JP4523227B2 - Method for producing diphosphine compound and production intermediate thereof - Google Patents

Method for producing diphosphine compound and production intermediate thereof Download PDF

Info

Publication number
JP4523227B2
JP4523227B2 JP2002354338A JP2002354338A JP4523227B2 JP 4523227 B2 JP4523227 B2 JP 4523227B2 JP 2002354338 A JP2002354338 A JP 2002354338A JP 2002354338 A JP2002354338 A JP 2002354338A JP 4523227 B2 JP4523227 B2 JP 4523227B2
Authority
JP
Japan
Prior art keywords
group
bis
optionally substituted
added
stirred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002354338A
Other languages
Japanese (ja)
Other versions
JP2003231691A (en
Inventor
充孝 後藤
光久 山野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Pharmaceutical Co Ltd filed Critical Takeda Pharmaceutical Co Ltd
Priority to JP2002354338A priority Critical patent/JP4523227B2/en
Publication of JP2003231691A publication Critical patent/JP2003231691A/en
Application granted granted Critical
Publication of JP4523227B2 publication Critical patent/JP4523227B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、ジホスフィン化合物の製造法に関する。さらに詳しくは、ホスフィンボラン錯体を用いた、遷移金属触媒の配位子として不斉合成反応に有用なホスフィノビナフチルの製造法に関する。
【0002】
【従来の技術】
遷移金属に光学活性ホスフィンを配位させた触媒を用いる不斉還元、不斉異性化等において、光学活性ホスフィンとして2,2'-(ビス(ジフェニルホスフィノ)-1,1'-ビナフチル(以下、BINAPと省略することもある)が汎用されているものの、基質の種類によっては反応性、立体選択性、触媒効率等の点で十分ではないため、種々の光学活性ホスフィンが製造され報告されている(例えば、非特許文献1参照)。例えば、特許文献1には、2,2'-ビス(ジ(p-トルイル)ホスフィノ)-1,1'-ビナフチルを配位子としたルテニウム錯体が炭素-炭素二重結合の不斉還元において有用であることが記載され、特許文献2には、2,2'-ビス(ジ(3,5-ジアルキルフェニル)ホスフィノ)-1,1'-ビナフチルを配位子としたルテニウム錯体がβ-ケトエステルの不斉還元において有用であることが記載されている。
そして、BINAPおよびBINAP類縁体の製造法として、
1)特許文献2には、式
【化19】

Figure 0004523227
〔式中、Rは低級アルキル基を示す〕で表される化合物(以下、3,5-DABINと略称する)の製造法として下記反応式が記載されている。
【化20】
Figure 0004523227
上記光学分割については、ラセミ体化合物(IX)を四塩化炭素に加熱溶解し、(-)-ベンゾイル酒石酸のエーテル溶液を加えて撹拌すると、結晶が析出し、該析出結晶を再結晶して、結晶物の旋光度が一定値を示すまで、同様の操作を繰り返す。次いで精製結晶を塩化メチレン下に懸濁しておき、2N水酸化ナトリウムを加えて、(-)体の遊離のホスフィンオキサイド(-)-(IX)を得る、と記載されている。
2)特許文献3または特許文献4には、式
【化21】
Figure 0004523227
〔式中、Rはトリフレート、メシレートまたはトシレートを示す〕で表される化合物を、アミン塩基とニッケル触媒の存在下にジフェニルホスフィンと反応させるBINAPの製造法が記載されている。
3)特許文献5には、光学活性な2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチルに、遷移金属-ホスフィン錯体の存在下、式 A2P(O)H 〔式中、Aはフェニル基、置換フェニル基、低級アルキル基又は低級アルコキシ基で置換されてもよいナフチル基を示す〕で表されるホスフィンオキサイドを反応させることによって光学活性ジホスフィン化合物及び/又は光学活性ジホスフィンモノオキサイド化合物を含む混合物を合成し、さらに光学活性ジホスフィン化合物及び/又は光学活性ジホスフィンモノオキサイド化合物を含む混合物に還元剤を反応させ、式
【化22】
Figure 0004523227
〔式中、Aは前記と同意義を示す〕で表される光学活性ジホスフィンを得る製造法が記載されている。
4)非特許文献2には、(S)-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチルとジフェニルホスフィンクロライドとを、NiCl2・[1,2-ビス(ジフェニルホスフィノ)エタン]および亜鉛の存在下反応させ、(S)-BINAPを得る製造法が記載されている。
5)特許文献6には水素、アミン、水素化触媒および遷移金属触媒の存在下で、式
【化23】
Figure 0004523227
〔式中、R1は、アルキル基、パーフルオロアルキル基、アリール基またはパーフルオロアリール基を示す〕で表される光学活性2,2'-ジヒドロキシ-1,1'-ビナフチルのスルホン酸エステルと式
【化24】
Figure 0004523227
〔式中、R2およびR3は、同じでも異なっていてもよく、それぞれアリール基またはシクロアルキル基を示す〕で表されるクロロジ置換ホスフィンを反応させることを特徴とする光学活性2,2'-ビス(ジ置換ホスフィノ)-1,1'-ビナフチルの製造法が記載されている。
6)特許文献7には、アミンおよび遷移金属の存在下で式
【化25】
Figure 0004523227
〔式中、R1およびR2は、それぞれ置換されていてもよいアルキルスルホニル基または置換されていてもよいアリールスルホニル基を示す〕で表される化合物と置換基を有するジフェニルホスフィンとを反応させることを特徴とする式
【化26】
Figure 0004523227
〔式中、環A、環B、環Cおよび環Dはそれぞれ置換基を有するベンゼン環を示す〕で表される化合物の製造法が記載されている。
また、ホスフィン-ボラン錯体として、
7)非特許文献3には、遷移金属と塩基の存在下でアリールトリフレート又はアリールノナフレートとジフェニルホスフィン-ボラン錯体とを反応させモノホスフィン化合物を得る製造法が記載されている。
8)非特許文献4には、2,2’-ジメトキシ-7,7’-ビス(トリフルオロメタンスルホニルオキシ)-1,1’-ビナフチルとジフェニルホスフィン-ボラン錯体とを遷移金属存在下で反応させるジホスフィン化合物の合成が成功しなかったことが記載されている。
9)フェニル基に置換基を有するジフェニルホスフィン-ボラン錯体に関しては、特許文献8にビス(p-メチルフェニル)ホスフィン-ボラン錯体、ビス(p-ビフェニリル)ホスフィン-ボラン錯体およびビス(2-ナフチル)ホスフィン-ボラン錯体が、非特許文献5にビス(4-メトキシ-2-メチルフェニル)ホスフィン-ボラン錯体が記載されている。
【0003】
【特許文献1】
特開昭63-63690号公報
【特許文献2】
特開平3-255090号公報
【特許文献3】
特表平10-501234号公報
【特許文献4】
国際公開第WO 95/32934号パンフレット
【特許文献5】
特開平9-124669号公報
【特許文献6】
特開2000-7688号公報
【特許文献7】
特開2000-136194号公報
【特許文献8】
米国特許第2,926,194号明細書
【非特許文献1】
Handbook of Enantioselective Catalysis with Transition Metal Compounds, VCH 出版社発行,1993年
【非特許文献2】
ケミカル・コミュニケーションズ(Chemical Communications)、 2359-2360頁、 1997年
【非特許文献3】
テトラへドロン・レターズ(Tetrahedron Letters)、40号、201-204頁、1999年
【非特許文献4】
テトラへドロン・アシンメトリー(Tetrahedron Asymmetry)、5号、325-328頁、1994年
【非特許文献5】
テトラへドロン(Tetrahedron)、51号、7655-7666頁、1995年
【0004】
【発明が解決しようとする課題】
前記2)、4)、5)および6)では、反応試薬として酸化されやすく不安定な3価の有機リン化合物を、前記1)、3)では、還元剤としてトリクロロシランをそれぞれ用いているため、工業的に有利な実施方法であるとはいえず、工業的大量生産に適したBINAPおよびBINAP類縁体の製造法の確立が望まれる。
一方、前記7)および8)では、安定で取り扱いの容易なジフェニルホスフィン-ボラン錯体とアリールトリフラートとを反応させることが試みられているが、7)ではモノホスフィン化合物のみの合成に成功しているのに対して、8)に記載のようにBINAPの製造法として必要なジホスフィン化合物の合成には成功していない。
また、種々のBINAP類縁体をジフェニルホスフィン-ボラン錯体から合成するには、フェニル基に置換基を有するジフェニルホスフィン-ボラン錯体が必要となるが、9)には4種類のジフェニルホスフィン-ボラン錯体の合成例が記載されているのみである。
【0005】
【課題を解決するための手段】
本発明者らは、工業的大量生産に適したBINAP類縁体の製造法について種々検討し、式
【化27】
Figure 0004523227
〔式中、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eおよびR2fはそれぞれ同一または異なって水素原子、フッ素原子、塩素原子、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよいアリール基、置換されていてもよいヒドロキシ基、置換されていてもよいアミノ基、置換されていてもよいアルキルカルボニル基、置換されていてもよいアルコキシカルボニル基、カルボキシル基または置換されていてもよいカルバモイル基を、Xは脱離基を示す〕で表される化合物〔以下、化合物(II)と省略することもある〕またはその塩と式
【化28】
Figure 0004523227
〔式中、R3、R4、R5、R6、R7、R8、R9およびR10はそれぞれ同一または異なって水素原子、フッ素原子、塩素原子、置換されていてもよい炭化水素基、置換されていてもよいヒドロキシ基または置換されていてもよいアミノ基を示し、R3とR4およびR7とR8は一緒になって隣接する炭素原子とともに5ないし8員の同素環または複素環を形成してもよい〕で表されるホスフィン-ボラン錯体〔以下、化合物(III)と省略することもある〕またはその塩とを、アミンおよびニッケル触媒の存在下に溶媒中で初めて反応させたところ、式
【化29】
Figure 0004523227
〔式中、記号は前記と同意義を示す〕で表される化合物〔以下、化合物(I)と省略することもある〕またはその塩が、短工程で、異性化を起こさず効率的に得られ、簡便性、経済性、原料の安定性に基づく操作の容易性等の点で工業的に優れた製造法であることを見いだし、これらに基づいて本発明を完成するに至った。
【0006】
すなわち、本発明は
〔1〕式
【化30】
Figure 0004523227
〔式中、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eおよびR2fはそれぞれ同一または異なって水素原子、フッ素原子、塩素原子、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよいアリール基、置換されていてもよいヒドロキシ基、置換されていてもよいアミノ基、置換されていてもよいアルキルカルボニル基、置換されていてもよいアルコキシカルボニル基、カルボキシル基または置換されていてもよいカルバモイル基を、Xは脱離基を示す〕で表される化合物またはその塩と式
【化31】
Figure 0004523227
〔式中、R3、R4、R5、R6、R7、R8、R9およびR10はそれぞれ同一または異なって水素原子、フッ素原子、塩素原子、置換されていてもよい炭化水素基、置換されていてもよいヒドロキシ基または置換されていてもよいアミノ基を示し、R3とR4およびR7とR8は一緒になって隣接する炭素原子とともに5ないし8員の同素または複素環を形成してもよい〕で表されるホスフィン-ボラン錯体またはその塩とをアミンおよびニッケル触媒の存在下に溶媒中で反応させることを特徴とする式
【化32】
Figure 0004523227
〔式中、記号は前記と同意義を示す〕で表される化合物またはその塩の製造法、
〔2〕Xが置換されていてもよいアルキルスルホニルオキシ基または置換されていてもよいアリールスルホニルオキシ基である前記〔1〕記載の製造法、
〔3〕R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eおよびR2fがそれぞれ同一または異なって水素原子、フッ素原子、塩素原子、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよいヒドロキシ基、置換されていてもよいアミノ基、置換されていてもよいアルキルカルボニル基、置換されていてもよいアルコキシカルボニル基、カルボキシル基または置換されていてもよいカルバモイル基、R3、R4、R5、R6、R7およびR8がそれぞれ同一または異なって水素原子、フッ素原子、塩素原子、置換されていてもよい炭化水素基、置換されていてもよいヒドロキシ基または置換されていてもよいアミノ基、R9およびR10がともに水素原子、Xが置換されていてもよいアルキルスルホニルオキシ基または置換されていてもよいアリールスルホニルオキシ基である前記〔1〕記載の製造法、
〔4〕R1aとR2a、R1bとR2b、R1cとR2c、R1dとR2d、R1eとR2eおよびR1f R2fがそれぞれ同一の基である前記〔3〕記載の製造法、
〔5〕R1a、R1f、R2aおよびR2f が水素原子である前記〔1〕ないし〔3〕記載の製造法、
〔6〕R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eおよびR2fが水素原子である前記〔3〕記載の製造法、
〔7〕R3、R5、R6およびR8が低級アルキル基であり、R4およびR7が水素原子または低級アルコキシ基である前記〔3〕記載の製造法、
〔8〕R3、R5、R6およびR8が水素原子であり、R4およびR7が低級アルキル基または低級アルコキシ基である前記〔3〕記載の製造法、
〔9〕R3、R4、R5、R6、R7およびR8が水素原子である前記〔3〕記載の製造法、
〔10〕Xがトリフルオロメタンスルホニルオキシ、メタンスルホニルオキシまたはp-トルエンスルホニルオキシである前記〔1〕記載の製造法、
〔11〕ニッケル触媒がNiCl2・ビス(ジフェニル)ホスフィノC1-4アルカン、NiBr2、NiCl2、NiCl2・ビス(ジフェニル)ホスフィニルフェロセン、NiCl2・ビス(トリフェニルホスフィン)、Ni・テトラキストリフェニルホスフィン、Ni・テトラキストリフェニルホスファイトまたはNi・ジカルボニルビス(トリフェニル)ホスフィンである前記〔1〕ないし〔3〕記載の製造法、
〔12〕ニッケル触媒がNiCl2・ビス(ジフェニル)ホスフィノC1-4アルカンである前記〔1〕ないし〔3〕記載の製造法、
〔13〕ニッケル触媒がNiCl2・ビス(ジフェニル)ホスフィノエタンである前記〔1〕ないし〔3〕記載の製造法、
〔14〕アミンが3級アミンである前記〔1〕ないし〔3〕記載の製造法、
〔15〕アミンが1,4-ジアザビシクロ〔2.2.2〕オクタンである前記〔1〕ないし〔3〕記載の製造法、
〔16〕溶媒がN,N-ジメチルホルムアミド、N,N-ジメチルアセタミド、1-メチル-2-ピロリドンまたは1,3-ジメチル-2-イミダゾリジノンから選ばれる1種または2種以上の混合溶媒である前記〔1〕ないし〔3〕記載の製造法、
〔17〕R1a、R1b、R1c、R1f、R2a、R2b、R2cおよびR2fが水素原子、R1dおよびR2dが水素原子またはC6-10アリール基、R1eおよびR2eが水素原子またはC1-6アルコキシ基、R3が水素原子またはC1-6アルキル基、R4が水素原子、フッ素原子、塩素原子、C1-6アルキル基、C6-10アリール基、C1-6アルコキシ基またはジC1-6アルキルアミノ基、もしくはR3とR4が隣接する炭素原子と共にベンゼン環または1,3-ジオキソラン環を形成し、R5が水素原子またはC1-6アルキル基、R6が水素原子またはC1-6アルキル基、R7が水素原子、フッ素原子、塩素原子、C1-6アルキル基、C6-10アリール基、C1-6アルコキシ基またはジC1-6アルキルアミノ基、もしくはR6とR7が隣接する炭素原子と共にベンゼン環または1,3-ジオキソラン環を形成し、R8が水素原子またはC1-6アルキル基、R9が水素原子またはC1-6アルキル基、R10が水素原子またはC1-6アルキル基、Xがトリフルオロメタンスルホニルオキシ、ニッケル触媒がNiCl2・ビス(ジフェニル)ホスフィノエタンである前記〔1〕記載の製造法、
〔18〕式
【化33】
Figure 0004523227
〔式中、各記号は前記〔1〕記載と同意義を示す〕で表される化合物および式
【化34】
Figure 0004523227
〔式中、各記号は前記〔1〕記載と同意義を示す〕で表される化合物の軸不斉部がともに(R)体である前記〔1〕記載の製造法、
〔19〕ラセミ化を伴わずに反応させることを特徴とする前記〔18〕記載の製造法、
〔20〕式
【化35】
Figure 0004523227
〔式中、各記号は前記〔1〕記載と同意義を示す〕で表される化合物および式
【化36】
Figure 0004523227
〔式中、各記号は前記〔1〕記載と同意義を示す〕で表される化合物の軸不斉部がともに(S)体である前記〔1〕記載の製造法、
〔21〕ラセミ化を伴わずに反応させることを特徴とする前記〔20〕記載の製造法、
〔22〕式
【化37】
Figure 0004523227
〔式中、各記号は前記〔1〕記載と同意義を示す〕で表される化合物および式
【化38】
Figure 0004523227
〔式中、各記号は前記〔1〕記載と同意義を示す〕で表される化合物の軸不斉部がともにラセミ体である前記〔1〕記載の製造法、
〔23〕2,2'-ビス[ビス(3,5-ジ-tert-ブチル-4-メトキシフェニル)ホスフィノ]-1,1'-ビナフチルまたはその塩、
〔24〕式
【化39】
Figure 0004523227
〔式中、R3 、R5 、R6 およびR8 はそれぞれ水素原子、低級アルキル基または低級アルコキシ基を、R4 およびR7 はそれぞれ水素原子、フッ素原子、塩素原子、C2-6アルキル基、低級アルコキシ基、モノ低級アルキルアミノ基またはジ低級アルキルアミノ基を示す(R3 とR4 およびR7 とR8 は低級アルキレンジオキシ基を形成してもよい)(但し、R3 、R4 、R5 、R6 、R7 およびR8 が全て水素原子である場合は除く)〕で表されるホスフィン-ボラン錯体またはその塩、
〔25〕R3 、R5 、R6 およびR8 はそれぞれ水素原子または低級アルキル基、R4 およびR7 がそれぞれ水素原子、フッ素原子、塩素原子、低級アルコキシ基、モノ低級アルキルアミノ基またはジ低級アルキルアミノ基である前記〔24〕記載のホスフィン-ボラン錯体、
〔26〕R3 、R5 、R6 およびR8 が水素原子であり、R4 およびR7 がフッ素原子、塩素原子、低級アルコキシ基またはジ低級アルキルアミノ基である前記〔25〕記載のホスフィン-ボラン錯体、
〔27〕R3 、R5 、R6 およびR8 が低級アルキル基であり、R4 およびR7 が水素原子である前記〔25〕記載のホスフィン-ボラン錯体、
〔28〕R3 、R5 、R6 およびR8 が低級アルキル基であり、R4 およびR7 が低級アルコキシ基である前記〔25〕記載のホスフィン-ボラン錯体、
〔29〕R5 およびR8 が水素原子であり、R3 とR4 およびR7 とR8 でメチレンジオキシ基を形成する前記〔24〕記載のホスフィン-ボラン錯体、
〔30〕R3 、R5 、R6 およびR8 が水素原子であり、R4 およびR7 がC2-6アルキル基である前記〔24〕記載のホスフィン-ボラン錯体、
〔31〕R4 、R5 、R7 およびR8 が水素原子であり、R3 およびR6 が低級アルキル基である前記〔24〕記載のホスフィン-ボラン錯体、
〔32〕式
【化40】
Figure 0004523227
〔式中、R9 およびR10 はそれぞれ低級アルキル基を示す〕で表されるホスフィン-ボラン錯体、
〔33〕式
【化41】
Figure 0004523227
〔式中、R3 、R5 、R6 およびR8 はそれぞれ水素原子、低級アルキル基または低級アルコキシ基を、R4 およびR7 はそれぞれ水素原子、フッ素原子、塩素原子、C2-6アルキル基、低級アルコキシ基、モノ低級アルキルアミノ基またはジ低級アルキルアミノ基を、R9 およびR10 はそれぞれ水素原子または低級アルキル基を示す(R3 とR4 およびR7 とR8 は低級アルキレンジオキシ基を形成してもよい)(但し、R3 、R4 、R5 、R6 、R7 、R8 、R9 およびR10 が全て水素原子である場合は除く)〕で表される化合物またはその塩を、塩化セリウムおよび水素化ホウ素ナトリウムの存在下、水素化リチウムアルミニウムで還元することを特徴とする式
【化42】
Figure 0004523227
〔式中、各記号は前記と同意義を示す〕で表されるホスフィン-ボラン錯体またはその塩の製造法、
〔34〕式
【化43】
Figure 0004523227
〔式中、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eおよびR2f はそれぞれ同一または異なって水素原子、フッ素原子、塩素原子、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよいアリール基、置換されていてもよいヒドロキシ基、置換されていてもよいアミノ基、置換されていてもよいアルキルカルボニル基、置換されていてもよいアルコキシカルボニル基、カルボキシル基または置換されていてもよいカルバモイル基を、Xは脱離基を示す〕で表される光学活性化合物またはその塩と式
【化44】
Figure 0004523227
〔式中、R3、R4、R5、R6、R7、R8、R9およびR10はそれぞれ同一または異なって水素原子、フッ素原子、塩素原子、置換されていてもよい炭化水素基、置換されていてもよいヒドロキシ基または置換されていてもよいアミノ基を示し、R3とR4およびR7とR8は一緒になって隣接する炭素原子とともに5ないし8員の同素環または複素環を形成してもよい〕で表されるホスフィン-ボラン錯体またはその塩とをアミンおよびニッケル触媒の存在下に溶媒中で反応させることにより得られる式
【化45】
Figure 0004523227
〔式中、記号は前記と同意義を示す〕で表される光学活性化合物またはその塩の存在下に被還元化合物を還元することを特徴とする、光学活性化合物の製造法、
〔35〕不斉還元により光学活性化合物を製造するための式
【化46】
Figure 0004523227
〔式中、R3 、R5 、R6 およびR8 はそれぞれ水素原子、低級アルキル基または低級アルコキシ基を、R4 およびR7 はそれぞれ水素原子、フッ素原子、塩素原子、C2-6アルキル基、低級アルコキシ基、モノ低級アルキルアミノ基またはジ低級アルキルアミノ基を示す(R3 とR4 およびR7 とR8 は低級アルキレンジオキシ基を形成してもよい)(但し、R3 、R4 、R5 、R6 、R7 およびR8 が全て水素原子である場合は除く)〕で表されるホスフィン-ボラン錯体もしくは式
【化47】
Figure 0004523227
〔式中、R9 およびR10 はそれぞれ低級アルキル基を示す〕で表されるホスフィン-ボラン錯体またはそれらの塩の使用、
〔36〕不斉還元により光学活性化合物を製造するための(S)-2,2'-ビス[ビス(3,5-ジ-tert-ブチル-4-メトキシフェニル)ホスフィノ]-1,1'-ビナフチルもしくは(R)-2,2'-ビス[ビス(3,5-ジ-tert-ブチル-4-メトキシフェニル)ホスフィノ]-1,1'-ビナフチルまたはそれらの塩の使用等に関する。
【0007】
化合物(I)および化合物(II)は、(R)体、(S)体および(R)体と(S)体との混合物(両者の比率は限定しない)を示す。
【0008】
前記式中、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eまたはR2fで表される「置換されていてもよいアルキル基」の「アルキル基」とは、例えば低級アルキル基(メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシルなどのC1-6アルキル基)などを示す。
該「アルキル基」の置換基としては、ニトロ、ニトロソ、シアノ、ヒドロキシ、低級アルコキシ基(例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシ、ペントキシ、ヘキシルオキシなどのC1-6アルコキシ基)、ホルミル、低級アルキルカルボニル基(例えば、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イソバレリル、ピバロイルなどのC1-6アルキル-カルボニル基)、低級アルコキシカルボニル基(例えば、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、イソブトキシカルボニル、sec-ブトキシカルボニル、tert-ブトキシカルボニル、ペントキシカルボニル、ヘキシルオキシカルボニルなどのC1-6アルコキシ-カルボニル基)、カルボキシル、N-モノ低級アルキルカルバモイル基(例えば、N-メチルカルバモイル、N-エチルカルバモイル、N-プロピルカルバモイル、N-イソプロピルカルバモイル、N-ブチルカルバモイル、N-イソブチルカルバモイル、N-tert-ブチルカルバモイルなどのN-モノC1-6アルキル-カルバモイル基)、N,N-ジ低級アルキルカルバモイル基(例えば、N,N-ジメチルカルバモイル、N,N-ジエチルカルバモイル、N,N-ジプロピルカルバモイル、N,N-ジイソプロピルカルバモイル、N-エチル-N-メチルカルバモイルなどのN,N-ジC1-6アルキル-カルバモイル基)などが挙げられる。これらの置換基から選ばれる1ないし3個を置換可能な位置に有していてもよい。
【0009】
前記式中、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eまたはR2fで表される「置換されていてもよいシクロアルキル基」の「シクロアルキル基」とは、例えばシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルなどのC3-6シクロアルキル基などを示す。
該「シクロアルキル基」の置換基としては、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eまたはR2fで表される「置換されていてもよいアルキル基」の有していてもよい置換基と同個数、同様の置換基が挙げられる。
【0010】
前記式中、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eまたはR2fで表される「置換されていてもよいアリール基」の「アリール基」とは、例えばフェニル、1-ナフチル、2-ナフチルなどのC6-10アリール基などを示す。
該「アリール基」の置換基としては、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eまたはR2fで表される「置換されていてもよいアルキル基」の有していてもよい置換基と同個数、同様の置換基が挙げられる。
【0011】
前記式中、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eまたはR2fで表される「置換されていてもよいヒドロキシ基」の置換基としては、置換されていてもよい低級アルキル基(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシルなどのC1-6アルキル基)、置換されていてもよい低級アルキルカルボニル基(例えば、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イソバレリル、ピバロイルなどのC1-6アルキル-カルボニル基)などが挙げられる。
該「置換されていてもよいヒドロキシ基」の置換基としての、「置換されていてもよい低級アルキル基」および「置換されていてもよい低級アルキルカルボニル基」が有していてもよい置換基としては、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eまたはR2fで表される「置換されていてもよいアルキル基」の有していてもよい置換基と同個数、同様の置換基が挙げられる。
【0012】
前記式中、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eまたはR2fで表される「置換されていてもよいアミノ基」の置換基としては、置換されていてもよい低級アルキル基(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシルなどのC1-6アルキル基)、置換されていてもよい低級アルキルカルボニル基(例えば、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イソバレリル、ピバロイルなどのC1-6アルキル-カルボニル基)などが挙げられ、これらの置換基でモノ置換またはジ置換されていてもよい。
該「置換されていてもよいアミノ基」の置換基としての、「置換されていてもよい低級アルキル基」および「置換されていてもよい低級アルキルカルボニル基」の有していてもよい置換基としては、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eまたはR2fで表される「置換されていてもよいアルキル基」の有していてもよい置換基と同個数、同様の置換基が挙げられる。
【0013】
前記式中、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eまたはR2fで表される「置換されていてもよいアルキルカルボニル基」の「アルキルカルボニル基」としては、例えば低級アルキルカルボニル基(例えば、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イソバレリル、ピバロイルなどのC1-6アルキル-カルボニル基)などが挙げられる。
該「置換されていてもよいアルキルカルボニル基」の置換基としては、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eまたはR2fで表される「置換されていてもよいアルキル基」の有していてもよい置換基と同個数、同様の置換基が挙げられる。
【0014】
前記式中、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eまたはR2fで表される「置換されていてもよいアルコキシカルボニル基」の「アルコキシカルボニル基」としては、例えば低級アルコキシカルボニル基(例えば、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、イソブトキシカルボニル、sec-ブトキシカルボニル、tert-ブトキシカルボニル、ペントキシカルボニル、ヘキシルオキシカルボニルなどのC1-6アルコキシ-カルボニル基)などが挙げられる。
該「置換されていてもよいアルコキシカルボニル基」の置換基としては、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eまたはR2fで表される「置換されていてもよいアルキル基」の有していてもよい置換基と同個数、同様の置換基が挙げられる。
【0015】
前記式中、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eまたはR2fで表される「置換されていてもよいカルバモイル基」の置換基としては、例えば置換されていてもよい低級アルキル基(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシルなどのC1-6アルキル基)、置換されていてもよい低級アルキルカルボニル基(例えば、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イソバレリル、ピバロイルなどのC1-6アルキル-カルボニル基)などが挙げられ、これらの置換基でモノ置換またはジ置換されていてもよい。
該「置換されていてもよいカルバモイル基」の置換基としての、「置換されていてもよい低級アルキル基」および「置換されていてもよい低級アルキルカルボニル基」の置換基としては、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eまたはR2fで表される「置換されていてもよいアルキル基」の有していてもよい置換基と同個数、同様の置換基が挙げられる。
【0016】
前記式中、Xで表される脱離基としては、例えば、臭素原子、ヨウ素原子、置換されていてもよいアルキルスルホニルオキシ基、置換されていてもよいアリールスルホニルオキシ基などが挙げられる。Xで表される脱離基としての「置換されていてもよいアルキルスルホニルオキシ基」としては、例えば、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素等)、ハロゲン化されていてもよいC1-6アルキル基およびC1-6アルコキシ基(例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ等)から選ばれる置換基を1ないし13個有していてもよいC1-6アルキルスルホニルオキシ基(例、メタンスルホニルオキシ、エタンスルホニルオキシなど)などが挙げられる。
前記「ハロゲン化されていてもよいC1-6アルキル基」としては、例えば1ないし13個、好ましくは1ないし9個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素等)を有していてもよいC1-6アルキル基(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec−ブチル、tert−ブチル、ペンチル、ヘキシル等)などが挙げられる。
Xで表される脱離基としての「置換されていてもよいアルキルスルホニルオキシ基」の具体例としては、メタンスルホニルオキシ、エタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ、クロロメタンスルホニルオキシ、トリクロロメタンスルホニルオキシ、ノナフルオロブタンスルホニルオキシなどが挙げられる。このうち、好ましくはメタンスルホニルオキシ、トリフルオロメタンスルホニルオキシなどである。
【0017】
Xで表される脱離基としての「置換されていてもよいアリールスルホニルオキシ基」としては、例えば、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素等)、C1-6アルキル基(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル等)、C1-6アルコキシ基(例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ等)、ニトロおよびシアノから選ばれる置換基を1ないし5個有していてもよいC6-10アリールスルホニルオキシ基(例、ベンゼンスルホニルオキシ、1-ナフタレンスルホニルオキシ、2-ナフタレンスルホニルオキシ等)などが挙げられる。具体例としては、ベンゼンスルホニルオキシ、p-トルエンスルホニルオキシ、1-ナフタレンスルホニルオキシ、2-ナフタレンスルホニルオキシ、p-ニトロベンゼンスルホニルオキシ、m-ニトロベンゼンスルホニルオキシ、m-トルエンスルホニルオキシ、o-トルエンスルホニルオキシ、4-クロロベンゼンスルホニルオキシ、3-クロロベンゼンスルホニルオキシ、4-メトキシベンゼンスルホニルオキシなどが挙げられる。このうち、好ましくはp-トルエンスルホニルオキシなどである。
Xとしてメタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ、p-トルエンスルホニルオキシなどが好ましく、特にトリフルオロメタンスルホニルオキシが好ましい。
【0018】
前記式中、R3、R4、R5、R6、R7、R8、R9またはR10で表される「置換されていてもよい炭化水素基」の「炭化水素基」とは、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基などが挙げられる。
該「アルキル基」とは低級アルキル基(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシルなどのC1-6アルキル基)などを示す。
該「アルケニル基」とは低級アルケニル基(例えば、ビニル、アリル、イソプロペニル、1-ブテニル、2-ブテニル、3-ブテニル、ブタジエニル、2-メチルアリル、ヘキサトリエニル、3-オクテニルなどのC2-6アルケニル基)などを示す。
該「アルキニル基」とは低級アルキニル基(例えば、エチニル、2-プロピニル、ブチニル、3-ヘキシニルなどのC2-6アルキニル基)などを示す。
該「シクロアルキル基」とは、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルなどのC3-6シクロアルキル基などを示す。
該「アリール基」とは、例えば、フェニル、ナフチルなどのC6-10アリール基などを示す。
該「アラルキル基」とは、例えば、ベンジル、フェネチルなどのC7-10アラルキル基などを示す。
R3、R4、R5、R6、R7、R8、R9またはR10で表される「置換されていてもよい炭化水素基」の置換基としては、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eまたはR2fで表される「置換されていてもよいアルキル基」の有していてもよい置換基と同個数、同様の置換基が挙げられる。
【0019】
前記式中、R3、R4、R5、R6、R7、R8、R9またはR10で表される「置換されていてもよいヒドロキシ基」とは、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eまたはR2fで表される「置換されていてもよいヒドロキシ基」と同様のものが挙げられる。なかでも、低級アルコキシ基(C1-6アルコキシ基)、すなわち、低級アルキル基(C1-6アルキル基)で置換されたヒドロキシ基が好ましい。
【0020】
前記式中、R3、R4、R5、R6、R7、R8、R9またはR10で表される「置換されていてもよいアミノ基」とは、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eまたはR2fで表される「置換されていてもよいアミノ基」と同様のものが挙げられる。なかでも、ジ低級アルキルアミノ基(ジC1-6アルキルアミノ基)、すなわち、低級アルキル基(C1-6アルキル基)でジ置換されたアミノ基が好ましい。
【0021】
前記式中、R3とR4およびR7とR8が一緒になって隣接する炭素原子とともに形成してもよい「5ないし8員の同素環」としては、例えば、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、ベンゼン等が挙げられる。
該「5ないし8員の同素環」は、置換基を有していてもよく、その置換基としては、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eまたはR2fで表される「置換されていてもよいアルキル基」の有していてもよい置換基と同個数、同様の置換基が挙げられる。
該「5ないし8員の同素環」としては、シクロヘキサン、ベンゼンなどの6員の同素環が好ましく、なかでもベンゼンが好ましい。
【0022】
前記式中、R3とR4およびR7とR8が一緒になって隣接する炭素原子とともに形成してもよい「5ないし8員の複素環」としては、例えば、ピロール、イミダゾール、ピロリジン、ピロリン、イミダゾリジン、イミダゾリン、ピリジン、ピラジン、ピリミジン、ピペリジン、ピリミジン、オキサゾール、フラン、ピラン、1,3-ジオキソラン、1,4-ジオキサン等が挙げられる。
該「5ないし8員の複素環」は、置換基を有していてもよく、その置換基としては、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eまたはR2fで表される「置換されていてもよいアルキル基」の有していてもよい置換基と同個数、同様の置換基が挙げられる。
該「5ないし8員の複素環」としては、含酸素複素環が好ましく、なかでも1,3-ジオキソラン、1,4-ジオキサン等が好ましく、特に1,3-ジオキソランが好ましい。
【0023】
化合物(II)としては、R1aとR2a、R1bとR2b、R1cとR2c、R1dとR2d、R1eとR2eおよびR1f R2f がそれぞれ同一の基であるものが好ましく、なかでもR1a、R1f、R2aおよびR2fが水素原子であるものが好ましい。さらには、R1a、R1b、R1c、R1f、R2a、R2b、R2cおよびR2fが水素原子、R1dおよびR2dが水素原子またはC6-10アリール基、R1eおよびR2eが水素原子またはC1-6アルコキシ基であるものが好ましく、特にR1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eおよびR2fが全て水素原子であるものが好ましい。
【0024】
化合物(II)の具体例としては、2,2'-ビス(メタンスルホニルオキシ)-1,1'-ビナフチル、2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチル、2,2'-ビス(p-トルエンスルホニルオキシ)-1,1'-ビナフチル、6,6’-ジフェニル-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチル、7,7’-ジメトキシ-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチルなどが挙げられる。このうち好ましくは、2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチル、6,6’-ジフェニル-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチル、7,7’-ジメトキシ-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチルなど、より好ましくは2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチルが挙げられる。
化合物(II)としては、光学活性な化合物(II)〔(R)体または(S)体〕が好ましい。光学活性な化合物(II)の例として、例えば、(R)-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチルは、式
【化48】
Figure 0004523227
で表される化合物を、(S)-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチルは、式
【化49】
Figure 0004523227
で表される化合物を示す。
【0025】
化合物(III)としては、R3が水素原子またはC1-6アルキル基、R4が水素原子、フッ素原子、塩素原子、C1-6アルキル基、C6-10アリール基、C1-6アルコキシ基またはジC1-6アルキルアミノ基、もしくはR3とR4が隣接する炭素原子と共にベンゼン環または1,3-ジオキソラン環を形成し、R5が水素原子またはC1-6アルキル基、R6が水素原子またはC1-6アルキル基、R7が水素原子、フッ素原子、塩素原子、C1-6アルキル基、C6-10アリール基、C1-6アルコキシ基またはジC1-6アルキルアミノ基、R8が水素原子またはC1-6アルキル基、もしくはR7とR8が隣接する炭素原子と共にベンゼン環または1,3-ジオキソラン環を形成し、R9が水素原子またはC1 -6アルキル基、R10が水素原子またはC1-6アルキル基であるものが好ましい。
なかでも、R3、R5、R6およびR8が同一の基、R4およびR7が同一の基、R9およびR10が水素原子であるものが好ましい。例えば、(i)R3、R4、R5、R6、R7、R8、R9およびR10が水素原子であるもの、(ii)R3、R5、R6、R8、R9およびR10が水素原子であり、R4およびR7がフッ素原子または塩素原子であるもの、(iii)R3、R5、R6、R8、R9およびR10が水素原子であり、R4およびR7が低級アルキル基(C1-6アルキル基)であるもの、(iv)R3、R5、R6、R8、R9およびR10が水素原子であり、R4およびR7が低級アルコキシ基(C1-6アルコキシ基)であるもの、(v)R3、R5、R6、R8、R9およびR10が水素原子であり、R4およびR7がジ低級アルキルアミノ基(ジC1-6アルキルアミノ基)であるもの、(vi) R3、R5、R6およびR8が低級アルキル基(C1-6アルキル基)であり、R4、R7、R9およびR10が水素原子であるもの、(vii)R3、R5、R6およびR8が低級アルキル基(C1-6アルキル基)であり、R4およびR7が低級アルコキシ基(C1-6アルコキシ基)であり、R9およびR10が水素原子であるものおよび(viii)R3、R5、R6、R8、R9およびR10が水素原子であり、R4およびR7がC6-10アリール基であるものが挙げられる。
特に、(i) R3、R4、R5、R6、R7、R8、R9およびR10が水素原子であるもの、(ii)R3、R5、R6、R8、R9およびR10が水素原子であり、R4およびR7が低級アルキル基(C1-6アルキル基)であるもの、(iii)R3、R5、R6、R8、R9およびR10が水素原子であり、R4およびR7が低級アルコキシ基(C1-6アルコキシ基)であるもの、(iv)R3、R5、R6およびR8が低級アルキル基(C1-6アルキル基)であり、R4、R7、R9およびR10が水素原子であるものおよび(v) R3、R5、R6およびR8が低級アルキル基(C1-6アルキル基)であり、R4およびR7が低級アルコキシ基(C1-6アルコキシ基)であり、R9およびR10が水素原子であるものが好ましい。
また、(i)R3およびR6が低級アルキル基(C1-6アルキル基)であり、R4、R5、R7、R8、R9およびR10が水素原子であるものおよび(ii)R3とR4およびR7とR8が一緒になって隣接する炭素原子とともにベンゼン環または1,3-ジオキソランを形成し、R5、R6、R9およびR10が水素原子であるものも好ましい例として挙げられる。
【0026】
化合物(III)の具体例としては、例えば、ジフェニルホスフィン-ボラン錯体、ビス(4-メチルフェニル)ホスフィン-ボラン錯体、ビス(4-メトキシフェニル)ホスフィン-ボラン錯体、ビス(3,5-ジメチルフェニル)ホスフィン-ボラン錯体、ビス(3,5-ジ-tert-ブチル-4-メトキシフェニル)ホスフィン−ボラン錯体、ビス(4-フルオロフェニル)ホスフィン-ボラン錯体、ビス(4-ジメチルアミノフェニル)ホスフィン-ボラン錯体、ビス(1,3-ベンゾジオキソール-5-イル)ホスフィン-ボラン錯体、ビス(4-クロロフェニル)ホスフィン-ボラン錯体、ビス(3,5-ジメチル-4-メトキシフェニル)ホスフィン-ボラン錯体、ビス(4-tert-ブチルフェニル)ホスフィン-ボラン錯体、ビス(3-メチルフェニル)ホスフィン-ボラン錯体、ビス(3,5-ジ-tert-ブチルフェニル)ホスフィン-ボラン錯体などが挙げられる。
【0027】
本発明で使用する「アミン」としては、例えば、1,4-ジアザビシクロ〔2.2.2〕オクタン(略称:DABCO)、トリエチルアミン、ジイソプロピルエチルアミン、トリ(n-プロピル)アミン、トリ(n-ブチル)アミン、1,8-ジアザビシクロ〔5.4.0〕-7-ウンデセン(略称:DBU)、テトラメチルエチレンジアミン、ジメチルアニリン、1,4-ジメチルピペラジン、1-メチルピペリジン、1-メチルピロリジン、4-ジメチルアミノピリジン、ピリジン、ジエチルアミンなどのアミン類が挙げられる。このうち好ましくは1,4-ジアザビシクロ〔2.2.2〕オクタン、トリエチルアミン、ジイソプロピルエチルアミンなどの3級アミンである。特に好ましくは、1,4-ジアザビシクロ〔2.2.2〕オクタンである。
【0028】
本発明で使用するニッケル触媒としては、NiCl2・ビス(ジフェニル)ホスフィノC1-4アルカン、NiBr2、NiCl2、NiCl2・ビス(ジフェニル)ホスフィニルフェロセン、NiCl2・ビス(トリフェニルホスフィン)、Ni・テトラキストリフェニルホスフィン、Ni・テトラキストリフェニルホスファイト、Ni・ジカルボニルビス(トリフェニル)ホスフィン、NiBr2・ビス(トリフェニルホスフィン)、Ni・ビス(1,5-シクロオクタジエン)、Ni・ビス(シクロペンタジエニル)、Ni・ビス(エチルシクロペンタジエニル)、NiCl2・ジメトキシエタン、Ni(BF4)2またはNi(PF3)4などが挙げられる。
なかでも、NiCl2・ビス(ジフェニル)ホスフィノC1-4アルカン、NiBr2、NiCl2、NiCl2・ビス(ジフェニル)ホスフィニルフェロセン、NiCl2・ビス(トリフェニルホスフィン)、Ni・テトラキストリフェニルホスフィン、Ni・テトラキストリフェニルホスファイトまたはNi・ジカルボニルビス(トリフェニル)ホスフィンなどが好ましい。
とりわけ、NiCl2・ビス(ジフェニル)ホスフィノC1-4アルカンなどが好ましく、特にNiCl2・ビス(ジフェニル)ホスフィノエタンが好ましい。
【0029】
化合物(I)の具体例としては、2,2'-ビス[ビス(3,5-ジメチルフェニル)ホスフィノ]-1,1'-ビナフチル、2,2'-ビス[ビス(4-メトキシフェニル)ホスフィノ]-1,1'-ビナフチル、2,2'-ビス[ビス(4-ジメチルアミノフェニル)ホスフィノ]-1,1'-ビナフチル、2,2'-ビス[ビス(4-フルオロフェニル)ホスフィノ]-1,1'-ビナフチル、2,2'-ビス[ビス(3,5-ジ-tert-ブチル-4-メトキシフェニル)ホスフィノ]-1,1'-ビナフチル、2,2'-ビス(ジフェニルホスフィノ)-1,1'-ビナフチル、2,2'-ビス[ビス(2-メチルフェニル)ホスフィノ]-1,1'-ビナフチル、2,2'-ビス[ビス(3-メチルフェニル)ホスフィノ]-1,1'-ビナフチル、2,2'-ビス[ビス(4-メチルフェニル)ホスフィノ]-1,1'-ビナフチル、2,2'-ビス[ビス(4-tert-ブチルフェニル)ホスフィノ]-1,1'-ビナフチル、2,2'-ビス[ビス(3,5-ジ-tert-ブチルフェニル)ホスフィノ]-1,1'-ビナフチル、2,2'-ビス[ビス(4-メトキシ-3,5-ジメチルフェニル)ホスフィノ]-1,1'-ビナフチル、2,2'-ビス[ビス(4-クロロフェニル)ホスフィノ]-1,1'-ビナフチル、2,2'-ビス[ビス(1,3-ベンゾジオキソール-5-イル)ホスフィノ]-1,1'-ビナフチル、2,2'-ビス[ビス(2-ナフチル)ホスフィノ]-1,1'-ビナフチル、2,2'-ビス(ジフェニルホスフィノ)-6,6’-ジフェニル-1,1'-ビナフチル、2,2'-ビス(ジフェニルホスフィノ)-7,7’-ジメトキシ-1,1'-ビナフチルなどが挙げられる。上記化合物は、(R)体、(S)体および(R)体と(S)体との混合物(両者の比率は限定しない)が含まれる。光学活性な化合物(I)の例として、例えば、(R)-2,2'-ビス(ジフェニルホスフィノ)-1,1'-ビナフチルは、式
【化50】
Figure 0004523227
で表される化合物を、(S)-2,2'-ビス(ジフェニルホスフィノ)-1,1'-ビナフチルは、式
【化51】
Figure 0004523227
で表される化合物を示す。
【0030】
化合物(I)、化合物(II)および化合物(III)の塩としては、例えば無機酸(例えば,塩酸、臭化水素酸、硝酸、硫酸、リン酸など)との塩、または有機酸(例えば、ギ酸、酢酸、トリフルオロ酢酸、フマール酸、蓚酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸など)との塩などが用いられる。また、化合物(I)、化合物(II)および化合物(III)がカルボキシル基等の酸性基を有している場合には、無機塩基(例えば、ナトリウム、カリウム、カルシウム、マグネシウムなどのアルカリ金属またはアルカリ土類金属、アンモニアなど)との塩、または有機塩基(例えば、トリメチルアミン、トリエチルアミン、ピリジン、ピコリン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、ジシクロヘキシルアミン、N,N’-ジベンジルエチレンジアミンなど)との塩などが用いられる。
【0031】
また、化合物(III)の中で、式
【化52】
Figure 0004523227
〔式中、R3 、R5 、R6 およびR8 はそれぞれ水素原子、低級アルキル基または低級アルコキシ基を、R4 およびR7 はそれぞれ水素原子、フッ素原子、塩素原子、C2-6アルキル基、低級アルコキシ基、モノ低級アルキルアミノ基またはジ低級アルキルアミノ基を示す(R3 とR4 およびR7 とR8 は低級アルキレンジオキシ基を形成してもよい)(但し、R3 、R4 、R5 、R6 、R7 およびR8 が全て水素原子である場合は除く)〕で表されるホスフィン-ボラン錯体またはその塩〔以下、化合物(III’)と省略することもある〕および式
【化53】
Figure 0004523227
〔式中、R9 およびR10 はそれぞれ低級アルキル基を示す〕で表されるホスフィン-ボラン錯体またはその塩〔以下、化合物(III”)と省略することもある〕は新規化合物である。
【0032】
化合物(III’)中、R3 、R5 、R6 またはR8 で表される「低級アルキル基」とは、C1-6アルキル基を示し、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシルなどが挙げられる。
化合物(III’)中、R3 、R5 、R6 またはR8 で表される「低級アルコキシ基」とは、C1-6アルコキシ基を示し、例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシ、ペントキシ、ヘキシロキシなどが挙げられる。
【0033】
化合物(III’)中、R4 またはR7 で表される「C2-6アルキル基」とは、例えば、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシルなどが挙げられ、なかでもイソプロピル、イソブチル、sec-ブチル、tert-ブチル等の分枝状のC3-6アルキル基が好ましい。
化合物(III’)中、R4 またはR7 で表される「低級アルコキシ基」とは、C1-6アルコキシ基を示し、例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシ、ペントキシ、ヘキシロキシなどが挙げられる。
【0034】
化合物(III’)中、R4 またはR7 で表される「モノ低級アルキルアミノ基」とは、モノC1-6アルキルアミノ基を示し、例えば、メチルアミノ、エチルアミノ、プロピルアミノ、イソプロピルアミノ、ブチルアミノ、イソブチルアミノ、sec-ブチルアミノ、tert-ブチルアミノ、ペンチルアミノ、ヘキシルアミノなどが挙げられる。
化合物(III’)中、R4 またはR7 で表される「ジ低級アルキルアミノ基」とは、ジC1-6アルキルアミノ基を示し、例えば、ジメチルアミノ、ジエチルアミノ、ジプロピルアミノ、ジイソプロピルアミノ、ジブチルアミノ、ジイソブチルアミノなどが挙げられる。
【0035】
化合物(III’)中、R3 とR4 およびR7 とR8 で形成される「低級アルキレンジオキシ基」とは、-OCH2O-、-OCH2CH2O-、-OCH2CH2CH2O-、-OCH2CH2CH2CH2O-などが挙げられる。なかでも-OCH2O-、-OCH2CH2O-が好ましい。
【0036】
化合物(III’)として好ましい化合物として、
(i)R3 、R5 、R6 およびR8 が低級アルキル基(C1-6アルキル基)であり、R4 およびR7 が水素原子である化合物、
(ii)R3 、R5 、R6 およびR8 が低級アルキル基(C1-6アルキル基)であり、R4 およびR7 が低級アルコキシ基(C1-6アルコキシ基)である化合物、
(iii)R3 、R5 、R6 およびR8 が水素原子であり、R4 およびR7 がフッ素原子または塩素原子である化合物、
(iv)R3 、R5 、R6 およびR8 が水素原子であり、R4 およびR7 が低級アルコキシ基(C1-6アルコキシ基)である化合物または
(v)R3 、R5 、R6 およびR8 が水素原子であり、R4 およびR7 がジ低級アルキルアミノ基(ジC1-6アルキルアミノ基)である化合物、もしくはこれらの塩などが挙げられる。
また、
(vi) R5 およびR8 が水素原子であり、R3 とR4 およびR7 とR8 でメチレンジオキシ基を形成する化合物、
(vii)R3 、R5 、R6 およびR8 が水素原子であり、R4 およびR7 がC2-6アルキル基である化合物、
(viii)R4 、R5 、R7 およびR8 が水素原子であり、R3 およびR6 が低級アルキル基(C1-6アルキル基)である化合物も好ましい。
【0037】
より具体的には、ビス(3,5-ジメチルフェニル)ホスフィン-ボラン錯体、ビス(3,5-ジ-tert-ブチル-4-メトキシフェニル)ホスフィン-ボラン錯体、ビス(4-フルオロフェニル)ホスフィン-ボラン錯体、ビス(4-メトキシフェニル)ホスフィン-ボラン錯体、ビス(4-ジメチルアミノフェニル)ホスフィン-ボラン錯体、ビス(1,3-ベンゾジオキソール-5-イル)ホスフィン-ボラン錯体、ビス(4-クロロフェニル)ホスフィン-ボラン錯体、ビス(4-メトキシ-3,5-ジメチルフェニル)ホスフィン-ボラン錯体、ビス(4-tert-ブチルフェニル)ホスフィン-ボラン錯体、ビス(3-メチルフェニル)ホスフィン-ボラン錯体、ビス(3,5-ジ-tert-ブチルフェニル)ホスフィン-ボラン錯体などが好ましい。
【0038】
化合物(III”)中、R9 またはR10 で表される「低級アルキル基」とは、C1-6アルキル基を示し、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシルなどが挙げられる。
化合物(III”)の具体例としては、ビス(2-メチルフェニル)ホスフィン-ボラン錯体などが挙げられる。
【0039】
化合物(III’)および化合物(III”)の塩としては、前記した化合物(I)、化合物(II)および化合物(III)の塩と同様のものが挙げられる。
【0040】
本発明の製造法は、化合物(II)と化合物(III)とを、アミンおよびニッケル触媒存在下、溶媒中で反応させ、化合物(I)を得るものである。
化合物(III)の使用量は、化合物(II)1モルに対して約2ないし5モル、好ましくは約2ないし3モルである。
アミンの使用量は、化合物(II)1モルに対して約2ないし10モル、好ましくは約2ないし8モルである。
ニッケル触媒の使用量は、化合物(II)1モルに対して約0.01ないし10モル、好ましくは約0.05ないし1モルである。
前記反応は、不活性な有機溶媒中で行うことができる。該有機溶媒としては、炭化水素類(例、ヘキサン、ペンタン、シクロヘキサンなど)、アミド類(例、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノンなど)、芳香族炭化水素類(例、トルエン、ベンゼン、クロロベンゼンなど)、脂肪族エステル類(例、酢酸エチル、酢酸n-プロピル、酢酸n-ブチルなど)、エーテル類(例、ジイソプロピルエーテル、ジエチルエーテル、テトラヒドロフラン(THF)、1,4-ジオキサン、1,2-ジメトキシエタンなど)、ハロゲン化炭化水素類(例、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、四塩化炭素類など)、アルコール類(例、メタノール、エタノール、イソプロパノール、tert-ブタノールなど)、ケトン類(例、アセトン、エチルメチルケトンなど)、スルホキシド類(例、ジメチルスルホキシドなど)、ニトリル類(例、アセトニトリル、プロピオニトリルなど)、リン酸アミド類(例、ヘキサメチルリン酸アミドなど)等が挙げられる。これらの溶媒は単独で用いても、また混合溶媒として用いてもよい。好ましい溶媒はアミド類、スルホキシド類、リン酸アミド類などである。さらに好ましくはアミド類(N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン)である。
該反応における反応温度は、約30ないし180℃、好ましくは約80ないし120℃である。該反応における反応時間は、約1ないし240時間、好ましくは約24ないし168時間である。
生成物は常法に従って反応混合物から単離することもでき、再結晶、蒸留、クロマトグラフィーなどの分離手段により容易に精製することができる。
【0041】
化合物(II)は、自体公知の方法、例えばテトラへドロンレターズ,31巻,985頁,1990年、ジャーナル・オブ・オーガニック・ケミストリー,58巻,1945頁,1993年等に記載の方法に従って製造できる。このようにして得られる化合物(II)は、単離せずに反応混合物として、化合物(III)との反応に用いてもよい。
化合物(III)は、ジャーナル・オブ・オーガニック・ケミストリー、33巻、3690頁、1968年に記載の方法に従って得た置換基を有するホスフィンオキサイドを、塩化セリウム、水素化ホウ素ナトリウムおよび水素化リチウムアルミニウムの存在下で反応させ製造できる。
【化54】
Figure 0004523227
〔式中、各記号は前記と同意義を示す〕
塩化セリウムの使用量は、ホスフィンオキサイド1モルに対して約1ないし6モル、好ましくは約3ないし5モルである。
水素化ホウ素ナトリウムの使用量は、ホスフィンオキサイド1モルに対して約2ないし10モル、好ましくは約3ないし5モルである。
水素化リチウムアルミニウムの使用量は、ホスフィンオキサイド1モルに対して約0.25ないし5モル、好ましくは約1ないし3モルである。
前記反応は、不活性な有機溶媒中で行うことができる。該有機溶媒としては、炭化水素類(例、ヘキサン、ペンタン、シクロヘキサンなど)、アミド類(例、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノンなど)、芳香族炭化水素類(例、トルエン、ベンゼン、クロロベンゼンなど)、エーテル類(例、ジイソプロピルエーテル、ジエチルエーテル、テトラヒドロフラン(THF)、1,4-ジオキサン、1,2-ジメトキシエタンなど)、リン酸アミド類(例、ヘキサメチルリン酸アミドなど)等が挙げられる。これらの溶媒は単独で用いても、また混合溶媒として用いてもよい。好ましい溶媒はエーテル類、炭化水素類、芳香族炭化水素類などである。さらに好ましくはエーテル類(例、ジイソプロピルエーテル、ジエチルエーテル、テトラヒドロフラン(THF)、1,4-ジオキサン、1,2-ジメトキシエタンなど)である。
該反応における反応温度は、約-20ないし50℃、好ましくは約-10ないし35℃である。該反応における反応時間は、約1ないし48時間、好ましくは約1ないし20時間である。
また、米国特許第2,926,194号明細書に記載の方法に準じて置換基を有するホスフィンにジボランを作用させ得てもよい。
生成物は常法に従って反応混合物から単離することもでき、再結晶、蒸留、クロマトグラフィーなどの分離手段により容易に精製することができる。
このようにして得られる化合物(III)は、単離せずに、反応混合物として、化合物(II)との反応に用いてもよい。
【0042】
前記条件下で本反応を行うことにより、化合物(II)の構造を異性化させることなく化合物(I)の製造を行うことができる。すなわち、本発明において、光学活性な化合物(II)の(R)体および(S)体のどちらかの光学異性体を適宜選択すれば、目的とする化合物(I)の光学異性体を選択的に得ることができる。例えば、化合物(II)の(R)体を用いた場合、化合物(I)の(R)体が効率よく製造でき、化合物(II)の(S)体を用いた場合、化合物(I)の(S)体が効率よく製造できる。
本発明の製造法により得られる化合物(I)、特にその光学異性体は、遷移金属(例、ルテニウム、イリジウム、パラジウム、ニッケル、ロジウム等)と錯体を形成する(例えば、特開平3-255090号公報、特開平9-124669号公報に記載の方法またはそれに準じた方法に従って錯体を形成することができる)ことにより、光学活性な医薬品(例、頻尿・尿失禁予防治療薬、アルツハイマー病予防治療薬、高脂血症予防治療薬等)またはそれらの中間体として有用な化合物を製造する際の不斉合成反応(例、炭素-炭素二重結合の不斉還元、β-ケトエステルの不斉還元等)に利用できる。該錯体は、上記不斉合成反応において、優れた立体選択率、化学収率、触媒活性等を示す。
例えば、本発明の製造法により得られた化合物(I)を被還元化合物の還元反応に共存させることにより、医薬品の中間体として有用な化合物を優れた立体選択性で得ることができる。特に化合物(I)のなかでも、2,2'-ビス[ビス(3,5-ジ-tert-ブチル-4-メトキシフェニル)ホスフィノ]-1,1'-ビナフチルまたはその塩をα,β-不飽和エステルの還元反応に共存させることにより、優れた立体選択性、化学収率、触媒活性を示すことができる。
【0043】
【発明の実施の形態】
以下に実施例および参考例を挙げて、本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。本明細書中、室温は、10℃ないし35℃を示す。なお、実施例の各物性の測定には次の機器を用いた。1H核磁気共鳴スペクトル(1H-NMR):DPX300(ブルッカー社製)、内部基準物質:テトラメチルシラン。13C核磁気共鳴スペクトル(13C-NMR):DPX300(ブルッカー社製)、内部基準物質:CDCl331P核磁気共鳴スペクトル(31P-NMR):DPX300(ブルッカー社製)、外部基準物質:85%H3PO4水溶液。質量分析:JMS-700T(日本電子社製)。融点:530(ビュッヒ社製)。
【0044】
【実施例】
参考例1
(S)-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチル
(S)-1,1’-ビ-2-ナフトール(26.2 g, 91 mmoL)のアセトニトリル(130 mL)溶液に、ピリジン(19.5 g, 2.7 当量)を室温で加えた。ついでトリフルオロメタンスルホン酸無水物(64.2 g, 2.5 当量)を5℃で加え、5ないし10℃で2時間撹拌した。3℃で水(100 mL)を加え、ついで酢酸エチル(130 mL)を加えた後、室温で30分攪拌した。反応液を分液し、有機層を水(50 mL)で洗浄後、減圧濃縮した。残渣にジイソプロピルエーテル(150 mL)および活性炭(0.25 g)を加え60℃で30分攪拌した。活性炭をろ去し、ろ液を減圧濃縮した。残渣をヘプタンより再結晶し、表題化合物(48.9 g,白色結晶)を得た。収率97%
1H-NMR (300MHz, CDCl3, TMS) δ: 7.33 (d, 2H, J = 8.14 Hz), 7.34-7.46 (m, 2H), 7.57-7.63 (m, 2H), 7.68 (d, 2H, J = 9.09 Hz), 8.03 (d, 2H, J = 8.23 Hz), 8.16 (d, 2H, J = 9.08 Hz).
【0045】
参考例2
ビス(3,5-ジメチルフェニル)ホスフィンオキサイド
【化55】
Figure 0004523227
(製造法1)
アルゴン雰囲気下、マグネシウム(25 g, 0.95 当量)および少量のヨウ素のTHF (250 mL)溶液を室温で1時間撹拌した。5-ブロモ-m-キシレン(200 g, 1.08 moL)を48℃で加えた後、5℃で1時間攪拌した。ついで5℃で亜リン酸ジエチル(78.3 g, 0.52 当量)を加えた後、5℃で2時間撹拌した。3℃で水(200 mL)を加え、ついでトルエン(200 mL)、6M-HCl(160 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、有機層を水(100 mL)、5%NaHCO3水溶液(100 mL)、5%NaCl水溶液(100 mL)で順次洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥後、自然ろ過し、ろ液を減圧濃縮した。残渣をジイソプロピルエーテル-ヘプタンより再結晶し、表題化合物(43.3 g, 白色結晶)を得た。収率33.3%。
(製造法2)
窒素気流下、マグネシウム(3.28 g, 4.01 当量)および少量のヨウ素、1,2-ジブロモエタンのTHF(10 mL)溶液を室温で1.5時間撹拌した。5-ブロモ-m-キシレン(25.2 g, 4.05 当量)のTHF(100 mL)溶液を25℃で加えた後、40℃で40分間攪拌した。ついで-33℃で亜リン酸ジエチル(4.64 g, 33.6 mmol)のTHF(5 mL)溶液を加えた後、0℃で30分間撹拌した。3℃で水(30 mL)を加え、ついで6M-HCl(20 mL)、トルエン(50 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、有機層を10%NaHCO3水溶液(30 mL)で洗浄し、有機層を減圧濃縮した。残渣をヘプタンより再結晶し、乾燥後(減圧、50℃)、表題化合物(6.80 g,白色粉末)を得た。収率78.3%。融点:82.4℃。
1H-NMR (300MHz, CDCl3, TMS) δ: 2.35 (s, 12H), 7.18 (s, 2H), 7.28 (s, 2H), 7.33 (s, 2H), 7.94 (d, 1H, JH-P= 477.0 Hz).
31P-NMR (121MHz, CDCl3, 85%H3PO4) δ: 23.89 (d, quint, JH-P = 477.1 Hz, JHCC-P = 13.7 Hz).
【0046】
参考例3
ビス(4-メトキシフェニル)ホスフィンオキサイド
【化56】
Figure 0004523227
アルゴン雰囲気下、マグネシウム(6.5 g, 1.0 当量)および少量のヨウ素のTHF(65 mL)溶液を室温で1時間撹拌した。4-ブロモアニソール(50 g, 0.27 moL)を42℃で加えた後、5℃で1時間攪拌した。ついで15ないし20℃で亜リン酸ジエチル(18.4 g, 0.50 当量)を加えた後、5℃で1時間撹拌した。3℃で水(60 mL)を加え、ついでトルエン(120 mL)、6M-HCl(60 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、水層をトルエン(60 mL)で3回抽出した。ついで合わせた有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、ろ液を減圧濃縮した。残渣をジイソプロピルエーテルより再結晶し、表題化合物(18.9 g, 白色結晶)を得た。収率54.1%。融点126.0℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 3.85 (s, 6H), 6.99 (d, 2H, J = 8.79 Hz), 7.00 (d, 2H, J = 8.73 Hz), 7.61 (dd, 4H, J = 8.73 Hz, 13.13 Hz), 8.02 (d, 1H, J = 477.2 Hz).
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: 21.21 (dquint, J = 474.1 Hz, 13.0 Hz).
元素分析 C14H15O3Pとして
計算値; C: 64.12, H: 5.77, P:11.81.
実測値; C: 64.12, H: 5.89, P:11.78.
【0047】
参考例4
ビス(4-ジメチルアミノフェニル)ホスフィンオキサイド
【化57】
Figure 0004523227
アルゴン雰囲気下、マグネシウム(3.0 g, 1.0 当量)および少量のヨウ素のTHF(30 mL)溶液を室温で1時間撹拌した。4-ブロモ-N,N-ジメチルアニリン(25 g, 0.125 moL)を45℃で加えた後、5℃で1時間攪拌した。ついで5℃で亜リン酸ジエチル(8.63 g, 0.50 当量)を加えた後、5℃で1時間撹拌した。3℃で水(30 mL)を加え、ついでトルエン(60 mL)、6M-HCl(30 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、水層をNaOHで中和しTHF(30 mL)で抽出した。ついで合わせた有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、ろ液を減圧濃縮した。残渣をジイソプロピルエーテルより再結晶し、表題化合物(9.53 g, 微褐白色結晶)を得た。収率52.9%。融点152.1℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 3.01 (s, 12H), 6.71 (d, 2H, J = 8.94 Hz), 6.72 (d, 2H, J = 8.94 Hz), 7.48 (d, 2H, J = 8.91 Hz), 7.52 (d, 2H, J = 8.88 Hz), 7.96 (d, 1H, J = 470.1 Hz).31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: 22.78 (dquint, J = 469.2 Hz, 12.7 Hz).
元素分析 C16H21N2OPとして
計算値; C: 66.65, H: 7.34, N:9.72, P:10.74.
実測値; C: 66.56, H: 7.43, N:9.57, P:10.79.
【0048】
参考例5
ビス(4-フルオロフェニル)ホスフィンオキサイド
【化58】
Figure 0004523227
アルゴン雰囲気下、マグネシウム(6.95 g, 1.0 当量)および少量のヨウ素のTHF(70 mL)溶液を室温で1時間撹拌した。1-ブロモ-4-フルオロベンゼン(50 g, 0.286 moL)を40℃で加えた後、3℃で1時間攪拌した。ついで13ないし19℃で亜リン酸ジエチル(19.7 g, 0.50 当量)を加えた後、5℃で1時間撹拌した。4℃で水(45 mL)を加え、ついでトルエン(150 mL)、6M-HCl(45 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、ついで有機層を水、5%NaHCO3水溶液(50 mL)、5%NaCl水溶液(50 mL)で順次洗浄した。有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、ろ液を減圧濃縮した。残渣をカラムクロマトグラフィー(シリカゲル 30 g、n-ヘキサン/酢酸エチル=1/0→3/1)で精製した。表題化合物(12.0 g, 薄赤色オイル)を得た。収率35.2%。
1H-NMR (300MHz, CDCl3, TMS) δ: 7.01-7.03 (m, 4H), 7.64-7.74 (m, 4H), 8.08 (d, 1H, J = 485.8 Hz).
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: 19.39 (dquint, J = 485.7 Hz, 13.3 Hz).
【0049】
参考例6
4-ブロモ-2,6-ジ-tert-ブチルアニソール
【化59】
Figure 0004523227
アルゴン雰囲気下、4-ブロモ-2,6-ジ-tert-ブチルフェノール(50 g, 0.175 moL)および炭酸カリウム(96.7 g, 4.0 当量)のアセトン(750 mL)溶液に硫酸ジメチル(38.6 g, 1.75 当量)を22℃で加えた後、還流下で13時間攪拌した。不溶物をろ去後、溶媒を減圧留去した。酢酸エチル(150 mL)、水(100 mL)を加え、分液し、有機層を水(100 mL)、5%NaHCO3水溶液(100 mL)、5%NaCl水溶液(100 mL)で順次洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥後、自然ろ過し、ろ液を減圧濃縮した。表題化合物(56.1 g,褐色オイル)を得た。収率95.2%
1H-NMR (300MHz, CDCl3, TMS) δ: 1.41 (s, 18H), 3.68 (s, 3H), 7.33 (s, 2H).
【0050】
参考例7
ビス(3,5-ジ-tert-ブチル-4-メトキシフェニル)ホスフィンオキサイド
【化60】
Figure 0004523227
アルゴン雰囲気下、マグネシウム(4.0 g, 0.95 当量)および少量のヨウ素のTHF(50 mL)溶液を室温で1時間撹拌した。参考例6で合成した4-ブロモ-2,6-ジ-tert-ブチルアニソール(52 g, 0.175 moL)を46℃ないし53℃で加えた後、5℃で1時間攪拌した。ついで5℃で亜リン酸ジエチル(11.4 g, 0.52 当量)を加えた後、5℃で1時間撹拌した。3℃で水(50 mL)を加え、ついでトルエン(50 mL)、6M-HCl(20 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、有機層を水(20 mL)、5%NaHCO3水溶液(20 mL)、5%NaCl水溶液(20 mL)で順次洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥後、自然ろ過し、ろ液を減圧濃縮した。残渣をヘプタンより再結晶し、表題化合物(11.6 g,薄黄白色結晶)を得た。収率20.5%。融点166.1℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 1.38 (s, 36H), 3.68 (s, 6H), 7.49 (s, 2H), 7.54 (s, 2H), 8.01 (d, 1H, J = 474.4 Hz).
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: 23.57 (dquint, J = 474.1 Hz, 14.0 Hz).
元素分析 C30H47O3Pとして
計算値; C: 74.04, H: 9.73, P:6.36.
実測値; C: 74.13, H: 9.93, P:6.20.
【0051】
参考例8
ビス(4-メチルフェニル)ホスフィンオキサイド
【化61】
Figure 0004523227
アルゴン雰囲気下、マグネシウム(3.55 g, 1.0 当量)および少量のヨウ素のTHF (30 mL)溶液を室温で1時間撹拌した。p-トリルブロマイド(25 g, 0.146 moL)のTHF (5 mL)溶液を30℃で加えた。ついで45℃で30分間攪拌した後、5℃で1時間攪拌した。ついで5℃で亜リン酸ジエチル(10.08 g, 0.5 当量)を加えた後、5℃で1時間、室温(25℃)で30分間撹拌した。3℃で水(10 mL)を加え、ついでトルエン(40 mL)、6M-HCl(20 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、有機層を水(10 mL)、5%NaHCO3水溶液(10 mL)、5%NaCl水溶液(10 mL)で順次洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥後、自然ろ過し、ろ液を減圧濃縮した。残渣をジイソプロピルエーテル-ヘプタンより再結晶し、表題化合物(7.78 g,白色結晶)を得た。収率46.3%。融点93.7℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 2.41 (s, 6H), 7.26-7.31 (m, 4H), 7.54-7.61 (m, 4H), 8.03 (d, 1H, J = 477.5 Hz).
13C-NMR (75 MHz, CDCl3, CDCl3) δ: 22.05, 128.22, 129.89, 130.07, 131.06, 131.22, 143.43.
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: 22.72 (dquint, J = 477.1 Hz, 13.8 Hz).
元素分析 C14H15OPとして
計算値; C: 73.03, H: 6.57, P:13.45.
実測値; C: 72.80, H: 6.58, P:13.31.
【0052】
参考例9
ビス(2-メチルフェニル)ホスフィンオキサイド
【化62】
Figure 0004523227
アルゴン雰囲気下、マグネシウム(3.55 g, 1.0 当量)および少量のヨウ素のTHF (40 mL)溶液を室温で1時間撹拌した。o-トリルブロマイド(25 g, 0.146 moL)のTHF (5 mL)溶液を30℃で加えた。ついで40℃で30分間攪拌した後、5℃で1時間攪拌した。ついで5℃で亜リン酸ジエチル(10.08 g, 0.5 当量)のTHF(10 mL)溶液を加えた後、5℃で1時間撹拌した。3℃で水(20 mL)を加え、ついでトルエン(50 mL)、6M-HCl(20 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、有機層を水(10 mL)、5%NaHCO3水溶液(10 mL)、5%NaCl水溶液(10 mL)で順次洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥後、自然ろ過し、ろ液を減圧濃縮した。残渣をヘプタンより再結晶し、表題化合物(6.70 g,白色結晶)を得た。収率39.9%。融点91.3℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 2.37 (s, 6H), 7.18-7.26 (m, 2H), 7.29-7.34 (m, 2H), 7.43-7.48 (m, 2H), 7.70 (d, 1H, J = 15.06Hz), 7.72 (d, 1H, J = 14.82Hz), 8.21 (d, 1H, J = 476.9 Hz).
13C-NMR (75 MHz, CDCl3, CDCl3) δ: 20.59, 126.36, 126.53, 129.04, 130.36, 131.55, 131.69, 132.76, 132.93, 141.44, 141.57.
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: 16.66-17.93 (m), 20.26-21.86 (m).
【0053】
参考例10
ビス(4-メトキシ-3,5-ジメチルフェニル)ホスフィンオキサイド
【化63】
Figure 0004523227
アルゴン雰囲気下、マグネシウム(2.26 g, 0.95 当量)、少量のヨウ素および少量の1,2-ジブロモエタンのTHF (25 mL)溶液を室温で1時間撹拌した。4-ブロモ-2,6-ジメチルアニソール(20 g, 0.093 moL)のTHF (10 mL)溶液を20℃で加えた。ついで40℃で30分間攪拌した後、5℃で30分間攪拌した。ついで5℃で亜リン酸ジエチル(7.53 g, 0.5 当量)のTHF (10 mL)溶液を加えた後、5℃で2時間撹拌した。3℃でトルエン(50mL)を加え、ついで3M-HCl(30 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、有機層を水(10 mL)、5%NaHCO3水溶液(10 mL)、5%NaCl水溶液(10 mL)で順次洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥後、自然ろ過し、ろ液を減圧濃縮した。残渣をカラムクロマトグラフィー(シリカゲル 20 g、トルエン→酢酸エチル)で精製した。表題化合物(6.91 g,無色オイル)を得た。収率46.7%。
1H-NMR (300 MHz, CDCl3, TMS) δ: 2.30 (s, 12H), 3.74 (s, 6H), 7.34 (d, 4H, J = 13.74Hz), 7.91 (d, 1H, J = 476.8 Hz).
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: 22.63 (dquint, J = 477.0 Hz, 13.6 Hz).
【0054】
参考例11
ビス(1,3-ベンゾジオキソール-5-イル)ホスフィンオキサイド
【化64】
Figure 0004523227
アルゴン雰囲気下、マグネシウム(3.01 g, 1.0 当量)、少量のヨウ素および少量の1,2-ジブロモエタンのTHF (30 mL)溶液を室温で1時間撹拌した。5-ブロモ-1,3-ベンゾジオキソール(25 g, 0.124 moL)のTHF (20 mL)溶液を35℃で加えた。ついで40℃で30分間攪拌した後、5℃で30分間攪拌した。ついで5℃で亜リン酸ジエチル(10.07 g, 0.5 当量)のTHF (10 mL)溶液を加えた後、5℃で1時間撹拌した。3℃で水(20 mL)を加え、ついでトルエン(70 mL)、6M-HCl(20 mL)を加えた後、室温で30分間攪拌した。THF (30 mL)加え、反応液を分液し、有機層を水(10 mL)、5%NaHCO3水溶液(10 mL)、5%NaCl水溶液(10 mL)で順次洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥後、自然ろ過し、ろ液を減圧濃縮した。残渣をジイソプロピルエーテルより再結晶し、表題化合物(7.75 g,白色結晶)を得た。収率43.1%。融点127.9℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 6.01 (s, 4H), 6.90 (dd, 2H, J = 7.86Hz, 2.22Hz), 7.04 (dd, 2H, J = 12.87Hz, 1.14Hz), 7.18-7.26 (m, 2H), 7.92 (d, 1H, J = 483.0 Hz).
13C-NMR (75 MHz, CDCl3, CDCl3) δ: 102.14, 109.31, 109.53, 110.25, 110.44, 124.35, 125.76, 126.52, 126.69, 148.60, 148.85, 151.80.
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: 22.59 (dquint, J = 483.5 Hz, 13.4 Hz).
元素分析 C14H11O5Pとして
計算値; C: 57.94, H: 3.82, P:10.67.
実測値; C: 57.88, H: 3.83, P:10.57.
【0055】
参考例12
ビス(2-ナフチル)ホスフィンオキサイド
【化65】
Figure 0004523227
アルゴン雰囲気下、マグネシウム(2.94 g, 1.0 当量)、少量のヨウ素および少量の1,2-ジブロモエタンのTHF (30 mL)溶液を室温で1時間撹拌した。2-ブロモナフタレン(25 g, 0.121 moL)のTHF (20 mL)溶液を35℃で加えた。ついで40℃で30分間攪拌した後、5℃で30分間攪拌した。ついで5℃で亜リン酸ジエチル(9.77 g, 0.5 当量)のTHF (10 mL)溶液を加えた後、5℃で3時間撹拌した。3℃で水(20 mL)を加え、ついでトルエン(60 mL)、6M-HCl(20 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、有機層を水(10 mL)、5%NaHCO3水溶液(10 mL)、5%NaCl水溶液(10 mL)で順次洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥後、自然ろ過し、ろ液を減圧濃縮した。残渣をジイソプロピルエーテル-ヘプタンより再結晶し、表題化合物(9.62 g,白色結晶)を得た。収率53.0%。融点98.3℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 7.49-7.64 (m, 6.5H), 7.86-7.95 (m, 6H), 8.40 (d, 2H, J = 15.75Hz), 9.15 (s, 0.5H).
13C-NMR (75 MHz, CDCl3, CDCl3) δ: 125.07, 125.23, 127.13, 127.76, 127.93, 128.81, 128.96, 132.43, 132.62, 132.82, 132.96, 135.05.
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: 22.99 (dquint, J = 481.0 Hz, 13.3 Hz).
【0056】
参考例13
ビス(4-クロロフェニル)ホスフィンオキサイド
【化66】
Figure 0004523227
アルゴン雰囲気下、0℃にて亜リン酸ジエチル(5.40 g, 0.033mmoL)のTHF (30 mL)溶液に4-クロロマグネシウムブロマイド 1M ジエチルエーテル溶液(100 mL, 3.0当量)を加えた後、5℃で2時間撹拌した。3℃で水(20 mL)を加え、ついでトルエン(80 mL)、6M-HCl(20 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、有機層を水(10 mL)、5%NaHCO3水溶液(10 mL)、5%NaCl水溶液(10 mL)で順次洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥後、自然ろ過し、ろ液を減圧濃縮した。残渣をヘプタンより再結晶し、表題化合物(8.70 g,白色結晶)を得た。収率97.3%。融点124.0℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 7.47-7.52 (m, 4H), 7.57-7.65 (m, 4H), 8.05 (d, 1H, J = 487.1Hz).
13C-NMR (75 MHz, CDCl3, CDCl3) δ: 129.13, 129.77, 129.95, 130.49, 132.36, 132.53, 139.95.
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: 17.59-18.54 (m), 21.62-22.70 (m).
【0057】
参考例14
ビス(ビフェニル-4-イル)ホスフィンオキサイド
【化67】
Figure 0004523227
アルゴン雰囲気下、マグネシウム(2.60 g, 1.0 当量)、少量のヨウ素および少量の1,2-ジブロモエタンのTHF (20 mL)溶液を室温で30分間撹拌した。4-ブロモビフェニル(25 g, 0.107 moL)のTHF (20 mL)溶液を35℃で加えた。ついで40℃で1時間攪拌した後、5℃で30分間攪拌した。ついで5℃で亜リン酸ジエチル(7.39 g, 0.5 当量)のTHF (10 mL)溶液を加えた後、5℃で2時間撹拌した。3℃でトルエン(60 mL)を加え、ついで、3M-HCl(30 mL)を加えた後、室温で30分間攪拌した。
THF (50 mL)を加え、反応液を分液し、有機層を5%NaCl水溶液(10 mL)で洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥後、自然ろ過し、ろ液を減圧濃縮した。残渣をジイソプロピルエーテルより再結晶し、表題化合物(12.47 g,白色結晶)を得た。収率65.8%。
1H-NMR (300 MHz, THF-d8, TMS) δ: 7.34-7.43 (m, 7H), 7.57-7.66 (m, 5H), 7.78-7.87 (m, 6H), 8.11 (d, 1H, J = 479.3Hz).
13C-NMR (75 MHz, THF-d8, CDCl3) δ: 124.80, 125.06, 125.11, 125.29, 125.99, 126.58, 126.80, 128.95, 129.10.
31P-NMR (121 MHz, THF-d8, 85%H3PO4) δ: 16.35 (dquint, J = 479.5 Hz, 13.3 Hz).
【0058】
参考例15
ビス(p-tert-ブチルフェニル)ホスフィンオキサイド
【化68】
Figure 0004523227
窒素気流下、マグネシウム(3.62 g, 4.0 当量)および少量のヨウ素、1,2-ジブロモエタンのTHF(24 mL)溶液を室温で30分間撹拌した。p-tert-ブチルブロモベンゼン(31.62 g, 3.99 当量)のTHF(130 mL)溶液を24℃で加えた後、40℃で30分間攪拌した。ついで21℃で亜リン酸ジエチル(5.14 g, 37.2 mmol)のTHF(8 mL)溶液を加えた後、22℃で30分間撹拌した。4℃で6M-HCl(20 mL)を加え、ついで水(20 mL)、トルエン(60 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、有機層を水(20 mL)、10%NaHCO3水溶液(20 mL)、10%NaCl水溶液(20 mL)で順次洗浄し、有機層を無水硫酸マグネシウムで乾燥後、自然ろ過し、ろ液を減圧濃縮した。残渣をn-ヘキサンより再結晶し、乾燥後(減圧、40℃)、表題化合物(9.17 g, 白色粉末)を得た。収率78.4%。融点:142.5℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 1.33 (s, 18H), 7.50-7.68 (m, 8H), 8.05
(d, 1H, JH-P = 477.2 Hz).
13C-NMR (75MHz, CDCl3, CDCl3) δ: 31.00, 35.00, 125.88, 127.66, 129.04, 130.47, 130.63, 155.94, 155.98.
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: 22.32 (d, quint, JH-P = 478.0 Hz, JHCC-P = 13.2 Hz).
元素分析 C20H27OPとして
計算値; C: 76.40, H: 8.66, P: 9.85.
実測値; C: 76.44, H: 8.64, P: 9.53.
【0059】
参考例16
ビス(3,5-ジ-tert-ブチルフェニル)ホスフィンオキサイド
【化69】
Figure 0004523227
窒素気流下、マグネシウム(1.21 g, 3.61当量)および少量のヨウ素、1,2-ジブロモエタンのTHF(8 mL)溶液を室温で1時間撹拌した。1-ブロモ-3,5-ジ-tert-ブチルベンゼン(12.99 g, 3.49 当量)のTHF(40 mL)溶液を23℃で加えた後、40℃で30分間攪拌した。ついで24℃で亜リン酸ジエチル(1.90 g,13.8 mmol)のTHF(3 mL)溶液を加えた後、24℃で30分間撹拌した。2℃で6M-HCl(7 mL)を加え、ついで水(7 mL)、トルエン(20 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、有機層を水(7 mL)、10%NaHCO3水溶液(7 mL)、10%NaCl水溶液(7 mL)で順次洗浄し、有機層を無水硫酸マグネシウムで乾燥後、自然ろ過し、ろ液を減圧濃縮した。残渣をn-ヘキサンより再結晶し、乾燥後(減圧、40℃)、表題化合物(3.38g, 白色粉末)を得た。収率57.5%。融点:184.6℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 1.33 (s, 36H), 7.53 (s, 1H), 7.53 (s, 1H), 7.58 (s, 1H), 7.58 (s, 1H), 7.63 (s, 1H), 7.63 (s, 1H), 8.10 (d, 1H, JH-P = 474.9 Hz).
13C-NMR (75 MHz, CDCl3, CDCl3) δ: 31.23, 35.00, 124.75, 124.91, 126.49, 126.52, 129.96, 131.30, 151.30, 151.46.
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: 24.94 (d, quint, JH-P = 474.8 Hz, JHCC-P = 14.3 Hz).
元素分析 C28H43OPとして
計算値; C: 78.83, H: 10.16, P: 7.26.
実測値; C: 78.74, H: 9.93, P: 7.16.
【0060】
参考例17
ビス(m-トリル)ホスフィンオキサイド
【化70】
Figure 0004523227
窒素気流下、マグネシウム(3.60 g, 3.50当量)および少量のヨウ素、1,2-ジブロモエタンのTHF(25 mL)溶液を室温で30分間撹拌した。m-ブロモトルエン(25.36 g, 3.51 当量)のTHF(130 mL)溶液を24℃で加えた後、40℃で30分間攪拌した。ついで25℃で亜リン酸ジエチル(5.84 g, 42.3 mmol)のTHF(10 mL)溶液を加えた後、24℃で1.5時間撹拌した。4℃で6M-HCl(20 mL)を加え、ついで水(20 mL)、トルエン(60 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、有機層を10%NaHCO3水溶液(20 mL)、水(20 mL)、10%NaCl水溶液(20 mL)で順次洗浄し、有機層を無水硫酸マグネシウムで乾燥後、自然ろ過し、さらにメンブランフィルター(0.2 μm)で減圧ろ過後、ろ液を減圧濃縮し、表題化合物(9.09 g,無色オイル)を得た。収率93.3%
1H-NMR (300 MHz, CDCl3, TMS) δ: 2.34 (s, 6H), 7.31-7.54 (m, 8H), 7.97 (d, 1H, JH-P = 479.3 Hz).
13C-NMR (75 MHz, CDCl3, CDCl3) δ: 21.25, 127.53, 127.69, 128.60, 128.78, 130.93, 131.08, 133.25, 133.29, 138.67, 138.84.
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: 23.25 (d, quint, JH-P = 479.2 Hz, JHCC-P = 13.8 Hz).
質量分析(FAB-HR); 計算値; 231.0939.
実測値; 231.0918(MH+).
【0061】
参考例18
ビス(4-メチルフェニル)ホスフィン-ボラン錯体
【化71】
Figure 0004523227
アルゴン雰囲気下、塩化セリウム(7.89 g, 3.0 当量)のTHF(20 mL)溶液を室温(25℃)で30分間攪拌した。水素化ホウ素ナトリウム(1.25 g, 3.1 当量)を加えた後、室温で1時間攪拌した。ついで5℃にて参考例8で合成したビス(4-メチルフェニル)ホスフィンオキサイド(2.5 g, 0.011 moL)および水素化リチウムアルミニウム(0.494 g, 1.2 当量)を順次加えた後、室温で17時間攪拌した。3℃で水(10 mL)を加え、ついでトルエン(20 mL)、6M-HCl(20 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、水層をトルエン(30 mL)で抽出した。合わせた有機層を5%NaHCO3水溶液(20 mL)、5%NaCl水溶液(20 mL)で順次洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、ろ液を減圧濃縮した。残渣をカラムクロマトグラフィー(アルミナ 25 g、n-ヘキサン/酢酸エチル=10/1)で精製した。残渣をヘプタンより再結晶し、表題化合物(1.28 g,白色結晶)を得た。収率51.0 %。融点78.6℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 0.43-1.61 (m, 3H), 2.38 (s, 6H), 6.26 (dq, 1H, J = 377.5 Hz, 6.24 Hz), 7.24-7.27 (m, 4H), 7.51-7.58 (m, 4H).13C-NMR (75 MHz, CDCl3, CDCl3) δ: 21.90, 123.02, 123.81, 130.14, 130.28, 133.22, 133.35, 142.44.
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -1.44- -0.16 (m), 1.62-3.19 (m).元素分析 C14H18BPとして
計算値; C: 73.72, H: 7.95, P:13.58.
実測値; C: 73.65, H: 7.93, P:13.54.
【0062】
参考例19
(S)-6,6’-ジブロモ-2,2'-ビス(メトキシメチルオキシ)-1,1'-ビナフチル
(S)-6,6’-ジブロモ-1,1’-ビ-2-ナフトール(4.0 g, 9.0 mmoL)のジクロロメタン(40 mL)溶液に、ジイソプロピルエチルアミン(3.49 g, 3.0 当量)を室温(25℃)で加えた。ついでクロロメチルメチルエーテル(1.59 g, 2.2 当量)を5℃で加え、室温で18時間撹拌した。3℃で水(10 mL)を加えた後、室温で30分攪拌した。反応液を分液し、有機層を5%NaCl水溶液(10 mL)で洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、ろ液を減圧濃縮した。残渣をジイソプロピルエーテルより再結晶し、表題化合物(4.28 g, 薄黄白色結晶)を得た。収率89.4%。
1H-NMR (300MHz, CDCl3, TMS) δ: 3.16 (s, 6H), 5.04 (dd, 4H, J = 32.32 Hz, 6.85 Hz), 6.98 (d, 2H, J = 9.02 Hz), 7.29 (dd, 2H, J = 9.03 Hz, 2.01 Hz), 7.60 (d, 2H, J = 9.07 Hz), 7.87 (d, 2H, J = 9.08 Hz), 8.04 (d, 2H, J = 1.93Hz).
【0063】
参考例20
(S)-2,2'-ビス(メトキシメチルオキシ)-6,6’-ジフェニル-1,1'-ビナフチル
(S)-6,6’-ジブロモ-2,2'-ビス(メトキシメチルオキシ)-1,1'-ビナフチル(2.0 g, 3.76 mmoL)のジメトキシエタン(20 mL)溶液に、ジヒドロキシフェニルボラン(1.37 g, 3.0 当量)、テトラキストリフェニルホスフィンパラジウム(0.43 g, 0.1 当量)および炭酸ナトリウム(1.99 g, 3.0 当量)水溶液(2 mL)を室温(25℃)で加え、還流下で8時間撹拌した。3℃で水(10 mL)、酢酸エチル(20 mL)を加えた後、室温で30分攪拌した。反応液を分液し、有機層を5%NaCl水溶液(10 mL)で洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、ろ液を減圧濃縮した。残渣をカラムクロマトグラフィー(シリカゲル 25 g、n-ヘキサン/酢酸エチル=5/1)で精製した。有効分画を減圧濃縮して表題化合物(1.63 g,黄色アモルファス)を得た。収率82.2%。
1H-NMR (300MHz, CDCl3, TMS) δ: 3.22 (s, 6H), 5.10 (dd, 4H, J = 29.74 Hz, 6.77 Hz), 7.29-7.39 (m, 4H), 7.45-7.57 (m, 6H), 7.63-7.73 (m, 6H), 8.05 (d, 2H, J = 9.00 Hz), 8.12 (d, 2H, J = 1.66 Hz).
【0064】
参考例21
(S)-6,6’-ジフェニル-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチル
(S)-2,2'-ビス(メトキシメチルオキシ)-6,6’-ジフェニル-1,1'-ビナフチル(1.63 g, 3.08 mmoL)のTHF(5 mL)溶液に、6M-HCl水溶液(5 mL)を加え、還流下で7時間撹拌した。3℃で30%NaOH水溶液、酢酸エチル(20 mL)を加えた後、室温で30分攪拌した。反応液を分液し、有機層を水(10 mL)、5%NaCl水溶液(10 mL)で洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、ろ液を減圧濃縮した。残渣をカラムクロマトグラフィー(シリカゲル 25 g、n-ヘキサン/酢酸エチル=10/1)で精製した。残渣のアセトニトリル(15 mL)溶液に、ピリジン(0.86 g, 2.7 当量)を室温で加えた。ついでトリフルオロメタンスルホン酸無水物(2.84 g, 2.5 当量)を5℃で加え、室温で2時間撹拌した。3℃で水(10 mL)を加え、ついで酢酸エチル(30 mL)を加えた後、室温で30分攪拌した。反応液を分液し、有機層を水(10 mL)、5%NaCl水溶液(10 mL)で洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、ろ液を減圧濃縮した。残渣をカラムクロマトグラフィー(シリカゲル 25 g、n-ヘキサン/酢酸エチル=10/1)で精製した。有効分画を減圧濃縮して表題化合物(0.74 g,無色アモルファス)を得た。収率34.0%
1H-NMR (300MHz, CDCl3, TMS) δ: 7.36-7.43 (m, 4H), 7.47-7.52 (m, 4H), 7.65-7.73 (m, 8H), 8.20-8.22 (m, 4H).
13C-NMR (75 MHz, CDCl3, CDCl3) δ: 119.75, 125.97, 127.30, 127.39, 127.71, 127.93, 128.97, 132.16, 132.24, 132.69, 139.92, 140.03, 145.30.
元素分析 C34H20F6O6Sとして
計算値; C: 58.12, H: 2.87.
実測値; C: 57.86, H: 3.01.
【0065】
参考例22
7,7’-ジメトキシ-1,1’-ビ-2-ナフトール
7-メトキシ-2-ナフトール(5.0 g, 28.7 mmoL)のジクロロメタン(50 mL)溶液に、Cu(OH)Cl-テトラメチルエチレンジアミン錯体(1.33 g, 0.1 当量)を室温(25℃)で加え、室温で8時間撹拌した。3℃で水(20 mL)を加えた後、室温で30分攪拌した。反応液を分液し、有機層を5%NaCl水溶液(10 mL)で洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、ろ液を減圧濃縮した。残渣に酢酸エチル(50 mL)、シリカゲル(10 g)を加え、室温で1時間攪拌した後、ろ液を減圧濃縮して表題化合物(5.10 g,黄褐色アモルファス)を得た。収率100%。
1H-NMR (300MHz, CDCl3, TMS) δ: 3.58 (s, 6H), 5.07 (s,2H), 6.49 (d, 2H, J = 2.43 Hz), 7.03 (dd, 2H, J = 8.89 Hz, 2.49 Hz), 7.22 (d, 2H, J = 8.84 Hz), 7.78 (d, 2H, J = 8.90 Hz), 7.88 (d, 2H, J = 8.85 Hz).
13C-NMR (75 MHz, CDCl3, CDCl3) δ: 55.54, 103.58, 110.47, 115.50, 116.43, 125.20, 130.39, 131.51, 135.11, 153.74, 159.52.
【0066】
参考例23
7,7’-ジメトキシ-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチル
7,7’-ジメトキシ-1,1’-ビ-2-ナフトール(5.10 g, 14.3 mmoL)のアセトニトリル(50 mL)溶液に、ピリジン(3.05 g, 2.7 当量)を室温(25℃)で加えた。ついでトリフルオロメタンスルホン酸無水物(10.12 g, 2.5 当量)を5℃で加え、室温で5時間撹拌した。3℃で水(30 mL)を加え、ついで酢酸エチル(50 mL)を加えた後、室温で30分攪拌した。反応液を分液し、有機層を水(10 mL)、5%NaCl水溶液(10 mL)で洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、ろ液を減圧濃縮した。残渣に酢酸エチル(30 mL)、活性炭(1.0 g)を加え、室温で1時間攪拌した後、ろ液を減圧濃縮した。残渣をジイソプロピルエーテルより再結晶し、表題化合物(5.80 g,赤褐白色結晶)を得た。収率66.5%。
1H-NMR (300MHz, CDCl3, TMS) δ: 3.55 (s, 6H), 6.56 (s, 2H), 7.26 (dd, 2H, J = 8.99 Hz, 2.51 Hz), 7.48 (d, 2H, J = 8.95 Hz), 7.92 (d, 2H, J = 8.98 Hz), 8.06 (d, 2H, J = 8.95 Hz).
13C-NMR (75 MHz, CDCl3, CDCl3) δ: 55.61, 105.41, 117.11, 120.49, 122.63, 128.27, 130.26, 131.86, 134.98, 146.39, 159.57.
元素分析 C24H16F6O8S2として
計算値; C: 47.22, H: 2.64.
実測値; C: 46.93, H: 2.55.
【0067】
実施例1
ビス(3,5-ジメチルフェニル)ホスフィン-ボラン錯体
【化72】
Figure 0004523227
(製造法1)
アルゴン雰囲気下、塩化セリウム(14.3 g, 3.0 当量)のTHF(40 mL)溶液を室温(25℃)で30分間攪拌した。水素化ホウ素ナトリウム(2.19 g, 3.0 当量)を加えた後、室温で1時間攪拌した。ついで5℃にて参考例2で合成したビス(3,5-ジメチルフェニル)ホスフィンオキサイド(5.0 g, 19.3 mmoL)および水素化リチウムアルミニウム(0.88 g, 1.2 当量)を順次加えた後、室温で3時間攪拌した。3℃で水(40 mL)を加え、ついでトルエン(40 mL)、6M-HCl(20 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、ろ液を減圧濃縮した。残渣をジイソプロピルエーテルより再結晶し、表題化合物(2.8 g,白色結晶)を得た。収率57.4%。
(製造法2)
窒素気流下、塩化セリウム(2.87 g, 2.99 当量)のTHF(20 mL)溶液を室温(25℃)で40分間攪拌した。水素化ホウ素ナトリウム(0.44 g, 2.99 当量)を加えた後、室温で1時間攪拌した。ついで-12℃にて参考例2で合成したビス(3,5-ジメチルフェニル)ホスフィンオキサイド(1.00 g, 3.89 mmol)および水素化リチウムアルミニウム(0.17 g, 1.16 当量)を順次加えた後、4時間攪拌した。-10℃で水(10 mL)を加え、ついでトルエン(20 mL)、-5℃で6M-HCl(3 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、有機層を減圧濃縮した。濃縮液をシリカゲルカラムクロマトグラフィー(10g, トルエン)にて精製し、有効区分を減圧濃縮した。残渣をヘプタンより再結晶し、表題化合物(0.70 g, 白色粉末)を得た。収率70.6%。融点:106.5℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 0.30-1.80 (m, 3H), 2.35 (s, 12H), 6.20 (dq, 1H, JH-P = 377.4 Hz, J = 6.9 Hz), 7.14 (s, 2H), 7.26 (s, 2H), 7.30 (s, 2H).
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: 0.88-1.32 (m), 3.32-5.02 (m).
【0068】
実施例2
(S)-2,2'-ビス[ビス(3,5-ジメチルフェニル)ホスフィノ]-1,1'-ビナフチル
【化73】
Figure 0004523227
アルゴン雰囲気下、[1,2-ビス(ジフェニルホスフィノ)−エタン]ジクロロニッケル(42 mg, 0.1 当量)と参考例1で合成した(S)-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチル(399 mg, 0.73 mmoL)および1,4-ジアザビシクロ[2,2,2]オクタン(489 mg, 6.0 当量)のDMF溶液(5 mL)に、実施例1で合成したビス(3,5-ジメチルフェニル)ホスフィン-ボラン錯体(428 mg, 2.3 当量)を室温で加えた後、室温で30分間攪拌した。ついで110℃で96時間攪拌した。DMFを減圧留去し、残渣にメタノールを加えて、表題化合物(329 mg, 淡黄白色結晶)を得た。収率62%。
1H-NMR (300 MHz, CDCl3, TMS) δ: 2.06 (s, 12H), 2.13 (s, 12H), 6.70-6.73 (m, 10H), 6.81 (s, 2H), 6.90 (d, 2H, J = 8.46 Hz), 7.01 (dd, 2H, J = 7.14Hz, 7.14Hz), 7.39 (dd, 2H, J = 6.99Hz, 6.99Hz), 7.52 (dd, 2H, J = 8.49Hz, 2.28Hz), 7.84-7.88 (m, 4H).
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -14.25 (s).
(参照:31P-NMR (161 MHz, CDCl3, 85%H3PO4) δ: -14.9. ジャーナル・オブ・オーガニック・ケミストリー,59巻,3064頁,1994年)
元素分析 C52H48P2として
計算値; C: 84.99, H: 6.58, P:8.43.
実測値; C: 84.60, H: 6.58, P:8.07.
【0069】
実施例3
ビス(4-メトキシフェニル)ホスフィン-ボラン錯体
【化74】
Figure 0004523227
アルゴン雰囲気下、塩化セリウム(7.03 g, 3.0 当量)のTHF(20 mL)溶液を室温(25℃)で30分間攪拌した。水素化ホウ素ナトリウム(1.08 g, 3.1 当量)を加えた後、室温で1時間攪拌した。ついで5℃にて参考例3で合成したビス(4-メトキシフェニル)ホスフィンオキサイド(2.5 g, 9.1 mmoL)および水素化リチウムアルミニウム(0.43 g, 1.2 当量)を順次加えた後、室温で3時間攪拌した。3℃で水(20 mL)を加え、ついでトルエン(50 mL)、6M-HCl(10 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、水層をトルエン(20 mL)で3回抽出した。合わせた有機層を5%NaHCO3水溶液(20 mL)、5%NaCl水溶液(20 mL)で順次洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、ろ液を減圧濃縮した。残渣をカラムクロマトグラフィー(シリカゲル 30 g、n-ヘキサン/酢酸エチル=5/1→2/1)で精製した。残渣をヘプタンより再結晶し、表題化合物(0.98 g,白色結晶)を得た。収率41.3%。融点65.8℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 0.43-1.57 (m, 3H), 3.82 (s, 6H), 6.24 (dq, 1H, J = 377.9Hz, 6.78Hz), 6.95 (dd, 4H, J = 8.71 Hz, 1.72 Hz), 7.53-7.60 (m, 4H).
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -4.53- -2.73 (m), -1.26-0.40 (m), -4.15 (m).
【0070】
実施例4
(S)-2,2'-ビス[ビス(4-メトキシフェニル)ホスフィノ]-1,1'-ビナフチル
【化75】
Figure 0004523227
アルゴン雰囲気下、[1,2-ビス(ジフェニルホスフィノ)-エタン]ジクロロニッケル(53 mg, 0.1 当量)と参考例1で合成した(S)-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチル(500 mg, 0.91 mmoL)および1,4-ジアザビシクロ[2,2,2]オクタン(613 mg, 6.0 当量)のDMF溶液(5 mL)に、実施例3で合成したビス(4-メトキシフェニル)ホスフィン-ボラン錯体(543 mg, 2.3 当量)を室温で加えた後、室温で30分間攪拌した。ついで110℃で48時間攪拌した。DMFを減圧留去し、残渣にメタノールを加えて、表題化合物(444 mg, 白色結晶)を得た。収率66%。
1H-NMR (300 MHz, CDCl3, TMS) δ: 3.73 (s, 12H), 6.64 (d, 4H, J = 8.35 Hz), 6.69 (d, 4H, J = 8.19 Hz), 6.80 (d, 2H, J = 8.49Hz), 6.92-7.03 (m, 10H), 7.30-7.38 (m, 2H), 7.40-7.45 (m, 2H), 7.82 (d, 2H, J = 8.13 Hz), 7.87 (d, 2H, J = 8.52 Hz).
31P-NMR (121MHz, CDCl3, 85%H3PO4) δ: -17.40 (s).
(参照:31P-NMR (161 MHz, CDCl3, 85%H3PO4) δ: -16.8. ジャーナル・オブ・オーガニック・ケミストリー,59巻,3064頁,1994年)
【0071】
実施例5
ビス(4-ジメチルアミノフェニル)ホスフィン-ボラン錯体
【化76】
Figure 0004523227
アルゴン雰囲気下、塩化セリウム(7.69 g, 3.0 当量)のTHF(25 mL)溶液を室温(25℃)で30分間攪拌した。水素化ホウ素ナトリウム(1.22 g, 3.1 当量)を加えた後、室温で1時間攪拌した。ついで5℃にて参考例4で合成したビス(4-ジメチルアミノフェニル)ホスフィンオキサイド(3.0 g, 10.4 mmoL)および水素化リチウムアルミニウム(0.47 g, 1.2 当量)を順次加えた後、室温で3時間攪拌した。3℃で水(20 mL)を加え、ついでトルエン(40 mL)、6M-HCl(10 mL)を加えた後、室温で30分間攪拌した。反応液をNaOHで中和し、分液した。水層をTHF(50 mL)で抽出した。合わせた有機層を5%NaCl水溶液(20 mL)で順次洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、ろ液を減圧濃縮した。残渣をカラムクロマトグラフィー(シリカゲル 5 g、n-ヘキサン/酢酸エチル=1/1)で精製した。残渣をヘプタンより再結晶し、表題化合物(0.61 g,白色結晶)を得た。収率20.5%。融点142.6℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 0.43-1.33 (m, 3H), 3.03 (s, 12H), 6.26 (dq, 1H, J = 375.1 Hz, 6.57 Hz), 7.51 (d, 4H, J = 8.81 Hz), 7.54 (d, 4H, J = 8.81 Hz).
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -6.40- -4.73 (m), -3.33- -1.66 (m).
【0072】
実施例6
(S)-2,2'-ビス[ビス(4-ジメチルアミノフェニル)ホスフィノ]-1,1'-ビナフチル
【化77】
Figure 0004523227
アルゴン雰囲気下、[1,2-ビス(ジフェニルホスフィノ)-エタン]ジクロロニッケル(48 mg, 0.1 当量)と参考例1で合成した(S)-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチル(507 mg, 0.92 mmoL)および1,4-ジアザビシクロ[2,2,2]オクタン(620 mg, 6.0 当量)のDMF溶液(5 mL)に、実施例5で合成したビス(4-ジメチルアミノフェニル)ホスフィン-ボラン錯体(606 mg, 2.3 当量)を室温で加えた後、室温で30分間攪拌した。ついで110℃で129時間攪拌した。DMFを減圧留去し、残渣にメタノールを加えて、表題化合物(461 mg, 黄白色結晶)を得た。収率62.9%。
1H-NMR (300 MHz, CDCl3, TMS) δ: 2.88 (s, 24H), 6.43 (d, 4H, J = 6.79 Hz), 6.50-6.59 (m, 4H), 6.77-7.03 (m, 12H), 7.18-7.26 (m, 2H), 7.51 (d, 2H, J = 7.13 Hz), 7.78 (d, 2H, J = 7.56 Hz), 7.83 (d, 2H, J = 8.28 Hz).
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -18.00 (s).
【0073】
実施例7
ビス(4-フルオロフェニル)ホスフィン-ボラン錯体
【化78】
Figure 0004523227
アルゴン雰囲気下、塩化セリウム(9.31 g, 3.0 当量)のTHF(25 mL)溶液を室温(25℃)で30分間攪拌した。水素化ホウ素ナトリウム(1.48 g, 3.1 当量)を加えた後、室温で1時間攪拌した。ついで5℃にて参考例5で合成したビス(4-フルオロフェニル)ホスフィンオキサイド(3.0 g, 12.6 mmoL)および水素化リチウムアルミニウム(0.57 g, 1.2 当量)を順次加えた後、室温で3時間攪拌した。3℃で水(10 mL)を加え、ついでトルエン(30 mL)、6M-HCl(20 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、水層をトルエン(20 mL)で抽出した。合わせた有機層を5%NaCl水溶液(20 mL)で洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、ろ液を減圧濃縮した。残渣をカラムクロマトグラフィー(アルミナ 25 g、n-ヘキサン/酢酸エチル=20/1)で精製した。残渣をヘプタンより再結晶し、表題化合物(0.61 g,白色結晶)を得た。収率20.4%。融点71.7℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 0.42-1.36 (m, 3H), 6.32 (dq, 1H, J = 380.4 Hz, 6.89 Hz), 7.14-7.20 (m, 4H), 7.62-7.70 (m, 4H).
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -3.29- -1.21 (m), -0.29-1.91 (m).
【0074】
実施例8
(S)-2,2'-ビス[ビス(4-フルオロフェニル)ホスフィノ]-1,1'-ビナフチル
【化79】
Figure 0004523227
アルゴン雰囲気下、[1,2-ビス(ジフェニルホスフィノ)-エタン]ジクロロニッケル(48 mg, 0.1 当量)と参考例1で合成した(S)-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチル(507 mg, 0.92 mmoL)および1,4-ジアザビシクロ[2,2,2]オクタン(620 mg, 6.0 当量)のDMF溶液(5 mL)に、実施例7で合成したビス(4-フルオロフェニル)ホスフィン-ボラン錯体(500 mg, 2.3 当量)を室温で加えた後、室温で30分間攪拌した。ついで110℃で129時間攪拌した。DMFを減圧留去し、残渣にメタノールを加えて、表題化合物(344 mg, 黄白色結晶)を得た。収率53.8 %。
1H-NMR (300 MHz, CDCl3, TMS) δ: 6.74-7.07 (m, 16H), 7.34-7.41 (m, 4H), 7.41-7.93 (m, 4H), 7.85 (d, 2H, J = 8.20 Hz), 7.91 (d, 2H, J = 8.47 Hz).31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -16.63 (s).
(参照:31P-NMR (161 MHz, CDCl3, 85%H3PO4) δ: -17.0. ジャーナル・オブ・オーガニック・ケミストリー,59巻,3064頁,1994年)
【0075】
実施例9
ビス(3,5-ジ-tert-ブチル-4-メトキシフェニル)ホスフィン-ボラン錯体
【化80】
Figure 0004523227
アルゴン雰囲気下、塩化セリウム(4.55 g, 3.0 当量)のTHF(25 mL)溶液を室温(25℃)で30分間攪拌した。水素化ホウ素ナトリウム(0.72 g, 3.1 当量)を加えた後、室温で1時間攪拌した。ついで5℃にて参考例7で合成したビス(3,5-ジ-tert-ブチル-4-メトキシフェニル)ホスフィンオキサイド(3.0 g, 6.16 mmoL)および水素化リチウムアルミニウム(0.28 g, 1.2 当量)を順次加えた後、室温で18時間攪拌した。3℃で水(10 mL)を加え、ついでトルエン(30 mL)、6M-HCl(20 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、水層をトルエン(30 mL)で抽出した。合わせた有機層を5%NaCl水溶液(20 mL)で順次洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、ろ液を減圧濃縮した。残渣をカラムクロマトグラフィー(アルミナ 25 g、n-ヘキサン)で精製した。残渣をヘプタンより再結晶し、表題化合物(1.18 g,白色結晶)を得た。収率39.6 %。融点134.7℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 0.37-1.08 (m, 3H), 1.39 (s, 36H), 3.69 (s, 6H), 6.23 (dq, 1H, J = 376.2 Hz, 6.78 Hz), 7.50 (d, 4H, J = 12.18 Hz).
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -3.33- -1.46 (m), -0.13-1.80 (m).
【0076】
実施例10
(S)-2,2'-ビス[ビス(3,5-ジ-tert-ブチル-4-メトキシフェニル)ホスフィノ]-1,1'-ビナフチル
【化81】
Figure 0004523227
アルゴン雰囲気下、[1,2-ビス(ジフェニルホスフィノ)-エタン]ジクロロニッケル(48 mg, 0.1 当量)と参考例1で合成した(S)-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチル(507 mg, 0.91 mmoL)および1,4-ジアザビシクロ[2,2,2]オクタン(620 mg, 6.0 当量)のDMF溶液(5 mL)に、実施例9で合成したビス(3,5-ジ-tert-ブチル-4-メトキシフェニル)ホスフィン-ボラン錯体(1.03 g, 2.3 当量)を室温で加えた後、室温で30分間攪拌した。ついで110℃で153時間攪拌した。DMFを減圧留去し、残渣にメタノールを加えて、表題化合物(737 mg, 黄白色結晶)を得た。収率69%。融点 129.5℃。旋光度:[α]D = -232°(25℃, c = 1.0, CHCl3)
1H-NMR (300 MHz, CDCl3, TMS) δ: 1.21 (s, 36H), 1.24 (s, 36H), 3.58 (s, 6H), 3.64 (s, 6H), 6.64 (d, 2H, J = 7.60 Hz), 6.77 (d, 2H, J = 7.10 Hz), 6.92-7.00 (m, 4H), 7.13-7.20 (m, 4H), 7.30-7.37 (m, 2H), 7.42-7.51 (m, 2H), 7.77 (d, 2H, J = 6.91 Hz), 7.86 (d, 2H, J = 8.02 Hz).
13C-NMR (75 MHz, CDCl3, CDCl3) δ: 33.34, 33.49, 36.96, 37.19, 65.44, 65.53, 126.64, 127.23, 128.76, 128.80, 128.92, 131.84, 132.95, 134.51, 144.02, 160.37, 161.31.
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -15.02 (s).
質量分析(ESI-HR); 計算値; 1189.7332
実測値; 1189.7350(M-H)
【0077】
実施例11
(S)-2,2'-ビス[ビス(4-メチルフェニル)ホスフィノ]-1,1'-ビナフチル
【化82】
Figure 0004523227
アルゴン雰囲気下、[1,2-ビス(ジフェニルホスフィノ)-エタン]ジクロロニッケル(48 mg, 0.1 当量)と参考例1で合成した(S)-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチル(500 mg、0.91 mmoL)および1,4-ジアザビシクロ[2,2,2]オクタン(610 mg, 6.0 当量)のDMF溶液(5 mL)に、参考例18で合成したビス(4-メチルフェニル)ホスフィン-ボラン錯体(0.476 g, 2.3 当量)を室温で加えた後、室温で30分間攪拌した。ついで110℃で73時間攪拌した。DMFを減圧留去し、残渣にメタノールを加えて、表題化合物(488 mg, 白色結晶)を得た。収率79.2%。
1H-NMR (300 MHz, CDCl3, TMS) δ: 2.27 (s, 6H), 2.29 (s, 6H), 6.86-7.03 (m, 20H), 7.38-7.41 (m, 2H), 7.47-7.50 (m, 2H), 7.85 (d, 2H, J = 8.16 Hz), 7.89 (d, 2H, J = 8.48 Hz).
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -15.73 (s).
元素分析 C48H40P2として
計算値; C: 84.93, H: 5.94, P:9.13.
実測値; C: 84.52, H: 5.90, P:9.09.
【0078】
実施例12
ビス(2-メチルフェニル)ホスフィン-ボラン錯体
【化83】
Figure 0004523227
アルゴン雰囲気下、塩化セリウム(8.66 g, 3.0 当量)のTHF(80 mL)溶液を室温(25℃)で30分間攪拌した。水素化ホウ素ナトリウム(1.37 g, 3.1 当量)を加えた後、室温で1時間攪拌した。ついで5℃にて参考例9で合成したビス(2-メチルフェニル)ホスフィンオキサイド(2.7 g, 11.72 mmoL)および水素化リチウムアルミニウム(0.53 g, 1.2 当量)を順次加えた後、室温で4時間攪拌した。3℃でトルエン(80 mL)を加え、ついで、3M-HCl(30 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、水層をトルエン(20 mL)で抽出した。合わせた有機層を5%NaCl水溶液(20 mL)で洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、ろ液を減圧濃縮した。残渣にトルエン(20 mL)、シリカゲル(10 g)を加え、室温で10分間攪拌した。自然ろ過し、ろ液を減圧濃縮した。残渣に5℃にてTHF(5 mL)、BH3・THF(5mL)を加え、室温で1時間攪拌した。減圧濃縮し、残渣をヘプタンより再結晶し、表題化合物(1.15 g,白色結晶)を得た。収率43.0 %。融点78.0℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 0.42-1.63 (m, 3H), 2.32 (s, 6H), 6.47 (dq, 1H, J = 377.5 Hz, 6.63 Hz), 7.21-7.31 (m, 4H), 7.38-7.43 (m, 2H), 7.59 (d, 1H, J = 13.56Hz), 7.61 (d, 1H, J = 13.53Hz).
13C-NMR (75 MHz, CDCl3, CDCl3) δ: 20.81, 20.88, 126.36, 126.52, 130.85, 130.95, 131.67, 131.70, 133.82, 134.01, 141.42.
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -15.58- -14.22 (m), -12.67- -11.33 (m).
【0079】
実施例13
(S)-2,2'-ビス[ビス(2-メチルフェニル)ホスフィノ]-1,1'-ビナフチル
【化84】
Figure 0004523227
アルゴン雰囲気下、[1,2-ビス(ジフェニルホスフィノ)-エタン]ジクロロニッケル(96 mg, 0.1 当量)と参考例1で合成した(S)-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチル(1.0 g, 1.81 mmoL)および1,4-ジアザビシクロ[2,2,2]オクタン(1.22 g, 6.0 当量)のDMF溶液(5 mL)に、実施例12で合成したビス(2-メチルフェニル)ホスフィン-ボラン錯体(0.95 g, 2.3 当量)を室温で加えた後、室温で30分間攪拌した。ついで110℃で96時間攪拌した。DMFを減圧留去し、残渣にメタノールを加えて、表題化合物(684 mg, 白色結晶)を得た。収率55.5%。
1H-NMR (300 MHz, CDCl3, TMS) δ: 2.01 (s, 6H), 2.03 (s, 6H), 6.91-7.31 (m, 24H), 7.68-7.89 (m, 4H).
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -28.67 (s).
【0080】
実施例14
ビス(4-メトキシ-3,5-ジメチルフェニル)ホスフィン-ボラン錯体
【化85】
Figure 0004523227
アルゴン雰囲気下、塩化セリウム(10.54 g, 3.0 当量)のTHF(80 mL)溶液を室温(25℃)で30分間攪拌した。水素化ホウ素ナトリウム(1.67 g, 3.1 当量)を加えた後、室温で1時間攪拌した。ついで5℃にて参考例10で合成したビス(4-メトキシ-3,5-ジメチルフェニル)ホスフィンオキサイド(4.54 g, 0.014 moL)および水素化リチウムアルミニウム(0.65 g, 1.2 当量)を順次加えた後、室温で4時間攪拌した。3℃でトルエン(100 mL)を加え、ついで、3M-HCl(40 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、水層をトルエン(20 mL)で抽出した。合わせた有機層を5%NaCl水溶液(20 mL)で洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、ろ液を減圧濃縮した。残渣にトルエン(20 mL)、シリカゲル(10 g)を加え、室温で10分間攪拌した。自然ろ過し、ろ液を減圧濃縮した。残渣をヘプタンより再結晶し、表題化合物(3.14 g, 白色結晶)を得た。
収率69.6 %。融点81.6℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 0.37-1.56 (m, 3H), 2.27 (s, 12H), 3.72 (s, 6H), 6.13 (dq, 1H, J = 377.5 Hz, 6.84 Hz), 7.27 (d, 4H, J = 15.30Hz).
13C-NMR (75 MHz, CDCl3, CDCl3) δ: 16.07, 59.59, 120.59, 121.37, 131.97, 132.12, 133.32, 133.45, 159.87.
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -1.57- -0.32 (m), 1.38-2.83 (m).
【0081】
実施例15
(S)-2,2'-ビス[ビス(4-メトキシ-3,5-ジメチルフェニル)ホスフィノ]-1,1'-ビナフチル
【化86】
Figure 0004523227
アルゴン雰囲気下、[1,2-ビス(ジフェニルホスフィノ)-エタン]ジクロロニッケル(96 mg、0.1 当量)と参考例1で合成した(S)-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチル(1.0 g、1.81 mmoL)および1,4-ジアザビシクロ[2,2,2]オクタン(1.22 g、6.0 当量)のDMF溶液(5 mL)に、実施例14で合成したビス(4-メトキシ-3,5-ジメチルフェニル)ホスフィン-ボラン錯体(1.32 g、2.3 当量)を室温で加えた後、室温で30分間攪拌した。ついで110℃で96時間攪拌した。DMFを減圧留去し、残渣にメタノールを加えて、表題化合物(513mg, 白色結晶)を得た。収率33.1%。
1H-NMR (300 MHz, CDCl3, TMS) δ: 2.07 (s, 24H), 3.64 (s, 6H), 3.66 (s, 6H), 6.70-6.96 (m, 12H), 7.30-7.40 (m, 2H), 7.51-7.53 (m, 2H), 7.79-7.92 (m, 4H).
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -14.47 (s).
【0082】
実施例16
ビス(1,3-ベンゾジオキソール-5-イル)ホスフィン-ボラン錯体
【化87】
Figure 0004523227
アルゴン雰囲気下、塩化セリウム(8.66 g, 3.0 当量)のTHF(80 mL)溶液を室温(25℃)で30分間攪拌した。水素化ホウ素ナトリウム(1.37 g, 3.1 当量)を加えた後、室温で1時間攪拌した。ついで5℃にて参考例11で合成したビス(1,3-ベンゾジオキソール-5-イル)ホスフィンオキサイド(3.4 g, 0.012 moL)および水素化リチウムアルミニウム(0.53 g, 1.2 当量)を順次加えた後、室温で4時間攪拌した。3℃でトルエン(80 mL)を加え、ついで、3M-HCl(30 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、水層をトルエン(20 mL)で抽出した。合わせた有機層を5%NaCl水溶液(20 mL)で洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、ろ液を減圧濃縮した。残渣をカラムクロマトグラフィー(シリカゲル 25 g、トルエン)で精製した。残渣をヘプタンより再結晶し、表題化合物(2.33 g,白色結晶)を得た。収率69.1 %。融点88.8℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 0.42-1.61 (m, 3H), 5.58 (q, 0.5H, J = 6.78 Hz), 6.01 (s, 4H), 6.84-6.90 (m, 2.5H), 7.04 (dd, 2H, J = 10.79Hz, 1.44Hz), 7.18 (dd, 1H, J = 12.37Hz, 1.45Hz), 7.21 (dd, 1H, J = 12.37Hz, 1.46Hz).
13C-NMR (75 MHz, CDCl3, CDCl3) δ: 102.10, 109.53, 109.70, 112.43, 112.59, 118.95, 119.75, 128.37, 128.51, 148.70, 148.90, 151.15.
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: 1.42-2.83 (m), 4.55-6.00 (m).
元素分析 C14H14BO4Pとして
計算値; C: 58.38, H: 4.90, P:10.75.
実測値; C: 58.36, H: 4.92, P:10.67.
【0083】
実施例17
(S)-2,2'-ビス[ビス(1,3-ベンゾジオキソール-5-イル)ホスフィノ]-1,1'-ビナフチル
【化88】
Figure 0004523227
アルゴン雰囲気下、[1,2-ビス(ジフェニルホスフィノ)-エタン]ジクロロニッケル(86 mg、0.1 当量)と参考例1で合成した(S)-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチル(0.9 g、0.91 mmoL)および1,4-ジアザビシクロ[2,2,2]オクタン(1.1 g、6.0 当量)のDMF溶液(5 mL)に、実施例16で合成したビス(1,3-ベンゾジオキソール-5-イル)ホスフィン-ボラン錯体(1.08 g、2.3 当量)を室温で加えた後、室温で30分間攪拌した。ついで110℃で96時間攪拌した。DMFを減圧留去し、残渣にメタノールを加えて、表題化合物(310 mg, 緑白色結晶)を得た。収率23.8%。
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -12.46 (s).
(参照:31P-NMR (162 MHz, CDCl3) δ: -12.1. 特開平9-124669号公報)
【0084】
実施例18
ビス(2-ナフチル)ホスフィン-ボラン錯体
【化89】
Figure 0004523227
アルゴン雰囲気下、塩化セリウム(8.66 g, 3.0 当量)のTHF(80 mL)溶液を室温(25℃)で30分間攪拌した。水素化ホウ素ナトリウム(1.37 g, 3.1 当量)を加えた後、室温で1時間攪拌した。ついで5℃にて参考例12で合成したビス(2-ナフチル)ホスフィンオキサイド(3.54 g, 0.012 moL)および水素化リチウムアルミニウム(0.53 g, 1.2 当量)を順次加えた後、室温で3時間攪拌した。0℃でトルエン(80 mL)を加え、ついで、3M-HCl(30 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、水層をトルエン(40 mL)で抽出した。合わせた有機層を5%NaCl水溶液(20 mL)で洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、ろ液を減圧濃縮した。残渣にトルエン(30 mL)、シリカゲル(10 g)を加え、室温で10分間攪拌した。自然ろ過し、ろ液を減圧濃縮した。残渣をヘプタンより再結晶し、表題化合物(2.23 g,白色結晶)を得た。収率63.3 %。融点113.2℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 0.68-1.85 (m, 3H), 6.58 (dq, 1H, J = 378.6Hz, 6.88 Hz), 7.56-7.61 (m, 6H), 7.88-7.91 (m, 6H), 8.32 (d, 2H, J = 13.56Hz).
13C-NMR (75 MHz, CDCl3, CDCl3) δ: 123.41, 127.53, 128.23, 128.31, 128.61, 128.97, 129.30, 129.43, 133.22, 135.00, 135.15.
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: 1.11-2.42 (m), 4.30-5.48 (m).
元素分析 C20H18BPとして
計算値; C: 80.03, H: 6.04, P:10.32.
実測値; C: 80.40, H: 5.92, P:9.95.
【0085】
実施例19
(S)-2,2'-ビス[ビス(2-ナフチル)ホスフィノ]-1,1'-ビナフチル
【化90】
Figure 0004523227
アルゴン雰囲気下、[1,2-ビス(ジフェニルホスフィノ)-エタン]ジクロロニッケル(96 mg, 0.1 当量)と参考例1で合成した(S)-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチル(1.0 g, 1.81 mmoL)および1,4-ジアザビシクロ[2,2,2]オクタン(1.22 g, 6.0 当量)のDMF溶液(5 mL)に、実施例18で合成したビス(2-ナフチル)ホスフィン-ボラン錯体(1.25 g, 2.3 当量)を室温で加えた後、室温で30分間攪拌した。ついで110℃で101時間攪拌した。DMFを減圧留去し、残渣にメタノールを加えて表題化合物(875 mg, 白色結晶)を得た。収率58.7%。
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -12.99 (s).
(参照:31P-NMR (162 MHz, CDCl3) δ: -13.57. 特開平9-124669号公報)
【0086】
実施例20
ビス(4-クロロフェニル)ホスフィン-ボラン錯体
【化91】
Figure 0004523227
アルゴン雰囲気下、塩化セリウム(8.66 g, 3.0 当量)のTHF(80 mL)溶液を室温(25℃)で30分間攪拌した。水素化ホウ素ナトリウム(1.37 g, 3.1 当量)を加えた後、室温で1時間攪拌した。ついで5℃にて参考例13で合成したビス(4-クロロフェニル)ホスフィンオキサイド(3.18 g, 0.012 moL)および水素化リチウムアルミニウム(0.53 g, 1.2 当量)を順次加えた後、室温で4時間攪拌した。0℃でトルエン(80 mL)を加え、ついで、3M-HCl(30 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、水層をトルエン(20 mL)で抽出した。合わせた有機層を5%NaCl水溶液(20 mL)で洗浄した。ついで有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、ろ液を減圧濃縮した。残渣にトルエン(20 mL)、シリカゲル(10 g)を加え、室温で10分間攪拌した。自然ろ過し、ろ液を減圧濃縮した。残渣に5℃にてTHF(5 mL)、BH3・THF(5mL)を加え、室温で1時間攪拌した。減圧濃縮し、残渣をヘプタンより再結晶し、表題化合物(1.58 g, 白色結晶)を得た。収率50.3 %。
1H-NMR (300 MHz, CDCl3, TMS) δ: 0.41-1.60 (m, 3H), 6.28 (dq, 1H, J = 381.6Hz, 6.96 Hz), 7.36-7.44 (m, 4H), 7.54-7.65 (m, 4H).
13C-NMR (75 MHz, CDCl3, CDCl3) δ: 123.83, 124.60, 128.92, 129.46, 129.61, 132.17, 134.10, 134.24, 138.62.
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -1.06-0.33 (m), 2.08-3.47 (m).
【0087】
実施例21
(S)-2,2'-ビス[ビス(4-クロロフェニル)ホスフィノ]-1,1'-ビナフチル
【化92】
Figure 0004523227
アルゴン雰囲気下、[1,2-ビス(ジフェニルホスフィノ)-エタン]ジクロロニッケル(96 mg, 0.1 当量)と参考例1で合成した(S)-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチル(1.0 g, 1.81 mmoL)および1,4-ジアザビシクロ[2,2,2]オクタン(1.22 g, 6.0 当量)のDMF溶液(5 mL)に、実施例20で合成したビス(4-クロロフェニル)ホスフィン-ボラン錯体(1.29 g, 2.6 当量)を室温で加えた後、室温で30分間攪拌した。ついで110℃で96時間攪拌した。反応混合物を31P-NMR測定して、表題化合物を確認した。
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -15.80 (s).
(参照:31P-NMR (161 MHz, CDCl3, 85%H3PO4) δ: -16.8. ジャーナル・オブ・オーガニック・ケミストリー,59巻,3064頁,1994年)
【0088】
実施例22
ビス(p-tert-ブチルフェニル)ホスフィン-ボラン錯体
【化93】
Figure 0004523227
窒素気流下、塩化セリウム(19.84 g, 2.98 当量)のTHF(160 mL)溶液を室温(25℃)で30分間攪拌した。水素化ホウ素ナトリウム(3.11 g, 3.04 当量)を加えた後、室温で1.5時間攪拌した。ついで-17℃にて参考例15で合成したビス(p-tert-ブチルフェニル)ホスフィンオキサイド(8.49 g, 27.0 mmol)および水素化リチウムアルミニウム(1.55 g, 1.21 当量)を順次加えた後、室温で2時間攪拌した。-10℃でトルエン(80 mL)を加え、ついで6M-HCl(25 mL)、4℃で水(25 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、有機層を水(30 mL)、10%NaHCO3水溶液(30 mL)、10%NaCl水溶液(30 mL)で順次洗浄し、有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、さらにメンブランフィルター(0.2 μm)で減圧ろ過後、ろ液を減圧濃縮した。残渣をTHF(100 mL)で溶解し、室温でボラン-THF錯体(10 mL, 0.38 当量)を加えた後、16時間攪拌し、減圧濃縮した。残渣にトルエン(30 mL)を加えて溶解し、シリカゲルカラムクロマトグラフィー(シリカゲル100g, トルエン)にて精製し、有効区分を減圧濃縮した。残渣をn-ヘキサンより再結晶し、乾燥後(減圧、40℃)、表題化合物(6.33 g, 白色粉末)を得た。収率75.0%。融点151.5℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 0.43-1.52 (m, 3H), 1.33 (s, 18H), 6.28 (dq, 1H, JH-P = 384 Hz, J = 6.9 Hz), 7.46 (s, 1H), 7.47(s, 1H), 7.49 (s, 1H), 7.50 (s, 1H), 7.59 (s, 1H), 7.62 (s, 1H), 7.63 (s, 1H), 7.65 (s, 1H).
13C-NMR (75 MHz, CDCl3, CDCl3) δ: 31.04, 34.91, 122.46, 123.24, 125.99, 126.13, 132.68, 132.81, 154.99, 155.02.
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -2.42- -1.52 (m), 0.82-1.52 (m).
【0089】
実施例23
(S)-2,2’-ビス[ビス(p-tert-ブチルフェニル)ホスフィノ]-1,1’-ビナフチル
【化94】
Figure 0004523227
アルゴン雰囲気下、[1,2-ビス(ジフェニルホスフィノ)エタン]ジクロロニッケル(0.08 g, 0.10 当量)と参考例1で合成した(S)-2,2’-ビス(トリフルオロメタンスルホニルオキシ)-1,1’-ビナフチル(0.78 g,1.41 mmol)および1,4-ジアザビシクロ[2,2,2]オクタン(0.94 g, 5.97 当量)のDMF溶液(5 mL)に、実施例22で合成したビス(p-tert-ブチルフェニル)ホスフィン-ボラン錯体(1.02 g, 2.31 当量)を室温で加えた後、室温で30分間攪拌した。ついで110℃で96時間攪拌した。DMF溶液を減圧留去し、残渣にメタノールを加えると表題化合物(0.79 g, 淡黄色粉末)を得た。収率66%
1H-NMR (300MHz, CDCl3, TMS) δ: 1.25 (s, 18H), 1.27 (s, 18H), 6.68-6.73 (m, 4H), 6.94-6.96 (m, 4H), 7.07 (d, 4H, J = 8.0 Hz), 7.11-7.13 (m, 4H), 7.23-7.27 (m, 6H), 7.47 (d, 2H, J = 8.4 Hz), 7.81 (d, 2H, J = 8.1 Hz), 7.86 (d, 2H, J = 8.5 Hz).
13C-NMR (75 MHz, DMSO, DMSO) δ: 30.91, 30.94, 34.13, 34.15, 124.49, 124.54, 124.59, 124.72, 125.00, 125.66, 127.00, 127.09, 130.10, 132.33, 132.46, 132.59, 132.71, 132.97, 133.72, 133.86, 134.01, 136.21, 144.10, 150.03, 150.80.
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -16.04(s).
質量分析(ESI-HR); 計算値; 847.4562
実測値; 847.4496(MH+)
【0090】
実施例24
ビス(3,5-ジ-tert-ブチルフェニル)ホスフィン-ボラン錯体
【化95】
Figure 0004523227
窒素気流下、塩化セリウム(4.88 g, 3.00 当量)のTHF(40 mL)溶液を室温(25℃)で30分間攪拌した。水素化ホウ素ナトリウム(0.75 g, 3.00 当量)を加えた後、室温で1時間攪拌した。ついで-9℃にて参考例16で合成したビス(3,5-ジ-tert-ブチルフェニル)ホスフィンオキサイド(2.81 g, 6.6 mmol)および水素化リチウムアルミニウム(0.39 g,1.23 当量)を順次加えた後、1.5時間攪拌した。4℃でトルエン(20 mL)を加え、ついで6M-HCl(6 mL)、4℃で水(10 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、さらにメンブランフィルター(0.2 μm)で減圧ろ過後、ろ液に室温でボラン-THF錯体(7 mL, 1.08 当量)を加えた後、16時間攪拌し、減圧濃縮した。濃縮液に室温でボラン-THF錯体(10 mL, 1.55 当量)を加えた後、減圧濃縮した。残渣にトルエン(10 mL)を加えて溶解し、シリカゲルカラムクロマトグラフィー(シリカゲル25 g, トルエン)にて精製し、有効区分を減圧濃縮した。残渣をn-ヘキサンより再結晶し、乾燥後(減圧、40℃)、表題化合物(2.03 g,白色粉末)を得た。収率72.7%。融点135.4℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 0.55-1.80 (m, 3H), 1.34 (s, 36H), 6.33 (dq, 1H, JH-P = 375.5 Hz, J = 6.8 Hz), 7.51 (s, 1H), 7.51 (s, 1H), 7.55 (s, 1H), 7.55 (s, 1H), 7.58 (s, 1H), 7.59 (s, 1H).
13C-NMR (75 MHz, CDCl3, CDCl3) δ: 31.26, 34.91, 122.46, 123.24, 125.99, 126.13, 132.68, 132.81, 154.99, 155.02.
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: 0.95-1.22 (m), 3.88-4.75 (m).
【0091】
実施例25
(S)-2,2’-ビス[ビス(3,5-ジ-tert-ブチルフェニル)ホスフィノ]-1,1’-ビナフチル
【化96】
Figure 0004523227
アルゴン雰囲気下、[1,2-ビス(ジフェニルホスフィノ)エタン]ジクロロニッケル(0.07 g, 0.10 当量)と参考例1で合成した(S)-2,2’-ビス(トリフルオロメタンスルホニルオキシ)-1,1’-ビナフチル(0.77 g, 1.41 mmol)および1,4-ジアザビシクロ[2,2,2]オクタン(0.94 g, 5.96 当量)のDMF溶液(5 mL)に、実施例24で合成したビス(3,5-ジ-tert-ブチルフェニル)ホスフィン-ボラン錯体(1.00 g, 1.68 当量)を室温で加えた後、室温で30分間攪拌した。ついで110℃で96時間攪拌した。DMF溶液を減圧留去し、残渣にメタノールを加えると表題化合物(0.38 g, 白色粉末)を得た。収率30%。融点:217.8℃。
1H-NMR (300 MHz, CDCl3, TMS) δ: 1.11 (s, 36H), 1.14 (s, 36H), 6.71 (d, 2H, J = 8.3 Hz), 6.77-6.80 (m, 2H), 6.95-6.98 (m, 4H), 7.14-7.23 (m, 8H), 7.25-7.28 (m, 2H), 7.54 (d, 2H, J = 8.5 Hz), 7.77 (d, 2H, J = 8.1 Hz), 7.85 (d, 2H, 8.5 Hz).
13C-NMR (75 MHz, DMSO, DMSO) δ: 31.03, 34.32, 34.44, 120.71, 121.90, 125.03, 125.55, 126.95, 127.06, 127.18, 127.23, 128.08, 128.23, 128.38, 130.41, 132.79, 136.79, 137.65, 145.03, 145.82, 149.22, 149.30, 149.35, 149.40.
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -12.16 (s).
質量分析(ESI-HR); 計算値; 1071.7066.
実測値; 1071.7039(MH+)
【0092】
実施例26
ビス(m-トリル)ホスフィン-ボラン錯体
【化97】
Figure 0004523227
窒素気流下、塩化セリウム(26.40 g, 3.00 当量)のTHF(220 mL)溶液を室温(25℃)で30分間攪拌した。水素化ホウ素ナトリウム(4.06 g, 3.00 当量)を加えた後、室温で1.5時間攪拌した。ついで-9℃にて参考例17で合成したビス(m-トリル)ホスフィンオキサイド(8.22 g, 35.7 mmol)および水素化リチウムアルミニウム(2.06 g, 1.22 当量)を順次加えた後、3時間攪拌した。-3℃で6M-HCl(33 mL)を加え、ついで水(33 mL)、4℃でトルエン(130 mL)を加えた後、室温で30分間攪拌した。反応液を分液し、有機層を水(50 mL)、10%NaHCO3水溶液(50 mL)、10%NaCl水溶液(50 mL)で順次洗浄し、有機層を無水硫酸マグネシウムで乾燥、自然ろ過し、さらにメンブランフィルター(0.2 μm)で減圧ろ過後、ろ液に0℃付近でボラン-THF錯体(36 mL, 1.02 当量)を加えた後、室温で13.5時間攪拌し、さらに、室温でボラン-THF錯体(6.2 mL, 0.18 当量)を加え、減圧濃縮した。残渣をn-ヘキサンより再結晶し、乾燥後(減圧、40℃)、表題化合物(1.70 g, 白色粉末)を得た。収率21%
1H-NMR (300 MHz, DMSO, TMS) δ: 0.58-1.75 (m, 3H), 2.34 (s, 6H), 5.88-5.98 (m, 0.5H), 7.20-7.31 (m, 0.5H), 7.37-7.53 (m, 8H).
13C-NMR (75 MHz, DMSO, DMSO) δ: 21.24, 126.48, 129.45, 129.60, 130.03, 130.15, 132.76, 133.07, 133.20, 139.00, 139.18.
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -4.22- -3.00 (m), -0.89-0.23 (m).
【0093】
実施例27
(S)-2,2’-ビス[ビス(m-トリル)ホスフィノ]-1,1’-ビナフチル
【化98】
Figure 0004523227
アルゴン雰囲気下、[1,2-ビス(ジフェニルホスフィノ)エタン]ジクロロニッケル(0.10 g, 0.10 当量)と参考例1で合成した(S)-2,2’-ビス(トリフルオロメタンスルホニルオキシ)-1,1’-ビナフチル(1.05 g, 1.91 mmol)および1,4-ジアザビシクロ[2,2,2]オクタン(1.28 g, 5.99 当量)のDMF溶液(5 mL)に、実施例26で合成したビス(m-トリル)ホスフィン-ボラン錯体(1.00 g, 2.31 当量)を室温で加えた後、室温で30分間攪拌した。ついで110℃で96時間攪拌した。反応混合物を31P-NMR測定して表題化合物を確認した。
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -14.5 (s).
(参照:31P-NMR (161 MHz, CDCl3, 85%H3PO4) δ: -14.4. ジャーナル・オブ・オーガニック・ケミストリー,59巻,3064頁,1994年)
【0094】
実施例28
(S)-2,2'-ビス(ジフェニルホスフィノ)-6,6’-ジフェニル-1,1'-ビナフチル
【化99】
Figure 0004523227
アルゴン雰囲気下、[1,2-ビス(ジフェニルホスフィノ)-エタン]ジクロロニッケル(52 mg, 0.1 当量)と参考例21で合成した(S)-6,6’-ジフェニル-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチル(700 mg, 0.99 mmoL)および1,4-ジアザビシクロ[2,2,2]オクタン(670 mg, 6.0 当量)のDMF溶液(5 mL)にジフェニルホスフィン-ボラン錯体(0.458 g, 2.3 当量)を室温で加えた後、室温で30分間攪拌した。ついで110℃で90時間攪拌した。DMFを減圧留去し、残渣にメタノールを加えて、表題化合物(412 mg, 微褐白色結晶)を得た。収率53.4%。
1H-NMR (300 MHz, CDCl3, TMS) δ: 6.93 (d, 2H, J = 8.76 Hz), 7.12-7.22 (m, 20H), 7.29 (s, 2H), 7.35-7.51 (m, 8H), 7.64-7.67 (m, 4H), 7.99 (d, 2H, J = 8.76 Hz), 8.07 (d, 2H, J = 1.64 Hz).
13C-NMR (75 MHz, CDCl3, CDCl3) δ: 125.99, 127.74, 128.51, 128.83, 129.21, 134.66, 141.35.
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -13.82 (s).
【0095】
実施例29
2,2'-ビス(ジフェニルホスフィノ)-7,7’-ジメトキシ-1,1'-ビナフチル
【化100】
Figure 0004523227
アルゴン雰囲気下、[1,2-ビス(ジフェニルホスフィノ)-エタン]ジクロロニッケル(53 mg、0.1 当量)と参考例23で合成した7,7’-ジメトキシ-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチル(610 mg、0.99 mmoL)および1,4-ジアザビシクロ[2,2,2]オクタン(670 mg、6.0 当量)のDMF溶液(5 mL)にジフェニルホスフィン-ボラン錯体(0.458 g、2.3 当量)を室温で加えた後、室温で30分間攪拌した。ついで110℃で77時間攪拌した。DMFを減圧留去し、残渣にメタノールを加えて、表題化合物(120 mg、黄白色結晶)を得た。収率17.7%。
1H-NMR (300 MHz, CDCl3, TMS) δ: 3.16 (s, 6H), 6.05 (d, 2H, J = 2.26Hz), 7.01 (dd, 2H, J = 9.00Hz, 2.49Hz), 7.12-7.19 (m, 20H), 7.38 (d, 2H, J = 8.44Hz), 7.74 (d, 2H, J = 8.88 Hz), 7.83 (d, 2H, J = 8.38 Hz).
13C-NMR (75 MHz, CDCl3, CDCl3) δ: 54.98, 106.07, 119.52, 127.77, 128.18, 128.41, 128.97, 129.63, 132.90, 134.78, 135.08, 146.39, 159.56.
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -13.82 (s).
【0096】
実施例30
(S)-2,2'-ビス(ジフェニルホスフィノ)-1,1'-ビナフチル
【化101】
Figure 0004523227
アルゴン雰囲気下、[1,2-ビス(ジフェニルホスフィノ)-エタン]ジクロロニッケル(53 mg, 0.1 当量)と参考例1で合成した(S)-2,2'-ビス(トリフルオロメタンスルホニルオキシ)-1,1'-ビナフチル(500 mg, 0.91 mmoL)および1,4-ジアザビシクロ[2,2,2]オクタン(613 mg, 6.0 当量)のDMF溶液(5 mL)に、ジフェニルホスフィン-ボラン錯体(418 mg, 2.3 当量)を室温で加えた後、室温で30分間攪拌した。ついで110℃で96時間攪拌した。DMFを減圧留去し、残渣にメタノールを加えると、表題化合物(401 mg, 淡黄白色結晶)を得た。収率71%。
1H-NMR (300MHz, CDCl3, TMS) δ: 6.83 (d, 2H, J = 8.26 Hz), 6.89-6.94 (m, 2H), 7.07-7.20 (m, 20H), 7.32-7.37 (m, 2H), 7.43-7.47 (m, 2H), 7.85 (d, 2H, J = 8.14 Hz), 7.89 (d, 2H, J = 8.49 Hz).
31P-NMR (121 MHz, CDCl3, 85%H3PO4) δ: -14.90 (s).
質量分析(ESI-HR); 計算値; 623.2058
実測値; 623.2030(MH+)
【0097】
実施例31
(S)-2,2'-ビス[ビス(3,5-ジメチルフェニル)ホスフィノ]-1,1'-ビナフチル
【化102】
Figure 0004523227
実施例2と同様の操作に従い、用いるアミンを▲1▼テトラメチルエチレンジアミン、▲2▼トリエチルアミン、▲3▼ジイソプロピルエチルアミン、▲4▼ジエチルアミンまたは▲5▼ピリジンに変更して、(S)-2,2'-ビス[ビス(3,5-ジメチルフェニル)ホスフィノ]-1,1'-ビナフチルを製造した。結果を表1に示す。
【表1】
Figure 0004523227
【0098】
実施例32
(S)-2,2'-ビス[ビス(3,5-ジメチルフェニル)ホスフィノ]-1,1'-ビナフチル
【化103】
Figure 0004523227
実施例2と同様の操作に従い、ニッケル触媒を▲1▼NiCl2、▲2▼NiCl2・ビス(ジフェニル)ホスフィニルフェロセンまたは▲3▼NiCl2、ビス(ジフェニル)ホスフィノエタンに変更して、(S)-2,2'-ビス[ビス(3,5-ジメチルフェニル)ホスフィノ]-1,1'-ビナフチルを製造した。結果を表2に示す。HPLC面積百分率の算出には、HPLC条件(カラム:ZORBAX Rx-C8、4.6×250 mm、溶液:MeCN/H2O = 90/10、流速:1.0 mL/min、検出波長:254 nm)を使用した。▲3▼においては、NiCl2とビス(ジフェニル)ホスフィノエタンをそれぞれ単独に添加した。
【表2】
Figure 0004523227
【0099】
実施例33
メチル (Z)-α-アセトアミドシンナメートの不斉水素化
Rh(cod)2OTf(4.27 mg、0.0091 mmoL)のメタノール(1 mL)溶液に実施例10で合成した(S)-2,2'-ビス[ビス(3,5-ジ-tert-ブチル-4-メトキシフェニル)ホスフィノ]-1,1'-ビナフチル(12.65 mg、0.011mmoL)を加えた後、室温(25℃)で30分間攪拌した。メチル (Z)-α-アセトアミドシンナメート(0.10 g、0.456 mmoL)のメタノール(4 mL)溶液に上記で調整したRh錯体溶液を加え、水素圧1.0 MPa、25℃で24時間水素化を行った。反応混合物をGC(カラム:CHIRASIL VAL、0.25 mm×30 m)にて測定し、変換率 >99.9%、光学純度 91.43%ee(R)であった。
【0100】
比較例1
メチル (Z)-α-アセトアミドシンナメートの不斉水素化
Rh(cod)2OTf(4.27 mg、0.0091 mmoL)のメタノール(1 mL)溶液に実施例30で合成した(S)-2,2'-ビス(ジフェニルホスフィノ)-1,1'-ビナフチル(6.79 mg、0.011mmoL)を加えた後、室温(25℃)で30分間攪拌した。メチル (Z)-α-アセトアミドシンナメート(0.10 g、0.456 mmoL)のメタノール(4 mL)溶液に上記で調整したRh錯体溶液を加え、水素圧1.0 MPa、25℃で24時間水素化を行った。反応混合物をGC(カラム:CHIRASIL VAL、0.25 mm×30 m)にて測定し、変換率 >99.9%、光学純度 15.33%ee(R)であった。
【0101】
【発明の効果】
本発明の製造法によれば、光学活性な医薬品(例、頻尿・尿失禁予防治療薬、アルツハイマー病予防治療薬、高脂血症予防治療薬等)またはそれらの中間体として有用な化合物を製造する際の不斉合成反応に有用な化合物(I)またはその塩を効率よく製造することができる。化合物(I)またはその塩、特にその光学異性体と遷移金属との錯体は、上記不斉合成反応において、優れた立体選択率、化学収率、触媒活性等を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a diphosphine compound. More specifically, the present invention relates to a method for producing phosphinobinaphthyl which is useful for asymmetric synthesis as a ligand of a transition metal catalyst using a phosphine borane complex.
[0002]
[Prior art]
2,2 '-(bis (diphenylphosphino) -1,1'-binaphthyl (hereinafter referred to as optically active phosphine) as an optically active phosphine in asymmetric reduction and asymmetric isomerization using a catalyst in which an optically active phosphine is coordinated to a transition metal , Which may be abbreviated as BINAP) is widely used, but depending on the type of substrate, it is not sufficient in terms of reactivity, stereoselectivity, catalytic efficiency, etc., so various optically active phosphines have been produced and reported. For example, Patent Document 1 discloses a ruthenium complex having 2,2′-bis (di (p-toluyl) phosphino) -1,1′-binaphthyl as a ligand. It is described that it is useful in asymmetric reduction of a carbon-carbon double bond, and Patent Document 2 discloses 2,2′-bis (di (3,5-dialkylphenyl) phosphino) -1,1′-binaphthyl. Ruthenium complex with a ligand as an asymmetric reduction of β-ketoester It has been described to be useful Te.
And as a manufacturing method of BINAP and BINAP analog,
1) Patent Document 2 describes a formula
Embedded image
Figure 0004523227
The following reaction formula is described as a method for producing a compound represented by [wherein R represents a lower alkyl group] (hereinafter abbreviated as 3,5-DABIN).
Embedded image
Figure 0004523227
For the optical resolution, the racemic compound (IX) was dissolved in carbon tetrachloride with heating, and an ether solution of (-)-benzoyltartaric acid was added and stirred to precipitate crystals, which were recrystallized, The same operation is repeated until the optical rotation of the crystal shows a constant value. The purified crystals are then suspended in methylene chloride, and 2N sodium hydroxide is added to obtain (−) form of free phosphine oxide (−)-(IX).
2) Patent Document 3 or Patent Document 4 includes a formula
Embedded image
Figure 0004523227
A method for producing BINAP is described in which a compound represented by the formula [wherein R represents triflate, mesylate or tosylate] is reacted with diphenylphosphine in the presence of an amine base and a nickel catalyst.
3) Patent Document 5 describes that optically active 2,2′-bis (trifluoromethanesulfonyloxy) -1,1′-binaphthyl is substituted with formula A in the presence of a transition metal-phosphine complex.2An optically active diphosphine by reacting with a phosphine oxide represented by P (O) H wherein A represents a phenyl group, a substituted phenyl group, a lower alkyl group or a naphthyl group which may be substituted with a lower alkoxy group A compound and / or a mixture containing an optically active diphosphine monooxide compound is synthesized, and a reducing agent is further reacted with the mixture containing an optically active diphosphine compound and / or an optically active diphosphine monooxide compound.
Embedded image
Figure 0004523227
A process for obtaining an optically active diphosphine represented by the formula [wherein A is as defined above] is described.
4) Non-Patent Document 2 describes (S) -2,2′-bis (trifluoromethanesulfonyloxy) -1,1′-binaphthyl and diphenylphosphine chloride as NiCl.2Describes a process for producing (S) -BINAP by reacting in the presence of [1,2-bis (diphenylphosphino) ethane] and zinc.
5) Patent Document 6 shows the formula in the presence of hydrogen, amine, hydrogenation catalyst and transition metal catalyst.
Embedded image
Figure 0004523227
(Where R1Represents an alkyl group, a perfluoroalkyl group, an aryl group or a perfluoroaryl group] and a sulfonic acid ester of 2,2′-dihydroxy-1,1′-binaphthyl represented by the formula
Embedded image
Figure 0004523227
(Where R2And RThree, Which may be the same or different and each represents an aryl group or a cycloalkyl group], is reacted with a chlorodisubstituted phosphine represented by the above, and is optically active 2,2′-bis (disubstituted phosphino) -1 1,1'-binaphthyl is described.
6) Patent Document 7 describes a compound in the presence of an amine and a transition metal.
Embedded image
Figure 0004523227
(Where R1And R2Represents an alkylsulfonyl group which may be substituted or an arylsulfonyl group which may be substituted, respectively, and a compound represented by
Embedded image
Figure 0004523227
[Wherein, ring A, ring B, ring C, and ring D each represent a benzene ring having a substituent].
Moreover, as a phosphine-borane complex,
7) Non-Patent Document 3 describes a production method for obtaining a monophosphine compound by reacting aryl triflate or aryl nonaflate with a diphenylphosphine-borane complex in the presence of a transition metal and a base.
8) In Non-Patent Document 4, 2,2′-dimethoxy-7,7′-bis (trifluoromethanesulfonyloxy) -1,1′-binaphthyl and a diphenylphosphine-borane complex are reacted in the presence of a transition metal. It is described that the synthesis of diphosphine compounds was not successful.
9) Regarding the diphenylphosphine-borane complex having a substituent in the phenyl group, Patent Document 8 discloses bis (p-methylphenyl) phosphine-borane complex, bis (p-biphenylyl) phosphine-borane complex, and bis (2-naphthyl). A phosphine-borane complex is described in Non-Patent Document 5 as a bis (4-methoxy-2-methylphenyl) phosphine-borane complex.
[0003]
[Patent Document 1]
JP 63-63690 A
[Patent Document 2]
JP-A-3-255090
[Patent Document 3]
JP 10-501234 gazette
[Patent Document 4]
International Publication No. WO 95/32934 Pamphlet
[Patent Document 5]
JP-A-9-124669
[Patent Document 6]
Japanese Unexamined Patent Publication No. 2000-7688
[Patent Document 7]
JP 2000-136194 A
[Patent Document 8]
U.S. Pat.No. 2,926,194
[Non-Patent Document 1]
Handbook of Enantioselective Catalysis with Transition Metal Compounds, VCH Publisher, 1993
[Non-Patent Document 2]
Chemical Communications, pages 2359-2360, 1997
[Non-Patent Document 3]
Tetrahedron Letters, 40, 201-204, 1999
[Non-Patent Document 4]
Tetrahedron Asymmetry, 5, 325-328, 1994
[Non-Patent Document 5]
Tetrahedron, 51, 7655-7666, 1995
[0004]
[Problems to be solved by the invention]
In the above 2), 4), 5) and 6), a trivalent organophosphorus compound that is easily oxidized and unstable is used as a reaction reagent, and in the above 1) and 3), trichlorosilane is used as a reducing agent. However, it is not an industrially advantageous method of implementation, and it is desired to establish a method for producing BINAP and BINAP analogs suitable for industrial mass production.
On the other hand, in the above 7) and 8), attempts have been made to react a stable and easy-to-handle diphenylphosphine-borane complex with an aryl triflate, but in 7), only a monophosphine compound has been successfully synthesized. On the other hand, as described in 8), synthesis of a diphosphine compound necessary as a method for producing BINAP has not been successful.
In order to synthesize various BINAP analogs from diphenylphosphine-borane complexes, diphenylphosphine-borane complexes with substituents on the phenyl group are required. Only synthesis examples are described.
[0005]
[Means for Solving the Problems]
The inventors of the present invention have studied various methods for producing BINAP analogs suitable for industrial mass production.
Embedded image
Figure 0004523227
(Where R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eAnd R2fAre the same or different and each represents a hydrogen atom, a fluorine atom, a chlorine atom, an optionally substituted alkyl group, an optionally substituted cycloalkyl group, an optionally substituted aryl group, or an optionally substituted hydroxy group. A group, an optionally substituted amino group, an optionally substituted alkylcarbonyl group, an optionally substituted alkoxycarbonyl group, a carboxyl group or an optionally substituted carbamoyl group, X represents a leaving group; Or a salt thereof and a compound represented by the formula (hereinafter sometimes abbreviated as compound (II))
Embedded image
Figure 0004523227
(Where RThree, RFour, RFive, R6, R7, R8, R9And RTenAre the same or different and each represents a hydrogen atom, a fluorine atom, a chlorine atom, an optionally substituted hydrocarbon group, an optionally substituted hydroxy group or an optionally substituted amino group, and RThreeAnd RFourAnd R7And R8May combine with adjacent carbon atoms to form a 5- to 8-membered homocyclic or heterocyclic ring] [hereinafter also abbreviated as compound (III)] Or a salt thereof for the first time in a solvent in the presence of an amine and a nickel catalyst.
Embedded image
Figure 0004523227
[Wherein the symbol is as defined above] [hereinafter also abbreviated as compound (I)] or a salt thereof can be obtained efficiently without causing isomerization in a short process. The present invention has been found to be an industrially excellent production method in terms of simplicity, economy, ease of operation based on the stability of raw materials, and the like, and the present invention has been completed based on these.
[0006]
That is, the present invention
[1] Formula
Embedded image
Figure 0004523227
(Where R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eAnd R2fAre the same or different and each represents a hydrogen atom, a fluorine atom, a chlorine atom, an optionally substituted alkyl group, an optionally substituted cycloalkyl group, an optionally substituted aryl group, or an optionally substituted hydroxy group. A group, an optionally substituted amino group, an optionally substituted alkylcarbonyl group, an optionally substituted alkoxycarbonyl group, a carboxyl group or an optionally substituted carbamoyl group, X is a leaving group; Or a salt thereof and a formula
Embedded image
Figure 0004523227
(Where RThree, RFour, RFive, R6, R7, R8, R9And RTenAre the same or different and each represents a hydrogen atom, a fluorine atom, a chlorine atom, an optionally substituted hydrocarbon group, an optionally substituted hydroxy group or an optionally substituted amino group, and RThreeAnd RFourAnd R7And R8May combine with adjacent carbon atoms to form a 5- to 8-membered allocyclic or heterocyclic ring) in a solvent in the presence of an amine and a nickel catalyst. Formula characterized by reacting with
Embedded image
Figure 0004523227
[Wherein the symbols are as defined above] or a salt thereof,
[2] The production method of the above-mentioned [1], wherein X is an optionally substituted alkylsulfonyloxy group or an optionally substituted arylsulfonyloxy group,
[3] R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eAnd R2fAre the same or different and each represents a hydrogen atom, a fluorine atom, a chlorine atom, an optionally substituted alkyl group, an optionally substituted cycloalkyl group, an optionally substituted hydroxy group, or an optionally substituted amino group. Group, optionally substituted alkylcarbonyl group, optionally substituted alkoxycarbonyl group, carboxyl group or optionally substituted carbamoyl group, RThree, RFour, RFive, R6, R7And R8Are the same or different and each represents a hydrogen atom, a fluorine atom, a chlorine atom, an optionally substituted hydrocarbon group, an optionally substituted hydroxy group or an optionally substituted amino group, R9And RTenWherein both are hydrogen atoms, X is an optionally substituted alkylsulfonyloxy group or an optionally substituted arylsulfonyloxy group,
[4] R1aAnd R2a, R1bAnd R2b, R1cAnd R2c, R1dAnd R2d, R1eAnd R2eAnd R1fWhen R2fWherein each is the same group,
[5] R1a, R1f, R2aAnd R2fWherein [1] to [3] is a hydrogen atom,
[6] R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eAnd R2fWherein [3] is a hydrogen atom,
[7] RThree, RFive, R6And R8Is a lower alkyl group and RFourAnd R7Wherein [3] is a hydrogen atom or a lower alkoxy group,
[8] RThree, RFive, R6And R8Is a hydrogen atom and RFourAnd R7Wherein [3] is a lower alkyl group or a lower alkoxy group,
[9] RThree, RFour, RFive, R6, R7And R8Wherein [3] is a hydrogen atom,
[10] The production method of the above-mentioned [1], wherein X is trifluoromethanesulfonyloxy, methanesulfonyloxy or p-toluenesulfonyloxy,
[11] Nickel catalyst is NiCl2・ Bis (diphenyl) phosphino C1-4Alkane, NiBr2, NiCl2, NiCl2・ Bis (diphenyl) phosphinylferrocene, NiCl2The production method according to [1] to [3], which is bis (triphenylphosphine), Ni · tetrakistriphenylphosphine, Ni · tetrakistriphenylphosphite or Ni · dicarbonylbis (triphenyl) phosphine,
[12] Nickel catalyst is NiCl2・ Bis (diphenyl) phosphino C1-4The production method according to [1] to [3] above, which is an alkane,
[13] Nickel catalyst is NiCl2The production method according to the above [1] to [3], which is bis (diphenyl) phosphinoethane,
[14] The production method according to the above [1] to [3], wherein the amine is a tertiary amine.
[15] The production method of the above-mentioned [1] to [3], wherein the amine is 1,4-diazabicyclo [2.2.2] octane,
[16] One or more kinds of solvents selected from N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidone or 1,3-dimethyl-2-imidazolidinone The production method according to [1] to [3], which is a mixed solvent,
[17] R1a, R1b, R1c, R1f, R2a, R2b, R2cAnd R2fIs a hydrogen atom, R1dAnd R2dIs a hydrogen atom or C6-10Aryl group, R1eAnd R2eIs a hydrogen atom or C1-6Alkoxy group, RThreeIs a hydrogen atom or C1-6Alkyl group, RFourIs hydrogen atom, fluorine atom, chlorine atom, C1-6Alkyl group, C6-10Aryl group, C1-6Alkoxy group or di-C1-6Alkylamino group or RThreeAnd RFourForm a benzene ring or a 1,3-dioxolane ring with adjacent carbon atoms, and RFiveIs a hydrogen atom or C1-6Alkyl group, R6Is a hydrogen atom or C1-6Alkyl group, R7Is hydrogen atom, fluorine atom, chlorine atom, C1-6Alkyl group, C6-10Aryl group, C1-6Alkoxy group or di-C1-6Alkylamino group or R6And R7Form a benzene ring or a 1,3-dioxolane ring with adjacent carbon atoms, and R8Is a hydrogen atom or C1-6Alkyl group, R9Is a hydrogen atom or C1-6Alkyl group, RTenIs a hydrogen atom or C1-6Alkyl group, X is trifluoromethanesulfonyloxy, nickel catalyst is NiCl2-The production method of the above-mentioned [1], which is bis (diphenyl) phosphinoethane,
[18] Formula
Embedded image
Figure 0004523227
[Wherein each symbol is as defined in [1] above] and a compound represented by the formula
Embedded image
Figure 0004523227
[Wherein each symbol has the same meaning as described in [1] above], wherein the axially asymmetric part of the compound is a (R) isomer,
[19] The production method of the above-mentioned [18], wherein the reaction is carried out without racemization,
[20] Formula
Embedded image
Figure 0004523227
[Wherein each symbol is as defined in [1] above] and a compound represented by the formula
Embedded image
Figure 0004523227
[Wherein each symbol has the same meaning as described in [1] above], wherein the axial asymmetric part of the compound is a (S) isomer,
[21] The production method of the above-mentioned [20], wherein the reaction is carried out without racemization,
[22] Formula
Embedded image
Figure 0004523227
[Wherein each symbol is as defined in [1] above] and a compound represented by the formula
Embedded image
Figure 0004523227
[Wherein each symbol has the same meaning as described in [1] above], wherein the axial asymmetric part of the compound is a racemate.
[23] 2,2′-bis [bis (3,5-di-tert-butyl-4-methoxyphenyl) phosphino] -1,1′-binaphthyl or a salt thereof,
[24] Formula
Embedded image
Figure 0004523227
(Where RThree ', RFive ', R6 'And R8 'Are each a hydrogen atom, a lower alkyl group or a lower alkoxy group, RFour 'And R7 'Are hydrogen atom, fluorine atom, chlorine atom, C2-6An alkyl group, a lower alkoxy group, a mono-lower alkylamino group or a di-lower alkylamino group (RThree 'And RFour 'And R7 'And R8 'May form a lower alkylenedioxy group) (provided that RThree ', RFour ', RFive ', R6 ', R7 'And R8 ') -Phosphine-borane complex or a salt thereof,
[25] RThree ', RFive ', R6 'And R8 'Are each a hydrogen atom or a lower alkyl group, RFour 'And R7 'Phosphine-borane complex according to the above [24], wherein each is a hydrogen atom, a fluorine atom, a chlorine atom, a lower alkoxy group, a mono-lower alkylamino group or a di-lower alkylamino group,
[26] RThree ', RFive ', R6 'And R8 'Is a hydrogen atom and RFour 'And R7 'The phosphine-borane complex according to the above [25], wherein is a fluorine atom, a chlorine atom, a lower alkoxy group or a di-lower alkylamino group,
[27] RThree ', RFive ', R6 'And R8 'Is a lower alkyl group and RFour 'And R7 'The phosphine-borane complex according to the above [25], wherein is a hydrogen atom,
[28] RThree ', RFive ', R6 'And R8 'Is a lower alkyl group and RFour 'And R7 'The phosphine-borane complex according to the above [25], wherein is a lower alkoxy group,
[29] RFive 'And R8 'Is a hydrogen atom and RThree 'And RFour 'And R7 'And R8 'The phosphine-borane complex according to the above [24], which forms a methylenedioxy group with
[30] RThree ', RFive ', R6 'And R8 'Is a hydrogen atom and RFour 'And R7 'Is C2-6The phosphine-borane complex according to the above [24], which is an alkyl group,
[31] RFour ', RFive ', R7 'And R8 'Is a hydrogen atom and RThree 'And R6 'The phosphine-borane complex according to the above [24], wherein is a lower alkyl group,
[32] Formula
Embedded image
Figure 0004523227
(Where R9 'And RTen 'Each represents a lower alkyl group], a phosphine-borane complex represented by
[33] Formula
Embedded image
Figure 0004523227
(Where RThree ', RFive ', R6 'And R8 'Are each a hydrogen atom, a lower alkyl group or a lower alkoxy group, RFour 'And R7 'Are hydrogen atom, fluorine atom, chlorine atom, C2-6An alkyl group, a lower alkoxy group, a mono-lower alkylamino group or a di-lower alkylamino group, R9 'And RTen 'Each represents a hydrogen atom or a lower alkyl group (RThree 'And RFour 'And R7 'And R8 'May form a lower alkylenedioxy group) (provided that RThree ', RFour ', RFive ', R6 ', R7 ', R8 ', R9 'And RTen 'Or a salt thereof is reduced with lithium aluminum hydride in the presence of cerium chloride and sodium borohydride in the presence of cerium chloride and sodium borohydride.
Embedded image
Figure 0004523227
[Wherein each symbol is as defined above], a process for producing a phosphine-borane complex or a salt thereof,
[34] Formula
Embedded image
Figure 0004523227
(Where R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eAnd R2f Are the same or different and each represents a hydrogen atom, a fluorine atom, a chlorine atom, an optionally substituted alkyl group, an optionally substituted cycloalkyl group, an optionally substituted aryl group, or an optionally substituted hydroxy group. A group, an optionally substituted amino group, an optionally substituted alkylcarbonyl group, an optionally substituted alkoxycarbonyl group, a carboxyl group or an optionally substituted carbamoyl group, X is a leaving group; An optically active compound represented by the formula:
Embedded image
Figure 0004523227
(Where RThree, RFour, RFive, R6, R7, R8, R9And RTenAre the same or different and each represents a hydrogen atom, a fluorine atom, a chlorine atom, an optionally substituted hydrocarbon group, an optionally substituted hydroxy group or an optionally substituted amino group, and RThreeAnd RFourAnd R7And R8May form a 5- to 8-membered homocyclic or heterocyclic ring with adjacent carbon atoms together) in the presence of an amine and a nickel catalyst. Formula obtained by reacting in
Embedded image
Figure 0004523227
Wherein the compound to be reduced is reduced in the presence of the optically active compound represented by the formula or a salt thereof, wherein:
[35] Formula for producing an optically active compound by asymmetric reduction
Embedded image
Figure 0004523227
(Where RThree ', RFive ', R6 'And R8 'Are each a hydrogen atom, a lower alkyl group or a lower alkoxy group, RFour 'And R7 'Are hydrogen atom, fluorine atom, chlorine atom, C2-6An alkyl group, a lower alkoxy group, a mono-lower alkylamino group or a di-lower alkylamino group (RThree 'And RFour 'And R7 'And R8 'May form a lower alkylenedioxy group) (provided that RThree ', RFour ', RFive ', R6 ', R7 'And R8 'Phosphine-borane complex represented by the formula:
Embedded image
Figure 0004523227
(Where R9 'And RTen 'Each represents a lower alkyl group], or a use thereof, or a salt thereof.
[36] (S) -2,2′-bis [bis (3,5-di-tert-butyl-4-methoxyphenyl) phosphino] -1,1 ′ for producing an optically active compound by asymmetric reduction The present invention relates to use of -binaphthyl or (R) -2,2'-bis [bis (3,5-di-tert-butyl-4-methoxyphenyl) phosphino] -1,1'-binaphthyl or a salt thereof.
[0007]
Compound (I) and compound (II) represent (R) isomer, (S) isomer, and a mixture of (R) isomer and (S) isomer (the ratio of the two is not limited).
[0008]
In the above formula, R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eOr R2fThe “alkyl group” in the “optionally substituted alkyl group” is, for example, a lower alkyl group (methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl) C as1-6Alkyl group) and the like.
Examples of the substituent of the “alkyl group” include nitro, nitroso, cyano, hydroxy, lower alkoxy groups (for example, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentoxy, hexyloxy) C as1-6Alkoxy groups), formyl, lower alkylcarbonyl groups (eg, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, pivaloyl, etc.)1-6Alkyl-carbonyl group), lower alkoxycarbonyl group (eg, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl, pentoxycarbonyl, hexyloxycarbonyl C as1-6Alkoxy-carbonyl group), carboxyl, N-mono-lower alkylcarbamoyl group (for example, N-methylcarbamoyl, N-ethylcarbamoyl, N-propylcarbamoyl, N-isopropylcarbamoyl, N-butylcarbamoyl, N-isobutylcarbamoyl, N- N-mono-C such as tert-butylcarbamoyl1-6Alkyl-carbamoyl group), N, N-di-lower alkylcarbamoyl group (for example, N, N-dimethylcarbamoyl, N, N-diethylcarbamoyl, N, N-dipropylcarbamoyl, N, N-diisopropylcarbamoyl, N-ethyl) N, N-di-C such as -N-methylcarbamoyl1-6Alkyl-carbamoyl group) and the like. One to three selected from these substituents may be present at substitutable positions.
[0009]
In the above formula, R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eOr R2fThe “cycloalkyl group” of the “optionally substituted cycloalkyl group” is, for example, C such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.3-6A cycloalkyl group and the like are shown.
As a substituent of the “cycloalkyl group”, R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eOr R2fThe same number and the same number of substituents as the substituents which the “optionally substituted alkyl group” represented by
[0010]
In the above formula, R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eOr R2fThe “aryl group” in the “optionally substituted aryl group” represented by, for example, C, such as phenyl, 1-naphthyl, 2-naphthyl, etc.6-10An aryl group etc. are shown.
As a substituent of the “aryl group”, R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eOr R2fThe same number and the same number of substituents as the substituents which the “optionally substituted alkyl group” represented by
[0011]
In the above formula, R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eOr R2fAs the substituent of the “optionally substituted hydroxy group” represented by the above, an optionally substituted lower alkyl group (for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert- C such as butyl, pentyl, hexyl1-6Alkyl group), optionally substituted lower alkylcarbonyl group (for example, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, pivaloyl, etc.)1-6Alkyl-carbonyl group) and the like.
As the substituent of the “optionally substituted hydroxy group”, the “optionally substituted lower alkyl group” and the “optionally substituted lower alkylcarbonyl group” may have a substituent. As R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eOr R2fThe same number and the same number of substituents as the substituents which the “optionally substituted alkyl group” represented by
[0012]
In the above formula, R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eOr R2fAs the substituent of the “optionally substituted amino group” represented by the above, an optionally substituted lower alkyl group (for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert- C such as butyl, pentyl, hexyl1-6Alkyl group), optionally substituted lower alkylcarbonyl group (for example, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, pivaloyl, etc.)1-6Alkyl-carbonyl group) and the like, and these substituents may be mono- or di-substituted.
As the substituent of the “optionally substituted amino group”, the optionally substituted substituent of the “optionally substituted lower alkyl group” and the “optionally substituted lower alkylcarbonyl group” As R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eOr R2fThe same number and the same number of substituents as the substituents which the “optionally substituted alkyl group” represented by
[0013]
In the above formula, R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eOr R2fAs the “alkylcarbonyl group” of the “optionally substituted alkylcarbonyl group” represented by, for example, a lower alkylcarbonyl group (for example, C such as acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, pivaloyl, etc.)1-6Alkyl-carbonyl group) and the like.
Examples of the substituent of the “optionally substituted alkylcarbonyl group” include R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eOr R2fThe same number and the same number of substituents as the substituents which the “optionally substituted alkyl group” represented by
[0014]
In the above formula, R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eOr R2fAs the “alkoxycarbonyl group” of the “optionally substituted alkoxycarbonyl group” represented by the following, for example, a lower alkoxycarbonyl group (for example, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxy) C such as carbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl, pentoxycarbonyl, hexyloxycarbonyl1-6Alkoxy-carbonyl group) and the like.
Examples of the substituent of the “optionally substituted alkoxycarbonyl group” include R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eOr R2fThe same number and the same number of substituents as the substituents which the “optionally substituted alkyl group” represented by
[0015]
In the above formula, R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eOr R2fAs the substituent of the “optionally substituted carbamoyl group” represented by, for example, an optionally substituted lower alkyl group (for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert -C such as butyl, pentyl, hexyl1-6Alkyl group), optionally substituted lower alkylcarbonyl group (for example, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, pivaloyl, etc.)1-6Alkyl-carbonyl group) and the like, and these substituents may be mono- or di-substituted.
The substituent of the “optionally substituted lower alkyl group” and the “optionally substituted lower alkylcarbonyl group” as the substituent of the “optionally substituted carbamoyl group” includes R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eOr R2fThe same number and the same number of substituents as the substituents which the “optionally substituted alkyl group” represented by
[0016]
In the above formula, examples of the leaving group represented by X include a bromine atom, an iodine atom, an optionally substituted alkylsulfonyloxy group, and an optionally substituted arylsulfonyloxy group. Examples of the “optionally substituted alkylsulfonyloxy group” as the leaving group represented by X include, for example, a halogen atom (eg, fluorine, chlorine, bromine, iodine, etc.), optionally halogenated C1-6Alkyl group and C1-6Optionally having 1 to 13 substituents selected from alkoxy groups (eg, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, etc.)1-6Examples include alkylsulfonyloxy groups (eg, methanesulfonyloxy, ethanesulfonyloxy, etc.).
Said “optionally halogenated C”1-6The “alkyl group” may be, for example, C having 1 to 13, preferably 1 to 9, halogen atoms (eg, fluorine, chlorine, bromine, iodine, etc.)1-6Examples thereof include an alkyl group (eg, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, etc.).
Specific examples of the “optionally substituted alkylsulfonyloxy group” as the leaving group represented by X include methanesulfonyloxy, ethanesulfonyloxy, trifluoromethanesulfonyloxy, chloromethanesulfonyloxy, and trichloromethanesulfonyloxy. , Nonafluorobutanesulfonyloxy and the like. Of these, methanesulfonyloxy, trifluoromethanesulfonyloxy and the like are preferable.
[0017]
Examples of the “optionally substituted arylsulfonyloxy group” as the leaving group represented by X include a halogen atom (eg, fluorine, chlorine, bromine, iodine, etc.), C1-6Alkyl group (eg, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, etc.), C1-6Optionally having 1 to 5 substituents selected from alkoxy groups (eg, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, etc.), nitro and cyano6-10Examples include arylsulfonyloxy groups (eg, benzenesulfonyloxy, 1-naphthalenesulfonyloxy, 2-naphthalenesulfonyloxy, etc.). Specific examples include benzenesulfonyloxy, p-toluenesulfonyloxy, 1-naphthalenesulfonyloxy, 2-naphthalenesulfonyloxy, p-nitrobenzenesulfonyloxy, m-nitrobenzenesulfonyloxy, m-toluenesulfonyloxy, o-toluenesulfonyloxy. 4-chlorobenzenesulfonyloxy, 3-chlorobenzenesulfonyloxy, 4-methoxybenzenesulfonyloxy and the like. Of these, p-toluenesulfonyloxy and the like are preferable.
X is preferably methanesulfonyloxy, trifluoromethanesulfonyloxy, p-toluenesulfonyloxy or the like, and particularly preferably trifluoromethanesulfonyloxy.
[0018]
In the above formula, RThree, RFour, RFive, R6, R7, R8, R9Or RTenExamples of the “hydrocarbon group” of the “hydrocarbon group which may be substituted” include an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an aryl group, an aralkyl group and the like.
The “alkyl group” is a lower alkyl group (for example, C such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl and the like).1-6Alkyl group) and the like.
The “alkenyl group” is a lower alkenyl group (for example, C such as vinyl, allyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, butadienyl, 2-methylallyl, hexatrienyl, 3-octenyl and the like).2-6Alkenyl group) and the like.
The “alkynyl group” means a lower alkynyl group (for example, C such as ethynyl, 2-propynyl, butynyl, 3-hexynyl).2-6Alkynyl group) and the like.
The “cycloalkyl group” means, for example, C such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.3-6A cycloalkyl group and the like are shown.
The “aryl group” is, for example, C such as phenyl, naphthyl and the like.6-10An aryl group etc. are shown.
The “aralkyl group” is, for example, C such as benzyl, phenethyl and the like.7-10An aralkyl group is shown.
RThree, RFour, RFive, R6, R7, R8, R9Or RTenThe substituent of the “optionally substituted hydrocarbon group” represented by1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eOr R2fThe same number and the same number of substituents as the substituents which the “optionally substituted alkyl group” represented by
[0019]
In the above formula, RThree, RFour, RFive, R6, R7, R8, R9Or RTenThe “optionally substituted hydroxy group” represented by R is R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eOr R2fThe same thing as the "hydroxy group which may be substituted" represented by these is mentioned. Among these, lower alkoxy groups (C1-6Alkoxy group), that is, lower alkyl group (C1-6Hydroxy groups substituted with alkyl groups) are preferred.
[0020]
In the above formula, RThree, RFour, RFive, R6, R7, R8, R9Or RTenThe “optionally substituted amino group” represented by R is R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eOr R2fThe same thing as the "amino group which may be substituted" represented by these is mentioned. Of these, di-lower alkylamino groups (di-C1-6Alkylamino group), that is, lower alkyl group (C1-6An amino group disubstituted with an alkyl group) is preferred.
[0021]
In the above formula, RThreeAnd RFourAnd R7And R8Examples of the “5- to 8-membered homocyclic ring” that may be formed together with adjacent carbon atoms include cyclopentane, cyclohexane, cycloheptane, cyclooctane, benzene and the like.
The “5- to 8-membered homocyclic ring” may have a substituent, and examples of the substituent include R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eOr R2fThe same number and the same number of substituents as the substituents which the “optionally substituted alkyl group” represented by
The “5- to 8-membered homocyclic ring” is preferably a 6-membered homocyclic ring such as cyclohexane or benzene, and benzene is particularly preferable.
[0022]
In the above formula, RThreeAnd RFourAnd R7And R8Examples of `` 5- to 8-membered heterocycle '' which may be formed together with adjacent carbon atoms include pyrrole, imidazole, pyrrolidine, pyrroline, imidazolidine, imidazoline, pyridine, pyrazine, pyrimidine, piperidine, Examples include pyrimidine, oxazole, furan, pyran, 1,3-dioxolane, 1,4-dioxane and the like.
The “5- to 8-membered heterocycle” may have a substituent, and examples of the substituent include R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eOr R2fThe same number and the same number of substituents as the substituents which the “optionally substituted alkyl group” represented by
As the “5- to 8-membered heterocycle”, an oxygen-containing heterocycle is preferable, and 1,3-dioxolane, 1,4-dioxane and the like are particularly preferable, and 1,3-dioxolane is particularly preferable.
[0023]
Compound (II) includes R1aAnd R2a, R1bAnd R2b, R1cAnd R2c, R1dAnd R2d, R1eAnd R2eAnd R1fWhen R2fAre preferably the same groups, in particular R1a, R1f, R2aAnd R2fIs preferably a hydrogen atom. Furthermore, R1a, R1b, R1c, R1f, R2a, R2b, R2cAnd R2fIs a hydrogen atom, R1dAnd R2dIs a hydrogen atom or C6-10Aryl group, R1eAnd R2eIs a hydrogen atom or C1-6Those which are alkoxy groups are preferred, in particular R1a, R1b, R1c, R1d, R1e, R1f, R2a, R2b, R2c, R2d, R2eAnd R2fAre preferably all hydrogen atoms.
[0024]
Specific examples of the compound (II) include 2,2′-bis (methanesulfonyloxy) -1,1′-binaphthyl, 2,2′-bis (trifluoromethanesulfonyloxy) -1,1′-binaphthyl, 2 , 2'-bis (p-toluenesulfonyloxy) -1,1'-binaphthyl, 6,6'-diphenyl-2,2'-bis (trifluoromethanesulfonyloxy) -1,1'-binaphthyl, 7,7 Examples include '-dimethoxy-2,2'-bis (trifluoromethanesulfonyloxy) -1,1'-binaphthyl. Of these, 2,2'-bis (trifluoromethanesulfonyloxy) -1,1'-binaphthyl, 6,6'-diphenyl-2,2'-bis (trifluoromethanesulfonyloxy) -1,1'- Binaphthyl, 7,7'-dimethoxy-2,2'-bis (trifluoromethanesulfonyloxy) -1,1'-binaphthyl, and more preferably 2,2'-bis (trifluoromethanesulfonyloxy) -1,1 ' -Binaphthyl.
As compound (II), optically active compound (II) [(R) isomer or (S) isomer] is preferred. As an example of the optically active compound (II), for example, (R) -2,2′-bis (trifluoromethanesulfonyloxy) -1,1′-binaphthyl has the formula
Embedded image
Figure 0004523227
(S) -2,2′-bis (trifluoromethanesulfonyloxy) -1,1′-binaphthyl is represented by the formula:
Embedded image
Figure 0004523227
The compound represented by these is shown.
[0025]
Compound (III) includes RThreeIs a hydrogen atom or C1-6Alkyl group, RFourIs hydrogen atom, fluorine atom, chlorine atom, C1-6Alkyl group, C6-10Aryl group, C1-6Alkoxy group or di-C1-6Alkylamino group or RThreeAnd RFourForm a benzene ring or a 1,3-dioxolane ring with adjacent carbon atoms, and RFiveIs a hydrogen atom or C1-6Alkyl group, R6Is a hydrogen atom or C1-6Alkyl group, R7Is hydrogen atom, fluorine atom, chlorine atom, C1-6Alkyl group, C6-10Aryl group, C1-6Alkoxy group or di-C1-6Alkylamino group, R8Is a hydrogen atom or C1-6An alkyl group or R7And R8Form a benzene ring or a 1,3-dioxolane ring with adjacent carbon atoms, and R9Is a hydrogen atom or C1 -6Alkyl group, RTenIs a hydrogen atom or C1-6Those that are alkyl groups are preferred.
Above all, RThree, RFive, R6And R8Are identical groups, RFourAnd R7Are identical groups, R9And RTenIs preferably a hydrogen atom. For example, (i) RThree, RFour, RFive, R6, R7, R8, R9And RTenIs hydrogen atom, (ii) RThree, RFive, R6, R8, R9And RTenIs a hydrogen atom and RFourAnd R7Wherein is a fluorine atom or a chlorine atom, (iii) RThree, RFive, R6, R8, R9And RTenIs a hydrogen atom and RFourAnd R7Is a lower alkyl group (C1-6Alkyl groups), (iv) RThree, RFive, R6, R8, R9And RTenIs a hydrogen atom and RFourAnd R7Is a lower alkoxy group (C1-6Alkoxy groups), (v) RThree, RFive, R6, R8, R9And RTenIs a hydrogen atom and RFourAnd R7Is a di-lower alkylamino group (di-C1-6An alkylamino group), (vi) RThree, RFive, R6And R8Is a lower alkyl group (C1-6Alkyl group) and RFour, R7, R9And RTenIs a hydrogen atom, (vii) RThree, RFive, R6And R8Is a lower alkyl group (C1-6Alkyl group) and RFourAnd R7Is a lower alkoxy group (C1-6Alkoxy group) and R9And RTenAre hydrogen atoms and (viii) RThree, RFive, R6, R8, R9And RTenIs a hydrogen atom and RFourAnd R7Is C6-10The thing which is an aryl group is mentioned.
In particular, (i) RThree, RFour, RFive, R6, R7, R8, R9And RTenIs hydrogen atom, (ii) RThree, RFive, R6, R8, R9And RTenIs a hydrogen atom and RFourAnd R7Is a lower alkyl group (C1-6Alkyl group), (iii) RThree, RFive, R6, R8, R9And RTenIs a hydrogen atom and RFourAnd R7Is a lower alkoxy group (C1-6Alkoxy groups), (iv) RThree, RFive, R6And R8Is a lower alkyl group (C1-6Alkyl group) and RFour, R7, R9And RTenAre hydrogen atoms and (v) RThree, RFive, R6And R8Is a lower alkyl group (C1-6Alkyl group) and RFourAnd R7Is a lower alkoxy group (C1-6Alkoxy group) and R9And RTenIs preferably a hydrogen atom.
(I) RThreeAnd R6Is a lower alkyl group (C1-6Alkyl group) and RFour, RFive, R7, R8, R9And RTenAre hydrogen atoms and (ii) RThreeAnd RFourAnd R7And R8Together form a benzene ring or 1,3-dioxolane with adjacent carbon atoms, RFive, R6, R9And RTenAlso preferred are those in which is a hydrogen atom.
[0026]
Specific examples of the compound (III) include, for example, diphenylphosphine-borane complex, bis (4-methylphenyl) phosphine-borane complex, bis (4-methoxyphenyl) phosphine-borane complex, bis (3,5-dimethylphenyl) ) Phosphine-borane complex, bis (3,5-di-tert-butyl-4-methoxyphenyl) phosphine-borane complex, bis (4-fluorophenyl) phosphine-borane complex, bis (4-dimethylaminophenyl) phosphine- Borane complex, bis (1,3-benzodioxol-5-yl) phosphine-borane complex, bis (4-chlorophenyl) phosphine-borane complex, bis (3,5-dimethyl-4-methoxyphenyl) phosphine-borane Complex, bis (4-tert-butylphenyl) phosphine-borane complex, bis (3-methylphenyl) phosphine-borane complex, bis (3,5-di-tert-butylphenyl) And phosphine-borane complex.
[0027]
Examples of the “amine” used in the present invention include 1,4-diazabicyclo [2.2.2] octane (abbreviation: DABCO), triethylamine, diisopropylethylamine, tri (n-propyl) amine, and tri (n-butyl) amine. 1,8-diazabicyclo [5.4.0] -7-undecene (abbreviation: DBU), tetramethylethylenediamine, dimethylaniline, 1,4-dimethylpiperazine, 1-methylpiperidine, 1-methylpyrrolidine, 4-dimethylaminopyridine , Amines such as pyridine and diethylamine. Of these, tertiary amines such as 1,4-diazabicyclo [2.2.2] octane, triethylamine and diisopropylethylamine are preferable. Particularly preferred is 1,4-diazabicyclo [2.2.2] octane.
[0028]
As the nickel catalyst used in the present invention, NiCl2・ Bis (diphenyl) phosphino C1-4Alkane, NiBr2, NiCl2, NiCl2・ Bis (diphenyl) phosphinylferrocene, NiCl2・ Bis (triphenylphosphine), Ni ・ tetrakistriphenylphosphine, Ni ・ tetrakistriphenylphosphite, Ni ・ dicarbonylbis (triphenyl) phosphine, NiBr2-Bis (triphenylphosphine), Ni-bis (1,5-cyclooctadiene), Ni-bis (cyclopentadienyl), Ni-bis (ethylcyclopentadienyl), NiCl2・ Dimethoxyethane, Ni (BFFour)2Or Ni (PFThree)FourEtc.
Above all, NiCl2・ Bis (diphenyl) phosphino C1-4Alkane, NiBr2, NiCl2, NiCl2・ Bis (diphenyl) phosphinylferrocene, NiCl2Bis (triphenylphosphine), Ni · tetrakistriphenylphosphine, Ni · tetrakistriphenylphosphite or Ni · dicarbonylbis (triphenyl) phosphine is preferable.
In particular, NiCl2・ Bis (diphenyl) phosphino C1-4Alkanes are preferred, especially NiCl2Bis (diphenyl) phosphinoethane is preferred.
[0029]
Specific examples of the compound (I) include 2,2′-bis [bis (3,5-dimethylphenyl) phosphino] -1,1′-binaphthyl, 2,2′-bis [bis (4-methoxyphenyl) Phosphino] -1,1'-binaphthyl, 2,2'-bis [bis (4-dimethylaminophenyl) phosphino] -1,1'-binaphthyl, 2,2'-bis [bis (4-fluorophenyl) phosphino ] -1,1'-binaphthyl, 2,2'-bis [bis (3,5-di-tert-butyl-4-methoxyphenyl) phosphino] -1,1'-binaphthyl, 2,2'-bis ( Diphenylphosphino) -1,1'-binaphthyl, 2,2'-bis [bis (2-methylphenyl) phosphino] -1,1'-binaphthyl, 2,2'-bis [bis (3-methylphenyl) Phosphino] -1,1'-binaphthyl, 2,2'-bis [bis (4-methylphenyl) phosphino] -1,1'-binaphthyl, 2,2'-bis [bis (4-tert-butylphenyl) Phosphino] -1,1'-binaphthyl, 2,2'-bis [bis (3,5-di-tert-butylpheny ) Phosphino] -1,1'-binaphthyl, 2,2'-bis [bis (4-methoxy-3,5-dimethylphenyl) phosphino] -1,1'-binaphthyl, 2,2'-bis [bis ( 4-chlorophenyl) phosphino] -1,1'-binaphthyl, 2,2'-bis [bis (1,3-benzodioxol-5-yl) phosphino] -1,1'-binaphthyl, 2,2 ' -Bis [bis (2-naphthyl) phosphino] -1,1'-binaphthyl, 2,2'-bis (diphenylphosphino) -6,6'-diphenyl-1,1'-binaphthyl, 2,2'- Bis (diphenylphosphino) -7,7′-dimethoxy-1,1′-binaphthyl and the like can be mentioned. The compound includes (R) isomer, (S) isomer, and a mixture of (R) isomer and (S) isomer (the ratio of the two is not limited). As an example of the optically active compound (I), for example, (R) -2,2′-bis (diphenylphosphino) -1,1′-binaphthyl has the formula
Embedded image
Figure 0004523227
(S) -2,2′-bis (diphenylphosphino) -1,1′-binaphthyl is represented by the formula:
Embedded image
Figure 0004523227
The compound represented by these is shown.
[0030]
Examples of the salt of compound (I), compound (II) and compound (III) include salts with inorganic acids (for example, hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid, etc.) or organic acids (for example, Formic acid, acetic acid, trifluoroacetic acid, fumaric acid, succinic acid, tartaric acid, maleic acid, citric acid, succinic acid, malic acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and the like. In addition, when the compound (I), the compound (II) and the compound (III) have an acidic group such as a carboxyl group, an inorganic base (for example, an alkali metal or alkali such as sodium, potassium, calcium, magnesium) Salts with earth metals, ammonia, etc., or salts with organic bases (eg trimethylamine, triethylamine, pyridine, picoline, ethanolamine, diethanolamine, triethanolamine, dicyclohexylamine, N, N'-dibenzylethylenediamine, etc.) Etc. are used.
[0031]
In the compound (III), the formula
Embedded image
Figure 0004523227
(Where RThree ', RFive ', R6 'And R8 'Are each a hydrogen atom, a lower alkyl group or a lower alkoxy group, RFour 'And R7 'Are hydrogen atom, fluorine atom, chlorine atom, C2-6An alkyl group, a lower alkoxy group, a mono-lower alkylamino group or a di-lower alkylamino group (RThree 'And RFour 'And R7 'And R8 'May form a lower alkylenedioxy group) (provided that RThree ', RFour ', RFive ', R6 ', R7 'And R8 'A phosphine-borane complex or a salt thereof [hereinafter also abbreviated as compound (III ')] and a formula
Embedded image
Figure 0004523227
(Where R9 'And RTen 'Are each a lower alkyl group], or a salt thereof [hereinafter also abbreviated as compound (III ")] is a novel compound.
[0032]
In compound (III ′), RThree ', RFive ', R6 'Or R8 'The `` lower alkyl group '' represented by C is C1-6Represents an alkyl group and includes, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl and the like.
In compound (III ′), RThree ', RFive ', R6 'Or R8 'The “lower alkoxy group” represented by C1-6An alkoxy group, for example, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentoxy, hexyloxy and the like;
[0033]
In compound (III ′), RFour 'Or R7 'Represented by `` C2-6The `` alkyl group '' includes, for example, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, etc., among them isopropyl, isobutyl, sec-butyl, tert-butyl, etc. Branch C3-6Alkyl groups are preferred.
In compound (III ′), RFour 'Or R7 'The “lower alkoxy group” represented by C1-6An alkoxy group, for example, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentoxy, hexyloxy and the like;
[0034]
In compound (III ′), RFour 'Or R7 'The `` mono lower alkylamino group '' represented by mono C1-6Represents an alkylamino group, and examples include methylamino, ethylamino, propylamino, isopropylamino, butylamino, isobutylamino, sec-butylamino, tert-butylamino, pentylamino, hexylamino and the like.
In compound (III ′), RFour 'Or R7 'The `` di-lower alkylamino group '' represented by diC1-6An alkylamino group, for example, dimethylamino, diethylamino, dipropylamino, diisopropylamino, dibutylamino, diisobutylamino and the like;
[0035]
In compound (III ′), RThree 'And RFour 'And R7 'And R8 'The “lower alkylenedioxy group” formed by —OCH2O-, -OCH2CH2O-, -OCH2CH2CH2O-, -OCH2CH2CH2CH2O- etc. are mentioned. Especially -OCH2O-, -OCH2CH2O- is preferred.
[0036]
As a preferable compound as the compound (III ′),
(i) RThree ', RFive ', R6 'And R8 'Is a lower alkyl group (C1-6Alkyl group) and RFour 'And R7 'A compound in which is a hydrogen atom,
(ii) RThree ', RFive ', R6 'And R8 'Is a lower alkyl group (C1-6Alkyl group) and RFour 'And R7 'Is a lower alkoxy group (C1-6An alkoxy group),
(iii) RThree ', RFive ', R6 'And R8 'Is a hydrogen atom and RFour 'And R7 'A compound in which is a fluorine atom or a chlorine atom,
(iv) RThree ', RFive ', R6 'And R8 'Is a hydrogen atom and RFour 'And R7 'Is a lower alkoxy group (C1-6An alkoxy group) or
(v) RThree ', RFive ', R6 'And R8 'Is a hydrogen atom and RFour 'And R7 'Is a di-lower alkylamino group (di-C1-6An alkylamino group) or a salt thereof.
Also,
(vi) RFive 'And R8 'Is a hydrogen atom and RThree 'And RFour 'And R7 'And R8 'A compound that forms a methylenedioxy group with
(vii) RThree ', RFive ', R6 'And R8 'Is a hydrogen atom and RFour 'And R7 'Is C2-6A compound that is an alkyl group,
(viii) RFour ', RFive ', R7 'And R8 'Is a hydrogen atom and RThree 'And R6 'Is a lower alkyl group (C1-6Also preferred are compounds which are alkyl groups).
[0037]
More specifically, bis (3,5-dimethylphenyl) phosphine-borane complex, bis (3,5-di-tert-butyl-4-methoxyphenyl) phosphine-borane complex, bis (4-fluorophenyl) phosphine -Borane complex, bis (4-methoxyphenyl) phosphine-borane complex, bis (4-dimethylaminophenyl) phosphine-borane complex, bis (1,3-benzodioxol-5-yl) phosphine-borane complex, bis (4-chlorophenyl) phosphine-borane complex, bis (4-methoxy-3,5-dimethylphenyl) phosphine-borane complex, bis (4-tert-butylphenyl) phosphine-borane complex, bis (3-methylphenyl) phosphine -Borane complex, bis (3,5-di-tert-butylphenyl) phosphine-borane complex and the like are preferable.
[0038]
In compound (III ”), R9 'Or RTen 'The `` lower alkyl group '' represented by C is C1-6Represents an alkyl group and includes, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl and the like.
Specific examples of the compound (III ″) include bis (2-methylphenyl) phosphine-borane complex.
[0039]
Examples of the salt of compound (III ′) and compound (III ″) include the same salts as the salts of compound (I), compound (II) and compound (III) described above.
[0040]
In the production method of the present invention, compound (II) and compound (III) are reacted in a solvent in the presence of an amine and a nickel catalyst to obtain compound (I).
The amount of compound (III) to be used is about 2 to 5 mol, preferably about 2 to 3 mol, per 1 mol of compound (II).
The amount of the amine to be used is about 2 to 10 mol, preferably about 2 to 8 mol, per 1 mol of compound (II).
The amount of the nickel catalyst to be used is about 0.01 to 10 mol, preferably about 0.05 to 1 mol, per 1 mol of compound (II).
The reaction can be performed in an inert organic solvent. Examples of the organic solvent include hydrocarbons (eg, hexane, pentane, cyclohexane, etc.), amides (eg, N, N-dimethylformamide (DMF), N, N-dimethylacetamide, N-methylpyrrolidone, 1,3 -Dimethyl-2-imidazolidinone), aromatic hydrocarbons (eg, toluene, benzene, chlorobenzene, etc.), aliphatic esters (eg, ethyl acetate, n-propyl acetate, n-butyl acetate, etc.), ether (Eg, diisopropyl ether, diethyl ether, tetrahydrofuran (THF), 1,4-dioxane, 1,2-dimethoxyethane, etc.), halogenated hydrocarbons (eg, chloroform, dichloromethane, 1,2-dichloroethane, tetrachloride) Carbons), alcohols (eg, methanol, ethanol, isopropanol, tert-butanol, etc.), ketones (eg, acetone, ethyl) Methyl ketone etc.), sulfoxides (e.g., dimethyl sulfoxide), nitriles (eg, acetonitrile, propionitrile and the like), phosphoric acid amides (e.g., such as hexamethylphosphoramide) and the like. These solvents may be used alone or as a mixed solvent. Preferred solvents are amides, sulfoxides, phosphoric acid amides and the like. More preferred are amides (N, N-dimethylformamide (DMF), N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone).
The reaction temperature in the reaction is about 30 to 180 ° C, preferably about 80 to 120 ° C. The reaction time in the reaction is about 1 to 240 hours, preferably about 24 to 168 hours.
The product can be isolated from the reaction mixture according to a conventional method, and can be easily purified by separation means such as recrystallization, distillation, chromatography and the like.
[0041]
Compound (II) can be produced according to a method known per se, for example, the method described in Tetrahedron Letters, 31, 985, 1990, Journal of Organic Chemistry, 58, 1945, 1993, etc. . The compound (II) thus obtained may be used in the reaction with the compound (III) as a reaction mixture without isolation.
Compound (III) is a phosphine oxide having a substituent obtained in accordance with the method described in Journal of Organic Chemistry, 33, 3690, 1968, cerium chloride, sodium borohydride and lithium aluminum hydride. It can be produced by reacting in the presence.
Embedded image
Figure 0004523227
[Wherein each symbol is as defined above]
The amount of cerium chloride to be used is about 1 to 6 mol, preferably about 3 to 5 mol, per 1 mol of phosphine oxide.
The amount of sodium borohydride to be used is about 2 to 10 mol, preferably about 3 to 5 mol, per 1 mol of phosphine oxide.
The amount of lithium aluminum hydride to be used is about 0.25 to 5 mol, preferably about 1 to 3 mol, per 1 mol of phosphine oxide.
The reaction can be carried out in an inert organic solvent. Examples of the organic solvent include hydrocarbons (eg, hexane, pentane, cyclohexane, etc.), amides (eg, N, N-dimethylformamide (DMF), N, N-dimethylacetamide, N-methylpyrrolidone, 1,3 -Dimethyl-2-imidazolidinone), aromatic hydrocarbons (eg, toluene, benzene, chlorobenzene, etc.), ethers (eg, diisopropyl ether, diethyl ether, tetrahydrofuran (THF), 1,4-dioxane, 1 , 2-dimethoxyethane), phosphoric acid amides (eg, hexamethylphosphoric acid amide) and the like. These solvents may be used alone or as a mixed solvent. Preferred solvents are ethers, hydrocarbons, aromatic hydrocarbons and the like. More preferred are ethers (eg, diisopropyl ether, diethyl ether, tetrahydrofuran (THF), 1,4-dioxane, 1,2-dimethoxyethane, etc.).
The reaction temperature in the reaction is about -20 to 50 ° C, preferably about -10 to 35 ° C. The reaction time in the reaction is about 1 to 48 hours, preferably about 1 to 20 hours.
Further, diborane may be allowed to act on a phosphine having a substituent in accordance with the method described in US Pat. No. 2,926,194.
The product can be isolated from the reaction mixture according to a conventional method, and can be easily purified by separation means such as recrystallization, distillation, chromatography and the like.
The compound (III) thus obtained may be used for the reaction with the compound (II) as a reaction mixture without isolation.
[0042]
By carrying out this reaction under the above conditions, compound (I) can be produced without isomerizing the structure of compound (II). That is, in the present invention, the optical isomer of the target compound (I) can be selectively obtained by appropriately selecting either the (R) isomer or the (S) isomer of the optically active compound (II). Can get to. For example, when the (R) form of compound (II) is used, the (R) form of compound (I) can be efficiently produced, and when the (S) form of compound (II) is used, (S) The body can be manufactured efficiently.
The compound (I) obtained by the production method of the present invention, particularly its optical isomer, forms a complex with a transition metal (eg, ruthenium, iridium, palladium, nickel, rhodium, etc.) (for example, JP-A-3-255090) By using the method described in JP-A-9-124669 or a method analogous thereto, optically active pharmaceuticals (for example, prophylactic / urinary incontinence preventive or Alzheimer's disease preventive treatment) Asymmetric synthesis reaction (eg, asymmetric reduction of carbon-carbon double bond, asymmetric reduction of β-ketoester) Etc.). The complex exhibits excellent stereoselectivity, chemical yield, catalytic activity, and the like in the asymmetric synthesis reaction.
For example, by allowing the compound (I) obtained by the production method of the present invention to coexist in the reduction reaction of the compound to be reduced, a compound useful as an intermediate of a pharmaceutical can be obtained with excellent stereoselectivity. In particular, among the compounds (I), 2,2′-bis [bis (3,5-di-tert-butyl-4-methoxyphenyl) phosphino] -1,1′-binaphthyl or a salt thereof is α, β- By making it coexist in the reduction reaction of the unsaturated ester, excellent stereoselectivity, chemical yield, and catalytic activity can be exhibited.
[0043]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES The present invention will be described in more detail below with reference to examples and reference examples, but the present invention is not limited to these. In this specification, room temperature indicates 10 ° C to 35 ° C. In addition, the following apparatus was used for the measurement of each physical property of an Example.1H nuclear magnetic resonance spectrum (1H-NMR): DPX300 (manufactured by Bruker), internal reference material: tetramethylsilane.13C nuclear magnetic resonance spectrum (13C-NMR): DPX300 (Brucker), internal reference material: CDClThree.31P nuclear magnetic resonance spectrum (31P-NMR): DPX300 (manufactured by Bruker), external reference material: 85% HThreePOFourAqueous solution. Mass spectrometry: JMS-700T (manufactured by JEOL Ltd.). Melting point: 530 (Büch).
[0044]
【Example】
Reference example 1
(S) -2,2'-Bis (trifluoromethanesulfonyloxy) -1,1'-binaphthyl
To a solution of (S) -1,1′-bi-2-naphthol (26.2 g, 91 mmoL) in acetonitrile (130 mL) was added pyridine (19.5 g, 2.7 equiv) at room temperature. Then, trifluoromethanesulfonic anhydride (64.2 g, 2.5 equivalents) was added at 5 ° C., and the mixture was stirred at 5 to 10 ° C. for 2 hours. Water (100 mL) was added at 3 ° C., then ethyl acetate (130 mL) was added, and the mixture was stirred at room temperature for 30 min. The reaction mixture was separated, and the organic layer was washed with water (50 mL) and concentrated under reduced pressure. Diisopropyl ether (150 mL) and activated carbon (0.25 g) were added to the residue, and the mixture was stirred at 60 ° C. for 30 minutes. The activated carbon was removed by filtration, and the filtrate was concentrated under reduced pressure. The residue was recrystallized from heptane to obtain the title compound (48.9 g, white crystals). Yield 97%
1H-NMR (300MHz, CDClThree, TMS) δ: 7.33 (d, 2H, J = 8.14 Hz), 7.34-7.46 (m, 2H), 7.57-7.63 (m, 2H), 7.68 (d, 2H, J = 9.09 Hz), 8.03 (d , 2H, J = 8.23 Hz), 8.16 (d, 2H, J = 9.08 Hz).
[0045]
Reference example 2
Bis (3,5-dimethylphenyl) phosphine oxide
Embedded image
Figure 0004523227
(Production method 1)
Under an argon atmosphere, magnesium (25 g, 0.95 equivalent) and a small amount of iodine in THF (250 mL) were stirred at room temperature for 1 hour. 5-Bromo-m-xylene (200 g, 1.08 moL) was added at 48 ° C, and the mixture was stirred at 5 ° C for 1 hr. Then, diethyl phosphite (78.3 g, 0.52 equivalent) was added at 5 ° C., and the mixture was stirred at 5 ° C. for 2 hr. Water (200 mL) was added at 3 ° C., then toluene (200 mL) and 6M-HCl (160 mL) were added, and the mixture was stirred at room temperature for 30 min. The reaction mixture was separated, and the organic layer was separated with water (100 mL), 5% NaHCO.ThreeThe solution was washed successively with an aqueous solution (100 mL) and a 5% aqueous NaCl solution (100 mL). Subsequently, the organic layer was dried over anhydrous magnesium sulfate and then naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was recrystallized from diisopropyl ether-heptane to obtain the title compound (43.3 g, white crystals). Yield 33.3%.
(Production method 2)
Under a nitrogen stream, a solution of magnesium (3.28 g, 4.01 equivalent), a small amount of iodine, and 1,2-dibromoethane in THF (10 mL) was stirred at room temperature for 1.5 hours. A solution of 5-bromo-m-xylene (25.2 g, 4.05 equivalent) in THF (100 mL) was added at 25 ° C., and the mixture was stirred at 40 ° C. for 40 min. Then, a solution of diethyl phosphite (4.64 g, 33.6 mmol) in THF (5 mL) was added at −33 ° C., and the mixture was stirred at 0 ° C. for 30 min. Water (30 mL) was added at 3 ° C., 6M-HCl (20 mL) and toluene (50 mL) were added, and the mixture was stirred at room temperature for 30 min. The reaction mixture was separated, and the organic layer was 10% NaHCO.ThreeThe extract was washed with an aqueous solution (30 mL), and the organic layer was concentrated under reduced pressure. The residue was recrystallized from heptane and dried (reduced pressure, 50 ° C.) to obtain the title compound (6.80 g, white powder). Yield 78.3%. Melting point: 82.4 ° C.
1H-NMR (300MHz, CDClThree, TMS) δ: 2.35 (s, 12H), 7.18 (s, 2H), 7.28 (s, 2H), 7.33 (s, 2H), 7.94 (d, 1H, JHP= 477.0 Hz).
31P-NMR (121MHz, CDClThree, 85% HThreePOFour) δ: 23.89 (d, quint, JHP = 477.1 Hz, JHCC-P = 13.7 Hz).
[0046]
Reference example 3
Bis (4-methoxyphenyl) phosphine oxide
Embedded image
Figure 0004523227
Under an argon atmosphere, a solution of magnesium (6.5 g, 1.0 equivalent) and a small amount of iodine in THF (65 mL) was stirred at room temperature for 1 hour. 4-Bromoanisole (50 g, 0.27 moL) was added at 42 ° C., and the mixture was stirred at 5 ° C. for 1 hr. Next, diethyl phosphite (18.4 g, 0.50 equivalent) was added at 15 to 20 ° C., and the mixture was stirred at 5 ° C. for 1 hr. Water (60 mL) was added at 3 ° C., then toluene (120 mL) and 6M-HCl (60 mL) were added, and the mixture was stirred at room temperature for 30 min. The reaction solution was separated, and the aqueous layer was extracted three times with toluene (60 mL). The combined organic layers were then dried over anhydrous magnesium sulfate and naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was recrystallized from diisopropyl ether to obtain the title compound (18.9 g, white crystals). Yield 54.1%. Melting point 126.0 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 3.85 (s, 6H), 6.99 (d, 2H, J = 8.79 Hz), 7.00 (d, 2H, J = 8.73 Hz), 7.61 (dd, 4H, J = 8.73 Hz, 13.13 Hz) , 8.02 (d, 1H, J = 477.2 Hz).
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: 21.21 (dquint, J = 474.1 Hz, 13.0 Hz).
Elemental analysis C14H15OThreeAs P
Calculated; C: 64.12, H: 5.77, P: 11.81.
Found; C: 64.12, H: 5.89, P: 11.78.
[0047]
Reference example 4
Bis (4-dimethylaminophenyl) phosphine oxide
Embedded image
Figure 0004523227
Under an argon atmosphere, a solution of magnesium (3.0 g, 1.0 equivalent) and a small amount of iodine in THF (30 mL) was stirred at room temperature for 1 hour. 4-Bromo-N, N-dimethylaniline (25 g, 0.125 moL) was added at 45 ° C., and the mixture was stirred at 5 ° C. for 1 hr. Then, diethyl phosphite (8.63 g, 0.50 equivalent) was added at 5 ° C., and the mixture was stirred at 5 ° C. for 1 hr. Water (30 mL) was added at 3 ° C., then toluene (60 mL) and 6M-HCl (30 mL) were added, and the mixture was stirred at room temperature for 30 min. The reaction solution was separated, the aqueous layer was neutralized with NaOH, and extracted with THF (30 mL). The combined organic layers were then dried over anhydrous magnesium sulfate and naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was recrystallized from diisopropyl ether to give the title compound (9.53 g, slightly brown white crystals). Yield 52.9%. Melting point 152.1 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 3.01 (s, 12H), 6.71 (d, 2H, J = 8.94 Hz), 6.72 (d, 2H, J = 8.94 Hz), 7.48 (d, 2H, J = 8.91 Hz), 7.52 ( d, 2H, J = 8.88 Hz), 7.96 (d, 1H, J = 470.1 Hz).31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: 22.78 (dquint, J = 469.2 Hz, 12.7 Hz).
Elemental analysis C16Htwenty oneN2As OP
Calculated value; C: 66.65, H: 7.34, N: 9.72, P: 10.74.
Found: C: 66.56, H: 7.43, N: 9.57, P: 10.79.
[0048]
Reference Example 5
Bis (4-fluorophenyl) phosphine oxide
Embedded image
Figure 0004523227
Under an argon atmosphere, a solution of magnesium (6.95 g, 1.0 equivalent) and a small amount of iodine in THF (70 mL) was stirred at room temperature for 1 hour. 1-Bromo-4-fluorobenzene (50 g, 0.286 moL) was added at 40 ° C., and the mixture was stirred at 3 ° C. for 1 hr. Then, diethyl phosphite (19.7 g, 0.50 equivalent) was added at 13 to 19 ° C., and the mixture was stirred at 5 ° C. for 1 hr. Water (45 mL) was added at 4 ° C., then toluene (150 mL) and 6M-HCl (45 mL) were added, and the mixture was stirred at room temperature for 30 min. The reaction solution was separated, and then the organic layer was washed with water, 5% NaHCO.ThreeThe solution was washed successively with an aqueous solution (50 mL) and a 5% NaCl aqueous solution (50 mL). The organic layer was dried over anhydrous magnesium sulfate and naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica gel 30 g, n-hexane / ethyl acetate = 1/0 → 3/1). The title compound (12.0 g, light red oil) was obtained. Yield 35.2%.
1H-NMR (300MHz, CDClThree, TMS) δ: 7.01-7.03 (m, 4H), 7.64-7.74 (m, 4H), 8.08 (d, 1H, J = 485.8 Hz).
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: 19.39 (dquint, J = 485.7 Hz, 13.3 Hz).
[0049]
Reference Example 6
4-Bromo-2,6-di-tert-butylanisole
Embedded image
Figure 0004523227
In an argon atmosphere, 4-bromo-2,6-di-tert-butylphenol (50 g, 0.175 moL) and potassium carbonate (96.7 g, 4.0 eq) in acetone (750 mL) in dimethyl sulfate (38.6 g, 1.75 eq) ) Was added at 22 ° C., followed by stirring for 13 hours under reflux. The insoluble material was removed by filtration, and the solvent was evaporated under reduced pressure. Ethyl acetate (150 mL) and water (100 mL) were added and separated, and the organic layer was separated with water (100 mL), 5% NaHCO.ThreeThe solution was washed successively with an aqueous solution (100 mL) and a 5% aqueous NaCl solution (100 mL). Subsequently, the organic layer was dried over anhydrous magnesium sulfate and then naturally filtered, and the filtrate was concentrated under reduced pressure. The title compound (56.1 g, brown oil) was obtained. Yield 95.2%
1H-NMR (300MHz, CDClThree, TMS) δ: 1.41 (s, 18H), 3.68 (s, 3H), 7.33 (s, 2H).
[0050]
Reference Example 7
Bis (3,5-di-tert-butyl-4-methoxyphenyl) phosphine oxide
Embedded image
Figure 0004523227
Under an argon atmosphere, a solution of magnesium (4.0 g, 0.95 equivalent) and a small amount of iodine in THF (50 mL) was stirred at room temperature for 1 hour. 4-Bromo-2,6-di-tert-butylanisole (52 g, 0.175 moL) synthesized in Reference Example 6 was added at 46 ° C. to 53 ° C., and the mixture was stirred at 5 ° C. for 1 hour. Then, diethyl phosphite (11.4 g, 0.52 equivalent) was added at 5 ° C., and the mixture was stirred at 5 ° C. for 1 hr. Water (50 mL) was added at 3 ° C., then toluene (50 mL) and 6M-HCl (20 mL) were added, and the mixture was stirred at room temperature for 30 min. The reaction mixture was separated, and the organic layer was separated with water (20 mL), 5% NaHCO.ThreeThe solution was washed successively with an aqueous solution (20 mL) and a 5% aqueous NaCl solution (20 mL). Subsequently, the organic layer was dried over anhydrous magnesium sulfate and then naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was recrystallized from heptane to obtain the title compound (11.6 g, pale yellowish white crystals). Yield 20.5%. Melting point 166.1 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 1.38 (s, 36H), 3.68 (s, 6H), 7.49 (s, 2H), 7.54 (s, 2H), 8.01 (d, 1H, J = 474.4 Hz).
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: 23.57 (dquint, J = 474.1 Hz, 14.0 Hz).
Elemental analysis C30H47OThreeAs P
Calculated value; C: 74.04, H: 9.73, P: 6.36.
Found; C: 74.13, H: 9.93, P: 6.20.
[0051]
Reference Example 8
Bis (4-methylphenyl) phosphine oxide
Embedded image
Figure 0004523227
Under an argon atmosphere, magnesium (3.55 g, 1.0 equivalent) and a small amount of iodine in THF (30 mL) were stirred at room temperature for 1 hour. A solution of p-tolyl bromide (25 g, 0.146 moL) in THF (5 mL) was added at 30 ° C. Next, the mixture was stirred at 45 ° C. for 30 minutes and then stirred at 5 ° C. for 1 hour. Then, diethyl phosphite (10.08 g, 0.5 equivalent) was added at 5 ° C., and the mixture was stirred at 5 ° C. for 1 hr and at room temperature (25 ° C.) for 30 min. Water (10 mL) was added at 3 ° C., then toluene (40 mL) and 6M-HCl (20 mL) were added, and the mixture was stirred at room temperature for 30 min. The reaction mixture was separated, and the organic layer was separated with water (10 mL), 5% NaHCO.ThreeThe solution was washed successively with an aqueous solution (10 mL) and a 5% NaCl aqueous solution (10 mL). Subsequently, the organic layer was dried over anhydrous magnesium sulfate and then naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was recrystallized from diisopropyl ether-heptane to obtain the title compound (7.78 g, white crystals). Yield 46.3%. Melting point 93.7 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 2.41 (s, 6H), 7.26-7.31 (m, 4H), 7.54-7.61 (m, 4H), 8.03 (d, 1H, J = 477.5 Hz).
13C-NMR (75 MHz, CDClThree, CDClThree) δ: 22.05, 128.22, 129.89, 130.07, 131.06, 131.22, 143.43.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: 22.72 (dquint, J = 477.1 Hz, 13.8 Hz).
Elemental analysis C14H15As OP
Calculated; C: 73.03, H: 6.57, P: 13.45.
Found; C: 72.80, H: 6.58, P: 13.31.
[0052]
Reference Example 9
Bis (2-methylphenyl) phosphine oxide
Embedded image
Figure 0004523227
Under an argon atmosphere, magnesium (3.55 g, 1.0 equivalent) and a small amount of iodine in THF (40 mL) were stirred at room temperature for 1 hour. A solution of o-tolyl bromide (25 g, 0.146 moL) in THF (5 mL) was added at 30 ° C. Next, the mixture was stirred at 40 ° C. for 30 minutes, and then stirred at 5 ° C. for 1 hour. Then, a solution of diethyl phosphite (10.08 g, 0.5 equivalent) in THF (10 mL) was added at 5 ° C., and the mixture was stirred at 5 ° C. for 1 hr. Water (20 mL) was added at 3 ° C., then toluene (50 mL) and 6M-HCl (20 mL) were added, and the mixture was stirred at room temperature for 30 min. The reaction mixture was separated, and the organic layer was separated with water (10 mL), 5% NaHCO.ThreeThe solution was washed successively with an aqueous solution (10 mL) and a 5% NaCl aqueous solution (10 mL). Subsequently, the organic layer was dried over anhydrous magnesium sulfate and then naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was recrystallized from heptane to obtain the title compound (6.70 g, white crystals). Yield 39.9%. Melting point 91.3 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 2.37 (s, 6H), 7.18-7.26 (m, 2H), 7.29-7.34 (m, 2H), 7.43-7.48 (m, 2H), 7.70 (d, 1H, J = 15.06Hz) , 7.72 (d, 1H, J = 14.82Hz), 8.21 (d, 1H, J = 476.9 Hz).
13C-NMR (75 MHz, CDClThree, CDClThree) δ: 20.59, 126.36, 126.53, 129.04, 130.36, 131.55, 131.69, 132.76, 132.93, 141.44, 141.57.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: 16.66-17.93 (m), 20.26-21.86 (m).
[0053]
Reference Example 10
Bis (4-methoxy-3,5-dimethylphenyl) phosphine oxide
Embedded image
Figure 0004523227
Under an argon atmosphere, a solution of magnesium (2.26 g, 0.95 eq), a small amount of iodine and a small amount of 1,2-dibromoethane in THF (25 mL) was stirred at room temperature for 1 hour. A solution of 4-bromo-2,6-dimethylanisole (20 g, 0.093 moL) in THF (10 mL) was added at 20 ° C. Next, the mixture was stirred at 40 ° C. for 30 minutes and then stirred at 5 ° C. for 30 minutes. Then, a solution of diethyl phosphite (7.53 g, 0.5 equivalent) in THF (10 mL) was added at 5 ° C., and the mixture was stirred at 5 ° C. for 2 hr. Toluene (50 mL) was added at 3 ° C., 3M-HCl (30 mL) was added, and the mixture was stirred at room temperature for 30 min. The reaction mixture was separated, and the organic layer was separated with water (10 mL), 5% NaHCO.ThreeThe solution was washed successively with an aqueous solution (10 mL) and a 5% NaCl aqueous solution (10 mL). Subsequently, the organic layer was dried over anhydrous magnesium sulfate and then naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica gel 20 g, toluene → ethyl acetate). The title compound (6.91 g, colorless oil) was obtained. Yield 46.7%.
1H-NMR (300 MHz, CDClThree, TMS) δ: 2.30 (s, 12H), 3.74 (s, 6H), 7.34 (d, 4H, J = 13.74Hz), 7.91 (d, 1H, J = 476.8 Hz).
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: 22.63 (dquint, J = 477.0 Hz, 13.6 Hz).
[0054]
Reference Example 11
Bis (1,3-benzodioxol-5-yl) phosphine oxide
Embedded image
Figure 0004523227
Under an argon atmosphere, a solution of magnesium (3.01 g, 1.0 equivalent), a small amount of iodine and a small amount of 1,2-dibromoethane in THF (30 mL) was stirred at room temperature for 1 hour. A solution of 5-bromo-1,3-benzodioxole (25 g, 0.124 moL) in THF (20 mL) was added at 35 ° C. Next, the mixture was stirred at 40 ° C. for 30 minutes and then stirred at 5 ° C. for 30 minutes. Then, a solution of diethyl phosphite (10.07 g, 0.5 eq) in THF (10 mL) was added at 5 ° C., and the mixture was stirred at 5 ° C. for 1 hr. Water (20 mL) was added at 3 ° C., then toluene (70 mL) and 6M-HCl (20 mL) were added, and the mixture was stirred at room temperature for 30 min. THF (30 mL) was added, the reaction mixture was separated, and the organic layer was separated with water (10 mL), 5% NaHCO.ThreeThe solution was washed successively with an aqueous solution (10 mL) and a 5% NaCl aqueous solution (10 mL). Subsequently, the organic layer was dried over anhydrous magnesium sulfate and then naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was recrystallized from diisopropyl ether to give the title compound (7.75 g, white crystals). Yield 43.1%. Melting point 127.9 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 6.01 (s, 4H), 6.90 (dd, 2H, J = 7.86Hz, 2.22Hz), 7.04 (dd, 2H, J = 12.87Hz, 1.14Hz), 7.18-7.26 (m, 2H) , 7.92 (d, 1H, J = 483.0 Hz).
13C-NMR (75 MHz, CDClThree, CDClThree) δ: 102.14, 109.31, 109.53, 110.25, 110.44, 124.35, 125.76, 126.52, 126.69, 148.60, 148.85, 151.80.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: 22.59 (dquint, J = 483.5 Hz, 13.4 Hz).
Elemental analysis C14H11OFiveAs P
Calculated; C: 57.94, H: 3.82, P: 10.67.
Found: C: 57.88, H: 3.83, P: 10.57.
[0055]
Reference Example 12
Bis (2-naphthyl) phosphine oxide
Embedded image
Figure 0004523227
Under an argon atmosphere, a solution of magnesium (2.94 g, 1.0 equivalent), a small amount of iodine and a small amount of 1,2-dibromoethane in THF (30 mL) was stirred at room temperature for 1 hour. A solution of 2-bromonaphthalene (25 g, 0.121 moL) in THF (20 mL) was added at 35 ° C. Next, the mixture was stirred at 40 ° C. for 30 minutes and then stirred at 5 ° C. for 30 minutes. Then, a solution of diethyl phosphite (9.77 g, 0.5 eq) in THF (10 mL) was added at 5 ° C., and the mixture was stirred at 5 ° C. for 3 hr. Water (20 mL) was added at 3 ° C., then toluene (60 mL) and 6M-HCl (20 mL) were added, and the mixture was stirred at room temperature for 30 min. The reaction mixture was separated, and the organic layer was separated with water (10 mL), 5% NaHCO.ThreeThe solution was washed successively with an aqueous solution (10 mL) and a 5% NaCl aqueous solution (10 mL). Subsequently, the organic layer was dried over anhydrous magnesium sulfate and then naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was recrystallized from diisopropyl ether-heptane to obtain the title compound (9.62 g, white crystals). Yield 53.0%. Melting point 98.3 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 7.49-7.64 (m, 6.5H), 7.86-7.95 (m, 6H), 8.40 (d, 2H, J = 15.75Hz), 9.15 (s, 0.5H).
13C-NMR (75 MHz, CDClThree, CDClThree) δ: 125.07, 125.23, 127.13, 127.76, 127.93, 128.81, 128.96, 132.43, 132.62, 132.82, 132.96, 135.05.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: 22.99 (dquint, J = 481.0 Hz, 13.3 Hz).
[0056]
Reference Example 13
Bis (4-chlorophenyl) phosphine oxide
Embedded image
Figure 0004523227
4-chloromagnesium bromide 1M diethyl ether solution (100 mL, 3.0 equivalents) was added to a solution of diethyl phosphite (5.40 g, 0.033 mmoL) in THF (30 mL) at 0 ° C under an argon atmosphere, and then 5 ° C. For 2 hours. Water (20 mL) was added at 3 ° C., then toluene (80 mL) and 6M-HCl (20 mL) were added, and the mixture was stirred at room temperature for 30 min. The reaction mixture was separated, and the organic layer was separated with water (10 mL), 5% NaHCO.ThreeThe solution was washed successively with an aqueous solution (10 mL) and a 5% NaCl aqueous solution (10 mL). Subsequently, the organic layer was dried over anhydrous magnesium sulfate and then naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was recrystallized from heptane to obtain the title compound (8.70 g, white crystals). Yield 97.3%. Melting point 124.0 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 7.47-7.52 (m, 4H), 7.57-7.65 (m, 4H), 8.05 (d, 1H, J = 487.1Hz).
13C-NMR (75 MHz, CDClThree, CDClThree) δ: 129.13, 129.77, 129.95, 130.49, 132.36, 132.53, 139.95.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: 17.59-18.54 (m), 21.62-22.70 (m).
[0057]
Reference Example 14
Bis (biphenyl-4-yl) phosphine oxide
Embedded image
Figure 0004523227
Under an argon atmosphere, a solution of magnesium (2.60 g, 1.0 equivalent), a small amount of iodine and a small amount of 1,2-dibromoethane in THF (20 mL) was stirred at room temperature for 30 minutes. A solution of 4-bromobiphenyl (25 g, 0.107 moL) in THF (20 mL) was added at 35 ° C. Subsequently, the mixture was stirred at 40 ° C. for 1 hour and then stirred at 5 ° C. for 30 minutes. Then, a solution of diethyl phosphite (7.39 g, 0.5 equivalent) in THF (10 mL) was added at 5 ° C., and the mixture was stirred at 5 ° C. for 2 hr. Toluene (60 mL) was added at 3 ° C., 3M-HCl (30 mL) was added, and the mixture was stirred at room temperature for 30 min.
THF (50 mL) was added, the reaction solution was separated, and the organic layer was washed with 5% NaCl aqueous solution (10 mL). Subsequently, the organic layer was dried over anhydrous magnesium sulfate and then naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was recrystallized from diisopropyl ether to obtain the title compound (12.47 g, white crystals). Yield 65.8%.
1H-NMR (300 MHz, THF-d8, TMS) δ: 7.34-7.43 (m, 7H), 7.57-7.66 (m, 5H), 7.78-7.87 (m, 6H), 8.11 (d, 1H, J = 479.3Hz).
13C-NMR (75 MHz, THF-d8, CDClThree) δ: 124.80, 125.06, 125.11, 125.29, 125.99, 126.58, 126.80, 128.95, 129.10.
31P-NMR (121 MHz, THF-d8, 85% HThreePOFour) δ: 16.35 (dquint, J = 479.5 Hz, 13.3 Hz).
[0058]
Reference Example 15
Bis (p-tert-butylphenyl) phosphine oxide
Embedded image
Figure 0004523227
Under a nitrogen stream, magnesium (3.62 g, 4.0 equivalents), a small amount of iodine, and a solution of 1,2-dibromoethane in THF (24 mL) were stirred at room temperature for 30 minutes. A solution of p-tert-butylbromobenzene (31.62 g, 3.99 eq) in THF (130 mL) was added at 24 ° C., and the mixture was stirred at 40 ° C. for 30 min. Then, a solution of diethyl phosphite (5.14 g, 37.2 mmol) in THF (8 mL) was added at 21 ° C., and the mixture was stirred at 22 ° C. for 30 min. 6M-HCl (20 mL) was added at 4 ° C., water (20 mL) and toluene (60 mL) were added, and the mixture was stirred at room temperature for 30 min. The reaction mixture was separated, and the organic layer was separated with water (20 mL), 10% NaHCO.ThreeThe extract was washed successively with an aqueous solution (20 mL) and a 10% aqueous NaCl solution (20 mL). The organic layer was dried over anhydrous magnesium sulfate and then naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was recrystallized from n-hexane and dried (reduced pressure, 40 ° C.) to obtain the title compound (9.17 g, white powder). Yield 78.4%. Melting point: 142.5 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 1.33 (s, 18H), 7.50-7.68 (m, 8H), 8.05
(d, 1H, JHP = 477.2 Hz).
13C-NMR (75MHz, CDClThree, CDClThree) δ: 31.00, 35.00, 125.88, 127.66, 129.04, 130.47, 130.63, 155.94, 155.98.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: 22.32 (d, quint, JHP = 478.0 Hz, JHCC-P = 13.2 Hz).
Elemental analysis C20H27As OP
Calculated; C: 76.40, H: 8.66, P: 9.85.
Found; C: 76.44, H: 8.64, P: 9.53.
[0059]
Reference Example 16
Bis (3,5-di-tert-butylphenyl) phosphine oxide
Embedded image
Figure 0004523227
Under a nitrogen stream, a solution of magnesium (1.21 g, 3.61 equivalent), a small amount of iodine, and 1,2-dibromoethane in THF (8 mL) was stirred at room temperature for 1 hour. A solution of 1-bromo-3,5-di-tert-butylbenzene (12.99 g, 3.49 eq) in THF (40 mL) was added at 23 ° C., and the mixture was stirred at 40 ° C. for 30 min. Then, a solution of diethyl phosphite (1.90 g, 13.8 mmol) in THF (3 mL) was added at 24 ° C., and the mixture was stirred at 24 ° C. for 30 min. 6M-HCl (7 mL) was added at 2 ° C., then water (7 mL) and toluene (20 mL) were added, and the mixture was stirred at room temperature for 30 min. The reaction mixture was separated, and the organic layer was separated with water (7 mL), 10% NaHCO.ThreeThe extract was washed successively with an aqueous solution (7 mL) and a 10% NaCl aqueous solution (7 mL). The organic layer was dried over anhydrous magnesium sulfate and then naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was recrystallized from n-hexane and dried (reduced pressure, 40 ° C.) to obtain the title compound (3.38 g, white powder). Yield 57.5%. Melting point: 184.6 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 1.33 (s, 36H), 7.53 (s, 1H), 7.53 (s, 1H), 7.58 (s, 1H), 7.58 (s, 1H), 7.63 (s, 1H), 7.63 (s , 1H), 8.10 (d, 1H, JHP = 474.9 Hz).
13C-NMR (75 MHz, CDClThree, CDClThree) δ: 31.23, 35.00, 124.75, 124.91, 126.49, 126.52, 129.96, 131.30, 151.30, 151.46.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: 24.94 (d, quint, JHP = 474.8 Hz, JHCC-P = 14.3 Hz).
Elemental analysis C28H43As OP
Calculated; C: 78.83, H: 10.16, P: 7.26.
Found; C: 78.74, H: 9.93, P: 7.16.
[0060]
Reference Example 17
Bis (m-tolyl) phosphine oxide
Embedded image
Figure 0004523227
Under a nitrogen stream, a solution of magnesium (3.60 g, 3.50 equivalents), a small amount of iodine and 1,2-dibromoethane in THF (25 mL) was stirred at room temperature for 30 minutes. A solution of m-bromotoluene (25.36 g, 3.51 eq) in THF (130 mL) was added at 24 ° C., and the mixture was stirred at 40 ° C. for 30 min. Then, a solution of diethyl phosphite (5.84 g, 42.3 mmol) in THF (10 mL) was added at 25 ° C., and the mixture was stirred at 24 ° C. for 1.5 hr. 6M-HCl (20 mL) was added at 4 ° C., water (20 mL) and toluene (60 mL) were added, and the mixture was stirred at room temperature for 30 min. The reaction mixture was separated, and the organic layer was 10% NaHCO.ThreeWash sequentially with aqueous solution (20 mL), water (20 mL), and 10% NaCl aqueous solution (20 mL). The organic layer is dried over anhydrous magnesium sulfate, filtered naturally, and then filtered under reduced pressure with a membrane filter (0.2 μm). The filtrate was concentrated under reduced pressure to give the title compound (9.09 g, colorless oil). Yield 93.3%
1H-NMR (300 MHz, CDClThree, TMS) δ: 2.34 (s, 6H), 7.31-7.54 (m, 8H), 7.97 (d, 1H, JHP = 479.3 Hz).
13C-NMR (75 MHz, CDClThree, CDClThree) δ: 21.25, 127.53, 127.69, 128.60, 128.78, 130.93, 131.08, 133.25, 133.29, 138.67, 138.84.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: 23.25 (d, quint, JHP = 479.2 Hz, JHCC-P = 13.8 Hz).
Mass spectrometry (FAB-HR); calculated; 231.0939.
Actual value; 231.0918 (MH+).
[0061]
Reference Example 18
Bis (4-methylphenyl) phosphine-borane complex
Embedded image
Figure 0004523227
Under an argon atmosphere, a solution of cerium chloride (7.89 g, 3.0 eq) in THF (20 mL) was stirred at room temperature (25 ° C.) for 30 minutes. Sodium borohydride (1.25 g, 3.1 eq) was added, and the mixture was stirred at room temperature for 1 hr. Next, bis (4-methylphenyl) phosphine oxide (2.5 g, 0.011 moL) and lithium aluminum hydride (0.494 g, 1.2 equivalents) synthesized in Reference Example 8 were sequentially added at 5 ° C., followed by stirring at room temperature for 17 hours. did. Water (10 mL) was added at 3 ° C., then toluene (20 mL) and 6M-HCl (20 mL) were added, and the mixture was stirred at room temperature for 30 min. The reaction solution was separated, and the aqueous layer was extracted with toluene (30 mL). Combined organic layers with 5% NaHCOThreeThe solution was washed successively with an aqueous solution (20 mL) and a 5% aqueous NaCl solution (20 mL). The organic layer was then dried over anhydrous magnesium sulfate and naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (alumina 25 g, n-hexane / ethyl acetate = 10/1). The residue was recrystallized from heptane to obtain the title compound (1.28 g, white crystals). Yield 51.0%. Melting point 78.6 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 0.43-1.61 (m, 3H), 2.38 (s, 6H), 6.26 (dq, 1H, J = 377.5 Hz, 6.24 Hz), 7.24-7.27 (m, 4H), 7.51-7.58 (m , 4H).13C-NMR (75 MHz, CDClThree, CDClThree) δ: 21.90, 123.02, 123.81, 130.14, 130.28, 133.22, 133.35, 142.44.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -1.44- -0.16 (m), 1.62-3.19 (m) Elemental analysis C14H18As BP
Calculated; C: 73.72, H: 7.95, P: 13.58.
Found; C: 73.65, H: 7.93, P: 13.54.
[0062]
Reference Example 19
(S) -6,6'-Dibromo-2,2'-bis (methoxymethyloxy) -1,1'-binaphthyl
To a solution of (S) -6,6'-dibromo-1,1'-bi-2-naphthol (4.0 g, 9.0 mmoL) in dichloromethane (40 mL) was added diisopropylethylamine (3.49 g, 3.0 eq) at room temperature (25 ° C). Chloromethyl methyl ether (1.59 g, 2.2 equivalents) was then added at 5 ° C., and the mixture was stirred at room temperature for 18 hours. Water (10 mL) was added at 3 ° C., and the mixture was stirred at room temperature for 30 min. The reaction solution was separated, and the organic layer was washed with 5% NaCl aqueous solution (10 mL). The organic layer was then dried over anhydrous magnesium sulfate and naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was recrystallized from diisopropyl ether to give the title compound (4.28 g, pale yellowish white crystals). Yield 89.4%.
1H-NMR (300MHz, CDClThree, TMS) δ: 3.16 (s, 6H), 5.04 (dd, 4H, J = 32.32 Hz, 6.85 Hz), 6.98 (d, 2H, J = 9.02 Hz), 7.29 (dd, 2H, J = 9.03 Hz, 2.01 Hz), 7.60 (d, 2H, J = 9.07 Hz), 7.87 (d, 2H, J = 9.08 Hz), 8.04 (d, 2H, J = 1.93 Hz).
[0063]
Reference Example 20
(S) -2,2'-Bis (methoxymethyloxy) -6,6'-diphenyl-1,1'-binaphthyl
(S) -6,6'-Dibromo-2,2'-bis (methoxymethyloxy) -1,1'-binaphthyl (2.0 g, 3.76 mmoL) in dimethoxyethane (20 mL) was added to dihydroxyphenylborane ( 1.37 g, 3.0 eq), tetrakistriphenylphosphine palladium (0.43 g, 0.1 eq) and aqueous sodium carbonate (1.99 g, 3.0 eq) in water (2 mL) were added at room temperature (25 ° C.), and the mixture was stirred for 8 hours under reflux . Water (10 mL) and ethyl acetate (20 mL) were added at 3 ° C., and the mixture was stirred at room temperature for 30 min. The reaction solution was separated, and the organic layer was washed with 5% NaCl aqueous solution (10 mL). The organic layer was then dried over anhydrous magnesium sulfate and naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica gel 25 g, n-hexane / ethyl acetate = 5/1). The effective fraction was concentrated under reduced pressure to give the title compound (1.63 g, yellow amorphous). Yield 82.2%.
1H-NMR (300MHz, CDClThree, TMS) δ: 3.22 (s, 6H), 5.10 (dd, 4H, J = 29.74 Hz, 6.77 Hz), 7.29-7.39 (m, 4H), 7.45-7.57 (m, 6H), 7.63-7.73 (m , 6H), 8.05 (d, 2H, J = 9.00 Hz), 8.12 (d, 2H, J = 1.66 Hz).
[0064]
Reference Example 21
(S) -6,6'-Diphenyl-2,2'-bis (trifluoromethanesulfonyloxy) -1,1'-binaphthyl
(S) -2,2′-bis (methoxymethyloxy) -6,6′-diphenyl-1,1′-binaphthyl (1.63 g, 3.08 mmoL) in THF (5 mL) was added to a 6M HCl aqueous solution ( 5 mL) was added and stirred under reflux for 7 hours. A 30% aqueous NaOH solution and ethyl acetate (20 mL) were added at 3 ° C., and the mixture was stirred at room temperature for 30 min. The reaction solution was separated, and the organic layer was washed with water (10 mL) and 5% aqueous NaCl solution (10 mL). The organic layer was then dried over anhydrous magnesium sulfate and naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica gel 25 g, n-hexane / ethyl acetate = 10/1). To a solution of the residue in acetonitrile (15 mL), pyridine (0.86 g, 2.7 equiv) was added at room temperature. Then, trifluoromethanesulfonic anhydride (2.84 g, 2.5 equivalents) was added at 5 ° C., and the mixture was stirred at room temperature for 2 hours. Water (10 mL) was added at 3 ° C., then ethyl acetate (30 mL) was added, and the mixture was stirred at room temperature for 30 min. The reaction solution was separated, and the organic layer was washed with water (10 mL) and 5% aqueous NaCl solution (10 mL). The organic layer was then dried over anhydrous magnesium sulfate and naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica gel 25 g, n-hexane / ethyl acetate = 10/1). The effective fraction was concentrated under reduced pressure to give the title compound (0.74 g, colorless amorphous). Yield 34.0%
1H-NMR (300MHz, CDClThree, TMS) δ: 7.36-7.43 (m, 4H), 7.47-7.52 (m, 4H), 7.65-7.73 (m, 8H), 8.20-8.22 (m, 4H).
13C-NMR (75 MHz, CDClThree, CDClThree) δ: 119.75, 125.97, 127.30, 127.39, 127.71, 127.93, 128.97, 132.16, 132.24, 132.69, 139.92, 140.03, 145.30.
Elemental analysis C34H20F6O6As S
Calculated value; C: 58.12, H: 2.87.
Found; C: 57.86, H: 3.01.
[0065]
Reference Example 22
7,7'-dimethoxy-1,1'-bi-2-naphthol
To a solution of 7-methoxy-2-naphthol (5.0 g, 28.7 mmoL) in dichloromethane (50 mL) was added Cu (OH) Cl-tetramethylethylenediamine complex (1.33 g, 0.1 eq) at room temperature (25 ° C). For 8 hours. Water (20 mL) was added at 3 ° C., and the mixture was stirred at room temperature for 30 min. The reaction solution was separated, and the organic layer was washed with 5% NaCl aqueous solution (10 mL). The organic layer was then dried over anhydrous magnesium sulfate and naturally filtered, and the filtrate was concentrated under reduced pressure. Ethyl acetate (50 mL) and silica gel (10 g) were added to the residue, and the mixture was stirred at room temperature for 1 hr. The filtrate was concentrated under reduced pressure to give the title compound (5.10 g, tan amorphous). Yield 100%.
1H-NMR (300MHz, CDClThree, TMS) δ: 3.58 (s, 6H), 5.07 (s, 2H), 6.49 (d, 2H, J = 2.43 Hz), 7.03 (dd, 2H, J = 8.89 Hz, 2.49 Hz), 7.22 (d, 2H, J = 8.84 Hz), 7.78 (d, 2H, J = 8.90 Hz), 7.88 (d, 2H, J = 8.85 Hz).
13C-NMR (75 MHz, CDClThree, CDClThree) δ: 55.54, 103.58, 110.47, 115.50, 116.43, 125.20, 130.39, 131.51, 135.11, 153.74, 159.52.
[0066]
Reference Example 23
7,7'-Dimethoxy-2,2'-bis (trifluoromethanesulfonyloxy) -1,1'-binaphthyl
To a solution of 7,7'-dimethoxy-1,1'-bi-2-naphthol (5.10 g, 14.3 mmoL) in acetonitrile (50 mL) was added pyridine (3.05 g, 2.7 eq) at room temperature (25 ° C). . Then, trifluoromethanesulfonic anhydride (10.12 g, 2.5 equivalents) was added at 5 ° C., and the mixture was stirred at room temperature for 5 hours. Water (30 mL) was added at 3 ° C., ethyl acetate (50 mL) was added, and the mixture was stirred at room temperature for 30 min. The reaction solution was separated, and the organic layer was washed with water (10 mL) and 5% aqueous NaCl solution (10 mL). The organic layer was then dried over anhydrous magnesium sulfate and naturally filtered, and the filtrate was concentrated under reduced pressure. Ethyl acetate (30 mL) and activated carbon (1.0 g) were added to the residue, and the mixture was stirred at room temperature for 1 hr, and the filtrate was concentrated under reduced pressure. The residue was recrystallized from diisopropyl ether to obtain the title compound (5.80 g, red brown white crystals). Yield 66.5%.
1H-NMR (300MHz, CDClThree, TMS) δ: 3.55 (s, 6H), 6.56 (s, 2H), 7.26 (dd, 2H, J = 8.99 Hz, 2.51 Hz), 7.48 (d, 2H, J = 8.95 Hz), 7.92 (d, 2H, J = 8.98 Hz), 8.06 (d, 2H, J = 8.95 Hz).
13C-NMR (75 MHz, CDClThree, CDClThree) δ: 55.61, 105.41, 117.11, 120.49, 122.63, 128.27, 130.26, 131.86, 134.98, 146.39, 159.57.
Elemental analysis Ctwenty fourH16F6O8S2As
Calculated value; C: 47.22, H: 2.64.
Found; C: 46.93, H: 2.55.
[0067]
Example 1
Bis (3,5-dimethylphenyl) phosphine-borane complex
Embedded image
Figure 0004523227
(Production method 1)
Under an argon atmosphere, a solution of cerium chloride (14.3 g, 3.0 equivalents) in THF (40 mL) was stirred at room temperature (25 ° C.) for 30 minutes. After adding sodium borohydride (2.19 g, 3.0 eq), the mixture was stirred at room temperature for 1 hour. Next, bis (3,5-dimethylphenyl) phosphine oxide (5.0 g, 19.3 mmoL) and lithium aluminum hydride (0.88 g, 1.2 equivalents) synthesized in Reference Example 2 were sequentially added at 5 ° C., and then added at room temperature. Stir for hours. Water (40 mL) was added at 3 ° C., then toluene (40 mL) and 6M-HCl (20 mL) were added, and the mixture was stirred at room temperature for 30 min. The reaction solution was separated, the organic layer was dried over anhydrous magnesium sulfate and naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was recrystallized from diisopropyl ether to give the title compound (2.8 g, white crystals). Yield 57.4%.
(Production method 2)
Under a nitrogen stream, a solution of cerium chloride (2.87 g, 2.99 equivalent) in THF (20 mL) was stirred at room temperature (25 ° C.) for 40 minutes. After adding sodium borohydride (0.44 g, 2.99 equivalent), the mixture was stirred at room temperature for 1 hour. Then, bis (3,5-dimethylphenyl) phosphine oxide (1.00 g, 3.89 mmol) and lithium aluminum hydride (0.17 g, 1.16 equivalent) synthesized in Reference Example 2 were sequentially added at −12 ° C., and then for 4 hours. Stir. Water (10 mL) was added at −10 ° C., then toluene (20 mL) was added, and 6M-HCl (3 mL) was added at −5 ° C., followed by stirring at room temperature for 30 minutes. The reaction solution was separated, and the organic layer was concentrated under reduced pressure. The concentrate was purified by silica gel column chromatography (10 g, toluene), and the effective fraction was concentrated under reduced pressure. The residue was recrystallized from heptane to obtain the title compound (0.70 g, white powder). Yield 70.6%. Melting point: 106.5 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 0.30-1.80 (m, 3H), 2.35 (s, 12H), 6.20 (dq, 1H, JHP = 377.4 Hz, J = 6.9 Hz), 7.14 (s, 2H), 7.26 (s, 2H), 7.30 (s, 2H).
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: 0.88-1.32 (m), 3.32-5.02 (m).
[0068]
Example 2
(S) -2,2'-Bis [bis (3,5-dimethylphenyl) phosphino] -1,1'-binaphthyl
Embedded image
Figure 0004523227
(S) -2,2'-bis (trifluoromethanesulfonyloxy) synthesized in Reference Example 1 with [1,2-bis (diphenylphosphino) -ethane] dichloronickel (42 mg, 0.1 equivalent) in an argon atmosphere Example 1 was synthesized in a DMF solution (5 mL) of -1,1'-binaphthyl (399 mg, 0.73 mmoL) and 1,4-diazabicyclo [2,2,2] octane (489 mg, 6.0 eq). Bis (3,5-dimethylphenyl) phosphine-borane complex (428 mg, 2.3 eq) was added at room temperature, and the mixture was stirred at room temperature for 30 min. Subsequently, it stirred at 110 degreeC for 96 hours. DMF was distilled off under reduced pressure, and methanol was added to the residue to obtain the title compound (329 mg, pale yellowish white crystals). Yield 62%.
1H-NMR (300 MHz, CDClThree, TMS) δ: 2.06 (s, 12H), 2.13 (s, 12H), 6.70-6.73 (m, 10H), 6.81 (s, 2H), 6.90 (d, 2H, J = 8.46 Hz), 7.01 (dd , 2H, J = 7.14Hz, 7.14Hz), 7.39 (dd, 2H, J = 6.99Hz, 6.99Hz), 7.52 (dd, 2H, J = 8.49Hz, 2.28Hz), 7.84-7.88 (m, 4H) .
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -14.25 (s).
(reference:31P-NMR (161 MHz, CDClThree, 85% HThreePOFour): -14.9. Journal of Organic Chemistry, 59, 3064, 1994)
Elemental analysis C52H48P2As
Calculated value; C: 84.99, H: 6.58, P: 8.43.
Found; C: 84.60, H: 6.58, P: 8.07.
[0069]
Example 3
Bis (4-methoxyphenyl) phosphine-borane complex
Embedded image
Figure 0004523227
Under an argon atmosphere, a solution of cerium chloride (7.03 g, 3.0 equivalents) in THF (20 mL) was stirred at room temperature (25 ° C.) for 30 minutes. After adding sodium borohydride (1.08 g, 3.1 equivalent), the mixture was stirred at room temperature for 1 hour. Next, bis (4-methoxyphenyl) phosphine oxide (2.5 g, 9.1 mmoL) and lithium aluminum hydride (0.43 g, 1.2 equivalents) synthesized in Reference Example 3 were sequentially added at 5 ° C., followed by stirring at room temperature for 3 hours. did. Water (20 mL) was added at 3 ° C., then toluene (50 mL) and 6M-HCl (10 mL) were added, and the mixture was stirred at room temperature for 30 min. The reaction solution was separated, and the aqueous layer was extracted three times with toluene (20 mL). Combined organic layers with 5% NaHCOThreeThe solution was washed successively with an aqueous solution (20 mL) and a 5% aqueous NaCl solution (20 mL). The organic layer was then dried over anhydrous magnesium sulfate and naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica gel 30 g, n-hexane / ethyl acetate = 5/1 → 2/1). The residue was recrystallized from heptane to obtain the title compound (0.98 g, white crystals). Yield 41.3%. Melting point 65.8 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 0.43-1.57 (m, 3H), 3.82 (s, 6H), 6.24 (dq, 1H, J = 377.9Hz, 6.78Hz), 6.95 (dd, 4H, J = 8.71 Hz, 1.72 Hz) , 7.53-7.60 (m, 4H).
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -4.53- -2.73 (m), -1.26-0.40 (m), -4.15 (m).
[0070]
Example 4
(S) -2,2'-Bis [bis (4-methoxyphenyl) phosphino] -1,1'-binaphthyl
Embedded image
Figure 0004523227
(S) -2,2'-bis (trifluoromethanesulfonyloxy) synthesized in Reference Example 1 with [1,2-bis (diphenylphosphino) -ethane] dichloronickel (53 mg, 0.1 equivalent) in an argon atmosphere Example 1 was synthesized in a DMF solution (5 mL) of -1,1'-binaphthyl (500 mg, 0.91 mmoL) and 1,4-diazabicyclo [2,2,2] octane (613 mg, 6.0 eq). Bis (4-methoxyphenyl) phosphine-borane complex (543 mg, 2.3 eq) was added at room temperature, and the mixture was stirred at room temperature for 30 min. Subsequently, it stirred at 110 degreeC for 48 hours. DMF was distilled off under reduced pressure, and methanol was added to the residue to obtain the title compound (444 mg, white crystals). Yield 66%.
1H-NMR (300 MHz, CDClThree, TMS) δ: 3.73 (s, 12H), 6.64 (d, 4H, J = 8.35 Hz), 6.69 (d, 4H, J = 8.19 Hz), 6.80 (d, 2H, J = 8.49 Hz), 6.92- 7.03 (m, 10H), 7.30-7.38 (m, 2H), 7.40-7.45 (m, 2H), 7.82 (d, 2H, J = 8.13 Hz), 7.87 (d, 2H, J = 8.52 Hz).
31P-NMR (121MHz, CDClThree, 85% HThreePOFour) δ: -17.40 (s).
(reference:31P-NMR (161 MHz, CDClThree, 85% HThreePOFourδ: -16.8. Journal of Organic Chemistry, 59, 3064, 1994)
[0071]
Example 5
Bis (4-dimethylaminophenyl) phosphine-borane complex
Embedded image
Figure 0004523227
Under an argon atmosphere, a solution of cerium chloride (7.69 g, 3.0 eq) in THF (25 mL) was stirred at room temperature (25 ° C.) for 30 minutes. After adding sodium borohydride (1.22 g, 3.1 equivalent), the mixture was stirred at room temperature for 1 hour. Next, bis (4-dimethylaminophenyl) phosphine oxide (3.0 g, 10.4 mmoL) and lithium aluminum hydride (0.47 g, 1.2 equivalents) synthesized in Reference Example 4 were sequentially added at 5 ° C., and then at room temperature for 3 hours. Stir. Water (20 mL) was added at 3 ° C., then toluene (40 mL) and 6M-HCl (10 mL) were added, and the mixture was stirred at room temperature for 30 min. The reaction solution was neutralized with NaOH and separated. The aqueous layer was extracted with THF (50 mL). The combined organic layers were washed sequentially with 5% aqueous NaCl solution (20 mL). The organic layer was then dried over anhydrous magnesium sulfate and naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica gel 5 g, n-hexane / ethyl acetate = 1/1). The residue was recrystallized from heptane to obtain the title compound (0.61 g, white crystals). Yield 20.5%. Melting point 142.6 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 0.43-1.33 (m, 3H), 3.03 (s, 12H), 6.26 (dq, 1H, J = 375.1 Hz, 6.57 Hz), 7.51 (d, 4H, J = 8.81 Hz), 7.54 ( d, 4H, J = 8.81 Hz).
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -6.40- -4.73 (m), -3.33- -1.66 (m).
[0072]
Example 6
(S) -2,2'-Bis [bis (4-dimethylaminophenyl) phosphino] -1,1'-binaphthyl
Embedded image
Figure 0004523227
(S) -2,2'-bis (trifluoromethanesulfonyloxy) synthesized in Reference Example 1 with [1,2-bis (diphenylphosphino) -ethane] dichloronickel (48 mg, 0.1 equivalent) in an argon atmosphere Example 1 was synthesized in a DMF solution (5 mL) of -1,1'-binaphthyl (507 mg, 0.92 mmoL) and 1,4-diazabicyclo [2,2,2] octane (620 mg, 6.0 eq). Bis (4-dimethylaminophenyl) phosphine-borane complex (606 mg, 2.3 eq) was added at room temperature, and the mixture was stirred at room temperature for 30 min. Subsequently, it stirred at 110 degreeC for 129 hours. DMF was distilled off under reduced pressure, and methanol was added to the residue to obtain the title compound (461 mg, yellowish white crystals). Yield 62.9%.
1H-NMR (300 MHz, CDClThree, TMS) δ: 2.88 (s, 24H), 6.43 (d, 4H, J = 6.79 Hz), 6.50-6.59 (m, 4H), 6.77-7.03 (m, 12H), 7.18-7.26 (m, 2H) , 7.51 (d, 2H, J = 7.13 Hz), 7.78 (d, 2H, J = 7.56 Hz), 7.83 (d, 2H, J = 8.28 Hz).
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -18.00 (s).
[0073]
Example 7
Bis (4-fluorophenyl) phosphine-borane complex
Embedded image
Figure 0004523227
Under an argon atmosphere, a solution of cerium chloride (9.31 g, 3.0 equivalents) in THF (25 mL) was stirred at room temperature (25 ° C.) for 30 minutes. After adding sodium borohydride (1.48 g, 3.1 equivalent), the mixture was stirred at room temperature for 1 hour. Next, bis (4-fluorophenyl) phosphine oxide (3.0 g, 12.6 mmoL) and lithium aluminum hydride (0.57 g, 1.2 equivalents) synthesized in Reference Example 5 were sequentially added at 5 ° C., followed by stirring at room temperature for 3 hours. did. Water (10 mL) was added at 3 ° C., then toluene (30 mL) and 6M-HCl (20 mL) were added, and the mixture was stirred at room temperature for 30 min. The reaction solution was separated, and the aqueous layer was extracted with toluene (20 mL). The combined organic layers were washed with 5% NaCl aqueous solution (20 mL). The organic layer was then dried over anhydrous magnesium sulfate and naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (alumina 25 g, n-hexane / ethyl acetate = 20/1). The residue was recrystallized from heptane to obtain the title compound (0.61 g, white crystals). Yield 20.4%. Melting point 71.7 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 0.42-1.36 (m, 3H), 6.32 (dq, 1H, J = 380.4 Hz, 6.89 Hz), 7.14-7.20 (m, 4H), 7.62-7.70 (m, 4H).
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -3.29- -1.21 (m), -0.29-1.91 (m).
[0074]
Example 8
(S) -2,2'-Bis [bis (4-fluorophenyl) phosphino] -1,1'-binaphthyl
Embedded image
Figure 0004523227
(S) -2,2'-bis (trifluoromethanesulfonyloxy) synthesized in Reference Example 1 with [1,2-bis (diphenylphosphino) -ethane] dichloronickel (48 mg, 0.1 equivalent) in an argon atmosphere Example 1 was synthesized in a DMF solution (5 mL) of -1,1′-binaphthyl (507 mg, 0.92 mmoL) and 1,4-diazabicyclo [2,2,2] octane (620 mg, 6.0 eq). Bis (4-fluorophenyl) phosphine-borane complex (500 mg, 2.3 eq) was added at room temperature, and the mixture was stirred at room temperature for 30 min. Subsequently, it stirred at 110 degreeC for 129 hours. DMF was distilled off under reduced pressure, and methanol was added to the residue to obtain the title compound (344 mg, yellowish white crystals). Yield 53.8%.
1H-NMR (300 MHz, CDClThree, TMS) δ: 6.74-7.07 (m, 16H), 7.34-7.41 (m, 4H), 7.41-7.93 (m, 4H), 7.85 (d, 2H, J = 8.20 Hz), 7.91 (d, 2H, J = 8.47 Hz).31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -16.63 (s).
(reference:31P-NMR (161 MHz, CDClThree, 85% HThreePOFour): -17.0. Journal of Organic Chemistry, 59, 3064, 1994)
[0075]
Example 9
Bis (3,5-di-tert-butyl-4-methoxyphenyl) phosphine-borane complex
Embedded image
Figure 0004523227
Under an argon atmosphere, a solution of cerium chloride (4.55 g, 3.0 equivalents) in THF (25 mL) was stirred at room temperature (25 ° C.) for 30 minutes. After adding sodium borohydride (0.72 g, 3.1 equivalent), the mixture was stirred at room temperature for 1 hour. Next, bis (3,5-di-tert-butyl-4-methoxyphenyl) phosphine oxide (3.0 g, 6.16 mmoL) and lithium aluminum hydride (0.28 g, 1.2 equivalents) synthesized in Reference Example 7 were added at 5 ° C. After sequential addition, the mixture was stirred at room temperature for 18 hours. Water (10 mL) was added at 3 ° C., then toluene (30 mL) and 6M-HCl (20 mL) were added, and the mixture was stirred at room temperature for 30 min. The reaction solution was separated, and the aqueous layer was extracted with toluene (30 mL). The combined organic layers were washed sequentially with 5% aqueous NaCl solution (20 mL). The organic layer was then dried over anhydrous magnesium sulfate and naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (alumina 25 g, n-hexane). The residue was recrystallized from heptane to obtain the title compound (1.18 g, white crystals). Yield 39.6%. Melting point 134.7 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 0.37-1.08 (m, 3H), 1.39 (s, 36H), 3.69 (s, 6H), 6.23 (dq, 1H, J = 376.2 Hz, 6.78 Hz), 7.50 (d, 4H, J = 12.18 Hz).
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -3.33- -1.46 (m), -0.13-1.80 (m).
[0076]
Example 10
(S) -2,2'-bis [bis (3,5-di-tert-butyl-4-methoxyphenyl) phosphino] -1,1'-binaphthyl
Embedded image
Figure 0004523227
(S) -2,2'-bis (trifluoromethanesulfonyloxy) synthesized in Reference Example 1 with [1,2-bis (diphenylphosphino) -ethane] dichloronickel (48 mg, 0.1 equivalent) in an argon atmosphere Example 1 was synthesized in a DMF solution (5 mL) of -1,1′-binaphthyl (507 mg, 0.91 mmoL) and 1,4-diazabicyclo [2,2,2] octane (620 mg, 6.0 eq). Bis (3,5-di-tert-butyl-4-methoxyphenyl) phosphine-borane complex (1.03 g, 2.3 eq) was added at room temperature, and the mixture was stirred at room temperature for 30 min. Subsequently, it stirred at 110 degreeC for 153 hours. DMF was distilled off under reduced pressure, and methanol was added to the residue to obtain the title compound (737 mg, yellowish white crystals). Yield 69%. Melting point 129.5 ° C. Optical rotation: [α]D = -232 ° (25 ° C, c = 1.0, CHClThree)
1H-NMR (300 MHz, CDClThree, TMS) δ: 1.21 (s, 36H), 1.24 (s, 36H), 3.58 (s, 6H), 3.64 (s, 6H), 6.64 (d, 2H, J = 7.60 Hz), 6.77 (d, 2H , J = 7.10 Hz), 6.92-7.00 (m, 4H), 7.13-7.20 (m, 4H), 7.30-7.37 (m, 2H), 7.42-7.51 (m, 2H), 7.77 (d, 2H, J = 6.91 Hz), 7.86 (d, 2H, J = 8.02 Hz).
13C-NMR (75 MHz, CDClThree, CDClThree) δ: 33.34, 33.49, 36.96, 37.19, 65.44, 65.53, 126.64, 127.23, 128.76, 128.80, 128.92, 131.84, 132.95, 134.51, 144.02, 160.37, 161.31.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -15.02 (s).
Mass spectrometry (ESI-HR); calculated; 1189.7332
Actual value; 1189.7350 (M-H)
[0077]
Example 11
(S) -2,2'-Bis [bis (4-methylphenyl) phosphino] -1,1'-binaphthyl
Embedded image
Figure 0004523227
(S) -2,2'-bis (trifluoromethanesulfonyloxy) synthesized in Reference Example 1 with [1,2-bis (diphenylphosphino) -ethane] dichloronickel (48 mg, 0.1 equivalent) under argon atmosphere Synthesized in Reference Example 18 into a DMF solution (5 mL) of -1,1'-binaphthyl (500 mg, 0.91 mmoL) and 1,4-diazabicyclo [2,2,2] octane (610 mg, 6.0 eq) Bis (4-methylphenyl) phosphine-borane complex (0.476 g, 2.3 eq) was added at room temperature, and the mixture was stirred at room temperature for 30 min. Subsequently, it stirred at 110 degreeC for 73 hours. DMF was distilled off under reduced pressure, and methanol was added to the residue to obtain the title compound (488 mg, white crystals). Yield 79.2%.
1H-NMR (300 MHz, CDClThree, TMS) δ: 2.27 (s, 6H), 2.29 (s, 6H), 6.86-7.03 (m, 20H), 7.38-7.41 (m, 2H), 7.47-7.50 (m, 2H), 7.85 (d, 2H, J = 8.16 Hz), 7.89 (d, 2H, J = 8.48 Hz).
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -15.73 (s).
Elemental analysis C48H40P2As
Calculated; C: 84.93, H: 5.94, P: 9.13.
Found; C: 84.52, H: 5.90, P: 9.09.
[0078]
Example 12
Bis (2-methylphenyl) phosphine-borane complex
Embedded image
Figure 0004523227
Under an argon atmosphere, a solution of cerium chloride (8.66 g, 3.0 equivalents) in THF (80 mL) was stirred at room temperature (25 ° C.) for 30 minutes. After adding sodium borohydride (1.37 g, 3.1 equivalent), the mixture was stirred at room temperature for 1 hour. Next, bis (2-methylphenyl) phosphine oxide (2.7 g, 11.72 mmoL) and lithium aluminum hydride (0.53 g, 1.2 equivalents) synthesized in Reference Example 9 were sequentially added at 5 ° C., followed by stirring at room temperature for 4 hours. did. Toluene (80 mL) was added at 3 ° C., 3M-HCl (30 mL) was added, and the mixture was stirred at room temperature for 30 min. The reaction solution was separated, and the aqueous layer was extracted with toluene (20 mL). The combined organic layers were washed with 5% NaCl aqueous solution (20 mL). The organic layer was then dried over anhydrous magnesium sulfate and naturally filtered, and the filtrate was concentrated under reduced pressure. Toluene (20 mL) and silica gel (10 g) were added to the residue, and the mixture was stirred at room temperature for 10 minutes. Natural filtration was performed, and the filtrate was concentrated under reduced pressure. To the residue at 5 ° C THF (5 mL), BHThree-THF (5 mL) was added and stirred at room temperature for 1 hour. The residue was recrystallized from heptane to obtain the title compound (1.15 g, white crystals). Yield 43.0%. Melting point 78.0 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 0.42-1.63 (m, 3H), 2.32 (s, 6H), 6.47 (dq, 1H, J = 377.5 Hz, 6.63 Hz), 7.21-7.31 (m, 4H), 7.38-7.43 (m , 2H), 7.59 (d, 1H, J = 13.56Hz), 7.61 (d, 1H, J = 13.53Hz).
13C-NMR (75 MHz, CDClThree, CDClThree) δ: 20.81, 20.88, 126.36, 126.52, 130.85, 130.95, 131.67, 131.70, 133.82, 134.01, 141.42.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -15.58- -14.22 (m), -12.67- -11.33 (m).
[0079]
Example 13
(S) -2,2'-Bis [bis (2-methylphenyl) phosphino] -1,1'-binaphthyl
Embedded image
Figure 0004523227
(S) -2,2'-bis (trifluoromethanesulfonyloxy) synthesized in Reference Example 1 with [1,2-bis (diphenylphosphino) -ethane] dichloronickel (96 mg, 0.1 equivalent) under argon atmosphere Example 12 was synthesized in a DMF solution (5 mL) of -1,1′-binaphthyl (1.0 g, 1.81 mmoL) and 1,4-diazabicyclo [2,2,2] octane (1.22 g, 6.0 eq). Bis (2-methylphenyl) phosphine-borane complex (0.95 g, 2.3 eq) was added at room temperature, and the mixture was stirred at room temperature for 30 min. Subsequently, it stirred at 110 degreeC for 96 hours. DMF was distilled off under reduced pressure, and methanol was added to the residue to obtain the title compound (684 mg, white crystals). Yield 55.5%.
1H-NMR (300 MHz, CDClThree, TMS) δ: 2.01 (s, 6H), 2.03 (s, 6H), 6.91-7.31 (m, 24H), 7.68-7.89 (m, 4H).
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -28.67 (s).
[0080]
Example 14
Bis (4-methoxy-3,5-dimethylphenyl) phosphine-borane complex
Embedded image
Figure 0004523227
Under an argon atmosphere, a solution of cerium chloride (10.54 g, 3.0 eq) in THF (80 mL) was stirred at room temperature (25 ° C.) for 30 minutes. After adding sodium borohydride (1.67 g, 3.1 equivalent), the mixture was stirred at room temperature for 1 hour. Subsequently, bis (4-methoxy-3,5-dimethylphenyl) phosphine oxide (4.54 g, 0.014 moL) and lithium aluminum hydride (0.65 g, 1.2 equivalents) synthesized in Reference Example 10 were sequentially added at 5 ° C. And stirred at room temperature for 4 hours. Toluene (100 mL) was added at 3 ° C., 3M-HCl (40 mL) was added, and the mixture was stirred at room temperature for 30 min. The reaction solution was separated, and the aqueous layer was extracted with toluene (20 mL). The combined organic layers were washed with 5% NaCl aqueous solution (20 mL). The organic layer was then dried over anhydrous magnesium sulfate and naturally filtered, and the filtrate was concentrated under reduced pressure. Toluene (20 mL) and silica gel (10 g) were added to the residue, and the mixture was stirred at room temperature for 10 minutes. Natural filtration was performed, and the filtrate was concentrated under reduced pressure. The residue was recrystallized from heptane to obtain the title compound (3.14 g, white crystals).
Yield 69.6%. Melting point 81.6 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 0.37-1.56 (m, 3H), 2.27 (s, 12H), 3.72 (s, 6H), 6.13 (dq, 1H, J = 377.5 Hz, 6.84 Hz), 7.27 (d, 4H, J = 15.30Hz).
13C-NMR (75 MHz, CDClThree, CDClThree) δ: 16.07, 59.59, 120.59, 121.37, 131.97, 132.12, 133.32, 133.45, 159.87.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -1.57- -0.32 (m), 1.38-2.83 (m).
[0081]
Example 15
(S) -2,2'-Bis [bis (4-methoxy-3,5-dimethylphenyl) phosphino] -1,1'-binaphthyl
[Chemical Formula 86]
Figure 0004523227
(S) -2,2'-bis (trifluoromethanesulfonyloxy) synthesized in Reference Example 1 with [1,2-bis (diphenylphosphino) -ethane] dichloronickel (96 mg, 0.1 equivalent) under argon atmosphere Example 1 was synthesized in a DMF solution (5 mL) of -1,1′-binaphthyl (1.0 g, 1.81 mmoL) and 1,4-diazabicyclo [2,2,2] octane (1.22 g, 6.0 eq). Bis (4-methoxy-3,5-dimethylphenyl) phosphine-borane complex (1.32 g, 2.3 eq) was added at room temperature, and the mixture was stirred at room temperature for 30 min. Subsequently, it stirred at 110 degreeC for 96 hours. DMF was distilled off under reduced pressure, and methanol was added to the residue to obtain the title compound (513 mg, white crystals). Yield 33.1%.
1H-NMR (300 MHz, CDClThree, TMS) δ: 2.07 (s, 24H), 3.64 (s, 6H), 3.66 (s, 6H), 6.70-6.96 (m, 12H), 7.30-7.40 (m, 2H), 7.51-7.53 (m, 2H), 7.79-7.92 (m, 4H).
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -14.47 (s).
[0082]
Example 16
Bis (1,3-benzodioxol-5-yl) phosphine-borane complex
Embedded image
Figure 0004523227
Under an argon atmosphere, a solution of cerium chloride (8.66 g, 3.0 equivalents) in THF (80 mL) was stirred at room temperature (25 ° C.) for 30 minutes. After adding sodium borohydride (1.37 g, 3.1 equivalent), the mixture was stirred at room temperature for 1 hour. Then, bis (1,3-benzodioxol-5-yl) phosphine oxide (3.4 g, 0.012 moL) and lithium aluminum hydride (0.53 g, 1.2 equivalents) synthesized in Reference Example 11 were sequentially added at 5 ° C. Then, the mixture was stirred at room temperature for 4 hours. Toluene (80 mL) was added at 3 ° C., 3M-HCl (30 mL) was added, and the mixture was stirred at room temperature for 30 min. The reaction solution was separated, and the aqueous layer was extracted with toluene (20 mL). The combined organic layers were washed with 5% NaCl aqueous solution (20 mL). The organic layer was then dried over anhydrous magnesium sulfate and naturally filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica gel 25 g, toluene). The residue was recrystallized from heptane to obtain the title compound (2.33 g, white crystals). Yield 69.1%. Melting point 88.8 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 0.42-1.61 (m, 3H), 5.58 (q, 0.5H, J = 6.78 Hz), 6.01 (s, 4H), 6.84-6.90 (m, 2.5H), 7.04 (dd, 2H, J = 10.79Hz, 1.44Hz), 7.18 (dd, 1H, J = 12.37Hz, 1.45Hz), 7.21 (dd, 1H, J = 12.37Hz, 1.46Hz).
13C-NMR (75 MHz, CDClThree, CDClThree) δ: 102.10, 109.53, 109.70, 112.43, 112.59, 118.95, 119.75, 128.37, 128.51, 148.70, 148.90, 151.15.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: 1.42-2.83 (m), 4.55-6.00 (m).
Elemental analysis C14H14BOFourAs P
Calculated value; C: 58.38, H: 4.90, P: 10.75.
Found; C: 58.36, H: 4.92, P: 10.67.
[0083]
Example 17
(S) -2,2'-Bis [bis (1,3-benzodioxol-5-yl) phosphino] -1,1'-binaphthyl
Embedded image
Figure 0004523227
(S) -2,2'-bis (trifluoromethanesulfonyloxy) synthesized in Reference Example 1 with [1,2-bis (diphenylphosphino) -ethane] dichloronickel (86 mg, 0.1 equivalent) in an argon atmosphere Example 1 was synthesized in a DMF solution (5 mL) of -1,1′-binaphthyl (0.9 g, 0.91 mmoL) and 1,4-diazabicyclo [2,2,2] octane (1.1 g, 6.0 eq). Bis (1,3-benzodioxol-5-yl) phosphine-borane complex (1.08 g, 2.3 eq) was added at room temperature, and the mixture was stirred at room temperature for 30 min. Subsequently, it stirred at 110 degreeC for 96 hours. DMF was distilled off under reduced pressure, and methanol was added to the residue to obtain the title compound (310 mg, greenish white crystals). Yield 23.8%.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -12.46 (s).
(reference:31P-NMR (162 MHz, CDClThree) δ: -12.1. Japanese Patent Laid-Open No. 9-124669)
[0084]
Example 18
Bis (2-naphthyl) phosphine-borane complex
Embedded image
Figure 0004523227
Under an argon atmosphere, a solution of cerium chloride (8.66 g, 3.0 equivalents) in THF (80 mL) was stirred at room temperature (25 ° C.) for 30 minutes. After adding sodium borohydride (1.37 g, 3.1 equivalent), the mixture was stirred at room temperature for 1 hour. Next, bis (2-naphthyl) phosphine oxide (3.54 g, 0.012 moL) and lithium aluminum hydride (0.53 g, 1.2 equivalents) synthesized in Reference Example 12 were sequentially added at 5 ° C., and then stirred at room temperature for 3 hours. . Toluene (80 mL) was added at 0 ° C., 3M-HCl (30 mL) was added, and the mixture was stirred at room temperature for 30 min. The reaction solution was separated, and the aqueous layer was extracted with toluene (40 mL). The combined organic layers were washed with 5% NaCl aqueous solution (20 mL). The organic layer was then dried over anhydrous magnesium sulfate and naturally filtered, and the filtrate was concentrated under reduced pressure. Toluene (30 mL) and silica gel (10 g) were added to the residue, and the mixture was stirred at room temperature for 10 minutes. Natural filtration was performed, and the filtrate was concentrated under reduced pressure. The residue was recrystallized from heptane to obtain the title compound (2.23 g, white crystals). Yield 63.3%. Melting point 113.2 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 0.68-1.85 (m, 3H), 6.58 (dq, 1H, J = 378.6Hz, 6.88 Hz), 7.56-7.61 (m, 6H), 7.88-7.91 (m, 6H), 8.32 (d , 2H, J = 13.56Hz).
13C-NMR (75 MHz, CDClThree, CDClThree) δ: 123.41, 127.53, 128.23, 128.31, 128.61, 128.97, 129.30, 129.43, 133.22, 135.00, 135.15.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: 1.11-2.42 (m), 4.30-5.48 (m).
Elemental analysis C20H18As BP
Calculated value; C: 80.03, H: 6.04, P: 10.32.
Actual value; C: 80.40, H: 5.92, P: 9.95.
[0085]
Example 19
(S) -2,2'-Bis [bis (2-naphthyl) phosphino] -1,1'-binaphthyl
Embedded image
Figure 0004523227
(S) -2,2'-bis (trifluoromethanesulfonyloxy) synthesized in Reference Example 1 with [1,2-bis (diphenylphosphino) -ethane] dichloronickel (96 mg, 0.1 equivalent) under argon atmosphere Example 1 was synthesized in a DMF solution (5 mL) of -1,1′-binaphthyl (1.0 g, 1.81 mmoL) and 1,4-diazabicyclo [2,2,2] octane (1.22 g, 6.0 eq). Bis (2-naphthyl) phosphine-borane complex (1.25 g, 2.3 eq) was added at room temperature, and the mixture was stirred at room temperature for 30 min. Subsequently, it stirred at 110 degreeC for 101 hours. DMF was distilled off under reduced pressure, and methanol was added to the residue to obtain the title compound (875 mg, white crystals). Yield 58.7%.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -12.99 (s).
(reference:31P-NMR (162 MHz, CDClThree) δ: -13.57. JP-A-9-124669)
[0086]
Example 20
Bis (4-chlorophenyl) phosphine-borane complex
Embedded image
Figure 0004523227
Under an argon atmosphere, a solution of cerium chloride (8.66 g, 3.0 equivalents) in THF (80 mL) was stirred at room temperature (25 ° C.) for 30 minutes. After adding sodium borohydride (1.37 g, 3.1 equivalent), the mixture was stirred at room temperature for 1 hour. Next, bis (4-chlorophenyl) phosphine oxide (3.18 g, 0.012 moL) and lithium aluminum hydride (0.53 g, 1.2 equivalents) synthesized in Reference Example 13 were sequentially added at 5 ° C., and the mixture was stirred at room temperature for 4 hours. . Toluene (80 mL) was added at 0 ° C., 3M-HCl (30 mL) was added, and the mixture was stirred at room temperature for 30 min. The reaction solution was separated, and the aqueous layer was extracted with toluene (20 mL). The combined organic layers were washed with 5% NaCl aqueous solution (20 mL). The organic layer was then dried over anhydrous magnesium sulfate and naturally filtered, and the filtrate was concentrated under reduced pressure. Toluene (20 mL) and silica gel (10 g) were added to the residue, and the mixture was stirred at room temperature for 10 minutes. Natural filtration was performed, and the filtrate was concentrated under reduced pressure. To the residue at 5 ° C THF (5 mL), BHThree-THF (5 mL) was added and stirred at room temperature for 1 hour. The residue was recrystallized from heptane to obtain the title compound (1.58 g, white crystals). Yield 50.3%.
1H-NMR (300 MHz, CDClThree, TMS) δ: 0.41-1.60 (m, 3H), 6.28 (dq, 1H, J = 381.6Hz, 6.96 Hz), 7.36-7.44 (m, 4H), 7.54-7.65 (m, 4H).
13C-NMR (75 MHz, CDClThree, CDClThree) δ: 123.83, 124.60, 128.92, 129.46, 129.61, 132.17, 134.10, 134.24, 138.62.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -1.06-0.33 (m), 2.08-3.47 (m).
[0087]
Example 21
(S) -2,2'-Bis [bis (4-chlorophenyl) phosphino] -1,1'-binaphthyl
Embedded image
Figure 0004523227
(S) -2,2'-bis (trifluoromethanesulfonyloxy) synthesized in Reference Example 1 with [1,2-bis (diphenylphosphino) -ethane] dichloronickel (96 mg, 0.1 equivalent) under argon atmosphere Example 1 was synthesized in a DMF solution (5 mL) of -1,1′-binaphthyl (1.0 g, 1.81 mmoL) and 1,4-diazabicyclo [2,2,2] octane (1.22 g, 6.0 eq). Bis (4-chlorophenyl) phosphine-borane complex (1.29 g, 2.6 eq) was added at room temperature, and the mixture was stirred at room temperature for 30 min. Subsequently, it stirred at 110 degreeC for 96 hours. Reaction mixture31The title compound was confirmed by P-NMR measurement.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -15.80 (s).
(reference:31P-NMR (161 MHz, CDClThree, 85% HThreePOFourδ: -16.8. Journal of Organic Chemistry, 59, 3064, 1994)
[0088]
Example 22
Bis (p-tert-butylphenyl) phosphine-borane complex
Embedded image
Figure 0004523227
Under a nitrogen stream, a solution of cerium chloride (19.84 g, 2.98 equivalents) in THF (160 mL) was stirred at room temperature (25 ° C.) for 30 minutes. After adding sodium borohydride (3.11 g, 3.04 equivalent), the mixture was stirred at room temperature for 1.5 hours. Then, bis (p-tert-butylphenyl) phosphine oxide (8.49 g, 27.0 mmol) and lithium aluminum hydride (1.55 g, 1.21 equivalent) synthesized in Reference Example 15 were sequentially added at -17 ° C., and then at room temperature. Stir for 2 hours. Toluene (80 mL) was added at −10 ° C., 6M-HCl (25 mL) was added, and water (25 mL) was added at 4 ° C., followed by stirring at room temperature for 30 minutes. The reaction mixture was separated, and the organic layer was separated with water (30 mL), 10% NaHCO.ThreeWash sequentially with aqueous solution (30 mL) and 10% NaCl aqueous solution (30 mL), dry the organic layer with anhydrous magnesium sulfate, filter naturally, filter under reduced pressure with a membrane filter (0.2 μm), and concentrate the filtrate under reduced pressure. . The residue was dissolved in THF (100 mL), borane-THF complex (10 mL, 0.38 equivalent) was added at room temperature, and the mixture was stirred for 16 hr and concentrated under reduced pressure. Toluene (30 mL) was added to the residue for dissolution, and the residue was purified by silica gel column chromatography (silica gel 100 g, toluene), and the effective category was concentrated under reduced pressure. The residue was recrystallized from n-hexane and dried (reduced pressure, 40 ° C.) to obtain the title compound (6.33 g, white powder). Yield 75.0%. Melting point 151.5 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 0.43-1.52 (m, 3H), 1.33 (s, 18H), 6.28 (dq, 1H, JHP = 384 Hz, J = 6.9 Hz), 7.46 (s, 1H), 7.47 (s, 1H), 7.49 (s, 1H), 7.50 (s, 1H), 7.59 (s, 1H), 7.62 (s, 1H ), 7.63 (s, 1H), 7.65 (s, 1H).
13C-NMR (75 MHz, CDClThree, CDClThree) δ: 31.04, 34.91, 122.46, 123.24, 125.99, 126.13, 132.68, 132.81, 154.99, 155.02.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -2.42- -1.52 (m), 0.82-1.52 (m).
[0089]
Example 23
(S) -2,2'-bis [bis (p-tert-butylphenyl) phosphino] -1,1'-binaphthyl
Embedded image
Figure 0004523227
(S) -2,2'-bis (trifluoromethanesulfonyloxy)-synthesized in Reference Example 1 with [1,2-bis (diphenylphosphino) ethane] dichloronickel (0.08 g, 0.10 equivalent) in an argon atmosphere The bis synthesized in Example 22 was added to a DMF solution (5 mL) of 1,1′-binaphthyl (0.78 g, 1.41 mmol) and 1,4-diazabicyclo [2,2,2] octane (0.94 g, 5.97 equivalents). (P-tert-Butylphenyl) phosphine-borane complex (1.02 g, 2.31 equivalent) was added at room temperature, and the mixture was stirred at room temperature for 30 min. Subsequently, it stirred at 110 degreeC for 96 hours. The DMF solution was distilled off under reduced pressure, and methanol was added to the residue to obtain the title compound (0.79 g, pale yellow powder). Yield 66%
1H-NMR (300MHz, CDClThree, TMS) δ: 1.25 (s, 18H), 1.27 (s, 18H), 6.68-6.73 (m, 4H), 6.94-6.96 (m, 4H), 7.07 (d, 4H, J = 8.0 Hz), 7.11 -7.13 (m, 4H), 7.23-7.27 (m, 6H), 7.47 (d, 2H, J = 8.4 Hz), 7.81 (d, 2H, J = 8.1 Hz), 7.86 (d, 2H, J = 8.5 Hz).
13C-NMR (75 MHz, DMSO, DMSO) δ: 30.91, 30.94, 34.13, 34.15, 124.49, 124.54, 124.59, 124.72, 125.00, 125.66, 127.00, 127.09, 130.10, 132.33, 132.46, 132.59, 132.71, 132.97, 133.72 , 133.86, 134.01, 136.21, 144.10, 150.03, 150.80.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -16.04 (s).
Mass spectrometry (ESI-HR); calculated; 847.4562
Actual value; 847.4496 (MH+)
[0090]
Example 24
Bis (3,5-di-tert-butylphenyl) phosphine-borane complex
Embedded image
Figure 0004523227
Under a nitrogen stream, a solution of cerium chloride (4.88 g, 3.00 equivalent) in THF (40 mL) was stirred at room temperature (25 ° C.) for 30 minutes. Sodium borohydride (0.75 g, 3.00 equivalent) was added, and the mixture was stirred at room temperature for 1 hr. Then, bis (3,5-di-tert-butylphenyl) phosphine oxide (2.81 g, 6.6 mmol) and lithium aluminum hydride (0.39 g, 1.23 equivalent) synthesized in Reference Example 16 were sequentially added at −9 ° C. Thereafter, the mixture was stirred for 1.5 hours. Toluene (20 mL) was added at 4 ° C., 6M-HCl (6 mL) was added, and water (10 mL) was added at 4 ° C., followed by stirring at room temperature for 30 minutes. The reaction mixture is separated, and the organic layer is dried over anhydrous magnesium sulfate, filtered naturally, and filtered under reduced pressure through a membrane filter (0.2 μm). Borane-THF complex (7 mL, 1.08 equivalent) is added to the filtrate at room temperature. After that, the mixture was stirred for 16 hours and concentrated under reduced pressure. Borane-THF complex (10 mL, 1.55 equivalent) was added to the concentrated solution at room temperature, and the mixture was concentrated under reduced pressure. Toluene (10 mL) was added to the residue for dissolution, and the residue was purified by silica gel column chromatography (silica gel 25 g, toluene), and the effective category was concentrated under reduced pressure. The residue was recrystallized from n-hexane and dried (reduced pressure, 40 ° C.) to obtain the title compound (2.03 g, white powder). Yield 72.7%. Melting point 135.4 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 0.55-1.80 (m, 3H), 1.34 (s, 36H), 6.33 (dq, 1H, JHP = 375.5 Hz, J = 6.8 Hz), 7.51 (s, 1H), 7.51 (s, 1H), 7.55 (s, 1H), 7.55 (s, 1H), 7.58 (s, 1H), 7.59 (s, 1H ).
13C-NMR (75 MHz, CDClThree, CDClThree) δ: 31.26, 34.91, 122.46, 123.24, 125.99, 126.13, 132.68, 132.81, 154.99, 155.02.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: 0.95-1.22 (m), 3.88-4.75 (m).
[0091]
Example 25
(S) -2,2'-bis [bis (3,5-di-tert-butylphenyl) phosphino] -1,1'-binaphthyl
Embedded image
Figure 0004523227
(S) -2,2'-bis (trifluoromethanesulfonyloxy)-synthesized in Reference Example 1 with [1,2-bis (diphenylphosphino) ethane] dichloronickel (0.07 g, 0.10 equivalent) in an argon atmosphere The bis synthesized in Example 24 was added to a DMF solution (5 mL) of 1,1′-binaphthyl (0.77 g, 1.41 mmol) and 1,4-diazabicyclo [2,2,2] octane (0.94 g, 5.96 eq). (3,5-Di-tert-butylphenyl) phosphine-borane complex (1.00 g, 1.68 equivalent) was added at room temperature, and the mixture was stirred at room temperature for 30 minutes. Subsequently, it stirred at 110 degreeC for 96 hours. The DMF solution was distilled off under reduced pressure, and methanol was added to the residue to obtain the title compound (0.38 g, white powder). Yield 30%. Melting point: 217.8 ° C.
1H-NMR (300 MHz, CDClThree, TMS) δ: 1.11 (s, 36H), 1.14 (s, 36H), 6.71 (d, 2H, J = 8.3 Hz), 6.77-6.80 (m, 2H), 6.95-6.98 (m, 4H), 7.14 -7.23 (m, 8H), 7.25-7.28 (m, 2H), 7.54 (d, 2H, J = 8.5 Hz), 7.77 (d, 2H, J = 8.1 Hz), 7.85 (d, 2H, 8.5 Hz) .
13C-NMR (75 MHz, DMSO, DMSO) δ: 31.03, 34.32, 34.44, 120.71, 121.90, 125.03, 125.55, 126.95, 127.06, 127.18, 127.23, 128.08, 128.23, 128.38, 130.41, 132.79, 136.79, 137.65, 145.03 , 145.82, 149.22, 149.30, 149.35, 149.40.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -12.16 (s).
Mass spectrometry (ESI-HR); calculated; 1071.7066.
Actual value; 1071.7039 (MH+)
[0092]
Example 26
Bis (m-tolyl) phosphine-borane complex
Embedded image
Figure 0004523227
Under a nitrogen stream, a solution of cerium chloride (26.40 g, 3.00 equivalent) in THF (220 mL) was stirred at room temperature (25 ° C.) for 30 minutes. After adding sodium borohydride (4.06 g, 3.00 equivalent), the mixture was stirred at room temperature for 1.5 hours. Then, bis (m-tolyl) phosphine oxide (8.22 g, 35.7 mmol) and lithium aluminum hydride (2.06 g, 1.22 equivalent) synthesized in Reference Example 17 were sequentially added at −9 ° C., followed by stirring for 3 hours. 6M-HCl (33 mL) was added at -3 ° C, water (33 mL) was added, and toluene (130 mL) was added at 4 ° C, followed by stirring at room temperature for 30 minutes. The reaction mixture was separated, and the organic layer was separated with water (50 mL), 10% NaHCO.ThreeWash sequentially with aqueous solution (50 mL) and 10% NaCl aqueous solution (50 mL), dry the organic layer with anhydrous magnesium sulfate, filter naturally, and filter under reduced pressure with a membrane filter (0.2 μm). After adding borane-THF complex (36 mL, 1.02 equivalent), the mixture was stirred at room temperature for 13.5 hours, and further borane-THF complex (6.2 mL, 0.18 equivalent) was added at room temperature, followed by concentration under reduced pressure. The residue was recrystallized from n-hexane and dried (reduced pressure, 40 ° C.) to obtain the title compound (1.70 g, white powder). Yield 21%
1H-NMR (300 MHz, DMSO, TMS) δ: 0.58-1.75 (m, 3H), 2.34 (s, 6H), 5.88-5.98 (m, 0.5H), 7.20-7.31 (m, 0.5H), 7.37 -7.53 (m, 8H).
13C-NMR (75 MHz, DMSO, DMSO) δ: 21.24, 126.48, 129.45, 129.60, 130.03, 130.15, 132.76, 133.07, 133.20, 139.00, 139.18.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -4.22- -3.00 (m), -0.89-0.23 (m).
[0093]
Example 27
(S) -2,2'-bis [bis (m-tolyl) phosphino] -1,1'-binaphthyl
Embedded image
Figure 0004523227
(S) -2,2′-bis (trifluoromethanesulfonyloxy)-synthesized in Reference Example 1 with [1,2-bis (diphenylphosphino) ethane] dichloronickel (0.10 g, 0.10 equivalent) in an argon atmosphere The bis synthesized in Example 26 was added to a DMF solution (5 mL) of 1,1′-binaphthyl (1.05 g, 1.91 mmol) and 1,4-diazabicyclo [2,2,2] octane (1.28 g, 5.99 eq). (M-Tolyl) phosphine-borane complex (1.00 g, 2.31 equivalent) was added at room temperature, and the mixture was stirred at room temperature for 30 minutes. Subsequently, it stirred at 110 degreeC for 96 hours. Reaction mixture31The title compound was confirmed by P-NMR measurement.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -14.5 (s).
(reference:31P-NMR (161 MHz, CDClThree, 85% HThreePOFourδ: -14.4. Journal of Organic Chemistry, 59, 3064, 1994)
[0094]
Example 28
(S) -2,2'-bis (diphenylphosphino) -6,6'-diphenyl-1,1'-binaphthyl
Embedded image
Figure 0004523227
(S) -6,6'-diphenyl-2,2'- synthesized in Reference Example 21 with [1,2-bis (diphenylphosphino) -ethane] dichloronickel (52 mg, 0.1 equivalent) under argon atmosphere In a DMF solution (5 mL) of bis (trifluoromethanesulfonyloxy) -1,1'-binaphthyl (700 mg, 0.99 mmoL) and 1,4-diazabicyclo [2,2,2] octane (670 mg, 6.0 eq) Diphenylphosphine-borane complex (0.458 g, 2.3 eq) was added at room temperature, and the mixture was stirred at room temperature for 30 min. Subsequently, it stirred at 110 degreeC for 90 hours. DMF was distilled off under reduced pressure, and methanol was added to the residue to obtain the title compound (412 mg, slightly brown white crystals). Yield 53.4%.
1H-NMR (300 MHz, CDClThree, TMS) δ: 6.93 (d, 2H, J = 8.76 Hz), 7.12-7.22 (m, 20H), 7.29 (s, 2H), 7.35-7.51 (m, 8H), 7.64-7.67 (m, 4H) , 7.99 (d, 2H, J = 8.76 Hz), 8.07 (d, 2H, J = 1.64 Hz).
13C-NMR (75 MHz, CDClThree, CDClThree) δ: 125.99, 127.74, 128.51, 128.83, 129.21, 134.66, 141.35.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -13.82 (s).
[0095]
Example 29
2,2'-bis (diphenylphosphino) -7,7'-dimethoxy-1,1'-binaphthyl
Embedded image
Figure 0004523227
Under argon atmosphere, [1,2-bis (diphenylphosphino) -ethane] dichloronickel (53 mg, 0.1 eq) and 7,7′-dimethoxy-2,2′-bis (trifluoromethane) synthesized in Reference Example 23 Sulfonyloxy) -1,1'-binaphthyl (610 mg, 0.99 mmoL) and 1,4-diazabicyclo [2,2,2] octane (670 mg, 6.0 eq) in DMF (5 mL) in diphenylphosphine-borane The complex (0.458 g, 2.3 eq) was added at room temperature and then stirred at room temperature for 30 minutes. Subsequently, it stirred at 110 degreeC for 77 hours. DMF was distilled off under reduced pressure, and methanol was added to the residue to obtain the title compound (120 mg, yellowish white crystals). Yield 17.7%.
1H-NMR (300 MHz, CDClThree, TMS) δ: 3.16 (s, 6H), 6.05 (d, 2H, J = 2.26Hz), 7.01 (dd, 2H, J = 9.00Hz, 2.49Hz), 7.12-7.19 (m, 20H), 7.38 ( d, 2H, J = 8.44Hz), 7.74 (d, 2H, J = 8.88 Hz), 7.83 (d, 2H, J = 8.38 Hz).
13C-NMR (75 MHz, CDClThree, CDClThree) δ: 54.98, 106.07, 119.52, 127.77, 128.18, 128.41, 128.97, 129.63, 132.90, 134.78, 135.08, 146.39, 159.56.
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -13.82 (s).
[0096]
Example 30
(S) -2,2'-bis (diphenylphosphino) -1,1'-binaphthyl
Embedded image
Figure 0004523227
(S) -2,2'-bis (trifluoromethanesulfonyloxy) synthesized in Reference Example 1 with [1,2-bis (diphenylphosphino) -ethane] dichloronickel (53 mg, 0.1 equivalent) in an argon atmosphere -1,1'-binaphthyl (500 mg, 0.91 mmoL) and 1,4-diazabicyclo [2,2,2] octane (613 mg, 6.0 eq) in DMF (5 mL) were added to a diphenylphosphine-borane complex ( 418 mg, 2.3 equivalents) was added at room temperature, followed by stirring at room temperature for 30 minutes. Subsequently, it stirred at 110 degreeC for 96 hours. DMF was distilled off under reduced pressure, and methanol was added to the residue to obtain the title compound (401 mg, pale yellowish white crystals). Yield 71%.
1H-NMR (300MHz, CDClThree, TMS) δ: 6.83 (d, 2H, J = 8.26 Hz), 6.89-6.94 (m, 2H), 7.07-7.20 (m, 20H), 7.32-7.37 (m, 2H), 7.43-7.47 (m, 2H), 7.85 (d, 2H, J = 8.14 Hz), 7.89 (d, 2H, J = 8.49 Hz).
31P-NMR (121 MHz, CDClThree, 85% HThreePOFour) δ: -14.90 (s).
Mass spectrometry (ESI-HR); calculated; 623.2058
Actual value; 623.2030 (MH+)
[0097]
Example 31
(S) -2,2'-Bis [bis (3,5-dimethylphenyl) phosphino] -1,1'-binaphthyl
Embedded image
Figure 0004523227
According to the same procedure as in Example 2, the amine used was changed to (1) tetramethylethylenediamine, (2) triethylamine, (3) diisopropylethylamine, (4) diethylamine or (5) pyridine, and (S) -2, 2′-bis [bis (3,5-dimethylphenyl) phosphino] -1,1′-binaphthyl was prepared. The results are shown in Table 1.
[Table 1]
Figure 0004523227
[0098]
Example 32
(S) -2,2'-Bis [bis (3,5-dimethylphenyl) phosphino] -1,1'-binaphthyl
Embedded image
Figure 0004523227
According to the same operation as in Example 2, the nickel catalyst was changed to (1) NiCl.2, ▲ 2 ▼ NiCl2・ Bis (diphenyl) phosphinylferrocene or (3) NiCl2(S) -2,2′-bis [bis (3,5-dimethylphenyl) phosphino] -1,1′-binaphthyl was produced by changing to bis (diphenyl) phosphinoethane. The results are shown in Table 2. To calculate the HPLC area percentage, HPLC conditions (column: ZORBAX Rx-C8, 4.6 x 250 mm, solution: MeCN / H2O = 90/10, flow rate: 1.0 mL / min, detection wavelength: 254 nm). In (3), NiCl2And bis (diphenyl) phosphinoethane were added separately.
[Table 2]
Figure 0004523227
[0099]
Example 33
Asymmetric hydrogenation of methyl (Z) -α-acetamidocinnamate
Rh (cod)2(S) -2,2′-bis [bis (3,5-di-tert-butyl-4-methoxyphenyl) synthesized in Example 10 in a solution of OTf (4.27 mg, 0.0091 mmoL) in methanol (1 mL) Phosphino] -1,1′-binaphthyl (12.65 mg, 0.011 mmoL) was added, and the mixture was stirred at room temperature (25 ° C.) for 30 minutes. The Rh complex solution prepared above was added to a solution of methyl (Z) -α-acetamidocinnamate (0.10 g, 0.456 mmoL) in methanol (4 mL), and hydrogenated at 25 MPa for 24 hours at a hydrogen pressure of 1.0 MPa. . The reaction mixture was measured by GC (column: CHIRASIL VAL, 0.25 mm × 30 m). The conversion rate was> 99.9% and the optical purity was 91.43% ee (R).
[0100]
Comparative Example 1
Asymmetric hydrogenation of methyl (Z) -α-acetamidocinnamate
Rh (cod)2(S) -2,2′-bis (diphenylphosphino) -1,1′-binaphthyl (6.79 mg, 0.011 mmoL) synthesized in Example 30 in a solution of OTf (4.27 mg, 0.0091 mmoL) in methanol (1 mL). ) And then stirred at room temperature (25 ° C.) for 30 minutes. The Rh complex solution prepared above was added to a solution of methyl (Z) -α-acetamidocinnamate (0.10 g, 0.456 mmoL) in methanol (4 mL), and hydrogenated at 25 MPa for 24 hours at a hydrogen pressure of 1.0 MPa. . The reaction mixture was measured by GC (column: CHIRASIL VAL, 0.25 mm × 30 m), and the conversion was> 99.9% and the optical purity was 15.33% ee (R).
[0101]
【The invention's effect】
According to the production method of the present invention, a compound useful as an optically active drug (eg, prophylactic / urinary incontinence preventive drug, Alzheimer's disease preventive drug, hyperlipidemia preventive drug, etc.) or an intermediate thereof Compound (I) or a salt thereof useful for the asymmetric synthesis reaction during production can be produced efficiently. Compound (I) or a salt thereof, particularly a complex of its optical isomer and a transition metal exhibits excellent stereoselectivity, chemical yield, catalytic activity, and the like in the asymmetric synthesis reaction.

Claims (24)


Figure 0004523227
〔式中、R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eおよびR2fはそれぞれ同一または異なって水素原子、フッ素原子、塩素原子、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよいアリール基、置換されていてもよいヒドロキシ基、置換されていてもよいアミノ基、置換されていてもよいアルキルカルボニル基、置換されていてもよいアルコキシカルボニル基、カルボキシル基または置換されていてもよいカルバモイル基を、Xは脱離基を示す〕で表される化合物またはその塩と式
Figure 0004523227
〔式中、R3、R4、R5、R6、R7、R8、R9およびR10はそれぞれ同一または異なって水素原子、フッ素原子、塩素原子、置換されていてもよい炭化水素基、置換されていてもよいヒドロキシ基または置換されていてもよいアミノ基を示し、R3とR4およびR7とR8は一緒になって隣接する炭素原子とともに5ないし8員の同素環または複素環を形成してもよい〕で表されるホスフィン-ボラン錯体またはその塩とをアミンおよびニッケル触媒の存在下に溶媒中で反応させることを特徴とする式
Figure 0004523227
〔式中、記号は前記と同意義を示す〕で表される化合物またはその塩の製造法。
formula
Figure 0004523227
[Wherein, R 1a , R 1b , R 1c , R 1d , R 1e , R 1f , R 2a , R 2b , R 2c , R 2d , R 2e and R 2f are the same or different and each represents a hydrogen atom or a fluorine atom , A chlorine atom, an optionally substituted alkyl group, an optionally substituted cycloalkyl group, an optionally substituted aryl group, an optionally substituted hydroxy group, an optionally substituted amino group, An optionally substituted alkylcarbonyl group, an optionally substituted alkoxycarbonyl group, a carboxyl group or an optionally substituted carbamoyl group, X represents a leaving group] or a salt thereof formula
Figure 0004523227
[Wherein R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are the same or different and each represents a hydrogen atom, a fluorine atom, a chlorine atom or an optionally substituted hydrocarbon] A group, an optionally substituted hydroxy group or an optionally substituted amino group, wherein R 3 and R 4 and R 7 and R 8 together are 5- to 8-membered allotropes together with adjacent carbon atoms A phosphine-borane complex represented by the above formula or a salt thereof may be reacted in a solvent in the presence of an amine and a nickel catalyst.
Figure 0004523227
[Wherein the symbols are as defined above] or a salt thereof.
Xが置換されていてもよいアルキルスルホニルオキシ基または置換されていてもよいアリールスルホニルオキシ基である請求項1記載の製造法。The process according to claim 1, wherein X is an optionally substituted alkylsulfonyloxy group or an optionally substituted arylsulfonyloxy group. R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eおよびR2fがそれぞれ同一または異なって水素原子、フッ素原子、塩素原子、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよいヒドロキシ基、置換されていてもよいアミノ基、置換されていてもよいアルキルカルボニル基、置換されていてもよいアルコキシカルボニル基、カルボキシル基または置換されていてもよいカルバモイル基、
R3、R4、R5、R6、R7およびR8がそれぞれ同一または異なって水素原子、フッ素原子、塩素原子、置換されていてもよい炭化水素基、置換されていてもよいヒドロキシ基または置換されていてもよいアミノ基、
R9およびR10がともに水素原子、
Xが置換されていてもよいアルキルスルホニルオキシ基または置換されていてもよいアリールスルホニルオキシ基である請求項1記載の製造法。
R 1a , R 1b , R 1c , R 1d , R 1e , R 1f , R 2a , R 2b , R 2c , R 2d , R 2e and R 2f are the same or different and each represents a hydrogen atom, a fluorine atom, a chlorine atom, An optionally substituted alkyl group, an optionally substituted cycloalkyl group, an optionally substituted hydroxy group, an optionally substituted amino group, an optionally substituted alkylcarbonyl group, a substituted An optionally substituted alkoxycarbonyl group, a carboxyl group or an optionally substituted carbamoyl group,
R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same or different and each is a hydrogen atom, a fluorine atom, a chlorine atom, an optionally substituted hydrocarbon group, or an optionally substituted hydroxy group. Or an optionally substituted amino group,
R 9 and R 10 are both hydrogen atoms,
The process according to claim 1, wherein X is an optionally substituted alkylsulfonyloxy group or an optionally substituted arylsulfonyloxy group.
R1aとR2a、R1bとR2b、R1cとR2c、R1dとR2d、R1eとR2eおよびR1fとR2fがそれぞれ同一の基である請求項3記載の製造法。The process according to claim 3, wherein R 1a and R 2a , R 1b and R 2b , R 1c and R 2c , R 1d and R 2d , R 1e and R 2e, and R 1f and R 2f are the same group. R1a、R1f、R2aおよびR2f が水素原子である請求項1ないし3記載の製造法。The process according to any one of claims 1 to 3, wherein R 1a , R 1f , R 2a and R 2f are hydrogen atoms. R1a、R1b、R1c、R1d、R1e、R1f、R2a、R2b、R2c、R2d 、R2eおよびR2fが水素原子である請求項3記載の製造法。The process according to claim 3, wherein R 1a , R 1b , R 1c , R 1d , R 1e , R 1f , R 2a , R 2b , R 2c , R 2d , R 2e and R 2f are hydrogen atoms. R3、R5、R6およびR8が低級アルキル基であり、R4およびR7が水素原子または低級アルコキシ基である請求項3記載の製造法。The process according to claim 3 , wherein R 3 , R 5 , R 6 and R 8 are a lower alkyl group, and R 4 and R 7 are a hydrogen atom or a lower alkoxy group. R3、R5、R6およびR8が水素原子であり、R4およびR7が低級アルキル基または低級アルコキシ基である請求項3記載の製造法。The process according to claim 3 , wherein R 3 , R 5 , R 6 and R 8 are hydrogen atoms, and R 4 and R 7 are lower alkyl groups or lower alkoxy groups. R3、R4、R5、R6、R7およびR8が水素原子である請求項3記載の製造法。The process according to claim 3 , wherein R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are hydrogen atoms. Xがトリフルオロメタンスルホニルオキシ、メタンスルホニルオキシまたはp-トルエンスルホニルオキシである請求項1記載の製造法。The process according to claim 1, wherein X is trifluoromethanesulfonyloxy, methanesulfonyloxy or p-toluenesulfonyloxy. ニッケル触媒がNiCl2・ビス(ジフェニル)ホスフィノC1-4アルカン、NiBr2、NiCl2、NiCl2・ビス(ジフェニル)ホスフィニルフェロセン、NiCl2・ビス(トリフェニルホスフィン)、Ni・テトラキストリフェニルホスフィン、Ni・テトラキストリフェニルホスファイトまたはNi・ジカルボニルビス(トリフェニル)ホスフィンである請求項1ないし3記載の製造法。Nickel catalyst is NiCl 2 · bis (diphenyl) phosphino C 1-4 alkane, NiBr 2 , NiCl 2 , NiCl 2 · bis (diphenyl) phosphinylferrocene, NiCl 2 · bis (triphenylphosphine), Ni · tetrakistriphenyl 4. The production method according to claim 1, which is phosphine, Ni.tetrakistriphenyl phosphite or Ni.dicarbonylbis (triphenyl) phosphine. ニッケル触媒がNiCl2・ビス(ジフェニル)ホスフィノC1-4アルカンである請求項1ないし3記載の製造法。4. The process according to claim 1, wherein the nickel catalyst is NiCl 2 · bis (diphenyl) phosphino C 1-4 alkane. ニッケル触媒がNiCl2・ビス(ジフェニル)ホスフィノエタンである請求項1ないし3記載の製造法。4. The process according to claim 1, wherein the nickel catalyst is NiCl 2 · bis (diphenyl) phosphinoethane. アミンが3級アミンである請求項1ないし3記載の製造法。4. The process according to claim 1, wherein the amine is a tertiary amine. アミンが1,4-ジアザビシクロ〔2.2.2〕オクタンである請求項1ないし3記載の製造法。4. The process according to claim 1, wherein the amine is 1,4-diazabicyclo [2.2.2] octane. 溶媒がN,N-ジメチルホルムアミド、N,N-ジメチルアセタミド、1-メチル-2-ピロリドンまたは1,3-ジメチル-2-イミダゾリジノンから選ばれる1種または2種以上の混合溶媒である請求項1ないし3記載の製造法。The solvent is one or more mixed solvents selected from N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidone or 1,3-dimethyl-2-imidazolidinone. The production method according to any one of claims 1 to 3. R1a、R1b、R1c、R1f、R2a、R2b、R2cおよびR2fが水素原子、
R1dおよびR2dが水素原子またはC6-10アリール基、
R1eおよびR2eが水素原子またはC1-6アルコキシ基、
R3が水素原子またはC1-6アルキル基、
R4が水素原子、フッ素原子、塩素原子、C1-6アルキル基、C6-10アリール基、C1-6アルコキシ基またはジC1-6アルキルアミノ基、もしくはR3とR4が隣接する炭素原子と共にベンゼン環または1,3-ジオキソラン環を形成し、
R5が水素原子またはC1-6アルキル基、
R6が水素原子またはC1-6アルキル基、
R7が水素原子、フッ素原子、塩素原子、C1-6アルキル基、C6-10アリール基、C1-6アルコキシ基またはジC1-6アルキルアミノ基、
R8が水素原子またはC1-6アルキル基、もしくはR7とR8が隣接する炭素原子と共にベンゼン環または1,3-ジオキソラン環を形成し、
R9が水素原子またはC1-6アルキル基、
R10が水素原子またはC1-6アルキル基、
Xがトリフルオロメタンスルホニルオキシ、
ニッケル触媒がNiCl2・ビス(ジフェニル)ホスフィノエタン
である請求項1記載の製造法。
R 1a , R 1b , R 1c , R 1f , R 2a , R 2b , R 2c and R 2f are hydrogen atoms,
R 1d and R 2d are a hydrogen atom or a C 6-10 aryl group,
R 1e and R 2e are a hydrogen atom or a C 1-6 alkoxy group,
R 3 is a hydrogen atom or a C 1-6 alkyl group,
R 4 is a hydrogen atom, a fluorine atom, a chlorine atom, a C 1-6 alkyl group, a C 6-10 aryl group, a C 1-6 alkoxy group or a di C 1-6 alkylamino group, or R 3 and R 4 are adjacent to each other Forming a benzene ring or a 1,3-dioxolane ring with the carbon atoms
R 5 is a hydrogen atom or a C 1-6 alkyl group,
R 6 is a hydrogen atom or a C 1-6 alkyl group,
R 7 is a hydrogen atom, a fluorine atom, a chlorine atom, a C 1-6 alkyl group, a C 6-10 aryl group, a C 1-6 alkoxy group or a di C 1-6 alkylamino group,
R 8 is a hydrogen atom or a C 1-6 alkyl group, or R 7 and R 8 together with the adjacent carbon atom form a benzene ring or a 1,3-dioxolane ring,
R 9 is a hydrogen atom or a C 1-6 alkyl group,
R 10 is a hydrogen atom or a C 1-6 alkyl group,
X is trifluoromethanesulfonyloxy,
The process according to claim 1, wherein the nickel catalyst is NiCl 2 · bis (diphenyl) phosphinoethane.

Figure 0004523227
〔式中、各記号は請求項1記載と同意義を示す〕で表される化合物および式
Figure 0004523227
〔式中、各記号は請求項1記載と同意義を示す〕で表される化合物の軸不斉部がともに(R)体である請求項1記載の製造法。
formula
Figure 0004523227
Wherein each symbol is as defined in claim 1, and a compound represented by the formula
Figure 0004523227
The process according to claim 1, wherein both of the axial asymmetric parts of the compound represented by the formula: wherein each symbol is as defined in claim 1, are both (R) isomers.
ラセミ化を伴わずに反応させることを特徴とする請求項18記載の製造法。The process according to claim 18, wherein the reaction is carried out without racemization.
Figure 0004523227
〔式中、各記号は請求項1記載と同意義を示す〕で表される化合物および式
Figure 0004523227
〔式中、各記号は請求項1記載と同意義を示す〕で表される化合物の軸不斉部がともに(S)体である請求項1記載の製造法。
formula
Figure 0004523227
Wherein each symbol is as defined in claim 1, and a compound represented by the formula
Figure 0004523227
The method according to claim 1, wherein both of the axial asymmetric parts of the compound represented by the formula: wherein each symbol is as defined in claim 1, are both (S) isomers.
ラセミ化を伴わずに反応させることを特徴とする請求項20記載の製造法。The production method according to claim 20, wherein the reaction is carried out without racemization.
Figure 0004523227
〔式中、各記号は請求項1記載と同意義を示す〕で表される化合物および式
Figure 0004523227
〔式中、各記号は請求項1記載と同意義を示す〕で表される化合物の軸不斉部がともにラセミ体である請求項1記載の製造法。
formula
Figure 0004523227
Wherein each symbol is as defined in claim 1, and a compound represented by the formula
Figure 0004523227
The method according to claim 1, wherein both of the axial asymmetric parts of the compound represented by the formula: wherein each symbol is as defined in claim 1, are both racemic.
2,2'-ビス[ビス(3,5-ジ-tert-ブチル-4-メトキシフェニル)ホスフィノ]-1,1'-ビナフチルまたはその塩。2,2′-bis [bis (3,5-di-tert-butyl-4-methoxyphenyl) phosphino] -1,1′-binaphthyl or a salt thereof. (S)-2,2'-ビス[ビス(3,5-ジ-tert-ブチル-4-メトキシフェニル)ホスフィノ]-1,1'-ビナフチルである請求項23の化合物またはその塩。24. The compound according to claim 23 or a salt thereof, which is (S) -2,2′-bis [bis (3,5-di-tert-butyl-4-methoxyphenyl) phosphino] -1,1′-binaphthyl.
JP2002354338A 2001-12-07 2002-12-05 Method for producing diphosphine compound and production intermediate thereof Expired - Lifetime JP4523227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002354338A JP4523227B2 (en) 2001-12-07 2002-12-05 Method for producing diphosphine compound and production intermediate thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001374909 2001-12-07
JP2001-374909 2001-12-07
JP2002354338A JP4523227B2 (en) 2001-12-07 2002-12-05 Method for producing diphosphine compound and production intermediate thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009096377A Division JP5043883B2 (en) 2001-12-07 2009-04-10 Method for producing diphosphine compound and production intermediate thereof

Publications (2)

Publication Number Publication Date
JP2003231691A JP2003231691A (en) 2003-08-19
JP4523227B2 true JP4523227B2 (en) 2010-08-11

Family

ID=27790628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002354338A Expired - Lifetime JP4523227B2 (en) 2001-12-07 2002-12-05 Method for producing diphosphine compound and production intermediate thereof

Country Status (1)

Country Link
JP (1) JP4523227B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101311122B1 (en) 2005-09-20 2013-09-25 다케다 야쿠힌 고교 가부시키가이샤 Diphosphine ligand and transition metal complex using the same
CA2942631A1 (en) 2014-03-14 2015-09-17 Takeda Pharmaceutical Company Limited Process for producing heterocyclic compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2926194A (en) * 1957-06-17 1960-02-23 American Potash & Chem Corp Phosphine borine compounds and their preparation
JPH10501234A (en) * 1994-06-01 1998-02-03 メルク エンド カンパニー インコーポレーテッド Synthetic method of binaphthyl derivative
JP2000136194A (en) * 1998-08-25 2000-05-16 Takeda Chem Ind Ltd Production of phosphinobinaphthyl
JP2004196793A (en) * 2002-12-05 2004-07-15 Takeda Chem Ind Ltd Transition metal complex having diphosphine compound as ligand

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3770639B2 (en) * 1995-10-31 2006-04-26 高砂香料工業株式会社 Method for producing optically active diphosphine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2926194A (en) * 1957-06-17 1960-02-23 American Potash & Chem Corp Phosphine borine compounds and their preparation
JPH10501234A (en) * 1994-06-01 1998-02-03 メルク エンド カンパニー インコーポレーテッド Synthetic method of binaphthyl derivative
JP2000136194A (en) * 1998-08-25 2000-05-16 Takeda Chem Ind Ltd Production of phosphinobinaphthyl
JP2004196793A (en) * 2002-12-05 2004-07-15 Takeda Chem Ind Ltd Transition metal complex having diphosphine compound as ligand

Also Published As

Publication number Publication date
JP2003231691A (en) 2003-08-19

Similar Documents

Publication Publication Date Title
JP5043883B2 (en) Method for producing diphosphine compound and production intermediate thereof
JP4167899B2 (en) Ortho-substituted chiral phosphines and phosphinites and their use in asymmetric catalysis
JPH0733392B2 (en) 2,2'-bis [di (m-tolyl) phosphino] -1,1'-binaphthyl
CN110494439B (en) Chiral biphenyl diphosphine ligand and preparation method thereof
JP4523227B2 (en) Method for producing diphosphine compound and production intermediate thereof
US9186661B2 (en) P-chirogenic organophosphorus compounds
JP3445451B2 (en) Method for producing optically active diphosphine ligand
JP2000016997A (en) New production of diphosphine oxide
WO2006002731A1 (en) Process for the preparation of asymmetrically substituted biaryldiphosphines
JP4489416B2 (en) Transition metal complexes with diphosphine compounds as ligands
EP1626052B1 (en) Process for production of phosphine-borane complexes
JP4754182B2 (en) Method for producing phosphine-borane complex
JP3844927B2 (en) Process for producing diphosphine oxide and diphosphonate
Mondal Exploring Molecular Chirality Transfer
EP1568701A1 (en) Transition metal complex having diphosphine complex as ligand
JP3146186B2 (en) Novel diphosphonate compound, intermediate for producing the same and method for producing the same
JP2958658B2 (en) Method for producing optically isomeric phosphine compound, compound and use thereof
JP5546294B2 (en) Axial asymmetric phosphine compound and method for producing the same
CN111868065A (en) C-sterically hindered P-chirally derived organophosphorus compounds
JP2016166170A (en) Optically active binaphthyl compound
KR19990060465A (en) Bis (ortho-diarylphosphinophenyl) -tetrahydro-ratio (1,3-oxazole) and preparation method thereof
JP2000191676A (en) Production of optically active aminophosphine compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4523227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term