JP4524170B2 - Satellite antenna - Google Patents

Satellite antenna Download PDF

Info

Publication number
JP4524170B2
JP4524170B2 JP2004319761A JP2004319761A JP4524170B2 JP 4524170 B2 JP4524170 B2 JP 4524170B2 JP 2004319761 A JP2004319761 A JP 2004319761A JP 2004319761 A JP2004319761 A JP 2004319761A JP 4524170 B2 JP4524170 B2 JP 4524170B2
Authority
JP
Japan
Prior art keywords
satellite
antenna
outer shell
tube
shell structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004319761A
Other languages
Japanese (ja)
Other versions
JP2006130988A (en
Inventor
和樹 渡辺
秋人 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WEL RESEARCH CO.,LTD
Sakase Adtech Co Ltd
Original Assignee
WEL RESEARCH CO.,LTD
Sakase Adtech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WEL RESEARCH CO.,LTD, Sakase Adtech Co Ltd filed Critical WEL RESEARCH CO.,LTD
Priority to JP2004319761A priority Critical patent/JP4524170B2/en
Publication of JP2006130988A publication Critical patent/JP2006130988A/en
Application granted granted Critical
Publication of JP4524170B2 publication Critical patent/JP4524170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Aerials (AREA)

Description

本発明は、人工衛星に搭載されるアンテナに関し、特に、スピン安定方式の人工衛星において、そのスピン軸方向に伸展するアンテナに適用して有効な技術に関する。   The present invention relates to an antenna mounted on an artificial satellite, and more particularly to a technique that is effective when applied to an antenna extending in the spin axis direction in a spin-stabilized satellite.

人工衛星には、地磁気等を測定する目的や通信目的にためにアンテナが搭載される。一般に人工衛星搭載用のアンテナは、打ち上げ時の加速度に耐え得るよう収納可能な構造が採用され、軌道上で人工衛星が安定した後にアンテナを伸展させる。アンテナを伸展させる方式として以下のような方式が知られている。   An artificial satellite is equipped with an antenna for the purpose of measuring geomagnetism or the like or for the purpose of communication. In general, an antenna mounted on a satellite has a structure that can be stored so as to withstand the acceleration at the time of launch, and the antenna is extended after the satellite is stabilized in orbit. The following methods are known as methods for extending the antenna.

人工衛星がスピン安定方式である場合、スピン面に平行な方向に伸展させるアンテナとしてワイヤアンテナが採用できる。ワイヤアンテナは、人工衛星の周面に一端を固定し、他端に質量体を備えた金属等導電性のワイヤをアンテナとするものである。ワイヤアンテナではスピンに起因する遠心力を利用してラジアル方向に伸展できるため、伸展のための駆動装置(アクチュエータ)が不要であり、アンテナ構造の簡略化・軽量化を図ることができる。近年の衛星小型化の流れを考慮すれば、軽量化のメリットは極めて大きい。   When the artificial satellite is a spin stable system, a wire antenna can be adopted as an antenna that extends in a direction parallel to the spin plane. The wire antenna uses a conductive wire such as a metal having one end fixed to the peripheral surface of the artificial satellite and a mass body at the other end. Since the wire antenna can be extended in the radial direction by utilizing the centrifugal force caused by the spin, a driving device (actuator) for extension is unnecessary, and the antenna structure can be simplified and reduced in weight. Considering the recent trend of satellite miniaturization, the advantages of weight reduction are extremely large.

スピン面に垂直な方向(スピン軸方向)に伸展するアンテナとしては、STEM(Storable Tubular Extendible Member)タイプ、多段円筒タイプ、あるいはインフレータブル構造のアンテナが知られている。STEMタイプについてはたとえば非特許文献1に、多段円筒タイプについてはたとえば非特許文献に、インフレータブル構造についてはたとえば非特許文献3に開示がある。これらスピン軸方向に伸展させるアンテナでは、スピンによる遠心力が利用できないため、伸展のための自力展開機能を備える必要がある。
斎藤,笠羽,前沢,小島,"SCOPE 計画衛星システム検討概要",宇宙科学シンポジウム(第3回),1月9-10日,宇宙科学研究所 M.W. Thomson, "Deployable and Retractable Telescoping Tubular Structure Development", 28 th Aerospace Mechanisms Symposium, May 18-20 1994. D. Lichodziejewski, G. Veal, R. Helms, R. Freeland,M. Kruer "Inflatable Rigidizable Solar Array for Small Satellite", 44 th IAA/ASME/ASCE/AHS Structures,Structural Dynamics, and Materials Conference, 7-10 April 2003,Norfork Virginia, AIAA2003-1898.
As an antenna extending in a direction perpendicular to the spin plane (spin axis direction), an STEM (Storable Tubular Extendible Member) type, a multistage cylindrical type, or an inflatable structure antenna is known. For example, Non-Patent Document 1 discloses the STEM type, Non-Patent Document for the multistage cylindrical type, and Non-Patent Document 3 for the inflatable structure, for example. These antennas that extend in the direction of the spin axis cannot use the centrifugal force due to the spin, and therefore must have a self-deployment function for extension.
Saito, Kasaba, Maezawa, Kojima, "SCOPE Planning Satellite System Study Overview", Space Science Symposium (3rd), January 9-10, Institute of Space Science MW Thomson, "Deployable and Retractable Telescoping Tubular Structure Development", 28 th Aerospace Mechanisms Symposium, May 18-20 1994. D. Lichodziejewski, G. Veal, R. Helms, R. Freeland, M. Kruer "Inflatable Rigidizable Solar Array for Small Satellite", 44 th IAA / ASME / ASCE / AHS Structures, Structural Dynamics, and Materials Conference, 7-10 April 2003, Norfork Virginia, AIAA2003-1898.

STEMタイプのアンテナは、短冊状あるいはテープ状のシートを短辺方向において湾曲するよう形成し、自由自立状態で中空円筒状になるよう構成したものである。ベリリウム銅合金のようにばね定数の高い導電性の金属材料を採用し、自由自立状態である程度の機械的強度が保持されるようにする。このフリースタンド状態では湾曲して円筒状になるシートを応力に抗して短辺方向に展開し、シートを長辺方向でロールに巻きつけることにより収納状態を実現する。これを伸展する場合、シートをロールから送り出す機構を別途設け、この送り出しによってロールから離れた部分が内部応力により短辺方向に湾曲し、機械的強度を有する中空円筒状態になってアンテナとして機能するようになる。   The STEM type antenna is formed by bending a strip-like or tape-like sheet in the short side direction so as to form a hollow cylinder in a free-standing state. A conductive metal material having a high spring constant such as beryllium copper alloy is adopted so that a certain degree of mechanical strength is maintained in a free-standing state. In the free stand state, a curved and cylindrical sheet is developed in the short side direction against stress, and the storage state is realized by winding the sheet around a roll in the long side direction. When this is extended, a separate mechanism for feeding the sheet from the roll is provided, and the portion separated from the roll by this feeding is bent in the short side direction due to internal stress and becomes a hollow cylindrical state having mechanical strength to function as an antenna. It becomes like this.

多段円筒タイプのアンテナは、導電性の金属材料等で構成した複数の円筒を同軸に配置し、内側の円筒から隣接する外側の円筒を順に外部に送り出すことによって伸展を図るアンテナである。STEMタイプと同様に円筒を外部に送り出す機構が必要になる。   A multi-stage cylindrical antenna is an antenna that is extended by coaxially arranging a plurality of cylinders made of a conductive metal material or the like, and sequentially sending an adjacent outer cylinder from the inner cylinder to the outside. Similar to the STEM type, a mechanism for feeding the cylinder to the outside is required.

インフレータブル構造のアンテナは、極めて軽量で柔軟なチューブの内部にガスを送り込み、ガス圧によってチューブを膨張させて伸展を実現するアンテナである。この構造のアンテナの場合、その使用状態においてチューブ内部にガスを存在させることは好ましくないので、伸展後にチューブを硬化させ、内部ガスを除去する必要がある。チューブの硬化には硬化剤が利用される。   An inflatable antenna is an antenna that realizes extension by sending gas into an extremely lightweight and flexible tube and expanding the tube by gas pressure. In the case of an antenna having this structure, it is not preferable that gas be present inside the tube in the state of use, and therefore it is necessary to harden the tube after extension to remove the internal gas. A curing agent is used for curing the tube.

上記したSTEMタイプおよび多段円筒タイプのアンテナでは、円筒構造のアンテナを採用するため、展開後はもとより、展開途中においても機械的強度が維持できる。しかし、シートあるいは同心円筒を送り出すための送り出し機構が必要であり、これら送り出し機構にはモータ等比較的質量の大きな部品を利用せざるを得ないので、アンテナ機構全体の質量が大きくなってしまう問題がある。また、アンテナ材料として金属材料を使用するので、やはり重量が大きくなる。このため、アンテナ機構全体の質量が相対的に小さくなる1200kg級の人工衛星には実用化できるものの、100kg級の小型人工衛星には相対的質量が大きくなって衛星の飛行安定性が確保できない可能性がある。   In the STEM type and multistage cylindrical type antennas described above, since the antenna having a cylindrical structure is adopted, the mechanical strength can be maintained not only after the deployment but also during the deployment. However, a feeding mechanism for feeding out the sheet or the concentric cylinder is necessary, and parts having a relatively large mass such as a motor must be used for these feeding mechanisms, so that the mass of the whole antenna mechanism becomes large. There is. Further, since a metal material is used as the antenna material, the weight is also increased. For this reason, although it can be put into practical use for a 1200 kg-class artificial satellite in which the mass of the whole antenna mechanism is relatively small, the relative mass becomes large for a 100 kg-class small artificial satellite, and the flight stability of the satellite cannot be secured. There is sex.

インフレータブル構造のアンテナは、その伸展機構としてガス圧力を利用し、また、アンテナ材料として軽量なチューブを利用する。このため、アンテナ機構全体の重量を著しく軽量化できる可能性が高く、100kg級の小型人工衛星に適用する技術として有望である。しかし、インフレータブル構造のアンテナはその展開中においては柔軟な状態であり、展開中の挙動が衛星の軌道安定性に悪影響を及ぼす可能性がある。また、展開後の硬化方法等にも解決すべき課題が多く、実用化には至っていない状況である。   An inflatable antenna uses a gas pressure as its extension mechanism and uses a light tube as an antenna material. For this reason, there is a high possibility that the weight of the entire antenna mechanism can be significantly reduced, and it is promising as a technique to be applied to a 100 kg class small satellite. However, inflatable antennas are flexible during deployment, and the behavior during deployment can adversely affect the orbital stability of the satellite. Moreover, there are many problems to be solved in the curing method after development, and the situation has not been put into practical use.

本発明の目的は、伸展時における衛星軌道への悪影響を及ぼさず、かつ、伸展後における硬化の問題のない、軽量な人工衛星搭載用アンテナを提供することにある。   An object of the present invention is to provide a lightweight satellite-mounted antenna that does not adversely affect the satellite orbit at the time of extension and does not have a problem of hardening after extension.

本明細書で開示する発明は、以下の通りである。すなわち、スピン安定方式の人工衛星に搭載され、前記人工衛星の打ち上げ時には収納されており、軌道安定後に前記衛星のスピン軸方向に伸展するよう構成された人工衛星搭載用アンテナであって、
強度維持部材、および、前記強度維持部材に貼り合わされた導電部材を有し、その伸展状態において中空の円筒形状をなす外殻構造と、
一端が封止され他端が開口されたチューブ、および、前記チューブの前記開口に挿入されたガス導入管を有し、前記ガス導入管の外周で前記チューブの前記開口が封止されているインフレータブル構造と、
前記ガス導入管にガスを供給するガス供給手段と、を有し、
前記ガス導入管を介して前記チューブの内部に前記ガスを供給することにより、前記チューブを前記外殻構造の中空部分に伸展させ、前記チューブの伸展に伴って前記外殻構造を前記衛星の前記スピン軸方向に伸展させる人工衛星用アンテナである。
The invention disclosed in this specification is as follows. That is, mounted on a spin-stabilized satellite, and is housed when the satellite is launched, and is a satellite-mounted antenna configured to extend in the spin axis direction of the satellite after orbit stabilization,
An outer shell structure having a strength maintaining member, and a conductive member bonded to the strength maintaining member, and having a hollow cylindrical shape in the extended state;
An inflatable having a tube having one end sealed and the other end opened, and a gas introduction pipe inserted into the opening of the tube, wherein the opening of the tube is sealed at the outer periphery of the gas introduction pipe Structure and
Gas supply means for supplying gas to the gas introduction pipe,
By supplying the gas to the inside of the tube through the gas introduction pipe, the tube is extended into the hollow portion of the outer shell structure, and the outer shell structure is extended to the satellite of the satellite as the tube extends. This is a satellite antenna that extends in the spin axis direction.

つまり、アンテナの伸展時および伸展後における機械的強度は外殻構造により確保し、外殻構造の伸展機構(アクチュエータ)としてインフレータブル構造を利用する。アクチュエータにインフレータブル構造を利用するので、従来のSTEMタイプおよび多段円筒タイプが必要とする送り出し機構を設ける必要がなく、質量面における問題を回避できる。一方、インフレータブル構造はアクチュエータにのみ利用するので、展開時の柔軟性や展開後の硬化方法が問題になることもない。   That is, the mechanical strength during and after extension of the antenna is ensured by the outer shell structure, and the inflatable structure is used as the extension mechanism (actuator) of the outer shell structure. Since an inflatable structure is used for the actuator, there is no need to provide a feeding mechanism required by the conventional STEM type and multistage cylindrical type, and a problem in terms of mass can be avoided. On the other hand, since the inflatable structure is used only for the actuator, the flexibility at the time of deployment and the curing method after deployment will not be a problem.

前記した外殻構造は、伸展状態においてはその内部応力によって短辺方向にカールしており、収納状態においては前記短辺方向の前記カールを展開し長辺方向でロールに巻き取られている短冊状またはテープ状のフィルムまたはシートであるSTEMタイプの外殻構造を適用できる。あるいは、外殻構造は、複数の中空円筒構造物が同軸に配置され、伸展状態において前記中空円筒構造物の端部が結合される多段円筒タイプの外殻構造を適用できる。   The outer shell structure is curled in the short side direction due to its internal stress in the extended state, and in the stored state, the curl in the short side direction is developed and wound into a roll in the long side direction. A STEM type outer shell structure which is a film or a tape-like film or sheet can be applied. Alternatively, as the outer shell structure, a multi-stage cylindrical outer shell structure in which a plurality of hollow cylindrical structures are coaxially arranged and ends of the hollow cylindrical structures are coupled in an extended state can be applied.

前記強度維持部材は、繊維強化プラスチック(FRP)またはポリイミドその他のプラスチック材料を適用でき、前記導電体は、金属不織布とすることができる。強度維持部材にFRP、ポリイミドフィルム等のプラスチックを採用して更なる軽量化を実現でき、金属不織布によってアンテナに必要とされる導電性を確保できる。   The strength maintaining member may be a fiber reinforced plastic (FRP), polyimide, or other plastic material, and the conductor may be a metal nonwoven fabric. Employing plastics such as FRP and polyimide film for the strength maintaining member can realize further weight reduction, and the metal nonwoven fabric can ensure the conductivity required for the antenna.

本願の発明によれば、外殻構造により伸展時および伸展後における機械的強度が確保されるので、伸展時における衛星軌道への悪影響を及ぼさず、かつ、伸展後における硬化の問題のない、軽量な人工衛星搭載用アンテナが提供できる。   According to the invention of the present application, the outer shell structure ensures the mechanical strength at the time of extension and after extension, so that it does not adversely affect the satellite orbit at the time of extension, and there is no problem of hardening after extension, A satellite-mounted antenna can be provided.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は、本発明の一実施の形態である人工衛星搭載用アンテナの主要部の一例を示した分解斜視図である。また、図2は、図1の人工衛星搭載用アンテナの主要部を示した側面図である。本実施の形態の人工衛星搭載用アンテナは、外殻構造1とインフレータブル構造2を有する。図2に示すように、インフレータブル構造2の少なくとも先端部分は、外殻構造1の中空円筒部分に挿入される。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an exploded perspective view showing an example of a main part of an artificial satellite mounted antenna according to an embodiment of the present invention. FIG. 2 is a side view showing the main part of the antenna for satellite installation of FIG. The satellite mounting antenna of the present embodiment has an outer shell structure 1 and an inflatable structure 2. As shown in FIG. 2, at least the tip portion of the inflatable structure 2 is inserted into the hollow cylindrical portion of the outer shell structure 1.

外殻構造1は、その収納状態においてロール3に巻き取られているシートである。外殻構造1は、短辺方向で湾曲する内部応力を有しており、図示するようにロール3から離れた部分では円筒形状にカールする。なお、本実施の形態において外殻構造1(シート)はその全部がロール3に巻き取られているわけではなく、先端部分4にはインフレータブル構造2の(後に説明する)チューブが当接する端面5を有する。端面5では、外殻構造1が中空円筒形状に巻いて固定され、端面5がロール3から離れるに従いロール3から離れた外殻構造1がその内部応力によって端面5の近傍のように中空円筒形状を為すようになる。   The outer shell structure 1 is a sheet that is wound around a roll 3 in the stored state. The outer shell structure 1 has an internal stress that is curved in the short side direction, and curls into a cylindrical shape at a portion away from the roll 3 as illustrated. In the present embodiment, the entire outer shell structure 1 (sheet) is not wound around the roll 3, and the end surface 5 on which the tube of the inflatable structure 2 (to be described later) abuts the tip portion 4. Have At the end face 5, the outer shell structure 1 is wound and fixed in a hollow cylindrical shape, and as the end face 5 moves away from the roll 3, the outer shell structure 1 that is separated from the roll 3 has a hollow cylindrical shape as if it is in the vicinity of the end face 5 due to its internal stress. Will come to do.

インフレータブル構造2は、チューブ6とガス導入管7とを有する。チューブ6は、一端が封止され他端に開口を有し、膨らんだ状態では円筒形状を呈する。チューブ6は、ポリエチレン、ゴム等の柔軟な有機フィルムで構成され、ガス導入管7の外周に被せて収納することができる。チューブ6の開口にはガス導入管7が挿入され、開口はシール部材8によってガス導入管7の外周に封止される。ガス導入管7、シール部材8の材料は、適切な機械的強度および封止性能が確保される限り任意である。なお、ガス導入管7にはバルブ9を介してガスボンベ10が接続され、ガスボンベ10から二酸化炭素、窒素、アルゴン等希ガスあるいは不活性ガスが供給される。   The inflatable structure 2 includes a tube 6 and a gas introduction pipe 7. The tube 6 is sealed at one end and has an opening at the other end, and has a cylindrical shape when inflated. The tube 6 is made of a flexible organic film such as polyethylene or rubber, and can be housed by covering the outer periphery of the gas introduction tube 7. A gas introduction pipe 7 is inserted into the opening of the tube 6, and the opening is sealed to the outer periphery of the gas introduction pipe 7 by a seal member 8. The material of the gas introduction pipe 7 and the seal member 8 is arbitrary as long as appropriate mechanical strength and sealing performance are ensured. A gas cylinder 10 is connected to the gas introduction pipe 7 via a valve 9, and a rare gas such as carbon dioxide, nitrogen, argon, or an inert gas is supplied from the gas cylinder 10.

このような人工衛星搭載用アンテナの伸展動作を説明する。まず、外殻構造1がロール3に巻き取られており、インフレータブル構造2のチューブがガス導入管7の外周に被せられた状態でアンテナ収納状態である。この状態から、バルブ9を開くと、ガスボンベ10からガス導入管7を通ってチューブ6の内部にガスが供給される。ガス導入管7の外周に被せられていたチューブ6は、ガスの圧力を受けて伸張し、矢印11の方向に膨張を開始する。チューブ6の先端が外殻構造1の端面5に到達すると、端面5はチューブ6からの圧力を受けて外殻構造1を矢印11の方向に伸展する。図2は伸展開始の初期段階を図示したものである。設計の長さ(たとえば5m)伸張した段階で伸展が完了する。   The extension operation of such an antenna for satellite installation will be described. First, the outer shell structure 1 is wound around the roll 3, and the antenna is housed in a state where the tube of the inflatable structure 2 is put on the outer periphery of the gas introduction pipe 7. When the valve 9 is opened from this state, gas is supplied from the gas cylinder 10 through the gas introduction pipe 7 into the tube 6. The tube 6 covered on the outer periphery of the gas introduction pipe 7 expands under the pressure of the gas and starts to expand in the direction of the arrow 11. When the tip of the tube 6 reaches the end surface 5 of the outer shell structure 1, the end surface 5 receives the pressure from the tube 6 and extends the outer shell structure 1 in the direction of the arrow 11. FIG. 2 illustrates the initial stage of the start of extension. Extension is completed at the stage where the design length (for example, 5 m) has been extended.

図3は、外殻構造1の一例を示した一部断面図である。外殻構造は、強度維持部材12、導電部材13および接着部材14からなる複合部材である。強度維持部材12には、たとえばポリイミドフィルム、繊維強化プラスチック(FRP)のフィルムを例示できる。フィルムの厚さはたとえば0.1mmである。導電部材13には、たとえば金属不織布、金属箔等を例示できる。接着部材14は、強度維持部材12と導電部材13とを張り合わせるためのものであるが、強度維持部材12と導電部材13とが一体として形成できるような場合には特に必要ではない。   FIG. 3 is a partial cross-sectional view showing an example of the outer shell structure 1. The outer shell structure is a composite member composed of the strength maintaining member 12, the conductive member 13, and the adhesive member 14. Examples of the strength maintaining member 12 include a polyimide film and a fiber reinforced plastic (FRP) film. The thickness of the film is, for example, 0.1 mm. Examples of the conductive member 13 include a metal nonwoven fabric and a metal foil. The adhesive member 14 is for attaching the strength maintaining member 12 and the conductive member 13 together, but is not particularly necessary when the strength maintaining member 12 and the conductive member 13 can be integrally formed.

たとえば、強度維持部材12をポリイミドフィルム、導電部材13を金属不織布にする場合、熱硬化性の接着剤を用いて両材料を張り合わせ、円筒表面に巻き付けた上で熱を加え接着を実現することができる。この場合、外殻構造1のロールは製造過程で作り込まれることとなり、応力は接着部材14によって発生することになる。あるいは、強度維持部材12をFRP、導電部材13を金属不織布にする場合、繊維材料(ファイバ)と不織布とを円筒外周に巻き付けた上で、不飽和ポリエステル樹脂等のFRP材料を塗布し所定の硬化工程を経て外殻構造1を製造できる。この場合、接着部材は特に必要でなく、また、カールのための応力はFRP材料によって得られることになる。   For example, when the strength maintaining member 12 is made of a polyimide film and the conductive member 13 is made of a metal non-woven fabric, the two materials can be bonded together using a thermosetting adhesive and wound on a cylindrical surface, and then heat is applied to realize adhesion. it can. In this case, the roll of the outer shell structure 1 is made in the manufacturing process, and the stress is generated by the adhesive member 14. Alternatively, when the strength maintaining member 12 is FRP and the conductive member 13 is a metal nonwoven fabric, the fiber material (fiber) and the nonwoven fabric are wound around the outer circumference of the cylinder, and then FRP material such as unsaturated polyester resin is applied and predetermined curing is performed. The outer shell structure 1 can be manufactured through the steps. In this case, the adhesive member is not particularly required, and the stress for curling is obtained by the FRP material.

図4は、本実施の形態の人工衛星搭載用アンテナを人工衛星に搭載した状態を示した斜視図である。本実施の形態の人工衛星搭載用アンテナは、矢印15の方向に回転する小型人工衛星16の中心に配置され、外殻構造1はスピン軸方向(矢印17)の方向に伸展する。図4は外殻構造1が伸展を完了した状態を示している。なお、図4において、図1および2に示した人工衛星搭載用アンテナを2台、外殻構造1の伸展方向が互いに反対になるよう配置した状態を示している。   FIG. 4 is a perspective view showing a state where the artificial satellite mounting antenna of the present embodiment is mounted on the artificial satellite. The satellite-mounted antenna of the present embodiment is arranged at the center of the small artificial satellite 16 that rotates in the direction of the arrow 15, and the outer shell structure 1 extends in the direction of the spin axis (arrow 17). FIG. 4 shows a state in which the outer shell structure 1 has completed extension. FIG. 4 shows a state in which two satellite mounting antennas shown in FIGS. 1 and 2 are arranged so that the extending directions of the outer shell structure 1 are opposite to each other.

本実施の形態の人工衛星搭載用アンテナによれば、外殻構造1を有するので、伸展完了後はもとより、伸展の途中においても十分な機械的強度が保証される。このため、従来のインフレータブル構造アンテナに存在したような伸展途中での柔軟性の問題や硬化の問題は存在しない。また、本実施の形態の人工衛星搭載用アンテナでは、外殻構造1の伸展アクチュエータにインフレータブル構造2を利用する。このため、重量の大きいモータ等の部品を用いないで外殻構造1の伸展が可能である。この結果、100kg級の小型人工衛星においても十分な軌道安定性が確保できる程度にアンテナ構造の全体を軽量化できる。   According to the satellite-mounted antenna of the present embodiment, since the outer shell structure 1 is provided, sufficient mechanical strength is ensured not only after the extension is completed but also during the extension. For this reason, there is no problem of flexibility during the extension and curing problems that existed in conventional inflatable structure antennas. Further, in the satellite mounted antenna according to the present embodiment, the inflatable structure 2 is used for the extension actuator of the outer shell structure 1. For this reason, the outer shell structure 1 can be extended without using parts such as a heavy motor. As a result, the entire antenna structure can be reduced in weight to such an extent that sufficient orbital stability can be ensured even in a 100 kg class small satellite.

以上、本発明を具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。たとえば、上記した実施の形態では、外殻構造1としてSTEMタイプを例示したが、図5に示すような複数の円筒部材18を同心に配置する多段円筒タイプを外殻構造に採用することも可能である。なお、図5では伸展状態を示しており、各円筒部材18の電気的接触や円筒部材18の分離の防止は、ジャンクション部19に適切な接続構造を備えて実現できることは言うまでもない。   Although the present invention has been specifically described above, it is needless to say that the present invention is not limited to the above-described embodiment and can be variously modified without departing from the gist thereof. For example, in the above-described embodiment, the STEM type is exemplified as the outer shell structure 1, but a multi-stage cylindrical type in which a plurality of cylindrical members 18 as shown in FIG. 5 are concentrically arranged can also be adopted for the outer shell structure. It is. FIG. 5 shows the extended state, and it goes without saying that electrical contact of each cylindrical member 18 and prevention of separation of the cylindrical member 18 can be realized by providing the junction portion 19 with an appropriate connection structure.

本願発明は、人工衛星搭載用アンテナに関する発明であり、人工衛星分野全般、航空宇宙産業に適用することが可能な発明である。   The present invention relates to an antenna mounted on a satellite, and is an invention that can be applied to the entire satellite field and the aerospace industry.

本発明の一実施の形態である人工衛星搭載用アンテナの主要部の一例を示した分解斜視図である。It is the disassembled perspective view which showed an example of the principal part of the antenna for artificial satellites which is one embodiment of this invention. 図1の人工衛星搭載用アンテナの主要部を示した側面図である。It is the side view which showed the principal part of the antenna for artificial satellite mounting of FIG. 外殻構造1の一例を示した一部断面図である。1 is a partial cross-sectional view showing an example of an outer shell structure 1. FIG. 本発明の一実施の形態である人工衛星搭載用アンテナを人工衛星に搭載した状態を示した斜視図である。It is the perspective view which showed the state which mounted the artificial antenna mounting antenna which is one embodiment of this invention in the artificial satellite. 外殻構造の他の例を示した斜視図である。It is the perspective view which showed the other example of the outer shell structure.

符号の説明Explanation of symbols

1…外殻構造、2…インフレータブル構造、3…ロール、4…先端部分、5…端面、6…チューブ、7…ガス導入管、8…シール部材、9…バルブ、10…ガスボンベ、12…強度維持部材、13…導電部材、14…接着部材、16…小型人工衛星、18…円筒部材、19…ジャンクション部。   DESCRIPTION OF SYMBOLS 1 ... Outer shell structure, 2 ... Inflatable structure, 3 ... Roll, 4 ... Tip part, 5 ... End surface, 6 ... Tube, 7 ... Gas introduction pipe, 8 ... Seal member, 9 ... Valve, 10 ... Gas cylinder, 12 ... Strength Maintenance member, 13 ... conductive member, 14 ... adhesive member, 16 ... small satellite, 18 ... cylindrical member, 19 ... junction part.

Claims (3)

スピン安定方式の人工衛星に搭載され、前記人工衛星の打ち上げ時には収納されており、軌道安定後に前記衛星のスピン軸方向に伸展するよう構成された人工衛星搭載用アンテナであって、
繊維強化プラスチック(FRP)またはポリイミドその他のプラスチック材料からなる強度維持部材、および金属不織布または金属箔からなる導電部材を有し、前記強度維持部材と前記導電部材とを接着剤で張り合わせ、円筒表面に巻き付け、熱を加えること、または、前記導電部材を円筒外周に巻き付け、前記強度維持部材になる材料を塗布し硬化させることにより形成し、その伸展状態において中空の円筒形状をなす外殻構造と、
一端が封止され他端が開口されたチューブ、および、前記チューブの前記開口に挿入されたガス導入管を有し、前記ガス導入管の外周で前記チューブの前記開口が封止されているインフレータブル構造と、
前記ガス導入管にガスを供給するガス供給手段と、
を有し、
前記ガス導入管を介して前記チューブの内部に前記ガスを供給することにより、前記チューブを前記外殻構造の中空部分に伸展させ、前記チューブの伸展に伴って前記外殻構造を前記衛星の前記スピン軸方向に伸展させる人工衛星用アンテナ。
Mounted on a spin-stabilized satellite, housed when the satellite is launched, and mounted on a satellite-mounted antenna configured to extend in the spin axis direction of the satellite after orbit stabilization,
Fiber-reinforced plastic (FRP) or polyimide other strength retention member made of a plastic material, having a conductive member made of beauty metals nonwoven or foil Oyo, bonded together with the conductive member and the strength maintaining member with an adhesive, An outer shell that is formed by winding around a cylindrical surface and applying heat, or by winding the conductive member around the outer periphery of the cylinder and applying and curing a material that becomes the strength maintaining member, and forming a hollow cylindrical shape in the extended state Structure and
An inflatable having a tube having one end sealed and the other end opened, and a gas introduction pipe inserted into the opening of the tube, wherein the opening of the tube is sealed at the outer periphery of the gas introduction pipe Structure and
Gas supply means for supplying gas to the gas introduction pipe;
Have
By supplying the gas to the inside of the tube through the gas introduction pipe, the tube is extended into the hollow portion of the outer shell structure, and the outer shell structure is extended to the satellite of the satellite as the tube extends. Satellite antenna that extends in the direction of the spin axis.
前記外殻構造は、伸展状態においてはその内部応力によって短辺方向にカールしており、収納状態においては前記短辺方向の前記カールを展開し長辺方向でロールに巻き取られている短冊状またはテープ状のフィルムまたはシートである請求項1記載の人工衛星用アンテナ。   The outer shell structure is curled in the short side direction by the internal stress in the extended state, and in the stored state, the curl in the short side direction is unfolded and wound into a roll in the long side direction. The satellite antenna according to claim 1, wherein the antenna is a tape-like film or sheet. 前記外殻構造は、複数の中空円筒構造物が同軸に配置され、伸展状態において前記複数の中空円筒構造物の夫々の端部が結合される多段円筒構造体である請求項1記載の人工衛星用アンテナ。   2. The artificial satellite according to claim 1, wherein the outer shell structure is a multistage cylindrical structure in which a plurality of hollow cylindrical structures are coaxially arranged and end portions of the plurality of hollow cylindrical structures are coupled in an extended state. Antenna.
JP2004319761A 2004-11-02 2004-11-02 Satellite antenna Active JP4524170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004319761A JP4524170B2 (en) 2004-11-02 2004-11-02 Satellite antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004319761A JP4524170B2 (en) 2004-11-02 2004-11-02 Satellite antenna

Publications (2)

Publication Number Publication Date
JP2006130988A JP2006130988A (en) 2006-05-25
JP4524170B2 true JP4524170B2 (en) 2010-08-11

Family

ID=36724923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004319761A Active JP4524170B2 (en) 2004-11-02 2004-11-02 Satellite antenna

Country Status (1)

Country Link
JP (1) JP4524170B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5276952B2 (en) * 2008-11-05 2013-08-28 サカセ・アドテック株式会社 Extension structure
JP5691537B2 (en) * 2011-01-14 2015-04-01 株式会社Ihi Space equipment fixed separation device
JP5882151B2 (en) * 2012-07-11 2016-03-09 サカセ・アドテック株式会社 Extension structure
JP5991578B2 (en) * 2012-07-17 2016-09-14 国立大学法人 香川大学 Satellite
CN104085541B (en) * 2014-06-24 2016-09-21 中国空间技术研究院 A kind of support arm launched for large-scale membrane structure
CN104691783B (en) * 2015-03-28 2016-09-14 哈尔滨工业大学 A kind of inflation valve for spreading arm that can automatically flatten curling
CN104691785A (en) * 2015-03-28 2015-06-10 哈尔滨工业大学 Inflating extending arm capable of automatically rolling
JP6525272B2 (en) * 2016-07-01 2019-06-05 サカセ・アドテック株式会社 boom
FR3087425B1 (en) 2018-10-18 2022-03-11 Thales Sa DEPLOYABLE TAPE METER DEVICE
WO2022168319A1 (en) * 2021-02-08 2022-08-11 三菱電機株式会社 Extension boom, solar cell paddle, and method for manufacturing extension boom
CN113629383B (en) * 2021-08-16 2023-08-15 哈尔滨工业大学 Inflatable Z-shaped folding modularized planar antenna and ordered unfolding mechanism thereof
CN114447560A (en) * 2022-02-21 2022-05-06 北京劢亚科技有限公司 Satellite antenna and satellite

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3477662A (en) * 1965-07-26 1969-11-11 Trw Inc Pneumatic tube deployment means,and solar cell therewith
JPH02504452A (en) * 1987-04-30 1990-12-13 フレキシブル・バンド・アプリケーションズ・リミテッド elongated hollow member
US5667325A (en) * 1995-07-21 1997-09-16 Spar Aerospace Limited Joint for storable tubular extendible member
JP2001097290A (en) * 1999-10-01 2001-04-10 Nippon Telegr & Teleph Corp <Ntt> Inflatable tube
JP2001097289A (en) * 1999-10-01 2001-04-10 Nippon Telegr & Teleph Corp <Ntt> Inflatable tube
JP2001106197A (en) * 1999-10-12 2001-04-17 Nippon Telegr & Teleph Corp <Ntt> Inflatable tube
JP2002200682A (en) * 2000-11-06 2002-07-16 Sakase Adtec Kk Inflatable structure, array antenna having inflatable structure, and developing method for inflatable structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949839U (en) * 1972-08-04 1974-05-01
JPS5715502U (en) * 1980-07-02 1982-01-26
JPS6312570Y2 (en) * 1981-05-11 1988-04-11
JPH03189296A (en) * 1989-12-20 1991-08-19 Mitsubishi Electric Corp Developed structure for space

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3477662A (en) * 1965-07-26 1969-11-11 Trw Inc Pneumatic tube deployment means,and solar cell therewith
JPH02504452A (en) * 1987-04-30 1990-12-13 フレキシブル・バンド・アプリケーションズ・リミテッド elongated hollow member
US5667325A (en) * 1995-07-21 1997-09-16 Spar Aerospace Limited Joint for storable tubular extendible member
JP2001097290A (en) * 1999-10-01 2001-04-10 Nippon Telegr & Teleph Corp <Ntt> Inflatable tube
JP2001097289A (en) * 1999-10-01 2001-04-10 Nippon Telegr & Teleph Corp <Ntt> Inflatable tube
JP2001106197A (en) * 1999-10-12 2001-04-17 Nippon Telegr & Teleph Corp <Ntt> Inflatable tube
JP2002200682A (en) * 2000-11-06 2002-07-16 Sakase Adtec Kk Inflatable structure, array antenna having inflatable structure, and developing method for inflatable structure

Also Published As

Publication number Publication date
JP2006130988A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
JP4524170B2 (en) Satellite antenna
US6343442B1 (en) Flattenable foldable boom hinge
US7009578B2 (en) Deployable antenna with foldable resilient members
US7354033B1 (en) Tape-spring deployable hinge
US6568640B1 (en) Inflatable satellite design
US8770522B1 (en) Deployable space boom using bi-stable tape spring mechanism
US8970447B2 (en) Deployable helical antenna for nano-satellites
US20080111031A1 (en) Deployable flat membrane structure
JP2019512191A (en) Foldable RF membrane antenna
EP3654452B1 (en) Mesh antenna reflector with deployable perimeter
JPH0760971B2 (en) A simplified spacecraft antenna reflector for folding into a container of limited volume.
WO2002036429A1 (en) Inflatable structure, array antenna having inflatable structure, and inflatable structure unfolding method
JP2006516514A (en) Inflatable and rigid boom
JP6290677B2 (en) Deployable mast for autonomous and autonomous deployment and satellite with at least one such mast
US4549464A (en) Inflatable, aerodynamic shroud
US20120076614A1 (en) Preload releasing fastener and release system using same
JP4876941B2 (en) Deployable antenna
JPS61264901A (en) Reflector antenna
US20190144139A1 (en) Large aperture unfurlable reflector deployed by a telescopic boom
US20190277051A1 (en) Deployable Mast Structure
US6028569A (en) High-torque apparatus and method using composite materials for deployment of a multi-rib umbrella-type reflector
JP2019536394A (en) Deployable winding rib assembly
JP2022547273A (en) Compactable Antenna for Satellite Communications
US20210354812A1 (en) Aerial vehicle with tape spring arms
US20030183726A1 (en) Space cargo delivery apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100211

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Ref document number: 4524170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250