JP4521946B2 - Sample measurement method - Google Patents

Sample measurement method Download PDF

Info

Publication number
JP4521946B2
JP4521946B2 JP2000227653A JP2000227653A JP4521946B2 JP 4521946 B2 JP4521946 B2 JP 4521946B2 JP 2000227653 A JP2000227653 A JP 2000227653A JP 2000227653 A JP2000227653 A JP 2000227653A JP 4521946 B2 JP4521946 B2 JP 4521946B2
Authority
JP
Japan
Prior art keywords
substance
reaction
ligand
solid phase
magnetic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000227653A
Other languages
Japanese (ja)
Other versions
JP2002040025A5 (en
JP2002040025A (en
Inventor
卓哉 小田原
榮治 石川
久師 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP2000227653A priority Critical patent/JP4521946B2/en
Publication of JP2002040025A publication Critical patent/JP2002040025A/en
Publication of JP2002040025A5 publication Critical patent/JP2002040025A5/ja
Application granted granted Critical
Publication of JP4521946B2 publication Critical patent/JP4521946B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は臨床検査に用いられ、主として免疫測定法を用いた検査及び遺伝子検査に用いられる。
【0002】
【従来の技術】
抗原抗体反応を利用する免疫測定法は広く利用されている。これらの中でも酵素や発光性物質を標識物質に用いた標識リガンドとリガンド(被験物質に対する相補物)を固相上に不溶化した固相を組み合わせて用いる免疫測定法は、高感度に物質を定量することが可能であるため、常用されている。
【0003】
この方法では固相の材質及び形状と標識物質の選択により、その測定方法の性能が大きく異なってくる。現在一般に用いられている固相には、マイクロタイタープレート、チューブ、磁性粒子等がある。
【0004】
一方、シグナルを計測する方法には、標識物質に酵素を用いた比色、蛍光、発光及び発光性物質を直接リガンドに標識する発光法等が利用されている。一般的に実施されている分析方法は、被検物質を含む試料と固相及び標識リガンドを反応させ、固相上に形成された複合体の標識物質の量を比色、蛍光或いは発光測定により求める方法である。
【0005】
固相と指示反応の組み合わせの特色を考えてみると、マイクロタイタープレート及びチューブのような容器表面を固相に用いる場合には、固相表面積が限定されることと、反応液の一部のみが固相表面のリガンドと接触できるだけで、反応液中の全ての物質が接触できないため反応時間が多く必要であったり、感度が低いといった問題点がある。
【0006】
一方、磁性粒子のような微粒子を固相に使用する場合には、マイクロタイタープレートやチューブの欠点を補うことが可能であり、高感度或いは反応時間の短縮が可能である。しかしながら、磁性粒子の光学的特性のため、すなわち、濁度或いは不透明性のため、指示反応の信号を計測する方法に制限があるといった問題点があった。
【0007】
例えば、磁性粒子固相を用いて、化学発光性物質を標識に用いて発光測定をした場合、磁性粒子を懸濁させて化学発光反応を起こさせ、その発光強度を光電管で測定することになる。磁性粒子は一般に茶褐色であるため、発光された光が磁性粒子に、吸収されるためシグナルの利得率が低くなるといった問題があった。
【0008】
この問題は、磁性粒子固相と指示反応が持続発光測定又は吸光或いは蛍光の経時的変化量測定(反応速度測定)の組み合わせにおいて特に問題であった。すなわち、濁度を持った磁性粒子を反応液中で分散させたままシグナルを計測する場合に特に問題となった。
【0009】
また、反応速度及び反応効率を高めるため、多孔性のマトリックス固相や粒子状固相も利用されている。これらの場合にも、多孔性マトリックス内部のシグナルを如何に取り出すか、あるいは粒子の光学的測定におよぼす影響を如何に回避するかといった問題があった。
【0010】
一方、免疫測定の感度を上昇させる手段として、固相に形成された標識リガンドを含む抗原抗体複合体を特異的に固相より分離して測定する方法(特開平2-73158)及び分類した複合体を再度別の固相にトラップして測定する方法(特開平1-254868及び特開平2-28558)が開示されている。これらは何れも、固相に形成された被検物質に特異的な標識リガンドを含む抗原抗体複合体を非特異的に固相に吸着した標識リガンドと分離して測定することによりバックグランドシグナルを低減させることにより感度上昇を期待する方法であるが、特異的な解離剤の選択や解離効率或いは操作の煩雑さから実用化には至っていない。
【0011】
【解決しようとする課題】
本発明の目的は固相及び標識リガンドを用いて、流体試料中の被検物質と特異的リガンド対を形成する反応を利用する測定方法において、固相上に形成される標識リガンドを含む抗原抗体複合体の量を測定するに際して、得られるシグナルを最大限獲得及び利用する方法及びその方法を用いる測定試薬を提供することである。
【0012】
【解決する手段】
本発明者らは鋭意研究を重ねた結果、磁性粒子及び標識リガンドを用いて、液体試料中の被検物質と特異的リガンド対を形成する反応を利用する測定方法において、少なくとも1つのリガンドを固定した磁性粒子、標識リガンド及び被検物質を反応させた後、その結果磁性粒子上に形成された複合体の標識物質を含む少なくとも一部を磁性粒子上から遊離させることを所定の容器内で実行する工程と、磁性粒子を前記容器の底部または側部に集磁する工程と、磁性粒子が集磁された状態で前記容器中の前記遊離した複合体の標識物質に基づくシグナルの測定を行う工程と、により実質的に磁性粒子によるシグナル測定への影響を軽減できることを見出し、そのことにより得られるシグナルを最大限獲得及び利用できることを見出し本発明を完成させるに至った。
【0013】
すなわち本発明は、
1.磁性粒子及び標識リガンドを用いて、液体試料中の被検物質と特異的リガンド対を形成する反応を利用する測定方法において、少なくとも1つのリガンドを固定した磁性粒子、標識リガンド及び被検物質の反応により磁性粒子上に形成された複合体の標識物質を含む少なくとも一部を磁性粒子上から遊離させることを所定の容器内で実行する工程と、前記遊離を実行した後に磁性粒子を前記容器の底部または側部に集磁する工程と、磁性粒子が集磁された状態で前記容器中の前記遊離した複合体の標識物質に基づくシグナルの測定を行う工程と、からなることを特徴とする被験物質の測定方法、
2.液体試料中の被検物質と特異的リガンド対を形成する反応が少なくとも抗原抗体反応、又は核酸のハイブリダイズ反応である前項1に記載の測定方法、
3.標識リガンドに使用する標識物質が、酵素、蛍光物質、発光性物質、または放射性物質である前項1または2に記載の測定方法、からなる。
【0014】
【発明の実施の態様】
本発明において、流体試料中の被検物質と特異的リガンド対を形成する反応とは、抗原抗体反応、核酸のハイブリダイズ反応、蛋白質・受容体間反応等を含む被験物質とその相補物質と相補的反応を意味する。例えば、臨床検査の分野で広く実施されている、抗原抗体反応を用いる免疫測定や遺伝子診断において利用されている相補的反応に適用される。なお本発明において、リガンドとは測定目的の被検物質に対する相補的結合能を有する物質を意味する。
【0015】
免疫反応及び核酸のハイブリダイズ反応以外の例としては、ビオチン及びその類縁体とアビジン或いはストレプトアビジン、ヘモグロビンとハプトグロビン、ヘパリンとアンチトロンビン−III、レクチンと糖鎖等のリガンド対も応用できる。
【0016】
標識リガンドを調製するための標識物質は、酵素、蛍光物質、発光性物質、または放射性物質等が用いられる。具体的には、酵素の例としては、ペルオキシダーゼ、アルカリ性ホスファターゼ、ガラクトシダーゼ、グルコース脱水素酵素、ルシフェラーゼ等が用いられる。蛍光物質の例としては、フルオレセイン、ローダミン、テキサスレッド、ユーロピウムキレート等の希土類元素のキレート等が挙げられる。発光性物質の例としては、アクリジニウムエステル誘導体、エクオリン等が利用できる。その他放射性同位元素或いは蓄光体や蛍光微粒子を標識物質として用いることも可能である。
【0017】
本発明に用いられるリガンドを固定化する固相は、磁性粒子、多孔性マトリックス固相、例えば多孔性メンブラン、濾紙、多孔性プラスチック等、合成樹脂製粒子、金属粒子等、固相より標識リガンドを含む複合体の少なくとも一部を分離できるものであれば特に限定されない。
【0018】
本発明による固相上に反応により形成された複合体、例えば標識リガンドを含む抗原抗体複合体を固相上から遊離する具体的な手段としては、固相上に形成された複合体の標識物質含む少なくとも一部を超音波により固相上から遊離させる手段が利用できる。超音波以外にも、ミキサー等による機械的な振動、尿素、塩化マグネシウム溶液、ジメチルスルホキシド等の有機溶媒等の非特異的抗原抗体複合体の解離剤も用いることができる。
【0019】
遊離の度合いは、処理時間を長くすると遊離は進むが標識が失活する可能性があり、最適処理時間は実験的繰り返しにより個々決定される。
【0020】
標識から生じるシグナルは、固相である粒子により妨害され検出部での利得率が低下する。そのため粒子を検出に影響のないように分離をする必要がある。分離の方法は、粒子による標識から生じるシグナルの検出の妨害を防ぐ手段であれば、特に制限されない。例えば、検出に影響を与えないように粒子を集めるフィルター付きのピペット等で吸引し、粒子と分離する等の手段が例示される。
【0021】
さらに、本発明は、上記の測定方法を実施のために調製される測定試薬をも含む。
【0022】
本発明をより具体的に説明するために、以下の実施態様を例に説明する。
固相として、粒径0.1μm〜5μmの磁性粒子表面に被検物質に対する抗体(抗原)を固定化する。固定化する方法は、公知の化学結合法或いは物理吸着法が適用できる。
【0023】
固定化した磁性粒子は必要に応じて、牛血清アルブミン、カゼイン等の蛋白質でブロッキングしたのち、適当な緩衝液に懸濁させて反応に用いる。被検試料と磁性粒子の懸濁液を混合し一定時間反応させた後、未反応の物質を除去する目的で、適当な緩衝液で洗浄する。洗浄後、アルカリ性ホスファターゼ標識抗体(抗原)液を固相に加え、懸濁させ反応させる。一定時間反応させた後、再度洗浄して、未反応のアルカリホスファターゼ標識抗体(抗原)を除去し、固相上に標識物を含む抗原抗体複合体を形成させる。
【0024】
その固相にアルカリ性ホスファターゼの持続発光基質であるアダマンチル1.2−ジオキセタンフェニルリン酸誘導体(AMPPD誘導体)を含む基質溶液を加えて、超音波処理を施す。
【0025】
超音波処理は28KHzの超音波を15秒間照射し、標識物を含む複合体を固相より分離させた後、予め、反応容器の低部又は側面のシグナルを測定する際に邪魔にならない適当な位置に磁石を用いて磁性粒子を集めておき、発光測定の妨害にならないようにして、発光強度を測定することができる。
【0028】
【実施例】
以下に実施例を挙げて本発明を更に説明するが、本発明は実施例に限定されるものではない。
【0029】
【実施例1】
(材料の調製)
水溶性カルボジイミドを用いてカルボキシ基を活性化した磁性粒子と抗HBsモノクローナル抗体(クローンNo. HBs740)をカップリングさせて抗HBs抗体固定化磁性粒子を調製した。その粒子を、緩衝液で洗浄、牛血清アルブミンでブロッキング処理し、最終の粒子濃度が1%(w/v)となるように粒子濃度を調製した。
【0030】
抗HBsモノクローナル抗体(クローンNo. HBs85)にアルカリ性ホスファターゼを公知の方法で結合させ、アルカリ性ホスファターゼ標識抗HBs抗体を調製した。
【0031】
(HBs抗原の測定)
固相懸濁液100μLを試験管に採り、試験管外壁より磁界を与えて、磁性粒子固相を磁気分離し上清を除去した。その磁性固相に、5IU/mLのHBs抗原を含む溶液及びHBs抗原を含まない溶液を各100μLずつを加え混和した。室温で10分間静置条件下で反応させた後、試験管外壁より磁界を与えて、磁性粒子固相を磁気分離し上清を除去した。次いで、100μLのアルカリホスファターゼ標識抗HBs抗体液を添加し撹拌後37℃で10分間静置反応させた後、磁気分離により上清を除去し、400μLの洗浄液で3回洗浄後、100μLの基質用緩衝液(pH9.8)を加え、撹拌混合した。
【0032】
その後、200μLのAMPPD誘導体基質原液を加える前に、15秒間超音波処理したものと、しないもので、それぞれ37℃10分間反応後の発光強度を測定した。超音波処理したものは、固相を分離除去した後、AMPPD誘導体基質原液を加えて発光強度を測定した。一方未処理のものは、AMPPD誘導体基質原液を加えて、磁性粒子を懸濁させた状態で測定した。その結果を表1に示した。
【0033】

Figure 0004521946
【0034】
以上の結果より、超音波処理により固相より標識リガンドを含む複合体を遊離・分離させたものは、遊離・分離させないものに比べて6倍以上のシグナルを得ることができ、通常では計測できない低値領域でも計測可能であることが判った。
【0035】
【実施例2】
超音波処理を行なう代わりに6Mの尿素溶液を用いて固相より標識リガンドを含む複合体を遊離・分離させる方法を用いた以外は実施例1に示した方法と同様に操作し、尿素による複合体の遊離・分離効果を確かめた。その結果を表2に示した。
【0036】
Figure 0004521946
【0037】
以上の結果より、尿素処理により固相より標識リガンドを含む複合体を遊離・分離させたものは、遊離・分離させないものに比べて5倍以上のシグナルを得ることができ、超音波処理と同様の効果があることが判った。
【0038】
【発明の効果】
本発明の効果は磁性粒子及び標識リガンドを用いて、液体試料中の被検物質と特異的リガンド対を形成する反応を利用する測定方法において、少なくとも1つのリガンドを固定化した磁性粒子、標識リガンド及び被検物質を反応させた後、その結果磁性粒子上に形成された複合体の標識物質を含む少なくとも一部を磁性粒子上から遊離させることを所定の容器内で実行する工程と、磁性粒子を前記容器の底部または側部に集磁する工程と、磁性粒子が集磁された状態で前記容器中の前記遊離した複合体の標識物質に基づくシグナルの測定を行う工程と、により実質的に磁性粒子によるシグナル測定への影響を軽減でき、そのことにより得られるシグナルを最大限獲得及び利用できることである。すなわち、磁性粒子上に形成された標識物質を含む複合体を磁性粒子より溶液中に遊離させ、溶液中の標識物質の量を磁性粒子の存在有無に拘わらず測定可能になる。そのことにより磁性粒子のシグナル測定への影響を回避することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention is used for clinical tests, and is mainly used for tests using immunoassays and genetic tests.
[0002]
[Prior art]
Immunoassays utilizing antigen-antibody reactions are widely used. Among these, immunoassays using a combination of a labeled ligand using an enzyme or a luminescent substance as a labeling substance and a solid phase in which the ligand (complement to the test substance) is insolubilized on the solid phase quantifies the substance with high sensitivity. Because it is possible, it is used regularly.
[0003]
In this method, the performance of the measurement method varies greatly depending on the material and shape of the solid phase and the selection of the labeling substance. Currently used solid phases include microtiter plates, tubes, and magnetic particles.
[0004]
On the other hand, as a method for measuring a signal, a colorimetric method using an enzyme as a labeling substance, fluorescence, luminescence, and a luminescence method for directly labeling a luminescent substance on a ligand are used. In general analysis methods, a sample containing a test substance is reacted with a solid phase and a labeled ligand, and the amount of the labeled substance of the complex formed on the solid phase is determined by colorimetry, fluorescence or luminescence measurement. It is a method to seek.
[0005]
Considering the characteristics of the combination of solid phase and indicator reaction, when the surface of a container such as a microtiter plate or tube is used for the solid phase, the solid surface area is limited and only a part of the reaction solution is used. Can contact only the ligand on the solid phase surface and cannot contact all substances in the reaction solution, so that there are problems that a long reaction time is required and sensitivity is low.
[0006]
On the other hand, when fine particles such as magnetic particles are used for the solid phase, it is possible to compensate for the disadvantages of the microtiter plate and the tube, and it is possible to increase the sensitivity or shorten the reaction time. However, due to the optical properties of the magnetic particles, that is, due to turbidity or opacity, there is a problem that there is a limit to the method of measuring the signal of the indicator response.
[0007]
For example, when a luminescence measurement is performed using a chemiluminescent substance as a label using a magnetic particle solid phase, the chemiluminescence reaction is caused by suspending the magnetic particles, and the luminescence intensity is measured with a phototube. . Since the magnetic particles are generally brownish brown, the emitted light is absorbed by the magnetic particles, resulting in a problem that the signal gain rate is lowered.
[0008]
This problem was particularly problematic in the combination of the solid phase of the magnetic particle and the indicator reaction by continuous luminescence measurement or measurement of change in absorbance or fluorescence over time (reaction rate measurement). That is, it becomes a particular problem when measuring signals while dispersing magnetic particles having turbidity in a reaction solution.
[0009]
In order to increase the reaction rate and reaction efficiency, a porous matrix solid phase or a particulate solid phase is also used. In these cases as well, there are problems such as how to take out the signal inside the porous matrix and how to avoid the influence on the optical measurement of the particles.
[0010]
On the other hand, as a means for increasing the sensitivity of immunoassay, a method of specifically separating and measuring an antigen-antibody complex containing a labeled ligand formed on a solid phase from the solid phase (JP-A-2-73158) and classified complexes A method (Japanese Patent Laid-Open No. 1-254868 and Japanese Patent Laid-Open No. 2-28558) is disclosed in which the body is again trapped in another solid phase. In both cases, a background signal is obtained by measuring an antigen-antibody complex containing a labeled ligand specific to a test substance formed on a solid phase and separating it from a labeled ligand adsorbed nonspecifically on the solid phase. Although it is a method that expects an increase in sensitivity by reducing the amount, it has not been put into practical use because of the selection of a specific dissociator, the dissociation efficiency, or the complexity of operation.
[0011]
[Problems to be solved]
An object of the present invention is an antigen antibody comprising a labeled ligand formed on a solid phase in a measurement method using a reaction that forms a specific ligand pair with a test substance in a fluid sample using the solid phase and the labeled ligand. In measuring the amount of the complex, it is to provide a method for obtaining and utilizing the signal obtained to the maximum and a measuring reagent using the method.
[0012]
[Solution]
As a result of extensive research, the present inventors fixed at least one ligand in a measuring method using a reaction that forms a specific ligand pair with a test substance in a liquid sample using magnetic particles and a labeled ligand. magnetic particles, after the labeled ligand and a test substance are reacted, so that at least a portion comprising a labeling substance complex formed on the magnetic particles thereby released from the magnetic particles in a predetermined container And a step of collecting the magnetic particles on the bottom or side of the container, and measuring a signal based on the labeling substance of the released complex in the container in a state where the magnetic particles are collected. The present invention has been found that the influence of magnetic particles on signal measurement can be substantially reduced, and that the signal obtained thereby can be obtained and used to the maximum. This has led to the.
[0013]
That is, the present invention
1. In a measurement method using a reaction that forms a specific ligand pair with a test substance in a liquid sample using magnetic particles and a labeled ligand, the reaction between the magnetic particles, at least one ligand immobilized, the labeled ligand, and the test substance A step of releasing in a predetermined container at least a part of the complex-containing labeling substance formed on the magnetic particle from the magnetic particle, and after performing the release, the magnetic particle is moved to the bottom of the container. Or a test substance comprising: a step of collecting magnets on a side part; and a step of measuring a signal based on a labeling substance of the released complex in the container in a state where magnetic particles are collected. Measuring method,
2. 2. The measuring method according to item 1 above, wherein the reaction that forms a specific ligand pair with the test substance in the liquid sample is at least an antigen-antibody reaction or a nucleic acid hybridization reaction;
3. Labeling substance used for labeling the ligand, an enzyme, a fluorescent substance, luminescent substance or measuring method according to item 1 or 2 is a radioactive substance, or Ranaru.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the reaction that forms a specific ligand pair with a test substance in a fluid sample refers to a test substance that includes an antigen-antibody reaction, a nucleic acid hybridization reaction, a protein-receptor reaction, etc. It means a general reaction. For example, the present invention is applied to complementary reactions widely used in immunological measurement and gene diagnosis using antigen-antibody reactions, which are widely practiced in the field of clinical tests. In the present invention, the ligand means a substance having a complementary binding ability to a test substance to be measured.
[0015]
As examples other than the immune reaction and the hybridization reaction of nucleic acids, ligand pairs such as biotin and its analogs and avidin or streptavidin, hemoglobin and haptoglobin, heparin and antithrombin-III, lectin and sugar chain can also be applied.
[0016]
As the labeling substance for preparing the labeling ligand, an enzyme, a fluorescent substance, a luminescent substance, a radioactive substance, or the like is used. Specifically, examples of the enzyme include peroxidase, alkaline phosphatase, galactosidase, glucose dehydrogenase, luciferase and the like. Examples of the fluorescent material include chelates of rare earth elements such as fluorescein, rhodamine, Texas red, and europium chelate. As examples of the luminescent substance, acridinium ester derivatives, aequorin and the like can be used. In addition, it is also possible to use a radioisotope, a phosphor, or fluorescent fine particles as a labeling substance.
[0017]
The solid phase for immobilizing the ligand used in the present invention is a magnetic particle, a porous matrix solid phase such as a porous membrane, filter paper, porous plastic, synthetic resin particles, metal particles, etc. There is no particular limitation as long as at least a part of the contained complex can be separated.
[0018]
As a specific means for releasing a complex formed by a reaction on the solid phase according to the present invention, for example, an antigen-antibody complex containing a labeled ligand from the solid phase, a labeling substance for the complex formed on the solid phase is used. A means for releasing at least a part of the solid from the solid phase by ultrasonic waves can be used. In addition to ultrasonic waves, non-specific antigen-antibody complex dissociating agents such as mechanical vibration using a mixer or the like, organic solvents such as urea, magnesium chloride solution, and dimethyl sulfoxide can also be used.
[0019]
The degree of liberation can be increased by increasing the treatment time, but the label can be deactivated. The optimum treatment time is individually determined by experimental repetition.
[0020]
The signal generated from the label is hindered by particles that are solid phases, and the gain factor at the detection section decreases. Therefore, it is necessary to separate the particles so as not to affect the detection. The separation method is not particularly limited as long as it is a means for preventing the detection of a signal resulting from labeling by particles. For example, means such as aspiration using a pipette with a filter that collects particles so as not to affect detection and separation from the particles are exemplified.
[0021]
Furthermore, the present invention also includes a measurement reagent prepared for carrying out the above measurement method.
[0022]
In order to describe the present invention more specifically, the following embodiments will be described as examples.
As a solid phase, an antibody (antigen) against a test substance is immobilized on the surface of a magnetic particle having a particle size of 0.1 μm to 5 μm. As a method for immobilization, a known chemical bonding method or physical adsorption method can be applied.
[0023]
The immobilized magnetic particles are blocked with a protein such as bovine serum albumin or casein, if necessary, and then suspended in an appropriate buffer for use in the reaction. The test sample and the suspension of magnetic particles are mixed and reacted for a certain period of time, and then washed with an appropriate buffer for the purpose of removing unreacted substances. After washing, an alkaline phosphatase labeled antibody (antigen) solution is added to the solid phase and suspended and reacted. After reacting for a certain period of time, washing is performed again to remove the unreacted alkaline phosphatase-labeled antibody (antigen), thereby forming an antigen-antibody complex containing the label on the solid phase.
[0024]
A substrate solution containing adamantyl 1.2-dioxetanephenyl phosphate derivative (AMPPD derivative), which is a continuous luminescence substrate of alkaline phosphatase, is added to the solid phase and subjected to ultrasonic treatment.
[0025]
Sonication is performed by irradiating 28 KHz ultrasonic waves for 15 seconds, separating the complex containing the label from the solid phase, and then preliminarily measuring the signal at the bottom or side of the reaction vessel. It is possible to measure the luminescence intensity by collecting magnetic particles using a magnet at a position so as not to interfere with the luminescence measurement.
[0028]
【Example】
EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited to the examples.
[0029]
[Example 1]
(Preparation of materials)
Anti-HBs antibody-immobilized magnetic particles were prepared by coupling magnetic particles activated with water-soluble carbodiimide and carboxy groups and anti-HBs monoclonal antibodies (clone No. HBs740). The particles were washed with a buffer and blocked with bovine serum albumin, and the particle concentration was adjusted so that the final particle concentration was 1% (w / v).
[0030]
Alkaline phosphatase was bound to the anti-HBs monoclonal antibody (clone No. HBs85) by a known method to prepare an alkaline phosphatase-labeled anti-HBs antibody.
[0031]
(Measurement of HBs antigen)
100 μL of the solid phase suspension was taken in a test tube, and a magnetic field was applied from the outer wall of the test tube to magnetically separate the solid phase of the magnetic particles, and the supernatant was removed. To the magnetic solid phase, 100 μL each of a solution containing 5 IU / mL HBs antigen and a solution not containing HBs antigen were added and mixed. After reacting at room temperature for 10 minutes under static conditions, a magnetic field was applied from the outer wall of the test tube to magnetically separate the solid phase of the magnetic particles and remove the supernatant. Next, 100 μL of alkaline phosphatase-labeled anti-HBs antibody solution was added, allowed to stand and allowed to stand at 37 ° C. for 10 minutes, then the supernatant was removed by magnetic separation, washed 3 times with 400 μL of washing solution, and then used for 100 μL of substrate. Buffer solution (pH 9.8) was added and mixed with stirring.
[0032]
Thereafter, before adding 200 μL of the AMPPD derivative substrate stock solution, the luminescence intensity after reaction for 10 minutes at 37 ° C. was measured with and without sonication for 15 seconds. For the ultrasonically treated product, the solid phase was separated and removed, and then the AMPPD derivative substrate stock solution was added to measure the luminescence intensity. On the other hand, untreated samples were measured in a state where magnetic particles were suspended by adding an AMPPD derivative substrate stock solution. The results are shown in Table 1.
[0033]
Figure 0004521946
[0034]
From the above results, it is possible to obtain a signal that is 6 times more than that of a complex that contains a labeled ligand from a solid phase by sonication, compared to that that is not liberated / separated. It was found that measurement was possible even in the low value region.
[0035]
[Example 2]
The same procedure as described in Example 1 was used except that a 6M urea solution was used instead of sonication to release and separate the complex containing the labeled ligand from the solid phase. We confirmed the liberation and separation effect of the body. The results are shown in Table 2.
[0036]
Figure 0004521946
[0037]
Based on the above results, a complex containing a labeled ligand from a solid phase by urea treatment can obtain a signal 5 times higher than that of a complex that does not release or separate from the solid phase. It was found that there is an effect.
[0038]
【The invention's effect】
The effect of the present invention is that, in a measurement method using a reaction that forms a specific ligand pair with a test substance in a liquid sample using a magnetic particle and a labeled ligand, at least one ligand immobilized on the magnetic particle, the labeled ligand And a step of causing at least a part of the complex labeling substance formed on the magnetic particle to be released from the magnetic particle after the reaction with the test substance in a predetermined container, and the magnetic particle And a step of measuring a signal based on a labeling substance of the released complex in the container in a state where magnetic particles are collected. It is possible to reduce the influence of magnetic particles on signal measurement, and to obtain and use the signal obtained by that as much as possible. That is, the complex containing the labeling substance formed on the magnetic particle is released from the magnetic particle into the solution, and the amount of the labeling substance in the solution can be measured regardless of the presence or absence of the magnetic particle. As a result, the influence on the signal measurement of the magnetic particles can be avoided.

Claims (3)

磁性粒子及び標識リガンドを用いて、液体試料中の被検物質と特異的リガンド対を形成する反応を利用する測定方法において、少なくとも1つのリガンドを固定した磁性粒子、標識リガンド及び被検物質の反応により磁性粒子上に形成された複合体の標識物質を含む少なくとも一部を磁性粒子上から遊離させることを所定の容器内で実行する工程と、前記遊離を実行した後に磁性粒子を前記容器の底部または側部に集磁する工程と、磁性粒子が集磁された状態で前記容器中の前記遊離した複合体の標識物質に基づくシグナルの測定を行う工程と、からなることを特徴とする被験物質の測定方法。  In a measurement method using a reaction that forms a specific ligand pair with a test substance in a liquid sample using magnetic particles and a labeled ligand, the reaction of the magnetic particles, at least one ligand immobilized thereon, the labeled ligand, and the test substance A step of releasing in a predetermined container at least a part of the complex-containing labeling substance formed on the magnetic particle from the magnetic particle, and after the release, the magnetic particle is moved to the bottom of the container. Or a test substance comprising: a step of collecting magnets on a side part; and a step of measuring a signal based on a labeling substance of the released complex in the container in a state where magnetic particles are collected. Measuring method. 液体試料中の被検物質と特異的リガンド対を形成する反応が少なくとも抗原抗体反応、又は核酸のハイブリダイズ反応である請求項1に記載の測定方法。  The measurement method according to claim 1, wherein the reaction for forming a specific ligand pair with a test substance in a liquid sample is at least an antigen-antibody reaction or a nucleic acid hybridization reaction. 標識リガンドに使用する標識物質が、酵素、蛍光物質、発光性物質、または放射性物質である請求項1または請求項2に記載の測定方法。  The measuring method according to claim 1 or 2, wherein the labeling substance used for the labeling ligand is an enzyme, a fluorescent substance, a luminescent substance, or a radioactive substance.
JP2000227653A 2000-07-27 2000-07-27 Sample measurement method Expired - Lifetime JP4521946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000227653A JP4521946B2 (en) 2000-07-27 2000-07-27 Sample measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000227653A JP4521946B2 (en) 2000-07-27 2000-07-27 Sample measurement method

Publications (3)

Publication Number Publication Date
JP2002040025A JP2002040025A (en) 2002-02-06
JP2002040025A5 JP2002040025A5 (en) 2007-09-06
JP4521946B2 true JP4521946B2 (en) 2010-08-11

Family

ID=18721066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000227653A Expired - Lifetime JP4521946B2 (en) 2000-07-27 2000-07-27 Sample measurement method

Country Status (1)

Country Link
JP (1) JP4521946B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258666A (en) * 2005-03-17 2006-09-28 Sumitomo Bakelite Co Ltd Adsorption reduction method of tissue-derived biomaterial, tissue-derived biomaterial storage solution, tissue-derived biomaterial storage container, kit for analyzing tissue-derived biomaterial, and clinical diagnostic kit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105236A (en) * 1998-09-29 2000-04-11 Hitachi Ltd Analysis method and automatic analyzer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105236A (en) * 1998-09-29 2000-04-11 Hitachi Ltd Analysis method and automatic analyzer

Also Published As

Publication number Publication date
JP2002040025A (en) 2002-02-06

Similar Documents

Publication Publication Date Title
JP6720138B2 (en) Method for detecting test substance and reagent kit used in the method
US5710006A (en) Reagents for specific binding assays
US5798083A (en) Apparatus for improved luminescence assays using particle concentration and chemiluminescence detection
JPS63229366A (en) Agglutination immuno-analysis and kit for polyvalent immunity specy measurement using buffer salt washing
JPH07500906A (en) Binding assay using labeled reagents
JPH03502244A (en) Test method and reagent kit
JPS6112224B2 (en)
JP4482035B2 (en) Particle-based binding assays
CN101144815A (en) Preparation method of liquid phase protein chip
JPS63229367A (en) Immuno-reactive reagent, manufacture thereof and application thereof for measuring immuno-reactive specy
JP4167491B2 (en) Whole blood measurement method
JPH09504094A (en) Method for assaying immunological substances using magnetic latex particles and non-magnetic particles
EP0201211A1 (en) Method and compositions for visual solid phase immunoassays based on luminescent microspheric particles
ES2321740T3 (en) PROCEDURE FOR QUICK AND SIMPLE DETECTION OF CELLS AND BIOMOLECULES WITH HELP OF PARAMAGNETIC PARTICLES.
JP4521946B2 (en) Sample measurement method
JPH0843391A (en) Measuring method for antigen antibody reaction
JP3684454B2 (en) Heterogeneous immunoassay using a precipitable solid phase
JPH06160387A (en) Measuring method for antigen-antibody reaction
CN112505319A (en) Immune quantitative detection device, detection method and application of to-be-detected marker
JP4771941B2 (en) Immunological methods and reagents
JP3681873B2 (en) Method for measuring substances
JP2000065832A (en) Filter type biological specific reaction measurement carrier and measurement using it
JPH0772155A (en) Method for measuring antigen-antibody reaction
RU2314827C2 (en) Method for producing conjugate for performing stereospecific analysis
JP2010078374A (en) Method of detecting anti-erythrocyte antibody

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4521946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term