JP4524889B2 - Communication device - Google Patents

Communication device Download PDF

Info

Publication number
JP4524889B2
JP4524889B2 JP2000268262A JP2000268262A JP4524889B2 JP 4524889 B2 JP4524889 B2 JP 4524889B2 JP 2000268262 A JP2000268262 A JP 2000268262A JP 2000268262 A JP2000268262 A JP 2000268262A JP 4524889 B2 JP4524889 B2 JP 4524889B2
Authority
JP
Japan
Prior art keywords
signal
frequency
transmission
vco
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000268262A
Other languages
Japanese (ja)
Other versions
JP2002076981A (en
Inventor
良雄 堀池
嘉茂 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000268262A priority Critical patent/JP4524889B2/en
Publication of JP2002076981A publication Critical patent/JP2002076981A/en
Application granted granted Critical
Publication of JP4524889B2 publication Critical patent/JP4524889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電波を用いてデータ通信を行う通信装置であって、特に家庭においてホームネットワークを構成する通信装置に関するものである。
【0002】
【従来の技術】
従来のこの種の通信装置は図5に示すように受信手段としては弾性表面波フィルタ(以下SAWフィルタと呼ぶ)2、ミキサー手段4、セラミックフィルタ5を用いたいわゆるシングルスーパヘテロダイン方式が用いられている。送受信信号として特定小電力無線である400MHz帯の電波を考える。アンテナ1に入力した400MHz帯の高周波信号はSAWフィルタ2及び高周波増幅手段3で希望信号付近の信号だけが選択増幅される。前記選択増幅された信号はミキサー手段4で電圧制御発振手段(以下VCOと呼ぶ)10からの信号とミキシングされる。セラミックフィルタ5は450KHzの信号だけを選択的に取り出し、増幅手段6で450KHzの信号を増幅し、復調手段7で復調処理を行う。ここでミキサー手段4の出力である450KHzが中間周波信号と呼ばれるものである。
【0003】
また送信時はVCO10の出力を送信手段9で増幅した後、切り替え手段8を介してアンテナ1より電波を放射する。
【0004】
【発明が解決しようとする課題】
しかしながら上記従来の通信装置では、受信時の局部発振信号の周波数と希望する受信信号の周波数とはたかだか450KHzしか離れておらず、アンテナ1に大入力の受信信号が入力した場合、VCO10の発振周波数が受信信号に引っ張られ周波数が乱れるという課題があった。さらにアンテナ1に入力する信号として局部発振信号周波数付近の妨害信号が大入力でアンテナ1に入力した場合、VCO10の発振周波数は大きく乱れる。そのため正確な復調動作ができなくなるという課題があった。
【0005】
また送信時にはVCO10の発振信号を増幅した信号がアンテナ1より放射され、その結果放射された一部のエネルギーがVCO10に帰還し周波数を乱したり、C/Nを悪化させるという課題があった。
【0006】
【課題を解決するための手段】
本発明は上記課題を解決するため、高周波信号を受信する受信手段とチャンネル選択を行うための周波数シンセサイザ手段とを有し、前記周波数シンセサイザ手段は電圧制御発振器と前記電圧制御発振器の発振出力を1/N分周(N>1の整数)する1/N分周手段とを有し、前記1/N分周手段からの信号を局部発振信号として前記受信手段に供給したものである。
【0007】
上記発明によれば、局部発振信号としてVCOの1/N倍の周波数の信号を用いているため、大入力の受信信号が入力しても局部発振信号の周波数が乱れない。
【0008】
【発明の実施の形態】
本発明にかかる通信装置は、高周波信号を受信する受信手段と、高周波信号を増幅し出力する送信手段と、チャンネル選択を行うための周波数シンセサイザ手段とを有し、受信時には前記周波数シンセサイザ手段を構成する電圧制御発振器の発振出力を1/N分周(N>1の整数)する1/N分周手段からの信号を局部発振信号として前記受信手段に供給し、送信時には前記1/N分周手段からの信号を送信信号として前記送信手段に供給する構成としたものである。
【0009】
そして、局部発振信号としてVCOの1/N倍の周波数の信号を用いているため、大入力の受信信号が入力しても局部発振信号の周波数が乱れない。また、送信信号としてVCOの1/N倍の周波数の信号を用いているため、送信信号のエネルギーの一部がVCOに帰還したとしても送信信号の周波数が乱れない。
【0012】
また、本発明にかかる通信装置は、高周波信号を受信する受信手段と、高周波信号を増幅し出力する送信手段と、チャンネル選択を行うための周波数シンセサイザ手段とを有し、受信時には前記周波数シンセサイザ手段を構成する電圧制御発振器の発振出力をN逓倍(N>1の整数)するN逓倍手段からの信号を局部発振信号として前記受信手段に供給し、
送信時には前記1/N分周手段からの信号を送信信号として前記送信手段に供給する構成としたものである。
【0013】
そして、局部発振信号としてVCOのN逓倍の周波数の信号を用いているため、大入力の受信信号が入力しても局部発振信号の周波数が乱れない。また、送信信号としてVCOのN逓倍の周波数の信号を用いているため、送信信号のエネルギーの一部がVCOに帰還したとしても送信信号の周波数が乱れない。
【0018】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0019】
(実施例1)
図1は本発明の実施例1の通信装置を示すブロック図である。図1において、1はアンテナ、2はSAWフィルタ、3は高周波増幅手段、4はミキサー手段、51はチャンネルフィルタ、6は増幅手段、7は復調手段、8は送受切り替え手段、9は高周波信号を増幅し出力する送信手段、10はVCO、11は第1の分周手段、12は位相比較手段、13は第2の分周手段、14は水晶発振器、15はループフィルタ、20は1/2分周手段である。また水晶発振器は、水晶16、コンデンサ17、コンデンサ18を有している。そして30が高周波信号を受信する受信手段、31がチャンネル選択を行うための周波数シンセサイザ手段である。図5の従来例と同一の機能ブロックには同一の番号を付与している。
【0020】
次に動作、作用について説明する。まず希望信号として400MHz帯の特定小電力無線の電波を受信する場合について説明する。アンテナ1に入力した電波は切り替え手段8でSAWフィルタ2の方に印加される。そして高周波増幅手段3で400MHz帯の電波が増幅された後、ミキサー手段4に入力する。VCO10からの発振信号は1/2分周手段20で1/2分周される。前記1/2分周手段20の出力が前記ミキサー手段4の局部発振信号として用いられる。局部発振周波数はアンテナ1で受信したい受信周波数から50KHz離れた周波数である。そしてミキサー手段4の出力はチャンネルフィルタ51で希望信号のみが選択され取り出される。チャンネルフィルタ51の中心周波数は50KHzである。従ってVCO10の発振周波数は局部発振周波数の2倍の周波数、すなわち80除去される。増幅手段6で希望信号が増幅され、復調手段7で復調処理が行われる。チャンネルフィルタ51は中心周波数が50KHzと低いためアクティブフィルタやスイッチドキャパスタフィルタで構成することが容易にできる。すなわち半導体を用いて構成することが可能である。
【0021】
次に局部発振信号の作成方法についてさらにくわしく説明する。VCO10で発振した信号は1/2分周手段20で1/2分周され、第1の分周手段11で1/N倍に分周される。一方水晶発振器14で発振された信号は第2の分周手段13で1/M倍に分周され、位相比較器12に入力される12.5KHzの基準信号となる。位相比較器12では12.5KHzの基準信号とVCOの信号を1/(2×N)分周した信号の位相誤差が検出されループフィルタ15を介して前記位相誤差が零になる方向にVCOの発振周波数及び位相を制御する。従ってVCOの発振周波数は12.5KHzの2×N倍となる。従って1/2分周手段20の出力である局部発振信号fLは12.5KHzのN倍となる。ここでNを可変することにより局部発振信号fLの発振周波数を12.5KHzステップで可変することができる。本実施例の構成によれば、アンテナに大入力の希望信号が入力した場合でもVCO10の発振周波数とは周波数的に大きく離れた信号でありVCO10の発振周波数を乱すことはない。
【0022】
次に送信時を考える。送信時には1/2分周手段20の出力信号が送信手段9で増幅され、切り替え手段8を介してアンテナ1より放射される。送信信号周波数は第1の分周手段11の分周数Nを可変することにより希望の送信周波数を得ることができる。すなわちチャンネル間隔12.5KHzの信号列のうちの任意の電波を放射できる。なおFM変調の場合、VCO10の発振周波数及び水晶発振器14の発振周波数の両方に変調をかけることになるが、1/2分周手段20の出力のところで変調度が規定の変調度になるよう調整する必要がある。そして本実施例の構成によれば、アンテナ1から放射されたエネルギーの一部がVCO10に帰還したとしてもVCO10の発振周波数とは大きく離れており、VCO10の発振周波数を乱すことはない。
【0023】
(実施例2)
図2は本発明の実施例2の通信装置を示すブロック図である。
【0024】
本実施例2において、実施例1である図1に示すブロック図と同一の機能ブロックには同一の番号を付与している。実施例1である図1と違う部分は図1における1/2分周手段20の代わりに本実施例である図2では2逓倍手段21を用いている点である。2逓倍手段21を用いることによりVCO10の発振周波数の2/N倍が12.5KHzに等しくなるよう制御される。よって局部発振周波数或いは送信周波数はVCO10の発振周波数の2倍であるので12.5KHzのN倍に制御される。局部発振周波数或いは送信周波数は400MHz帯の信号であるため、VCO10の発振周波数は200MHz帯である。そして本実施例の構成によれば実施例1の場合と同様、アンテナに大入力の希望信号が入力した場合でもVCO10の発振周波数とは周波数的に大きく離れた信号でありVCO10の発振周波数を乱すことはない。また送信時においてもアンテナ1から放射されたエネルギーの一部がVCO10に帰還したとしてもVCO10の発振周波数とは大きく離れており、VCO10の発振周波数を乱すことはない。
【0025】
(実施例3)
図3は本発明の実施例3の通信装置を示すブロック図である。
【0026】
本実施例3において、実施例1である図1に示すブロック図と同一の機能ブロックには同一の番号を付与している。実施例1である図1と違う部分は受信方式として直接変換方式を用いている点である。22は直接変換ミキサー手段、23は第1のフィルタ、24は第2のフィルタ、25は復調手段である。1/2分周手段20の出力である局部発振信号の周波数は受信したい希望信号の周波数と同一周波数である。そして直接変換ミキサー手段22の出力には直交するベースバンド信号であるI信号とQ信号が出力し、第1のフィルタ23及び第2のフィルタ24で希望信号のみが取り出され復調手段25で復調される。本実施例で示す直接変換受信方式はイメージ信号を除去するためのSAWフィルタを必要とせず、かつ直接変換ミキサー手段の出力はベースバンド信号であるため第1のフィルタ23及び第2のフィルタ24及び復調手段25を半導体回路で容易に構成できる。そのため安価に作ることができるというメリットがあるが従来大入力の希望信号が入力した場合、局部発振周波数が乱されて復調性能が劣化するという問題があり使いにくいものであったが、本実施例の構成によれば、アンテナに大入力の希望信号が入力した場合でもVCO10の発振周波数とは周波数的に大きく離れた信号でありVCO10の発振周波数を乱すことはない。また送信時においてもアンテナ1から放射されたエネルギーの一部がVCO10に帰還したとしてもVCO10の発振周波数とは大きく離れており、VCO10の発振周波数を乱すことはない。
【0027】
(実施例4)
図4は本発明の実施例4の通信装置を示すブロック図である。
【0028】
本実施例4において、実施例3である図3に示すブロック図と同一の機能ブロックには同一の番号を付与している。実施例3である図3と違う部分は図3における1/2分周手段20の代わりに本実施例である図4では2逓倍手段21を用いている点である。2逓倍手段21を用いることによりVCO10の発振周波数の2/N倍が12.5KHzに等しくなるよう制御される。よって局部発振周波数或いは送信周波数はVCO10の発振周波数の2倍であるので12.5KHzのN倍に制御される。局部発振周波数或いは送信周波数は400MHz帯の信号であるため、VCO10の発振周波数は200MHz帯である。そして本実施例の構成によれば実施例1の場合と同様、アンテナに大入力の希望信号が入力した場合でもVCO10の発振周波数とは周波数的に大きく離れた信号でありVCO10の発振周波数を乱すことはない。また送信時においてもアンテナ1から放射されたエネルギーの一部がVCO10に帰還したとしてもVCO10の発振周波数とは大きく離れており、VCO10の発振周波数を乱すことはない。
【0029】
なお実施例1から実施例4において1/2分周手段20或いは2逓倍手段21の出力を局部発振信号及び送信信号に用いたが、1/N分周手段20或いはN逓倍手段21としても良い。ここでNは整数であればよい。
【0030】
【発明の効果】
以上説明したように本発明に係る通信装置は、受信手段とチャンネル選択を行うための周波数シンセサイザ手段とを有し、前記周波数シンセサイザ手段は電圧制御発振器と前記電圧制御発振器の発振出力を分周する分周手段と前記可変分周手段の出力と基準信号との位相誤差を検出する位相比較手段とを有し、前記電圧制御発振器の出力を1/N分周(N>1の整数)した信号を局部発振信号として受信手段に供給する構成としているので、大入力の受信信号が入力しても局部発振信号の周波数が乱れないという効果がある。
【0031】
また本発明にかかる通信装置は、送信手段とチャンネル選択を行うための周波数シンセサイザ手段とを有し、前記周波数シンセサイザ手段は電圧制御発振器と前記電圧制御発振器の発振出力を分周する分周手段と前記可変分周手段の出力と基準信号との位相誤差を検出する位相比較手段とを有し、前記電圧制御発振器の出力を1/N分周(N>1の整数)した信号を送信信号として送信手段に供給する構成としているので、送信信号のエネルギーの一部がVCOに帰還したとしても送信信号の周波数が乱れないという効果がある。
【0032】
また本発明にかかる通信装置は、受信手段とチャンネル選択を行うための周波数シンセサイザ手段とを有し、前記周波数シンセサイザ手段は電圧制御発振器と前記電圧制御発振器の発振出力を分周する分周手段と前記可変分周手段の出力と基準信号との位相誤差を検出する位相比較手段とを有し、前記電圧制御発振器の出力をN逓倍(N>1の整数)した信号を局部発振信号として受信手段に供給する構成としているので、大入力の受信信号が入力しても局部発振信号の周波数が乱れないという効果がある。
【0033】
また本発明にかかる通信装置は、チャンネル選択を行うための周波数シンセサイザ手段とを有し、前記周波数シンセサイザ手段は電圧制御発振器と前記電圧制御発振器の発振出力を分周する分周手段と前記可変分周手段の出力と基準信号との位相誤差を検出する位相比較手段とを有し、前記電圧制御発振器の出力をN逓倍(N>1の整数)した信号を送信信号として送信手段に供給する構成としているので、送信信号のエネルギーの一部がVCOに帰還したとしても送信信号の周波数が乱れないという効果がある。
【0034】
また本発明にかかる通信装置の受信手段は、局部発振信号として受信すべき希望信号と同一の周波数を用いた直接変換受信機で構成されているので、安価に構成でき、かつ大入力に強い直接変換受信機を提供できるという効果がある。
【図面の簡単な説明】
【図1】本発明の実施例1における通信装置のブロック図
【図2】本発明の実施例2における通信装置のブロック図
【図3】本発明の実施例3における通信装置のブロック図
【図4】本発明の実施例4における通信装置のブロック図
【図5】従来の通信装置のブロック図
【符号の説明】
1 アンテナ
2 SAWフィルタ
3 高周波増幅手段
4 ミキサー手段
8 切り替え手段
9 送信手段
10 電圧制御発振手段(VCO)
11 第1の分周手段
12 位相比較手段
13 第2の分周手段
14 水晶発振器
15 ループフィルタ
20 1/2分周手段
21 2逓倍手段
22 直接変換ミキサー手段
23 第1のフィルタ
24 第2のフィルタ
25 復調手段
30 受信手段
31 周波数シンセサイザ手段
51 チャンネルフィルタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a communication device that performs data communication using radio waves, and particularly relates to a communication device that forms a home network at home.
[0002]
[Prior art]
As shown in FIG. 5, a conventional communication apparatus of this type employs a so-called single superheterodyne system using a surface acoustic wave filter (hereinafter referred to as SAW filter) 2, a mixer means 4 and a ceramic filter 5 as receiving means. Yes. Consider a 400 MHz band radio wave that is a specific low-power radio as a transmission / reception signal. Only a signal in the vicinity of the desired signal is selectively amplified by the SAW filter 2 and the high frequency amplifying means 3 from the 400 MHz band high frequency signal input to the antenna 1. The selectively amplified signal is mixed with a signal from a voltage controlled oscillation means (hereinafter referred to as VCO) 10 by a mixer means 4. The ceramic filter 5 selectively extracts only the 450 kHz signal, amplifies the 450 kHz signal by the amplifying means 6, and performs the demodulation processing by the demodulating means 7. Here, 450 KHz which is the output of the mixer means 4 is called an intermediate frequency signal.
[0003]
At the time of transmission, the output of the VCO 10 is amplified by the transmission means 9, and then radio waves are radiated from the antenna 1 via the switching means 8.
[0004]
[Problems to be solved by the invention]
However, in the above conventional communication apparatus, the frequency of the local oscillation signal at the time of reception and the frequency of the desired reception signal are at most 450 KHz apart, and when a large input reception signal is input to the antenna 1, the oscillation frequency of the VCO 10 There is a problem that the frequency is disturbed by being pulled by the received signal. Further, when an interference signal near the local oscillation signal frequency is input to the antenna 1 as a signal input to the antenna 1, the oscillation frequency of the VCO 10 is greatly disturbed. Therefore, there has been a problem that an accurate demodulation operation cannot be performed.
[0005]
Further, at the time of transmission, a signal obtained by amplifying the oscillation signal of the VCO 10 is radiated from the antenna 1, and as a result, part of the radiated energy is fed back to the VCO 10 to disturb the frequency or deteriorate C / N.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention has a receiving means for receiving a high-frequency signal and a frequency synthesizer means for selecting a channel. The frequency synthesizer means outputs a voltage-controlled oscillator and an oscillation output of the voltage-controlled oscillator as one. 1 / N frequency dividing means for dividing / N (N> 1), and a signal from the 1 / N frequency dividing means is supplied to the receiving means as a local oscillation signal.
[0007]
According to the above-described invention, since a signal having a frequency 1 / N times the VCO is used as the local oscillation signal, the frequency of the local oscillation signal is not disturbed even when a large input reception signal is input.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
A communication apparatus according to the present invention includes a receiving unit that receives a high-frequency signal, a transmitting unit that amplifies and outputs the high-frequency signal, and a frequency synthesizer unit that performs channel selection, and constitutes the frequency synthesizer unit during reception. A signal from 1 / N frequency dividing means that divides the oscillation output of the voltage controlled oscillator to 1 / N (N> 1) is supplied to the receiving means as a local oscillation signal. The signal from the means is supplied to the transmission means as a transmission signal .
[0009]
Since a signal having a frequency 1 / N times the VCO is used as the local oscillation signal, the frequency of the local oscillation signal is not disturbed even when a large input reception signal is input. Further, since a signal having a frequency 1 / N times that of the VCO is used as the transmission signal, even if a part of the energy of the transmission signal is fed back to the VCO, the frequency of the transmission signal is not disturbed.
[0012]
The communication apparatus according to the present invention includes a receiving means for receiving a radio frequency signal, comprising: a transmitting means for amplifying the high frequency signal output, and a frequency synthesizer means for performing channel selection, the frequency synthesizer means during reception A signal from an N multiplying means for multiplying the oscillation output of the voltage controlled oscillator constituting N by N (an integer of N> 1) is supplied to the receiving means as a local oscillation signal ;
At the time of transmission, the signal from the 1 / N frequency dividing means is supplied to the transmitting means as a transmission signal .
[0013]
Since a signal having a frequency N times the VCO is used as the local oscillation signal, the frequency of the local oscillation signal is not disturbed even when a large input reception signal is input. Further, since a signal having a frequency N times the VCO is used as the transmission signal, the frequency of the transmission signal is not disturbed even if a part of the energy of the transmission signal is fed back to the VCO.
[0018]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0019]
Example 1
1 is a block diagram illustrating a communication apparatus according to a first embodiment of the present invention. In FIG. 1, 1 is an antenna, 2 is a SAW filter, 3 is high frequency amplification means, 4 is mixer means, 51 is a channel filter, 6 is amplification means, 7 is demodulation means, 8 is transmission / reception switching means, and 9 is a high frequency signal. Transmitting means for amplifying and outputting 10 is VCO, 11 is first dividing means, 12 is phase comparing means, 13 is second dividing means, 14 is a crystal oscillator, 15 is a loop filter, and 20 is 1/2 Dividing means. The crystal oscillator includes a crystal 16, a capacitor 17, and a capacitor 18. Reference numeral 30 denotes reception means for receiving a high-frequency signal, and reference numeral 31 denotes frequency synthesizer means for performing channel selection. The same functional blocks as those in the conventional example of FIG.
[0020]
Next, the operation and action will be described. First, a case where a specific low-power radio wave in the 400 MHz band is received as a desired signal will be described. The radio wave input to the antenna 1 is applied to the SAW filter 2 by the switching means 8. Then, the high frequency amplification means 3 amplifies the 400 MHz band radio wave, and then inputs it to the mixer means 4. The oscillation signal from the VCO 10 is divided by ½ by the ½ divider 20. The output of the 1/2 frequency dividing means 20 is used as a local oscillation signal of the mixer means 4. The local oscillation frequency is a frequency separated from the reception frequency desired to be received by the antenna 1 by 50 KHz. As for the output of the mixer means 4, only the desired signal is selected and extracted by the channel filter 51. The center frequency of the channel filter 51 is 50 KHz. Accordingly, the oscillation frequency of the VCO 10 is removed twice as much as the local oscillation frequency, ie, 80. Amplifying means 6 amplifies the desired signal, and demodulating means 7 performs demodulation processing. Since the center frequency of the channel filter 51 is as low as 50 KHz, it can be easily configured with an active filter or a switched capacitor filter. That is, it can be configured using a semiconductor.
[0021]
Next, a method for creating a local oscillation signal will be described in more detail. The signal oscillated by the VCO 10 is divided by 1/2 by the 1/2 divider 20 and divided by 1 / N times by the first divider 11. On the other hand, the signal oscillated by the crystal oscillator 14 is frequency-divided by 1 / M times by the second frequency divider 13 and becomes a 12.5 KHz reference signal input to the phase comparator 12. The phase comparator 12 detects a phase error of a signal obtained by dividing the 12.5 KHz reference signal and the VCO signal by 1 / (2 × N), and passes the loop filter 15 so that the phase error becomes zero. Controls oscillation frequency and phase. Therefore, the oscillation frequency of the VCO is 2 × N times 12.5 KHz. Therefore, the local oscillation signal fL which is the output of the 1/2 frequency dividing means 20 is N times 12.5 KHz. Here, by varying N, the oscillation frequency of the local oscillation signal fL can be varied in 12.5 KHz steps. According to the configuration of the present embodiment, even when a large input desired signal is input to the antenna, the oscillation frequency of the VCO 10 is a signal that is far away in frequency and does not disturb the oscillation frequency of the VCO 10.
[0022]
Next, consider the time of transmission. At the time of transmission, the output signal of the 1/2 frequency dividing means 20 is amplified by the transmitting means 9 and radiated from the antenna 1 via the switching means 8. The transmission signal frequency can be obtained by changing the frequency division number N of the first frequency dividing means 11. That is, it is possible to radiate an arbitrary radio wave in a signal sequence having a channel interval of 12.5 KHz. In the case of FM modulation, both the oscillation frequency of the VCO 10 and the oscillation frequency of the crystal oscillator 14 are modulated, but the modulation degree is adjusted so as to become a prescribed modulation degree at the output of the 1/2 frequency dividing means 20. There is a need to. According to the configuration of this embodiment, even if a part of the energy radiated from the antenna 1 is fed back to the VCO 10, it is far from the oscillation frequency of the VCO 10, and does not disturb the oscillation frequency of the VCO 10.
[0023]
(Example 2)
FIG. 2 is a block diagram showing a communication apparatus according to the second embodiment of the present invention.
[0024]
In the second embodiment, the same functional blocks as those in the block diagram shown in FIG. The difference from FIG. 1 which is the first embodiment is that the frequency multiplication means 21 is used in FIG. 2 which is the present embodiment instead of the 1/2 frequency dividing means 20 in FIG. By using the doubling means 21, 2 / N times the oscillation frequency of the VCO 10 is controlled to be equal to 12.5 KHz. Therefore, since the local oscillation frequency or transmission frequency is twice the oscillation frequency of the VCO 10, it is controlled to N times 12.5 KHz. Since the local oscillation frequency or transmission frequency is a signal in the 400 MHz band, the oscillation frequency of the VCO 10 is in the 200 MHz band. According to the configuration of the present embodiment, as in the case of the first embodiment, even when a large input desired signal is input to the antenna, the oscillation frequency of the VCO 10 is a signal far from the frequency and disturbs the oscillation frequency of the VCO 10. There is nothing. Even during transmission, even if part of the energy radiated from the antenna 1 is fed back to the VCO 10, it is far from the oscillation frequency of the VCO 10 and does not disturb the oscillation frequency of the VCO 10.
[0025]
(Example 3)
FIG. 3 is a block diagram showing a communication apparatus according to Embodiment 3 of the present invention.
[0026]
In the third embodiment, the same functional blocks as those in the block diagram shown in FIG. A different part from FIG. 1 which is Example 1 is that a direct conversion system is used as a reception system. 22 is a direct conversion mixer means, 23 is a first filter, 24 is a second filter, and 25 is a demodulation means. The frequency of the local oscillation signal that is the output of the 1/2 frequency dividing means 20 is the same as the frequency of the desired signal that is desired to be received. The I and Q signals, which are orthogonal baseband signals, are output to the output of the direct conversion mixer means 22, and only the desired signal is extracted by the first filter 23 and the second filter 24 and demodulated by the demodulation means 25. The The direct conversion reception system shown in the present embodiment does not require a SAW filter for removing the image signal, and the output of the direct conversion mixer means is a baseband signal, so that the first filter 23 and the second filter 24 The demodulating means 25 can be easily configured with a semiconductor circuit. Therefore, there is a merit that it can be made at low cost. However, when a large input signal is input, there is a problem that the local oscillation frequency is disturbed and the demodulation performance deteriorates. According to the configuration, even when a desired signal having a large input is input to the antenna, the oscillation frequency of the VCO 10 is a signal that is far away in frequency and does not disturb the oscillation frequency of the VCO 10. Even during transmission, even if part of the energy radiated from the antenna 1 is fed back to the VCO 10, it is far from the oscillation frequency of the VCO 10 and does not disturb the oscillation frequency of the VCO 10.
[0027]
Example 4
FIG. 4 is a block diagram showing a communication apparatus according to Embodiment 4 of the present invention.
[0028]
In the fourth embodiment, the same numbers are assigned to the same functional blocks as those in the block diagram shown in FIG. The difference from FIG. 3 which is the third embodiment is that the frequency multiplication means 21 is used in FIG. 4 which is the present embodiment instead of the 1/2 frequency dividing means 20 in FIG. By using the doubling means 21, 2 / N times the oscillation frequency of the VCO 10 is controlled to be equal to 12.5 KHz. Therefore, since the local oscillation frequency or transmission frequency is twice the oscillation frequency of the VCO 10, it is controlled to N times 12.5 KHz. Since the local oscillation frequency or transmission frequency is a signal in the 400 MHz band, the oscillation frequency of the VCO 10 is in the 200 MHz band. According to the configuration of the present embodiment, as in the case of the first embodiment, even when a large input desired signal is input to the antenna, the oscillation frequency of the VCO 10 is a signal far from the frequency and disturbs the oscillation frequency of the VCO 10. There is nothing. Even during transmission, even if part of the energy radiated from the antenna 1 is fed back to the VCO 10, it is far from the oscillation frequency of the VCO 10 and does not disturb the oscillation frequency of the VCO 10.
[0029]
In the first to fourth embodiments, the output of the 1/2 divider 20 or the doubler 21 is used for the local oscillation signal and the transmission signal. However, the 1 / N divider 20 or the N multiplier 21 may be used. . Here, N may be an integer.
[0030]
【The invention's effect】
As described above, the communication apparatus according to the present invention has the receiving means and the frequency synthesizer means for performing channel selection, and the frequency synthesizer means divides the voltage-controlled oscillator and the oscillation output of the voltage-controlled oscillator. A signal obtained by dividing the output of the voltage controlled oscillator by 1 / N (an integer of N> 1), and having phase dividing means and phase comparing means for detecting a phase error between the output of the variable dividing means and a reference signal Is supplied to the receiving means as a local oscillation signal, there is an effect that the frequency of the local oscillation signal is not disturbed even when a large input reception signal is input.
[0031]
The communication apparatus according to the present invention further includes a transmission means and a frequency synthesizer means for performing channel selection, and the frequency synthesizer means includes a voltage controlled oscillator and a frequency dividing means for dividing the oscillation output of the voltage controlled oscillator. Phase comparison means for detecting a phase error between the output of the variable frequency dividing means and the reference signal, and a signal obtained by dividing the output of the voltage controlled oscillator by 1 / N (N> 1) is used as a transmission signal. Since it is configured to supply to the transmission means, there is an effect that the frequency of the transmission signal is not disturbed even if part of the energy of the transmission signal is fed back to the VCO.
[0032]
The communication apparatus according to the present invention further includes a receiving unit and a frequency synthesizer unit for performing channel selection, and the frequency synthesizer unit includes a voltage controlled oscillator and a frequency dividing unit that divides the oscillation output of the voltage controlled oscillator. Phase comparison means for detecting a phase error between the output of the variable frequency dividing means and the reference signal, and receiving means using a signal obtained by multiplying the output of the voltage controlled oscillator by N (an integer of N> 1) as a local oscillation signal Therefore, the frequency of the local oscillation signal is not disturbed even when a large input reception signal is input.
[0033]
The communication apparatus according to the present invention further includes frequency synthesizer means for selecting a channel, and the frequency synthesizer means is a voltage controlled oscillator, frequency dividing means for dividing the oscillation output of the voltage controlled oscillator, and the variable frequency divider. A phase comparison means for detecting a phase error between the output of the circumference means and the reference signal, and a signal obtained by multiplying the output of the voltage controlled oscillator by N (an integer of N> 1) is supplied to the transmission means as a transmission signal Therefore, even if a part of the energy of the transmission signal is fed back to the VCO, there is an effect that the frequency of the transmission signal is not disturbed.
[0034]
Further, the receiving means of the communication apparatus according to the present invention is composed of a direct conversion receiver using the same frequency as the desired signal to be received as a local oscillation signal. There is an effect that a conversion receiver can be provided.
[Brief description of the drawings]
FIG. 1 is a block diagram of a communication apparatus according to a first embodiment of the present invention. FIG. 2 is a block diagram of a communication apparatus according to a second embodiment of the present invention. 4 is a block diagram of a communication apparatus according to a fourth embodiment of the present invention. FIG. 5 is a block diagram of a conventional communication apparatus.
DESCRIPTION OF SYMBOLS 1 Antenna 2 SAW filter 3 High frequency amplification means 4 Mixer means 8 Switching means 9 Transmission means 10 Voltage control oscillation means (VCO)
DESCRIPTION OF SYMBOLS 11 1st frequency dividing means 12 Phase comparison means 13 2nd frequency dividing means 14 Crystal oscillator 15 Loop filter 20 1/2 frequency dividing means 21 2 frequency multiplication means 22 Direct conversion mixer means 23 1st filter 24 2nd filter 25 demodulating means 30 receiving means 31 frequency synthesizer means 51 channel filter

Claims (2)

高周波信号を受信する受信手段と、
高周波信号を増幅し出力する送信手段と、
チャンネル選択を行うための周波数シンセサイザ手段とを有し、
前記周波数シンセサイザ手段はその構成要素の一部として、
電圧制御発振器の発振出力を1/N分周(N>1の整数)する1/N分周手段と、
水晶発振器と、
前記1/N分周手段からの信号をさらに分周した信号の位相と、前記水晶発振器からの信号をさらに分周した信号の位相との位相誤差を検出して当該位相誤差をループフィルタを介して前記電圧制御発振器へ帰還する比較手段とを備え、
受信時には前記1/N分周手段からの信号を局部発振信号として前記受信手段に供給し、送信時には前記1/N分周手段からの信号を送信信号として前記送信手段に供給したことを特徴とする通信装置。
Receiving means for receiving a high-frequency signal;
A transmission means for amplifying and outputting a high-frequency signal;
Frequency synthesizer means for performing channel selection,
The frequency synthesizer means is part of its components,
1 / N frequency dividing means for dividing the oscillation output of the voltage controlled oscillator by 1 / N (N> 1),
A crystal oscillator,
A phase error between the phase of the signal obtained by further dividing the signal from the 1 / N frequency dividing means and the phase of the signal obtained by further dividing the signal from the crystal oscillator is detected, and the phase error is detected through a loop filter. And a comparison means for feeding back to the voltage controlled oscillator,
And characterized in that during reception is supplied to the reception means a signal from the 1 / N frequency division means as a local oscillation signal, at the time of transmission was fed to the transmission unit as a transmission signal a signal from the 1 / N divider means Communication device.
高周波信号を受信する受信手段と、
高周波信号を増幅し出力する送信手段と、
チャンネル選択を行うための周波数シンセサイザ手段とを有し、
前記周波数シンセサイザ手段はその構成要素の一部として、
電圧制御発振器の発振出力をN逓倍(N>1の整数)するN逓倍手段と、
水晶発振器と、
前記N逓倍手段からの信号をさらに分周した信号の位相と、前記水晶発振器からの信号をさらに分周した信号の位相との位相誤差を検出して当該位相誤差をループフィルタを介して前記電圧制御発振器へ帰還する比較手段とを備え、
受信時には前記N逓倍手段からの信号を局部発振信号として前記受信手段に供給し、送信時には前記1/N分周手段からの信号を送信信号として前記送信手段に供給したことを特徴とする通信装置。
Receiving means for receiving a high-frequency signal;
A transmission means for amplifying and outputting a high-frequency signal;
Frequency synthesizer means for performing channel selection,
The frequency synthesizer means is part of its components,
N multiplying means for multiplying the oscillation output of the voltage controlled oscillator by N (N> 1),
A crystal oscillator,
A phase error between the phase of the signal obtained by further dividing the signal from the N multiplication means and the phase of the signal obtained by further dividing the signal from the crystal oscillator is detected, and the phase error is detected via the loop filter. A comparison means for returning to the controlled oscillator,
The supply signal from the N multiplying means to the receiving means as a local oscillation signal at the time of reception, the communication apparatus at the time of transmission, characterized in that supplied to the transmission unit as a transmission signal a signal from the 1 / N divider means .
JP2000268262A 2000-09-05 2000-09-05 Communication device Expired - Lifetime JP4524889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000268262A JP4524889B2 (en) 2000-09-05 2000-09-05 Communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000268262A JP4524889B2 (en) 2000-09-05 2000-09-05 Communication device

Publications (2)

Publication Number Publication Date
JP2002076981A JP2002076981A (en) 2002-03-15
JP4524889B2 true JP4524889B2 (en) 2010-08-18

Family

ID=18755064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000268262A Expired - Lifetime JP4524889B2 (en) 2000-09-05 2000-09-05 Communication device

Country Status (1)

Country Link
JP (1) JP4524889B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4705443B2 (en) * 2005-09-21 2011-06-22 パナソニック株式会社 Receiving system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389723A (en) * 1989-09-01 1991-04-15 Nec Corp Phase locked loop transmitter and receiver
JPH0461943U (en) * 1990-10-04 1992-05-27
JPH08506235A (en) * 1993-11-22 1996-07-02 フィリップス エレクトロニクス ネムローゼ フェン ノートシャップ Telecommunication system and first station, second station and transceiver for the system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3115050B2 (en) * 1991-09-11 2000-12-04 株式会社日立製作所 Mobile communication equipment
JP3558102B2 (en) * 1995-12-22 2004-08-25 ソニー株式会社 Radio receiver
JPH09261106A (en) * 1996-03-22 1997-10-03 Matsushita Electric Ind Co Ltd Mobile radio equipment operated for plural frequency bands
JPH09298482A (en) * 1996-05-08 1997-11-18 Hitachi Ltd Digital portable telephone set

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389723A (en) * 1989-09-01 1991-04-15 Nec Corp Phase locked loop transmitter and receiver
JPH0461943U (en) * 1990-10-04 1992-05-27
JPH08506235A (en) * 1993-11-22 1996-07-02 フィリップス エレクトロニクス ネムローゼ フェン ノートシャップ Telecommunication system and first station, second station and transceiver for the system

Also Published As

Publication number Publication date
JP2002076981A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
KR0143023B1 (en) Digital telephone
JPH07221667A (en) Method for generation of signal of different frequencies in digital radiotelephone
JPH09275358A (en) Plural-band mobile radio equipment
US20070149143A1 (en) Local oscillation frequency generation apparatus and wireless transceiver having the same
JPH06216802A (en) Transmitting/receiving device
JPH1065566A (en) Small sized radio equipment
WO2018044439A1 (en) An arrangement for concurrent detection of signals in a receiver
JPH0151100B2 (en)
JP3309904B2 (en) Wireless transceiver
CN1252182A (en) Transmit signal generation with aid of receiver
JP4524889B2 (en) Communication device
JPH11239074A (en) Tuning preselection filter
JP3090152B2 (en) Transceiver
JP4126043B2 (en) Phase demodulator and mobile phone device
JP3708234B2 (en) Wireless device
TWI292258B (en) Receiver
JP2002118479A (en) Digital broadcasting receiving circuit, oscillated signal generating circuit, and method for receiving digital broadcast
JP2002076974A (en) Receiving apparatus
JP3284666B2 (en) Time division multiplex digital wireless communication device
JPH05259934A (en) Transmitting/receiving device
JP2003298433A (en) Wireless microphone
JP2004207824A (en) Radio equipment
JP2003304172A (en) Communication equipment
JP3387112B2 (en) Transmission device
JP2001119317A (en) Radio communication eqiupment, frequency switching method for the same and recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4524889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 4

EXPY Cancellation because of completion of term