JP4526494B2 (en) 2006-02-27 2006-02-27 Natural circulation boiling water reactor water supply controller and nuclear power plant

Country Status (1)

Country Link
JP (1) JP4526494B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4619398B2 (en) * 2007-11-30 2011-01-26 日立Geニュークリア・エナジー株式会社 Nuclear power plant operating method and nuclear power plant
CN107895599A (en) * 2017-10-12 2018-04-10 中广核研究院有限公司 A kind of voltage-stablizer water level measurement method and voltage-stablizer
CN114242284B (en) * 2021-12-17 2024-05-28 中国核动力研究设计院 Nuclear reactor thermal hydraulic test system and regulation and control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204193A (en) * 1986-03-05 1987-09-08 株式会社日立製作所 Method of controlling natural circulation type boiling watertype reactor
JPS63223591A (en) * 1987-03-13 1988-09-19 株式会社日立製作所 Method and device for controlling output from natural circulation type reactor
JP2001004790A (en) * 1999-06-18 2001-01-12 Hitachi Ltd Water level controller of steam generating plant
JP2001324590A (en) * 2000-05-17 2001-11-22 Toshiba Eng Co Ltd System for measuring water level of nuclear reactor
JP2003344574A (en) * 2002-05-24 2003-12-03 Hitachi Ltd Natural circulation nuclear reactor system and operation method therefor
JP2004279221A (en) * 2003-03-17 2004-10-07 Hitachi Ltd Nuclear reactor output control system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204193A (en) * 1986-03-05 1987-09-08 株式会社日立製作所 Method of controlling natural circulation type boiling watertype reactor
JPS63223591A (en) * 1987-03-13 1988-09-19 株式会社日立製作所 Method and device for controlling output from natural circulation type reactor
JP2001004790A (en) * 1999-06-18 2001-01-12 Hitachi Ltd Water level controller of steam generating plant
JP2001324590A (en) * 2000-05-17 2001-11-22 Toshiba Eng Co Ltd System for measuring water level of nuclear reactor
JP2003344574A (en) * 2002-05-24 2003-12-03 Hitachi Ltd Natural circulation nuclear reactor system and operation method therefor
JP2004279221A (en) * 2003-03-17 2004-10-07 Hitachi Ltd Nuclear reactor output control system

Also Published As

Publication number Publication date
JP2007232392A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP5860578B2 (en) Method and system for controlling feed water temperature
JP4526494B2 (en) Natural circulation boiling water reactor water supply controller and nuclear power plant
KR101481155B1 (en) An apparatus and a method for controlling a gain according to rate of change in a steam generator level of nuclear power plants
US7860206B2 (en) Reactor power control apparatus of a natural circulation boiling water reactor and a feed water control apparatus and nuclear power generation plant
JPH0549076B2 (en)
US20070201602A1 (en) Reactor power control apparatus of natural circulation reactor, generation system of natural circulation reactor and method for controlling reactor power of natural circulation reactor
JP7245112B2 (en) Reactor control device, nuclear power plant and method of controlling nuclear reactor
EP3046111B1 (en) Nuclear reactor power regulator and method
Yi et al. Startup thermal analysis of a high-temperature supercritical-pressure light water reactor
JP4785558B2 (en) Reactor monitoring device
JP2007232396A (en) Nuclear power plant and its control method
US20090141847A1 (en) Method for operating nuclear power generation plant and nuclear power generation plant
US20070201603A1 (en) Reactor power control apparatus of natural circulation reactor and method for controlling reactor power of natural circulation reactor
JP4590361B2 (en) Nuclear reactor system
JP2022528179A (en) Use of an emergency condenser and / or water supply to limit core flow, core power, and pressure in boiling water reactors
JP4556883B2 (en) Reactor power controller
JP2007232541A (en) Reactor power controller and its method
JP4521367B2 (en) Reactor power control method and reactor plant
JP2004150928A (en) Device and method for controlling output of nuclear reactor
KR101216887B1 (en) Method and apparatus for control equipment of steam generator of nuclear power plant with invaded process measurement accuracy compensation
Jackson Vertical tube natural circulation evaporators
JP5452513B2 (en) Reactor operation method
JP4982270B2 (en) Reactor operating method and nuclear power plant
JP2007232500A (en) Operation method of nuclear reactor and nuclear power plant
JP2009128289A (en) Pressure control method of nuclear power plant, its pressure controller and nuclear power plant operation method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees