JP4521974B2 - Crystalline epoxy resin, epoxy resin composition and cured product thereof - Google Patents

Crystalline epoxy resin, epoxy resin composition and cured product thereof Download PDF

Info

Publication number
JP4521974B2
JP4521974B2 JP2000335612A JP2000335612A JP4521974B2 JP 4521974 B2 JP4521974 B2 JP 4521974B2 JP 2000335612 A JP2000335612 A JP 2000335612A JP 2000335612 A JP2000335612 A JP 2000335612A JP 4521974 B2 JP4521974 B2 JP 4521974B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
present
cured product
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000335612A
Other languages
Japanese (ja)
Other versions
JP2002138130A (en
Inventor
泰昌 赤塚
匠一 富田
幸治 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2000335612A priority Critical patent/JP4521974B2/en
Publication of JP2002138130A publication Critical patent/JP2002138130A/en
Application granted granted Critical
Publication of JP4521974B2 publication Critical patent/JP4521974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は耐熱性が高い硬化物を与え、溶融粘度が低い結晶性エポキシ樹脂及びエポキシ樹脂組成物に関する。該樹脂組成物は、電気・電子材料、注型材料、塗料、接着剤、レジストなどに用いることができる。
【0002】
【従来の技術】
エポキシ樹脂は種々の硬化剤で硬化させることにより、一般的に機械的性質、耐水性、耐薬品性、耐熱性、電気的性質などに優れた硬化物となり、接着剤、塗料、積層板、成形材料、注型材料などの幅広い分野に利用されている。従来工業的に最も使用されている液状エポキシ樹脂としてはビスフェノールAにエピクロルヒドリンを反応させて得られる化合物が知られている。半導体封止材などの用途においては耐熱性が要求されるためクレゾールノボラック型エポキシ樹脂が広く利用されている。また、表面実装方式が一般的になり、半導体パッケージも半田リフロー時に直接高温に晒されることが多くなるため封止材全体としての吸水率や線膨張率を下げる為に、高フィラー充填が効果的な方法として提案されている。高フィラー充填を可能にするためにはエポキシ樹脂の溶融粘度が低いことが必要条件となる。この様な要求を満たすために最近ではテトラメチルビフェノールのエポキシ化物などが広く用いられている。この樹脂は結晶性であるため溶融状態において極めて低い溶融粘度を示す。
【0003】
【発明が解決しようとする課題】
しかしながら、前記したようなテトラメチルビフェノールのエポキシ化物は溶融粘度は低く高フィラー充填は可能なものの、ガラス転移点などによって示される耐熱性が極めて低いため、長期の信頼性などにおいては劣る面があった。
【0004】
【課題を解決するための手段】
本発明者らはこうした実状に鑑み、耐熱性に優れ、しかも溶融粘度の低い結晶性エポキシ樹脂を求めて鋭意検討した結果、特定の分子構造を有するエポキシ樹脂がこれらの特性を満たすものであることを見出し、本発明を完成させるに至った。
【0005】
すなわち本発明は
(1)式(1)
【0006】
【化2】

Figure 0004521974
【0007】
で表される結晶性エポキシ樹脂、
(2)上記(1)記載の結晶性エポキシ樹脂、硬化剤を含有してなるエポキシ樹脂組成物、
(3)硬化促進剤を含有する上記(2)記載のエポキシ樹脂組成物、
(4)無機充填剤を含有する上記(2)または(3)記載のエポキシ樹脂組成物、
(5)上記(2)、(3)または(4)のいずれか1項に記載のエポキシ樹脂組成物を硬化してなる硬化物、
を提供するものである。
【0008】
【発明の実施の形態】
上記(1)記載の式(1)で表される化合物は例えば、式(2)
【0009】
【化3】
Figure 0004521974
【0010】
で表される化合物とエピハロヒドリンとの反応をアルカリ金属水酸化物の存在下で行うことにより得ることが出来る。
【0011】
本発明のエポキシ樹脂を得る反応において、アルカリ金属水酸化物はその水溶液を使用してもよく、その場合は該アルカリ金属水酸化物の水溶液を連続的に反応系内に添加すると共に減圧下、または常圧下連続的に水及びエピハロヒドリンを流出させ、更に分液し水は除去しエピハロヒドリンは反応系内に連続的に戻す方法でもよい。
【0012】
また式(2)で表される化合物とエピハロヒドリンの混合物にテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド等の4級アンモニウム塩を触媒として添加し50〜150℃で0.5〜8時間反応させて得られる式(2)の化合物のハロヒドリンエーテル化物にアルカリ金属水酸化物の固体または水溶液を加え、20〜120℃で1〜10時間反応させ脱ハロゲン化水素(閉環)させる方法でもよい。
【0013】
通常これらの反応において使用されるエピハロヒドリンの量は式(2)の化合物の水酸基1当量に対し通常0.8〜12モル、好ましくは0.9〜11モルである。この際、反応を円滑に進行させるためにメタノール、エタノールなどのアルコール類、ジメチルスルホン、ジメチルスルホキシド等の非プロトン性極性溶媒などを添加して反応を行うことが好ましい。
【0014】
アルコール類を使用する場合、その使用量はエピハロヒドリンの量に対し通常2〜20重量%、好ましくは4〜15重量%である。また非プロトン性極性溶媒を用いる場合はエピハロヒドリンの量に対し通常5〜150重量%、好ましくは10〜140重量%である。
【0015】
これらのエポキシ化反応の反応物を水洗後、または水洗無しに加熱減圧下でエピハロヒドリンや溶媒等を除去する。また更に加水分解性ハロゲンの少ないエポキシ樹脂とするために、回収したエポキシ樹脂をトルエン、メチルイソブチルケトンなどの溶剤に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて反応を行い、閉環を確実なものにすることも出来る。この場合アルカリ金属水酸化物の使用量はエポキシ化に使用した式(2)の化合物の水酸基1当量に対して通常0.01〜0.3モル、好ましくは0.05〜0.2モルである。反応温度は通常50〜120℃、反応時間は通常0.5〜2時間である。
【0016】
反応終了後、生成した塩を濾過、水洗などにより除去し、更に加熱減圧下溶剤を留去することにより本発明のエポキシ樹脂が得られる。
【0017】
以下、本発明のエポキシ樹脂組成物について説明する。前期(2)、(3)、(4)記載のエポキシ樹脂組成物において本発明のエポキシ樹脂は単独でまたは他のエポキシ樹脂と併用して使用することが出来る。併用する場合、本発明のエポキシ樹脂の全エポキシ樹脂中に占める割合は30重量%以上が好ましく、特に40重量%以上が好ましい。
【0018】
本発明のエポキシ樹脂と併用し得る他のエポキシ樹脂の具体例としては、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂などが挙げられるがこれらは単独で用いてもよく、2種以上併用してもよい。
【0019】
本発明のエポキシ樹脂組成物が含有する硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノ−ル系化合物などが挙げられる。用い得る硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、フェノ−ルノボラック、及びこれらの変性物、イミダゾ−ル、BF3−アミン錯体、グアニジン誘導体などが挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。
【0020】
本発明のエポキシ樹脂組成物において硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して0.7〜1.2当量が好ましい。エポキシ基1当量に対して、0.7当量に満たない場合、あるいは1.2当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。
【0021】
また本発明のエポキシ樹脂組成物においては硬化促進剤を使用しても差し支えない。用い得る硬化促進剤の具体例としては2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾ−ル類、2−(ジメチルアミノメチル)フェノール、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、オクチル酸スズ等の金属化合物等が挙げられる。硬化促進剤はエポキシ樹脂100重量部に対して0.1〜5.0重量部が必要に応じ用いられる。
【0022】
本発明のエポキシ樹脂組成物は必要により無機充填材を含有しうる。用いうる無機充填材の具体例としてはシリカ、アルミナ、タルク等が挙げられる。無機充填材は本発明のエポキシ樹脂組成物中において0〜90重量%を占める量が用いられる。更に本発明のエポキシ樹脂組成物には、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、顔料等の種々の配合剤を添加することができる。
【0023】
本発明のエポキシ樹脂組成物は、各成分を均一に混合することにより得られる。本発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えばエポキシ樹脂と本発明の硬化剤並びに必要により硬化促進剤、無機充填材及び配合剤とを必要に応じて押出機、ニ−ダ、ロ−ル等を用いて均一になるまで充分に混合してエポキシ樹脂組成物を得、そのエポキシ樹脂組成物を溶融後注型あるいはトランスファ−成型機などを用いて成型し、さらに80〜200℃で2〜10時間加熱することにより硬化物を得ることができる。
【0024】
また本発明のエポキシ樹脂組成物をトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン等の溶剤に溶解させ、ガラス繊維、カ−ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させ加熱半乾燥して得たプリプレグを熱プレス成型して硬化物を得ることもできる。この際の溶剤は、本発明のエポキシ樹脂組成物と該溶剤の混合物中で通常10〜70重量%、好ましくは15〜70重量%を占める量を用いる。
【0025】
【実施例】
次に本発明を実施例により更に具体的に説明するが、以下において部は特に断わりのない限り重量部である。
【0026】
実施例1
温度計、滴下ロート、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら式(2)で表される化合物69部、エピクロルヒドリン370部、ジメチルスルホキシド92.5部を仕込み撹拌下で45℃まで昇温し、溶解させた。次いでフレーク状水酸化ナトリウム40.4部を100分かけて分割添加し、その後、更に45℃で3時間、70℃で1時間反応させた。反応終了後、ロータリーエバポレーターを使用して加熱減圧下、ジメチルスルホキシド及び過剰のエピクロルヒドリン等を留去し残留物に250部のメチルイソブチルケトンを加え溶解した。
【0027】
このメチルイソブチルケトンの溶液を70℃に加熱し30重量%の水酸化ナトリウム水溶液10部を添加し、1時間反応させた後洗浄液が中性になるまで水洗を繰り返した。更に水層は分離除去し、前記式(1)で表される本発明のエポキシ樹脂(A)119部を得た。得られたエポキシ樹脂は結晶状態であり融点は86.6℃、150℃における溶融粘度は0.005Pa・s、エポキシ当量は140g/eqであった。
【0028】
実施例2
実施例1で得られたエポキシ樹脂(A)に対し硬化剤としてフェノールノボラック(軟化点83℃、水酸基当量106g/eq、150℃における溶融粘度Pa・s)、硬化促進剤としてトリフェニルホスフィン(TPP)、充填材として球状シリカ(平均粒径30ミクロン)及び破砕シリカ(平均粒径5ミクロン)を用いて表1の配合物の組成の欄に示す重量比で配合し、70℃で15分ロールで混練し、175℃、成型圧力70Kg/cm2の条件でスパイラルフローを測定した(実施例2)。また、充填材を加えずに表1で表される組成物を180秒間トランスファー成型してその後160℃で2時間、更に180℃で8時間硬化せしめて試験片を作成し、下記の条件でガラス転移温度を測定し表1の硬化物の物性の欄に示した(実施例3)。
【0029】
ガラス転移温度
熱機械測定装置(TMA):真空理工(株)製 TM−7000
昇温速度:2℃/min.
【0030】
Figure 0004521974
【0031】
このように本発明の結晶性エポキシ樹脂を用いたエポキシ樹脂組成物は表1に示されるように極めて低い粘度(フィラー含有量が80%と比較的高いにも関わらすスパイラルフローが長いことから判断される)及びその硬化物は優れた耐熱性(ガラス転移温度)が高いことから判断される)を示した。
【0032】
【発明の効果】
本発明の結晶性エポキシ樹脂は従来一般的に使用されてきたエポキシ樹脂と比較して溶融粘度が低く、これを含有するエポキシ樹脂組成物は耐熱性に優れた硬化物を与える。
従って、本発明のエポキシ樹脂組成物は電気・電子材料、成型材料、注型材料、積層材料、塗料、接着剤、レジスト、光学材料などの広範囲の用途にきわめて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crystalline epoxy resin and an epoxy resin composition that give a cured product having high heat resistance and low melt viscosity. The resin composition can be used for electric / electronic materials, casting materials, paints, adhesives, resists, and the like.
[0002]
[Prior art]
Epoxy resins are cured with various curing agents, and generally become cured products with excellent mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties, etc., and adhesives, paints, laminates, moldings It is used in a wide range of fields such as materials and casting materials. Conventionally, as a liquid epoxy resin most used industrially, a compound obtained by reacting bisphenol A with epichlorohydrin is known. In applications such as semiconductor encapsulants, cresol novolac epoxy resins are widely used because heat resistance is required. In addition, surface mounting methods are common, and semiconductor packages are often directly exposed to high temperatures during solder reflow, so high filler filling is effective to reduce the water absorption rate and linear expansion rate of the entire sealing material. Has been proposed. In order to enable high filler filling, a low melt viscosity of the epoxy resin is a necessary condition. Recently, epoxidized tetramethylbiphenol has been widely used in order to satisfy such requirements. Since this resin is crystalline, it exhibits a very low melt viscosity in the molten state.
[0003]
[Problems to be solved by the invention]
However, although the epoxidized tetramethylbiphenol as described above has a low melt viscosity and can be filled with a high filler, the heat resistance indicated by the glass transition point is extremely low, so there is an inferior aspect in long-term reliability. It was.
[0004]
[Means for Solving the Problems]
In light of these circumstances, the present inventors have intensively studied for a crystalline epoxy resin having excellent heat resistance and low melt viscosity. As a result, an epoxy resin having a specific molecular structure satisfies these characteristics. As a result, the present invention has been completed.
[0005]
That is, the present invention relates to (1) formula (1)
[0006]
[Chemical 2]
Figure 0004521974
[0007]
A crystalline epoxy resin represented by
(2) The crystalline epoxy resin according to (1) above, an epoxy resin composition comprising a curing agent,
(3) The epoxy resin composition according to the above (2), which contains a curing accelerator,
(4) The epoxy resin composition according to the above (2) or (3), which contains an inorganic filler,
(5) Hardened | cured material formed by hardening | curing the epoxy resin composition of any one of said (2), (3) or (4),
Is to provide.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The compound represented by the formula (1) described in the above (1) is, for example, the formula (2)
[0009]
[Chemical 3]
Figure 0004521974
[0010]
It can obtain by performing reaction of the compound represented by and epihalohydrin in presence of an alkali metal hydroxide.
[0011]
In the reaction for obtaining the epoxy resin of the present invention, an aqueous solution of the alkali metal hydroxide may be used. In that case, the aqueous solution of the alkali metal hydroxide is continuously added to the reaction system and under reduced pressure. Alternatively, water and epihalohydrin are allowed to flow out continuously under normal pressure, followed by liquid separation, removal of water, and epihalohydrin being continuously returned to the reaction system.
[0012]
Further, a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide, trimethylbenzylammonium chloride or the like is added as a catalyst to a mixture of the compound represented by formula (2) and epihalohydrin at 0.5 to 8 at 50 to 150 ° C. Add a solid or aqueous solution of an alkali metal hydroxide to the halohydrin etherified compound of the formula (2) obtained by reacting for a period of time, and react at 20 to 120 ° C. for 1 to 10 hours to dehydrohalogenate (ring closure). The method may be used.
[0013]
Usually, the amount of epihalohydrin used in these reactions is usually 0.8 to 12 mol, preferably 0.9 to 11 mol, based on 1 equivalent of the hydroxyl group of the compound of formula (2). In this case, it is preferable to carry out the reaction by adding an alcohol such as methanol or ethanol, an aprotic polar solvent such as dimethyl sulfone or dimethyl sulfoxide, etc. in order to make the reaction proceed smoothly.
[0014]
When using alcohol, the amount of its use is 2-20 weight% normally with respect to the quantity of epihalohydrin, Preferably it is 4-15 weight%. Moreover, when using an aprotic polar solvent, it is 5-150 weight% normally with respect to the quantity of epihalohydrin, Preferably it is 10-140 weight%.
[0015]
After the reaction product of these epoxidation reactions is washed with water or without washing with water, the epihalohydrin, the solvent and the like are removed under heating and reduced pressure. In order to make the epoxy resin less hydrolyzable halogen, the recovered epoxy resin is dissolved in a solvent such as toluene or methyl isobutyl ketone, and an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added. The reaction can be carried out to ensure the ring closure. In this case, the amount of alkali metal hydroxide used is usually 0.01 to 0.3 mol, preferably 0.05 to 0.2 mol, based on 1 equivalent of the hydroxyl group of the compound of formula (2) used for epoxidation. is there. The reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 2 hours.
[0016]
After completion of the reaction, the produced salt is removed by filtration, washing with water, etc., and the solvent is distilled off under heating and reduced pressure to obtain the epoxy resin of the present invention.
[0017]
Hereinafter, the epoxy resin composition of the present invention will be described. In the epoxy resin composition described in the previous period (2), (3), (4), the epoxy resin of the present invention can be used alone or in combination with other epoxy resins. When used in combination, the proportion of the epoxy resin of the present invention in the total epoxy resin is preferably 30% by weight or more, particularly preferably 40% by weight or more.
[0018]
Specific examples of other epoxy resins that can be used in combination with the epoxy resin of the present invention include novolac type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, biphenyl type epoxy resins, and triphenylmethane type epoxy resins. However, these may be used alone or in combination of two or more.
[0019]
Examples of the curing agent contained in the epoxy resin composition of the present invention include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and the like. Specific examples of curing agents that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, triethylene anhydride. Merit acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, phenol novolac, and modified products thereof, Examples include, but are not limited to, imidazole, BF3-amine complexes, and guanidine derivatives. These may be used alone or in combination of two or more.
[0020]
In the epoxy resin composition of the present invention, the amount of the curing agent used is preferably 0.7 to 1.2 equivalents relative to 1 equivalent of the epoxy group of the epoxy resin. When less than 0.7 equivalent or more than 1.2 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.
[0021]
In the epoxy resin composition of the present invention, a curing accelerator may be used. Specific examples of curing accelerators that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, 1,8-diaza- And tertiary amines such as bicyclo (5,4,0) undecene-7, phosphines such as triphenylphosphine, and metal compounds such as tin octylate. The curing accelerator is used as necessary in an amount of 0.1 to 5.0 parts by weight based on 100 parts by weight of the epoxy resin.
[0022]
The epoxy resin composition of the present invention may contain an inorganic filler as necessary. Specific examples of the inorganic filler that can be used include silica, alumina, talc and the like. The inorganic filler is used in an amount of 0 to 90% by weight in the epoxy resin composition of the present invention. Furthermore, various compounding agents such as silane coupling agents, mold release agents such as stearic acid, palmitic acid, zinc stearate, calcium stearate, and pigments can be added to the epoxy resin composition of the present invention.
[0023]
The epoxy resin composition of this invention is obtained by mixing each component uniformly. The epoxy resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method. For example, the epoxy resin, the curing agent of the present invention, and if necessary, a curing accelerator, an inorganic filler and a compounding agent are thoroughly mixed using an extruder, a kneader, a roll or the like as necessary until uniform. An epoxy resin composition can be obtained, and the epoxy resin composition can be melted and then molded using a casting or transfer molding machine, and further heated at 80 to 200 ° C. for 2 to 10 hours to obtain a cured product. it can.
[0024]
In addition, the epoxy resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc., and is applied to a substrate such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. A prepreg obtained by impregnation and heating and semi-drying can be subjected to hot press molding to obtain a cured product. The solvent used here is usually 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the epoxy resin composition of the present invention and the solvent.
[0025]
【Example】
EXAMPLES Next, the present invention will be described more specifically with reference to examples. In the following, parts are parts by weight unless otherwise specified.
[0026]
Example 1
A flask equipped with a thermometer, dropping funnel, condenser, and stirrer was purged with nitrogen gas and charged with 69 parts of the compound represented by formula (2), 370 parts of epichlorohydrin, and 92.5 parts of dimethyl sulfoxide, and stirred at 45 ° C. The solution was heated up to dissolve. Next, 40.4 parts of flaky sodium hydroxide was added in portions over 100 minutes, and then further reacted at 45 ° C. for 3 hours and at 70 ° C. for 1 hour. After completion of the reaction, dimethyl sulfoxide, excess epichlorohydrin and the like were distilled off using a rotary evaporator under heating and reduced pressure, and 250 parts of methyl isobutyl ketone was added to the residue and dissolved.
[0027]
This methyl isobutyl ketone solution was heated to 70 ° C., 10 parts of a 30% by weight aqueous sodium hydroxide solution was added, reacted for 1 hour, and then washed with water until the washing solution became neutral. Further, the aqueous layer was separated and removed to obtain 119 parts of the epoxy resin (A) of the present invention represented by the formula (1). The obtained epoxy resin was in a crystalline state, the melting point was 86.6 ° C., the melt viscosity at 150 ° C. was 0.005 Pa · s, and the epoxy equivalent was 140 g / eq.
[0028]
Example 2
Phenol novolak (softening point 83 ° C., hydroxyl group equivalent 106 g / eq, melt viscosity Pa · s at 150 ° C.) as a curing agent and triphenylphosphine (TPP) as a curing accelerator with respect to the epoxy resin (A) obtained in Example 1 ), Using spherical silica (average particle size 30 microns) and crushed silica (average particle size 5 microns) as filler, blended in the weight ratio shown in the composition column of Table 1, and rolled at 70 ° C. for 15 minutes The spiral flow was measured under the conditions of 175 ° C. and a molding pressure of 70 kg / cm 2 (Example 2). Further, the composition shown in Table 1 without transfer material was transfer molded for 180 seconds and then cured at 160 ° C. for 2 hours and further at 180 ° C. for 8 hours to prepare a test piece. The transition temperature was measured and shown in the column of physical properties of the cured product in Table 1 (Example 3).
[0029]
Glass transition temperature thermomechanical measuring device (TMA): TM-7000 manufactured by Vacuum Riko Co., Ltd.
Temperature increase rate: 2 ° C./min.
[0030]
Figure 0004521974
[0031]
Thus, as shown in Table 1, the epoxy resin composition using the crystalline epoxy resin of the present invention has a very low viscosity (determined from a long spiral flow despite a relatively high filler content of 80%. And the cured product was judged to have excellent heat resistance (glass transition temperature).
[0032]
【The invention's effect】
The crystalline epoxy resin of the present invention has a low melt viscosity as compared with conventionally used epoxy resins, and an epoxy resin composition containing this gives a cured product having excellent heat resistance.
Therefore, the epoxy resin composition of the present invention is extremely useful for a wide range of applications such as electric / electronic materials, molding materials, casting materials, laminated materials, paints, adhesives, resists, optical materials and the like.

Claims (4)

式(1)
Figure 0004521974
で表される結晶性エポキシ樹脂、硬化剤を含有してなるエポキシ樹脂組成物。
Formula (1)
Figure 0004521974
An epoxy resin composition comprising a crystalline epoxy resin represented by formula (I) and a curing agent.
硬化促進剤を含有する請求項記載のエポキシ樹脂組成物。The epoxy resin composition according to claim 1, further comprising a curing accelerator. 無機充填剤を含有する請求項1または2記載のエポキシ樹脂組成物。The epoxy resin composition according to claim 1 or 2, comprising an inorganic filler. 請求項1、2または3のいずれか1項に記載のエポキシ樹脂組成物を硬化してなる硬化物。Hardened | cured material formed by hardening | curing the epoxy resin composition of any one of Claim 1, 2, or 3 .
JP2000335612A 2000-11-02 2000-11-02 Crystalline epoxy resin, epoxy resin composition and cured product thereof Expired - Fee Related JP4521974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000335612A JP4521974B2 (en) 2000-11-02 2000-11-02 Crystalline epoxy resin, epoxy resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000335612A JP4521974B2 (en) 2000-11-02 2000-11-02 Crystalline epoxy resin, epoxy resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2002138130A JP2002138130A (en) 2002-05-14
JP4521974B2 true JP4521974B2 (en) 2010-08-11

Family

ID=18811326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000335612A Expired - Fee Related JP4521974B2 (en) 2000-11-02 2000-11-02 Crystalline epoxy resin, epoxy resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP4521974B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617387B2 (en) * 2009-06-17 2011-01-26 キヤノン株式会社 Manufacturing method of fine structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936632B2 (en) * 1975-06-06 1984-09-05 セメダイン (株) Manufacturing method of new epoxy compound
JPS5248637A (en) * 1975-10-13 1977-04-18 Semedain Kk Process for preparation of novel epoxy compound
JPS6147717A (en) * 1984-08-10 1986-03-08 Sumitomo Chem Co Ltd Composition containing polymerizable resin
JPH04122715A (en) * 1990-09-14 1992-04-23 Nippon Kayaku Co Ltd Liquid epoxy resin composition and its cured product
JPH10212340A (en) * 1997-01-28 1998-08-11 Asahi Chem Ind Co Ltd Curable epoxy resin composition

Also Published As

Publication number Publication date
JP2002138130A (en) 2002-05-14

Similar Documents

Publication Publication Date Title
JP3659532B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3659533B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP2001329051A (en) Novolac phenol resin, epoxy resin composition, and cured product of the composition
JP3992181B2 (en) Production method of epoxy resin
JP4863434B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP4521974B2 (en) Crystalline epoxy resin, epoxy resin composition and cured product thereof
JP4023594B2 (en) Epoxy resin composition and cured product thereof
JP5252671B2 (en) Crystalline epoxy resin, epoxy resin composition and cured product thereof
JP2002338656A (en) Crystalline epoxy resin, epoxy resin composition and cured product thereof
JP5579300B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3794598B2 (en) Method for producing molded epoxy compound
JP5669191B2 (en) Crystalline epoxy resin, epoxy resin composition and cured product thereof
JP3729472B2 (en) Production method of epoxy resin
CA2394053A1 (en) Epoxy resin, epoxy resin mixtures, epoxy resin compositions and products of curing of the same
JP4463453B2 (en) Epoxy resin composition and cured product thereof
JP4036289B2 (en) Liquid epoxy resin, epoxy resin composition and cured product thereof
JP2004035762A (en) Crystalline epoxy resin and method for producing the same and epoxy resin composition and its cured product
JP4548647B2 (en) Liquid epoxy resin, epoxy resin composition and cured product thereof
JP2000001525A (en) Liquid epoxy resin, epoxy resin composition, and cured product of the composition
JP4311587B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP2005247902A (en) Epoxy resin and epoxy resin composition
JP4466907B2 (en) Liquid epoxy resin, epoxy resin composition and cured product thereof
JP5132036B2 (en) Liquid epoxy resin, epoxy resin composition and cured product thereof
JP2001278946A (en) Epoxy resin, epoxy resin composition and its cured product
JP2004339381A (en) Epoxy resin, method for producing the same, epoxy resin composition and cured product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100318

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160604

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees