JP4521588B2 - Method for producing single crystal SiC film - Google Patents

Method for producing single crystal SiC film Download PDF

Info

Publication number
JP4521588B2
JP4521588B2 JP2007332863A JP2007332863A JP4521588B2 JP 4521588 B2 JP4521588 B2 JP 4521588B2 JP 2007332863 A JP2007332863 A JP 2007332863A JP 2007332863 A JP2007332863 A JP 2007332863A JP 4521588 B2 JP4521588 B2 JP 4521588B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal sic
container
sic substrate
material supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007332863A
Other languages
Japanese (ja)
Other versions
JP2009155140A (en
Inventor
信彦 中村
徹 松浪
公人 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecotron Co Ltd
Original Assignee
Ecotron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecotron Co Ltd filed Critical Ecotron Co Ltd
Priority to JP2007332863A priority Critical patent/JP4521588B2/en
Publication of JP2009155140A publication Critical patent/JP2009155140A/en
Application granted granted Critical
Publication of JP4521588B2 publication Critical patent/JP4521588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、単結晶SiC膜の製造方法に関するものである。   The present invention relates to a method for producing a single crystal SiC film.

SiC(炭化ケイ素;シリコンカーバイト)は、(i)耐熱性、機械的強度に優れている、(ii)放射線に強い、(iii)不純物の添加によって電子や正孔の価電子制御を容易に行える、(iv)禁制帯幅が広い、といった特性を備えていることなどから、次世代のパワーデバイス、高周波デバイス用の半導体材料として期待されている。   SiC (silicon carbide; silicon carbide) is (i) excellent in heat resistance and mechanical strength, (ii) resistant to radiation, and (iii) valence electron control of electrons and holes is easy by addition of impurities. It is expected to be a semiconductor material for next-generation power devices and high-frequency devices because it has such characteristics as (iv) wide forbidden bandwidth.

しかしながら、単結晶SiC基板には、熱の影響によって基底面転位、螺旋転位、マイクロパイプ等の結晶欠陥が内在しやすく、また、核生成に起因する結晶粒界が発生しやすいという問題がある。   However, the single crystal SiC substrate has a problem that crystal defects such as basal plane dislocations, spiral dislocations, and micropipes tend to be inherent due to the influence of heat, and crystal grain boundaries due to nucleation are likely to occur.

このため、SiCエピタキシャル成長法として現在主流である気相成長法で単結晶SiC基板上に単結晶SiCからなる活性層を生成すると、単結晶SiC基板に内在する結晶欠陥等が活性層に伝播してしまうという問題がある。   For this reason, when an active layer made of single crystal SiC is generated on a single crystal SiC substrate by a vapor phase growth method which is currently mainstream as an SiC epitaxial growth method, crystal defects and the like inherent in the single crystal SiC substrate propagate to the active layer. There is a problem of end.

そこで、例えば、特許文献1〜3には、単結晶SiC基板と多結晶SiC基板との間に金属Si(シリコン)融液を介在させた状態で熱処理を行うことによって単結晶SiCをエピタキシャル成長させる液相エピタキシャル技術(以降、MSE(Metastable Solvent Epitaxy;準安定溶媒エピタキシャル法)法という)が開示されている。なお、特許文献1〜3に開示されている単結晶SiCの生成方法は、マイクロパイプ欠陥を抑制した、平坦度の高い単結晶SiCを実現でき、しかも成長速度が速いという利点を有している。
WO2002/099169号公報(公開日:2002年12月12日) 特開2005−126248号公報(公開日:2005年5月19日) 特開2005−126249号公報(公開日:2005年5月19日)
Therefore, for example, in Patent Documents 1 to 3, a liquid for epitaxially growing single crystal SiC by performing a heat treatment in a state where a metal Si (silicon) melt is interposed between the single crystal SiC substrate and the polycrystalline SiC substrate. Phase epitaxial technology (hereinafter referred to as MSE (Metastable Solvent Epitaxy) method) is disclosed. In addition, the production method of single crystal SiC disclosed in Patent Documents 1 to 3 has an advantage that single crystal SiC with high flatness with suppressed micropipe defects can be realized and the growth rate is high. .
WO2002 / 099169 (Publication date: December 12, 2002) JP 2005-126248 A (Publication date: May 19, 2005) JP 2005-126249 A (Publication date: May 19, 2005)

しかしながら、上記特許文献1〜3の技術では、単結晶SiC基板と多結晶SiC基板との間に挟持される金属Si融液は構造的に不安定なので、成長過程において単結晶SiC基板と多結晶SiC基板との位置ずれが発生し、単結晶SiCの成長領域が不均一になって単結晶SiCの基板面に単結晶SiC膜が形成されない未形成領域が生じるという問題があった。   However, in the techniques of Patent Documents 1 to 3, since the metal Si melt sandwiched between the single crystal SiC substrate and the polycrystalline SiC substrate is structurally unstable, the single crystal SiC substrate and the polycrystal are grown in the growth process. There is a problem in that a position shift from the SiC substrate occurs, a single crystal SiC growth region becomes non-uniform, and an unformed region where a single crystal SiC film is not formed on the substrate surface of the single crystal SiC is generated.

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、単結晶SiC基板と炭素原料供給板とを含む積層構造を容器内に収納し、上記単結晶SiC基板の表面にSi融液層を当接させた状態で熱処理を行うことにより、上記単結晶SiC基板上に単結晶SiC膜をエピタキシャル成長させる単結晶SiC膜の製造方法であって、単結晶SiC基板と多結晶SiC基板との位置ずれを抑制して単結晶SiC基板の基板面の略全面に単結晶SiC膜を成長させることができる単結晶SiC膜の製造方法を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to store a laminated structure including a single crystal SiC substrate and a carbon raw material supply plate in a container, and to form the surface of the single crystal SiC substrate. A method of manufacturing a single crystal SiC film, in which a single crystal SiC film is epitaxially grown on the single crystal SiC substrate by performing a heat treatment in a state where the Si melt layer is in contact with the single crystal SiC substrate and the polycrystalline SiC An object of the present invention is to provide a method for producing a single crystal SiC film capable of growing a single crystal SiC film over substantially the entire substrate surface of the single crystal SiC substrate while suppressing displacement with respect to the substrate.

本発明の単結晶SiC膜の製造方法は、上記の課題を解決するために、少なくとも単結晶SiC基板と炭素原料供給板とを含む積層構造を第1容器内に収納し、この第1容器を、内部を密閉することが可能な第2容器内に収納し、上記単結晶SiC基板の表面にSi融液層を当接させた状態で熱処理を行うことにより、上記単結晶SiC基板上に単結晶SiC膜をエピタキシャル成長させる単結晶SiC膜の製造方法であって、上記第1容器における上記積層構造を収容したときに上記単結晶SiC基板および上記炭素原料供給板の面内方向に平行となる方向の内形寸法と、上記単結晶SiC基板および上記炭素原料供給板における上記第1容器に収容したときに上記内形寸法の方向に平行となる方向の外形寸法との差を0.5mm以上2.0mm以下にすることを特徴としている。   In order to solve the above-described problems, the method for producing a single crystal SiC film of the present invention stores a laminated structure including at least a single crystal SiC substrate and a carbon raw material supply plate in a first container, and the first container is Then, it is housed in a second container that can be hermetically sealed, and heat treatment is performed in a state where the Si melt layer is in contact with the surface of the single crystal SiC substrate. A method for producing a single crystal SiC film by epitaxially growing a crystalline SiC film, the direction being parallel to an in-plane direction of the single crystal SiC substrate and the carbon raw material supply plate when the stacked structure in the first container is accommodated The difference between the inner dimension of the first crystal SiC substrate and the outer dimension in the direction parallel to the direction of the inner dimension when accommodated in the first container of the carbon raw material supply plate is 0.5 mm or more. . Is characterized in that the mm or less.

上記の構成によれば、上記第1容器における上記積層構造を収容したときに上記単結晶SiC基板および上記炭素原料供給板の面内方向に平行となる方向の内形寸法と、上記単結晶SiC基板および上記炭素原料供給板における上記第1容器に収容したときに上記内形寸法の方向に平行となる方向の外形寸法との差を2.0mm以下にすることにより、Si融液層によって積層構造を構成する各部材の積み重ね状態が不安定になっても、第1容器によって単結晶SiC基板および炭素原料供給板の面内方向への移動を規制し、単結晶SiC基板および炭素原料供給板の位置ずれを抑制できる。これにより、単結晶SiC基板の略全面に、未成長領域を生じさせることなく単結晶SiC膜を成長させることができる。また、上記の差を0.5mm以上にすることにより、上記積層構造を第1容器に容易に収納することができる。また、熱処理によって単結晶SiC基板に割れが生じることを抑制できる。   According to said structure, when the said laminated structure in the said 1st container is accommodated, the internal dimension of the direction parallel to the surface direction of the said single crystal SiC substrate and the said carbon raw material supply board, and the said single crystal SiC When the substrate and the carbon raw material supply plate are accommodated in the first container, the difference between the outer dimension in a direction parallel to the direction of the inner dimension is set to 2.0 mm or less, thereby stacking with the Si melt layer. Even if the stacked state of each member constituting the structure becomes unstable, the movement of the single crystal SiC substrate and the carbon raw material supply plate in the in-plane direction is restricted by the first container, and the single crystal SiC substrate and the carbon raw material supply plate are controlled. Can be suppressed. Thereby, a single crystal SiC film can be grown on almost the entire surface of the single crystal SiC substrate without generating an ungrown region. Moreover, the said laminated structure can be easily accommodated in a 1st container by making said difference into 0.5 mm or more. Moreover, it can suppress that a single crystal SiC substrate cracks by heat processing.

また、上記の差を1.0mm以上2.0mm以下にしてもよい。   Further, the difference may be set to 1.0 mm or more and 2.0 mm or less.

上記の構成によれば、上記積層構造の第1容器内への収納をさらに容易にすることができる。また、単結晶SiC基板に割れが生じることを確実に防止することができる。   According to said structure, accommodation in the 1st container of the said laminated structure can be made still easier. In addition, it is possible to reliably prevent the single crystal SiC substrate from being cracked.

また、上記積層構造は、単結晶SiC基板における一方の面側に配置された第1の炭素原料供給板と単結晶SiC基板における他方の面側に配置された第2の炭素原料供給板とを有する構成であってもよい。 The laminated structure includes a first carbon material supply plate disposed on one surface side of the single crystal SiC substrate and a second carbon material supply plate disposed on the other surface side of the single crystal SiC substrate. The structure which has may be sufficient.

上記の構成によれば、単結晶SiC基板の両面に単結晶SiC膜を成長させることができる。   According to said structure, a single crystal SiC film can be grown on both surfaces of a single crystal SiC substrate.

また、上記積層構造は、上記単結晶SiC基板と上記炭素原料供給板との間にSi板が挿入された構造であってもよい。
Further, the laminated structure may be a structure in which Si plate is inserted between the single crystal SiC substrate and the carbon source supply plate.

上記の構成によれば、熱処理によってSi板の一部または全部を融解させることにより、単結晶SiC基板の表面にSi融液層を容易に当接させることができる。また、上記特許文献1〜3のように積層構造の外形寸法と第1容器の内形寸法との差が大きい場合に比べて、成長雰囲気に晒されるSi融液の表面積を小さくできるので、Siの蒸発量を抑制することができ、均一な結晶を有する単結晶SiC膜を長時間にわたって安定して成長させることができる。   According to the above configuration, the Si melt layer can be easily brought into contact with the surface of the single crystal SiC substrate by melting part or all of the Si plate by heat treatment. Further, since the surface area of the Si melt exposed to the growth atmosphere can be reduced as compared with the case where the difference between the outer dimension of the laminated structure and the inner dimension of the first container is large as in Patent Documents 1 to 3, Si Thus, a single crystal SiC film having uniform crystals can be stably grown over a long period of time.

また、上記第1容器における上記積層構造を収容したときに上記単結晶SiC基板および上記炭素原料供給板の面内方向に平行となる方向の内形寸法と、上記Si板における上記第1容器に収容したときに上記内形寸法の方向に平行となる方向の外形寸法との差を、上記第1容器の内形寸法と上記単結晶SiC基板および上記炭素原料供給板の外径寸法との差についての上記数値範囲と同じ範囲内にしてもよい。   In addition, the inner dimensions of the single crystal SiC substrate and the carbon raw material supply plate in the direction parallel to the in-plane direction when the stacked structure in the first container is accommodated, and the first container in the Si plate The difference between the outer dimension in the direction parallel to the direction of the inner dimension when housed is the difference between the inner dimension of the first container and the outer diameter of the single crystal SiC substrate and the carbon raw material supply plate. It may be within the same range as the above numerical range for.

上記の構成によれば、Si板の一部が融解して積層構造を構成する各部材の積み重ね状態が不安定になっても、第1容器によって単結晶SiC基板、炭素原料供給板、およびSi板の面内方向への移動を規制し、これら各部材同士の位置ずれを抑制できる。これにより、単結晶SiC基板上に生成される単結晶SiC膜の均一性をさらに高めることができる。   According to said structure, even if a part of Si board melt | dissolves and the lamination | stacking state of each member which comprises laminated structure becomes unstable, a single crystal SiC board | substrate, a carbon raw material supply board, and Si The movement of the plate in the in-plane direction can be restricted, and positional deviation between these members can be suppressed. Thereby, the uniformity of the single crystal SiC film produced | generated on a single crystal SiC substrate can further be improved.

また、上記第1容器として、カーボンからなる容器を用いてもよい。上記の構成によれば、熱処理時に容器が変形したり単結晶SiC膜の成長に悪影響を及ぼしたりすることを防止し、単結晶SiC膜を適切に成長させることができる。   Further, a container made of carbon may be used as the first container. According to said structure, it can prevent that a container deform | transforms at the time of heat processing, or has a bad influence on the growth of a single crystal SiC film, and can grow a single crystal SiC film appropriately.

以上のように、本発明の単結晶SiC膜の製造方法は、上記第1容器における上記積層構造を収容したときに上記単結晶SiC基板および上記炭素原料供給板の面内方向に平行となる方向の内形寸法と、上記単結晶SiC基板および上記炭素原料供給板における上記第1容器に収容したときに上記内形寸法の方向に平行となる方向の外形寸法との差を0.5mm以上2.0mm以下にする。   As described above, the method for producing a single crystal SiC film of the present invention is a direction parallel to the in-plane direction of the single crystal SiC substrate and the carbon raw material supply plate when the laminated structure in the first container is accommodated. The difference between the inner dimension of the first crystal SiC substrate and the outer dimension in the direction parallel to the direction of the inner dimension when accommodated in the first container of the carbon raw material supply plate is 0.5 mm or more. 0.0 mm or less.

これにより、単結晶SiC基板の略全面に、未成長領域を生じさせることなく単結晶SiC膜を成長させることができる。また、上記積層構造を第1容器に容易に収納することができる。また、熱処理によって単結晶SiC基板に割れが生じることを抑制できる。   Thereby, a single crystal SiC film can be grown on almost the entire surface of the single crystal SiC substrate without generating an ungrown region. Moreover, the said laminated structure can be easily accommodated in a 1st container. Moreover, it can suppress that a single crystal SiC substrate cracks by heat processing.

本発明の一実施形態について説明する。図1は、本実施形態にかかる単結晶SiC膜の製造工程を説明するための説明図である。   An embodiment of the present invention will be described. FIG. 1 is an explanatory diagram for explaining a manufacturing process of a single crystal SiC film according to the present embodiment.

この図に示すように、本実施形態では、まず、炭素原料供給板1a、Si板2a、スペーサー3a、単結晶SiC基板4、Si基板2b、スペーサー3b、炭素原料供給板1b、重石5を下から上に向かって積層した積層構造を容器(第1容器)6aに収容し、上記積層構造を収容した容器6aを密閉容器(第2容器)7に収納して密閉容器7内を密閉した。   As shown in this figure, in this embodiment, first, the carbon raw material supply plate 1a, the Si plate 2a, the spacer 3a, the single crystal SiC substrate 4, the Si substrate 2b, the spacer 3b, the carbon raw material supply plate 1b, and the weight 5 are placed below. The laminated structure laminated from the top to the top was accommodated in a container (first container) 6a, and the container 6a containing the laminated structure was accommodated in a sealed container (second container) 7 to seal the inside of the sealed container 7.

炭素原料供給板1aは、熱処理時に単結晶SiC基板4の表面(主に下面)に炭素を供給するためのものである。本実施形態では炭素原料供給板1aとして多結晶SiC基板の表面を鏡面に研磨加工し、表面に付着した油類、酸化膜、金属等を洗浄等によって除去したものを用いた。ただし、炭素原料供給板1aの材質は、これに限るものではなく、単結晶SiC基板4の表面に炭素を供給できるものであればよい。例えば、炭素基板、ポーラスSiC基板、焼結SiC基板、非晶質SiC基板などを用いてもよい。   The carbon raw material supply plate 1a is for supplying carbon to the surface (mainly the lower surface) of the single crystal SiC substrate 4 during heat treatment. In the present embodiment, a carbon raw material supply plate 1a is used in which the surface of a polycrystalline SiC substrate is polished into a mirror surface, and oils, oxide films, metals, etc. adhering to the surface are removed by washing or the like. However, the material of the carbon raw material supply plate 1a is not limited to this, and any material that can supply carbon to the surface of the single crystal SiC substrate 4 may be used. For example, a carbon substrate, a porous SiC substrate, a sintered SiC substrate, an amorphous SiC substrate, or the like may be used.

Si(シリコン)板2aは、熱処理時に単結晶SiC基板4の表面(主に下面)にSi融液層を形成するためのものである。   The Si (silicon) plate 2a is for forming a Si melt layer on the surface (mainly the lower surface) of the single crystal SiC substrate 4 during heat treatment.

スペーサー3aは、単結晶SiC基板4とSi板2aとの間隔を規定し、それによって熱処理時に単結晶SiC基板4とSi板2aとの間に形成されるSi融液層の厚さ(単結晶SiC基板11および炭素原料供給板24の基板面に垂直な方向の厚さ)を規定するものである。これにより、単結晶SiCの成長膜(単結晶SiCエピタキシャル膜)の厚さを成長面全面に亘って均一にできるようになっている。   The spacer 3a defines the distance between the single crystal SiC substrate 4 and the Si plate 2a, whereby the thickness of the Si melt layer (single crystal) formed between the single crystal SiC substrate 4 and the Si plate 2a during heat treatment. Thickness of the SiC substrate 11 and the carbon raw material supply plate 24 in the direction perpendicular to the substrate surface). As a result, the thickness of the single crystal SiC growth film (single crystal SiC epitaxial film) can be made uniform over the entire growth surface.

単結晶SiC基板4としては、従来から公知の単結晶SiC基板(例えば市販されている単結晶SiC基板など)を用いることができる。本実施形態では、<11−20>方向に8°のoff角を設けた4H−SiC基板を用いた。なお、本実施形態では、単結晶SiC膜を形成する前に単結晶SiC基板4における単結晶SiC膜を形成する側の面をCMP法(化学的機械研磨法)によって平坦化処理し、研磨痕などを除去した。   As the single crystal SiC substrate 4, a conventionally known single crystal SiC substrate (for example, a commercially available single crystal SiC substrate) can be used. In the present embodiment, a 4H—SiC substrate having an off angle of 8 ° in the <11-20> direction was used. In the present embodiment, the surface of the single crystal SiC substrate 4 on which the single crystal SiC film is to be formed is planarized by a CMP method (chemical mechanical polishing method) before the single crystal SiC film is formed. Etc. were removed.

Si板2bは、熱処理時に単結晶SiC基板4の表面(主に上面)にSi融液層を形成するためのものである。   The Si plate 2b is for forming a Si melt layer on the surface (mainly the upper surface) of the single crystal SiC substrate 4 during heat treatment.

スペーサー3bは、Si板2bと炭素原料供給板1bとの間隔を規定するものである。   The spacer 3b defines the distance between the Si plate 2b and the carbon raw material supply plate 1b.

炭素原料供給板1bは、熱処理時に単結晶SiC基板4の表面(主に上面)に炭素を供給するためのものである。炭素原料供給板1bとしては、炭素原料供給板1aと同様のものを用いることができる。本実施形態では炭素原料供給板1bとして、炭素原料供給板1aと同様、多結晶SiC基板の表面を鏡面に研磨加工し、表面に付着した油類、酸化膜、金属等を洗浄等によって除去したものを用いた。   The carbon raw material supply plate 1b is for supplying carbon to the surface (mainly the upper surface) of the single crystal SiC substrate 4 during heat treatment. As the carbon raw material supply plate 1b, the same material as the carbon raw material supply plate 1a can be used. In this embodiment, as the carbon raw material supply plate 1b, like the carbon raw material supply plate 1a, the surface of the polycrystalline SiC substrate is polished into a mirror surface, and oils, oxide films, metals, etc. adhering to the surface are removed by washing or the like. A thing was used.

重石5は、炭素原料供給板1a、Si板2a、スペーサー3a、単結晶SiC基板4、Si基板2b、スペーサー3b、炭素原料供給板1bに適度な荷重を付与することにより、Si板2aと単結晶SiC基板4との間隔、およびSi基板2bと炭素原料供給板1bとの間隔をスペーサーの厚さに制御するためのものである。本実施形態では、重石5としてカーボンからなるブロックを用いた。ただし、重石5の材質はこれに限るものではなく、熱処理時の変形量が無視できる程度である材質であればよい。例えば、Taなどの高融点金属を用いてもよい。   The weight 5 is applied to the Si raw material supply plate 1a, the Si plate 2a, the spacer 3a, the single crystal SiC substrate 4, the Si substrate 2b, the spacer 3b, and the carbon raw material supply plate 1b by applying an appropriate load. This is for controlling the distance between the crystalline SiC substrate 4 and the distance between the Si substrate 2b and the carbon raw material supply plate 1b to the thickness of the spacer. In the present embodiment, a block made of carbon is used as the weight 5. However, the material of the weight 5 is not limited to this, and any material may be used as long as the amount of deformation during heat treatment is negligible. For example, a refractory metal such as Ta may be used.

容器(サセプタ)6aは、炭素原料供給板1a、Si板2a、スペーサー3a、単結晶SiC基板4、Si基板2b、スペーサー3b、炭素原料供給板1b、重石5を下から上に向かって積層したものを収容するとともに、熱処理時に単結晶SiC基板4と他の材料との水平方向についての相対位置がずれることを抑制するためのものである。なお、本実施形態では、容器6aとしてカーボン製のものを用いた。ただし、容器6aの材質はこれに限るものではなく、熱処理時の変形量が無視できる程度である材質であればよい。例えば、Taなどの高融点金属を用いてもよい。また、本実施形態では、容器6aとして上面が開口しているものを用いたが、これに限らず、容器6aの上面に容器6a内を密閉するための蓋(図示せず)を設けてもよい。   The container (susceptor) 6a is formed by laminating a carbon raw material supply plate 1a, a Si plate 2a, a spacer 3a, a single crystal SiC substrate 4, a Si substrate 2b, a spacer 3b, a carbon raw material supply plate 1b, and a weight stone 5 from the bottom to the top. This is for accommodating the thing and suppressing the relative position in the horizontal direction between the single crystal SiC substrate 4 and the other material during the heat treatment. In the present embodiment, the container 6a is made of carbon. However, the material of the container 6a is not limited to this, and any material may be used as long as the deformation amount during the heat treatment is negligible. For example, a refractory metal such as Ta may be used. In the present embodiment, the container 6a having an open upper surface is used. However, the present invention is not limited to this, and a lid (not shown) for sealing the inside of the container 6a may be provided on the upper surface of the container 6a. Good.

密閉容器7は、容器6aを収容してこの密閉容器7の内部を密閉し、熱処理時に蒸発したSiによって密閉容器7の内部を単結晶SiC板4の表面に単結晶SiC膜を成長させるための成長雰囲気に保持するためのものである。具体的には、密閉容器7は、容器本体7aと蓋7bとを備えており、蓋7bを閉めることによって内部を密閉できるようになっている。本実施形態では、密閉容器7としてカーボン製のものを用いた。ただし、密閉容器7の材質はこれに限るものではなく、例えばTaなどの高融点金属を用いてもよい。また、密閉容器7の形状およびサイズは、熱処理時に容器内を単結晶SiC膜の成長雰囲気に保つことができる形状およびサイズであればよい。   The sealed container 7 accommodates the container 6a and seals the inside of the sealed container 7, and grows a single crystal SiC film on the surface of the single crystal SiC plate 4 inside the sealed container 7 by Si evaporated during heat treatment. This is for maintaining the growth atmosphere. Specifically, the sealed container 7 includes a container body 7a and a lid 7b, and the inside can be sealed by closing the lid 7b. In the present embodiment, a carbon container is used as the sealed container 7. However, the material of the sealed container 7 is not limited to this, and a high melting point metal such as Ta may be used, for example. The shape and size of the sealed container 7 may be any shape and size that can maintain the inside of the container in the growth atmosphere of the single crystal SiC film during the heat treatment.

なお、本実施形態では、炭素原料供給板1a、Si板2a、単結晶SiC基板4、Si基板2b、炭素原料供給板1b、および重石5として、基板面法線方向から見た形状が一辺20mmの正方形になるように切断加工したものを用い、これら各材料の面内方向の周縁部(端部)が鉛直方向に揃うように積み重ねた。また、容器6aとして、開口部の形状が一辺21mmの正方形であるものを用いた。   In the present embodiment, the shape of the carbon raw material supply plate 1a, the Si plate 2a, the single crystal SiC substrate 4, the Si substrate 2b, the carbon raw material supply plate 1b, and the weight 5 as viewed from the normal direction of the substrate surface is 20 mm on a side. These materials were stacked so that the peripheral edge portions (end portions) in the in-plane direction were aligned in the vertical direction. Moreover, as the container 6a, a container whose opening has a square shape with a side of 21 mm was used.

ただし、炭素原料供給板1a、Si板2a、単結晶SiC基板4、Si基板2b、炭素原料供給板1b、および重石5の形状および寸法はこれに限るものではない。例えば、単結晶SiC基板4として市販のものを用い、この単結晶SiC基板4の形状に合わせたものを用いてもよい。また、容器6aの形状および寸法は、炭素原料供給板1a、Si板2a、単結晶SiC基板4、Si基板2b、および炭素原料供給板1b(以下、成長材料と称する)の積層構造の形状および寸法に応じて、この積層構造の容器6aへの出し入れを行うことができ、かつ熱処理時にSiが溶解した状態において各成長材料同士の位置ずれを許容範囲内に抑制できるように適宜設定すればよい。具体的には、容器6aの形状および寸法は、上記積層構造(上記各成長材料)の周縁部(基板面法線方向から見た周縁部)の外形寸法と当該外形寸法の方向に平行な方向の容器6aの内形寸法との差が0.5mm以上2.0mm以下となるように設定すればよい。   However, the shapes and dimensions of the carbon raw material supply plate 1a, the Si plate 2a, the single crystal SiC substrate 4, the Si substrate 2b, the carbon raw material supply plate 1b, and the weight 5 are not limited thereto. For example, a commercially available product may be used as the single crystal SiC substrate 4, and a single crystal SiC substrate 4 that matches the shape of the single crystal SiC substrate 4 may be used. The shape and dimensions of the container 6a are the same as the shape of the laminated structure of the carbon raw material supply plate 1a, the Si plate 2a, the single crystal SiC substrate 4, the Si substrate 2b, and the carbon raw material supply plate 1b (hereinafter referred to as growth material). Depending on the dimensions, it can be set as appropriate so that the stacked structure can be taken into and out of the container 6a and the positional deviation between the growth materials can be suppressed within an allowable range in a state where Si is dissolved during the heat treatment. . Specifically, the shape and dimensions of the container 6a are the direction parallel to the external dimension of the peripheral part (peripheral part viewed from the normal direction of the substrate surface) of the laminated structure (each growth material) and the direction of the external dimension. What is necessary is just to set so that the difference with the internal shape dimension of the container 6a may be 0.5 mm or more and 2.0 mm or less.

また、本実施形態では、スペーサー3a,3bとして、多結晶SiC板を単結晶SiC基板4の基板面に平行な断面が一辺5mmの正方形になるように切断加工し、厚さ(単結晶SiC基板4の基板面法線方向の厚さ)が30μm±10μmになるように機械研磨したものを用いた。なお、スペーサー3a,3bの断面形状および断面寸法はこれに限るものではなく、単結晶SiC基板4とSi板2aとの間隔およびSi基板2bと炭素原料供給板1bとの間隔を適切に規定できる形状および寸法であればよい。また、スペーサー3a,3bの厚さについても上記の厚さに限るものではなく、これら各スペーサーと同じ層に形成されるSi融液層の所望厚さに応じて適宜設定すればよい。ただし、単結晶SiC膜の成長速度を速めるためには、100μm以下であることが好ましい。また、スペーサー3aの材質は多結晶SiCに限るものではなく、熱処理時の変形量が無視できる程度である材質であればよい。例えば、Taなどの高融点金属や、カーボンなどを用いてもよい。   In this embodiment, as the spacers 3a and 3b, a polycrystalline SiC plate is cut so that a cross section parallel to the substrate surface of the single crystal SiC substrate 4 becomes a square having a side of 5 mm, and the thickness (single crystal SiC substrate 4 was used which was mechanically polished so that the thickness of the substrate surface in the normal direction (4) was 30 μm ± 10 μm. The cross-sectional shapes and cross-sectional dimensions of the spacers 3a and 3b are not limited to this, and the interval between the single crystal SiC substrate 4 and the Si plate 2a and the interval between the Si substrate 2b and the carbon raw material supply plate 1b can be appropriately defined. Any shape and size may be used. Further, the thickness of the spacers 3a and 3b is not limited to the above thickness, and may be set as appropriate according to the desired thickness of the Si melt layer formed in the same layer as each of the spacers. However, in order to increase the growth rate of the single crystal SiC film, it is preferably 100 μm or less. Further, the material of the spacer 3a is not limited to polycrystalline SiC, and any material can be used as long as the amount of deformation during heat treatment is negligible. For example, a refractory metal such as Ta or carbon may be used.

次に、単結晶SiC膜の製造工程について説明する。まず、上記のように、炭素原料供給板1a、Si板2a、スペーサー3a、単結晶SiC基板4、Si基板2b、スペーサー3b、炭素原料供給板1b、重石5を下から上に向かって積層したものを、容器(サセプタ)6a内に収容し、さらにこの容器6aを密閉容器7内に収容してこの密閉容器7内を密閉した。   Next, a manufacturing process of the single crystal SiC film will be described. First, as described above, the carbon raw material supply plate 1a, the Si plate 2a, the spacer 3a, the single crystal SiC substrate 4, the Si substrate 2b, the spacer 3b, the carbon raw material supply plate 1b, and the weight 5 were laminated from the bottom to the top. The container was accommodated in a container (susceptor) 6a, and the container 6a was further accommodated in a sealed container 7 to seal the inside of the sealed container 7.

次に、密閉容器7の内部を1×10−2Pa以下の圧力まで減圧した後(真空引きを行った後)、この圧力状態を保持して密閉容器7内の温度を図示しない加熱手段(昇温速度および降温速度をプログラム制御可能な温度調節器)によって所定の成長温度(本実施形態では1800℃)まで20℃/分で昇温させた。そして、所定の成長温度に到達した後、この温度状態を30分間維持した。そして、30分間経過後、密閉容器7内の温度を1420℃まで20℃/分で降温させた。1420℃から室温までは自然冷却した。これにより、単結晶SiC基板4の両面に、20μm〜30μmの単結晶SiC膜(4H−SiCSiCエピタキシャル膜)を形成できた。 Next, after the inside of the sealed container 7 is depressurized to a pressure of 1 × 10 −2 Pa or less (after evacuation), this pressure state is maintained, and the temperature inside the sealed container 7 is not shown by heating means (not shown) The temperature was raised to a predetermined growth temperature (1800 ° C. in the present embodiment) at 20 ° C./min by a temperature controller capable of controlling the temperature raising rate and the temperature lowering rate. And after reaching a predetermined growth temperature, this temperature state was maintained for 30 minutes. After 30 minutes, the temperature in the sealed container 7 was lowered to 1420 ° C. at 20 ° C./min. Natural cooling was performed from 1420 ° C. to room temperature. As a result, a single crystal SiC film (4H—SiCSiC epitaxial film) of 20 μm to 30 μm could be formed on both surfaces of the single crystal SiC substrate 4.

次に、容器6aの内形寸法と各成長材料(各炭素原料供給板、各Si板、および単結晶SiC基板)の積層構造の外径寸法の差と、熱処理時における成長材料同士の位置ずれの抑制効果との関係について調べた実験結果について説明する。   Next, the difference between the inner dimension of the container 6a and the outer diameter of the laminated structure of each growth material (each carbon raw material supply plate, each Si plate, and single crystal SiC substrate), and the positional deviation between the growth materials during the heat treatment The experimental result which investigated the relationship with the inhibitory effect of is demonstrated.

図2は、内形寸法が異なる複数種類の容器6aを用いることにより、容器6aの内形寸法と上記積層構造の外形寸法との差(容器6aの内形寸法とこの内形寸法の計測位置に対応する位置の上記各成長材料の外形寸法との差)を変化させた場合の、成長材料同士の位置ずれの程度、および単結晶SiC膜の成長状況を調べた結果を示す説明図である。なお、容器6aの形状および寸法が異なる以外は、上記した条件と同様である。   FIG. 2 shows the difference between the inner shape dimension of the container 6a and the outer dimension of the laminated structure (the inner shape dimension of the container 6a and the measurement position of the inner shape dimension) by using a plurality of types of containers 6a having different inner shape dimensions. FIG. 6 is an explanatory diagram showing the results of examining the degree of positional deviation between growth materials and the growth state of a single-crystal SiC film when the difference between the outer dimensions of the growth materials at positions corresponding to 1) is changed. . The conditions are the same as those described above except that the shape and dimensions of the container 6a are different.

この図に示すように、容器6aの内形寸法と上記積層構造(上記各成長材料)の外径寸法との差が0.5mm未満の場合、成長部材を容器6aに収納する際、滑らかに挿入することが困難であった。また、上記の差が0.5mm未満の場合、成長時(熱処理時)に単結晶SiC基板4に割れが発生してしまった。   As shown in this figure, when the difference between the inner shape dimension of the container 6a and the outer diameter dimension of the laminated structure (each growth material) is less than 0.5 mm, when the growth member is stored in the container 6a, It was difficult to insert. Further, when the above difference is less than 0.5 mm, the single crystal SiC substrate 4 is cracked during growth (during heat treatment).

また、上記の差が0.5mmの場合、成長部材を容器6aに収納する際、やや挿入しにくかったものの問題なく収容できた。また、熱処理時に単結晶SiC基板4に稀に割れが発生してしまったものの、割れ発生の頻度は実用上問題ない程度であった。また、上記の差が0.5mmの場合、熱処理時における上記成長材料同士の位置ずれを0.5mm以下に抑制することができ、単結晶SiC基板4の基板面の略全面に単結晶SiC膜を成長させることができた。   Further, when the above difference was 0.5 mm, it was possible to accommodate the growth member without any problem although it was a little difficult to insert when accommodating the growth member in the container 6a. Moreover, although the single crystal SiC substrate 4 rarely cracked during the heat treatment, the frequency of the crack generation was of a practically acceptable level. When the above difference is 0.5 mm, the positional deviation between the growth materials during the heat treatment can be suppressed to 0.5 mm or less, and the single crystal SiC film is formed on substantially the entire substrate surface of the single crystal SiC substrate 4. Was able to grow.

また、上記の差が1.0mm以上の場合、成長部材を容器6aに収納する際、容易に挿入できた。特に、上記の差が2.0mm以上の場合には極めて容易に挿入できた。また、上記の差が1.0mm以上の場合には熱処理時に単結晶SiC基板4の割れは発生しなかった。   Moreover, when said difference was 1.0 mm or more, when accommodating the growth member in the container 6a, it was able to insert easily. In particular, when the above difference was 2.0 mm or more, it could be inserted very easily. Further, when the difference was 1.0 mm or more, the single crystal SiC substrate 4 was not cracked during the heat treatment.

また、上記の差が1.0mm、1.5mm、2.0mmの場合、熱処理時における成長材料同士の位置ずれをそれぞれ0.7±0.1mm、1.0±0.2mm、1.5±0.3mmに抑制することができ、単結晶SiC基板4の基板面の略全面に単結晶SiC膜を成長させることができた。   When the above differences are 1.0 mm, 1.5 mm, and 2.0 mm, the positional deviations between the growth materials during the heat treatment are 0.7 ± 0.1 mm, 1.0 ± 0.2 mm, and 1.5 mm, respectively. The single crystal SiC film could be grown on substantially the entire substrate surface of the single crystal SiC substrate 4.

また、上記の差が2.5mmの場合、成長部材同士の位置ずれが2.0mm以上となり、単結晶SiC基板4上に未成長領域が若干生じてしまった。   Further, when the above difference was 2.5 mm, the positional deviation between the growth members became 2.0 mm or more, and some ungrown regions were generated on the single crystal SiC substrate 4.

また、上記の差が3.0mm以上の場合、成長部材同士の位置ずれが2.5mm以上となり、単結晶SiC基板4上に未成長領域が多数生じてしまった。   Further, when the above difference is 3.0 mm or more, the positional deviation between the growth members becomes 2.5 mm or more, and many ungrown regions are generated on the single crystal SiC substrate 4.

これらの実験結果から、容器6a内への上記積層構造の収納を容易に行うとともに、単結晶SiC基板4に割れを生じさせないためには、上記の差を0.5mm以上にすることが好ましく、1.0mm以上にすることがより好ましいことがわかる。また、成長部材同士の位置ずれを抑制して単結晶SiC基板4の基板面の略全面に単結晶SiC膜を成長させるためには、上記の差を2.0mm以下にすることが好ましいことがわかる。   From these experimental results, it is preferable to make the above difference 0.5 mm or more in order to easily store the laminated structure in the container 6a and not cause the single crystal SiC substrate 4 to crack. It turns out that it is more preferable to set it as 1.0 mm or more. In order to grow a single crystal SiC film over substantially the entire substrate surface of the single crystal SiC substrate 4 while suppressing misalignment between the growth members, it is preferable to set the above difference to 2.0 mm or less. Recognize.

以上のように、本実施形態では、単結晶SiC基板4と炭素原料供給板1a,1bとを含む積層構造をこの積層構造に応じた形状を有する容器6aに収納し、さらにこの容器6aを密閉容器7に収納して熱処理を行うことにより、上記単結晶SiC基板4の表面にSi融液層を当接させた状態(単結晶SiC基板4と炭素原料供給板1aとの間、および単結晶SiC基板4と炭素原料供給板1bとの間にSi融液層を介在させた状態)で熱処理を行い、上記単結晶SiC基板4上に単結晶SiC膜をエピタキシャル成長させる単結晶SiC膜の製造方法であって、容器6aにおける上記積層構造を収容したときに単結晶SiC基板4および炭素原料供給板1a,1bの面内方向に平行となる方向の内形寸法と、単結晶SiC基板4および炭素原料供給板1a,1bにおける容器6aに収容したときに上記内形寸法の方向に平行となる方向の外形寸法との差を0.5mm以上2.0mm以下にする。   As described above, in the present embodiment, the laminated structure including the single crystal SiC substrate 4 and the carbon raw material supply plates 1a and 1b is accommodated in the container 6a having a shape corresponding to the laminated structure, and the container 6a is further sealed. A state in which the Si melt layer is brought into contact with the surface of the single crystal SiC substrate 4 (between the single crystal SiC substrate 4 and the carbon raw material supply plate 1a and the single crystal by performing heat treatment in the container 7) A method of manufacturing a single crystal SiC film, in which a single crystal SiC film is epitaxially grown on the single crystal SiC substrate 4 by performing heat treatment in a state in which an Si melt layer is interposed between the SiC substrate 4 and the carbon raw material supply plate 1b). The inner dimensions in the direction parallel to the in-plane direction of the single crystal SiC substrate 4 and the carbon raw material supply plates 1a and 1b when the laminated structure in the container 6a is accommodated, and the single crystal SiC substrate 4 and the carbon Charge supply plate 1a, a difference between the direction of the outside dimension parallel to the direction of the inner shape dimension when contained in a container 6a to 0.5mm or 2.0mm or less in 1b.

これにより、容器6a内への上記積層構造の収納を容易に行うとともに、単結晶SiC基板に割れが生じることを抑制しつつ、積層構造を構成する成長部材同士の位置ずれを抑制して単結晶SiC基板の基板面の略全面に単結晶SiC膜を成長させることができる。   Thereby, while accommodating the said laminated structure in the container 6a easily, suppressing the position shift of the growth members which comprise a laminated structure, suppressing that a single crystal SiC substrate cracks, a single crystal A single crystal SiC film can be grown on substantially the entire substrate surface of the SiC substrate.

つまり、上記特許文献1〜3の技術では、容器と各成長材料との間隔が広かったので、熱処理時にSi板が融解すると、Si板の体積や様態が大きく変化するため、各成長部材を積み重ねた状態が不安定になり、成長部材同士の位置ずれが大きくなる結果、単結晶SiC基板上に単結晶SiC膜の未成長領域が多数生じてしまっていた。   In other words, in the techniques of Patent Documents 1 to 3, since the distance between the container and each growth material is wide, when the Si plate melts during the heat treatment, the volume and mode of the Si plate change greatly. As a result of the unstable state and the large positional deviation between the growth members, a large number of ungrown regions of the single crystal SiC film were generated on the single crystal SiC substrate.

これに対して、本実施形態では、上記の差を2.0mm以下にすることにより、Si板が融解して各成長部材を積み重ねた状態が不安定になっても、容器6aによって各成長部材の面内方向(基板面平行方向)への移動を規制して成長部材同士の位置ずれを抑制できる。これにより、単結晶SiC基板の略全面に、未成長領域を生じさせることなく単結晶SiC膜を成長させることができる。   On the other hand, in this embodiment, even if the above-mentioned difference is set to 2.0 mm or less, even if the Si plate is melted and the state in which the respective growth members are stacked becomes unstable, each growth member is caused by the container 6a. The movement in the in-plane direction (parallel direction of the substrate surface) can be regulated to suppress the positional deviation between the growth members. Thereby, a single crystal SiC film can be grown on almost the entire surface of the single crystal SiC substrate without generating an ungrown region.

また、上記の差を0.5mm以上にすることにより、単結晶SiC基板に割れが生じることを抑制できる。なお、単結晶SiC基板に割れが生じることを確実に防止するためには、上記の差を1.0mm以上にすることが好ましい。   Moreover, it can suppress that a single crystal SiC substrate cracks by making said difference into 0.5 mm or more. In order to surely prevent the single crystal SiC substrate from being cracked, the above difference is preferably set to 1.0 mm or more.

また、本実施形態では、容器6aの内形寸法と積層構造を構成する各成長材料(各炭素原料供給板、単結晶SiC基板4、各Si基板)の外径寸法との差を0.5mm以上2.0mm以下にしているが、これに限らず、少なくとも、容器6aの内形寸法と、熱処理を行う前の単結晶SiC基板4および炭素原料供給板1a,1bにおける外形寸法との差を0.5mm以上2.0mm以下にすれば、単結晶SiC基板4と炭素原料供給板1a,1bとの位置ずれを抑制し、単結晶SiC基板の略全面に単結晶SiC膜を成長させることができる。また、単結晶SiC基板4における上記の差を1.0mm以上にすることにより、単結晶SiC基板に割れが生じることを確実に防止できる。   In this embodiment, the difference between the inner dimension of the container 6a and the outer diameter of each growth material (each carbon raw material supply plate, single crystal SiC substrate 4, each Si substrate) constituting the laminated structure is 0.5 mm. Although not less than 2.0 mm, the difference between at least the inner dimensions of the container 6a and the outer dimensions of the single crystal SiC substrate 4 and the carbon raw material supply plates 1a and 1b before heat treatment is not limited thereto. If the thickness is 0.5 mm or more and 2.0 mm or less, the positional deviation between the single crystal SiC substrate 4 and the carbon raw material supply plates 1a and 1b can be suppressed, and the single crystal SiC film can be grown on substantially the entire surface of the single crystal SiC substrate. it can. Moreover, it can prevent reliably that a crack arises in a single crystal SiC board | substrate by making said difference in the single crystal SiC board | substrate 4 into 1.0 mm or more.

また、容器6aの内形寸法と各成長材料と外形寸法との差を0.5mm以上2.0mm以下にすることにより、融解したSiを容器内に留まらせるとともに、成長雰囲気に晒されるSi融液の表面積を小さくできるので、Siの蒸発量を抑制できる。これにより、均一な結晶を有する単結晶SiC膜を安定して成長させることができる。   In addition, by making the difference between the inner dimensions of the container 6a and each growth material and the outer dimensions 0.5 mm or more and 2.0 mm or less, the molten Si stays in the container and the Si melt exposed to the growth atmosphere. Since the surface area of the liquid can be reduced, the evaporation amount of Si can be suppressed. Thereby, a single crystal SiC film having a uniform crystal can be stably grown.

また、本実施形態では、単結晶SiC基板4の両面に単結晶SiC膜を成長させる構成について説明したが、これに限らず、単結晶SiC基板4の片面のみに単結晶SiC膜を成長させる構成としてもよい。また、上記積層構造の構成は図1に示した構成に限るものではない。例えば、単結晶SiC基板4の下面側のみに単結晶SiC膜を成長させる場合には、単結晶SiC基板4よりも上段側に備えられる炭素原料供給板1bおよびSi板2bの両方または片方を省略してもよい。また、単結晶SiC基板4の上面側のみに単結晶SiC膜を成長させる場合には、単結晶SiC基板4よりも下段側に備えられる炭素原料供給板1aおよびSi板2aの両方または片方を省略してもよい。また、単結晶SiC基板4における一方の面のみに単結晶SiC膜を成長させる場合、成長させる面は上面側であっても下面側であってもよい。   In the present embodiment, the configuration in which the single crystal SiC film is grown on both surfaces of the single crystal SiC substrate 4 has been described. However, the configuration is not limited to this, and the configuration in which the single crystal SiC film is grown only on one surface of the single crystal SiC substrate 4 is described. It is good. Further, the configuration of the laminated structure is not limited to the configuration shown in FIG. For example, when a single crystal SiC film is grown only on the lower surface side of the single crystal SiC substrate 4, both or one of the carbon raw material supply plate 1 b and the Si plate 2 b provided on the upper side of the single crystal SiC substrate 4 is omitted. May be. When the single crystal SiC film is grown only on the upper surface side of the single crystal SiC substrate 4, both or one of the carbon raw material supply plate 1a and the Si plate 2a provided on the lower side of the single crystal SiC substrate 4 is omitted. May be. When a single crystal SiC film is grown only on one surface of single crystal SiC substrate 4, the surface to be grown may be the upper surface side or the lower surface side.

また、各成長材料(炭素原料供給板1a、Si板2a、単結晶SiC基板4、Si基板2b、炭素原料供給板1b)およびスペーサー3a,3bを積み重ねる順序は上記した例に限るものではなく、熱処理時に単結晶SiC基板4における単結晶SiC膜を成長させる面とそれに対向する部材との間にSi融液が介在する構成であればよい。   Further, the order of stacking the growth materials (the carbon raw material supply plate 1a, the Si plate 2a, the single crystal SiC substrate 4, the Si substrate 2b, the carbon raw material supply plate 1b) and the spacers 3a and 3b is not limited to the above example. Any structure may be used as long as the Si melt is interposed between the surface of the single crystal SiC substrate 4 on which the single crystal SiC film is grown during the heat treatment and the member facing it.

また、本実施形態ではSi板2aと単結晶SiC基板4との間にスペーサー3aを配置し、Si板2bと炭素原料供給板1bとの間にスペーサー3bを配置しているが、スペーサー3a,3bの配置はこれに限るものではない。例えば、スペーサー3aを炭素原料供給板1aとSi板2aとの間に配置してもよい。また、スペーサー3bを単結晶SiC基板4とSi板2bとの間に配置してもよい。また、スペーサー3a,3bの一方または両方を省略してもよい。   In this embodiment, the spacer 3a is disposed between the Si plate 2a and the single crystal SiC substrate 4, and the spacer 3b is disposed between the Si plate 2b and the carbon raw material supply plate 1b. The arrangement of 3b is not limited to this. For example, the spacer 3a may be disposed between the carbon raw material supply plate 1a and the Si plate 2a. The spacer 3b may be disposed between the single crystal SiC substrate 4 and the Si plate 2b. One or both of the spacers 3a and 3b may be omitted.

また、本実施形態では、単結晶SiC基板4と炭素原料供給板1aとの間、および単結晶SiC基板4と炭素原料供給板1bとの間にSi板2a,2bを配置しているが、これに限らず、熱処理時に単結晶SiC基板4における単結晶Si膜の生成面にSiを供給できる構成であればよい。   In the present embodiment, the Si plates 2a and 2b are disposed between the single crystal SiC substrate 4 and the carbon raw material supply plate 1a and between the single crystal SiC substrate 4 and the carbon raw material supply plate 1b. However, the present invention is not limited to this, and any structure may be used as long as Si can be supplied to the generation surface of the single crystal Si film in the single crystal SiC substrate 4 during heat treatment.

また、Si板2a,2bは、例えば炭素原料供給板1a,1b上に形成されたSi膜であってもよい。なお、本明細書における板という表現には膜状の部材も含まれる。   Si plates 2a and 2b may be Si films formed on carbon raw material supply plates 1a and 1b, for example. Note that the term “plate” in this specification includes a film-like member.

また、本実施形態では、成長温度に保持する時間を30分間としたが、これに限るものではなく、必要とする単結晶SiC膜の膜厚に応じて適宜設定すればよい。なお、実験により、保持時間が10分以上60分以下の範囲内において均一な結晶を有する単結晶SiC膜を安定して形成できることを確認した。   In this embodiment, the time for maintaining the growth temperature is 30 minutes. However, the time is not limited to this, and may be set as appropriate according to the required film thickness of the single crystal SiC film. In addition, it was confirmed by experiments that a single crystal SiC film having a uniform crystal can be stably formed within a holding time range of 10 minutes to 60 minutes.

また、上記所定の成長温度は、Siの融点である1420℃以上であれば特に限定されるものではないが、SiCエピタキシャル膜を効率的かつ安定して成長させるためには1500℃以上2300℃以下の範囲内であることが好ましい。   The predetermined growth temperature is not particularly limited as long as it is 1420 ° C. or higher, which is the melting point of Si, but 1500 ° C. or higher and 2300 ° C. or lower in order to grow the SiC epitaxial film efficiently and stably. It is preferable to be within the range.

また、本実施形態では、熱処理前に密閉容器7の内部を1×10−2Pa以下の圧力まで減圧した。これにより、密閉容器7内の大気成分を容器外に排出して清浄な雰囲気にすることができる。なお、本実施形態では、真空(1×10−2Pa以下)雰囲気中で熱処理を行ったが、これに限らず、例えば、密閉容器7の内部を1×10−2Pa以下の圧力まで減圧した後、Siの蒸発を抑制するためにArなどの不活性ガスを容器内に導入してから大気圧以下の不活性ガス雰囲気中で熱処理を行ってもよい。 Moreover, in this embodiment, the inside of the airtight container 7 was pressure-reduced to the pressure of 1 * 10 <-2 > Pa or less before heat processing. Thereby, the atmospheric component in the airtight container 7 can be discharged | emitted out of a container, and it can be made a clean atmosphere. In the present embodiment, the heat treatment is performed in a vacuum (1 × 10 −2 Pa or less) atmosphere. However, the present invention is not limited to this, and for example, the inside of the sealed container 7 is reduced to a pressure of 1 × 10 −2 Pa or less. After that, in order to suppress the evaporation of Si, an inert gas such as Ar may be introduced into the container and then heat treatment may be performed in an inert gas atmosphere at atmospheric pressure or lower.

本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.

本発明は、単結晶SiC基板と炭素原料供給板とを含む積層構造を密閉容器内に収納し、上記単結晶SiC基板の表面にSi融液層を当接させた状態で熱処理を行うことにより、上記単結晶SiC基板上に単結晶SiC膜をエピタキシャル成長させる単結晶SiC膜の製造方法に適用できる。本発明の製造方法によって生成された単結晶SiC膜は、結晶欠陥等が少なく、均一性が高いので、例えば、発光ダイオード、各種半導体ダイオード、各種電子デバイス等に好適に用いることができる。   According to the present invention, a laminated structure including a single crystal SiC substrate and a carbon raw material supply plate is housed in a sealed container, and heat treatment is performed in a state where the Si melt layer is in contact with the surface of the single crystal SiC substrate. The present invention can be applied to a method for manufacturing a single crystal SiC film in which a single crystal SiC film is epitaxially grown on the single crystal SiC substrate. Since the single crystal SiC film produced by the production method of the present invention has few crystal defects and high uniformity, it can be suitably used for light emitting diodes, various semiconductor diodes, various electronic devices, and the like.

本発明の一実施形態にかかる単結晶SiC膜の製造工程を説明するための説明図である。It is explanatory drawing for demonstrating the manufacturing process of the single crystal SiC film concerning one Embodiment of this invention. 本発明の一実施形態にかかる単結晶SiC膜の製造工程において、容器の内形寸法と成長材料の外形寸法との差を変化させた場合の、成長材料同士の位置ずれの程度、および単結晶SiC膜の成長状況を調べた実験結果を示す説明図である。In the manufacturing process of the single crystal SiC film according to one embodiment of the present invention, the degree of positional deviation between the growth materials when the difference between the inner shape dimension of the container and the outer dimension of the growth material is changed, and the single crystal It is explanatory drawing which shows the experimental result which investigated the growth condition of the SiC film.

符号の説明Explanation of symbols

1a,1b 炭素原料供給板
2a,2b Si板
3a,3b スペーサー
4 単結晶SiC基板
5 重石
6a 容器
7 密閉容器
7a 容器本体
7b 蓋
1a, 1b Carbon raw material supply plate 2a, 2b Si plate 3a, 3b Spacer 4 Single crystal SiC substrate 5 Weight stone 6a Container 7 Sealed container 7a Container body 7b Lid

Claims (6)

少なくとも単結晶SiC基板と炭素原料供給板とを含む積層構造を第1容器内に収納し、この第1容器を、内部を密閉することが可能な第2容器内に収納し、上記単結晶SiC基板の表面にSi融液層を当接させた状態で熱処理を行うことにより、上記単結晶SiC基板上に単結晶SiC膜をエピタキシャル成長させる単結晶SiC膜の製造方法であって、
上記第1容器における上記積層構造を収容したときに上記単結晶SiC基板および上記炭素原料供給板の面内方向に平行となる方向の内形寸法と、上記単結晶SiC基板および上記炭素原料供給板における上記第1容器に収容したときに上記内形寸法の方向に平行となる方向の外形寸法との差を0.5mm以上2.0mm以下にすることを特徴とする単結晶SiC膜の製造方法。
A laminated structure including at least a single crystal SiC substrate and a carbon raw material supply plate is accommodated in a first container, the first container is accommodated in a second container capable of sealing the inside, and the single crystal SiC A method for producing a single crystal SiC film, wherein a single crystal SiC film is epitaxially grown on the single crystal SiC substrate by performing a heat treatment in a state where the Si melt layer is in contact with the surface of the substrate,
An inner dimension in a direction parallel to the in-plane direction of the single crystal SiC substrate and the carbon raw material supply plate when the laminated structure in the first container is accommodated, and the single crystal SiC substrate and the carbon raw material supply plate A method for producing a single crystal SiC film, characterized in that a difference from an outer dimension in a direction parallel to the direction of the inner dimension when accommodated in the first container is 0.5 mm or more and 2.0 mm or less. .
上記の差を1.0mm以上2.0mm以下にすることを特徴とする請求項1に記載の単結晶SiC膜の製造方法。   The method for producing a single crystal SiC film according to claim 1, wherein the difference is 1.0 mm or more and 2.0 mm or less. 上記積層構造は、単結晶SiC基板における一方の面側に配置された第1の炭素原料供給板と単結晶SiC基板における他方の面側に配置された第2の炭素原料供給板とを有することを特徴とする請求項1または2に記載の単結晶SiC膜の製造方法。 The stacked structure includes a first carbon material supply plate disposed on one surface side of the single crystal SiC substrate and a second carbon material supply plate disposed on the other surface side of the single crystal SiC substrate. The method for producing a single crystal SiC film according to claim 1 or 2. 上記積層構造は、上記単結晶SiC基板と上記炭素原料供給板との間にSi板が挿入された構造であることを特徴とする請求項1〜3のいずれか1項に記載の単結晶SiC膜の製造方法。 The laminated structure is a single crystal according to any one of claims 1 to 3, wherein the Si plate is inserted structure between the single crystal SiC substrate and the carbon source supply plate A method for producing a SiC film. 上記第1容器における上記積層構造を収容したときに上記単結晶SiC基板および上記炭素原料供給板の面内方向に平行となる方向の内形寸法と、上記Si板における上記第1容器に収容したときに上記内形寸法の方向に平行となる方向の外形寸法との差を、上記第1容器の内形寸法と上記単結晶SiC基板および上記炭素原料供給板の外径寸法との差についての上記数値範囲と同じ範囲内にすることを特徴とする請求項4に記載の単結晶SiC膜の製造方法。   When the laminated structure in the first container is accommodated, the inner dimensions of the single crystal SiC substrate and the carbon raw material supply plate in a direction parallel to the in-plane direction, and the first container in the Si plate are accommodated in the first container. Sometimes the difference between the outer dimension in the direction parallel to the direction of the inner dimension is the difference between the inner dimension of the first container and the outer diameter of the single crystal SiC substrate and the carbon raw material supply plate. 5. The method for producing a single crystal SiC film according to claim 4, wherein the value is in the same range as the numerical value range. 上記第1容器として、カーボンからなる容器を用いることを特徴とする請求項1〜5のいずれか1項に記載の単結晶SiC膜の製造方法。   6. The method for producing a single crystal SiC film according to claim 1, wherein a container made of carbon is used as the first container.
JP2007332863A 2007-12-25 2007-12-25 Method for producing single crystal SiC film Active JP4521588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007332863A JP4521588B2 (en) 2007-12-25 2007-12-25 Method for producing single crystal SiC film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007332863A JP4521588B2 (en) 2007-12-25 2007-12-25 Method for producing single crystal SiC film

Publications (2)

Publication Number Publication Date
JP2009155140A JP2009155140A (en) 2009-07-16
JP4521588B2 true JP4521588B2 (en) 2010-08-11

Family

ID=40959553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007332863A Active JP4521588B2 (en) 2007-12-25 2007-12-25 Method for producing single crystal SiC film

Country Status (1)

Country Link
JP (1) JP4521588B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105230A1 (en) * 2012-01-11 2013-07-18 株式会社エコトロン Method for producing silicon carbide semiconductor thin film
JPWO2014020694A1 (en) * 2012-07-31 2016-07-11 日新電機株式会社 Single crystal silicon carbide substrate and manufacturing method thereof
CN114351248A (en) * 2016-04-28 2022-04-15 学校法人关西学院 Vapor phase epitaxial growth method and preparation method of substrate with epitaxial layer
CN113227466A (en) * 2018-11-05 2021-08-06 学校法人关西学院 SiC semiconductor substrate, and method and apparatus for manufacturing same
WO2021060365A1 (en) * 2019-09-27 2021-04-01 学校法人関西学院 Method for producing semiconductor substrates and device for producing semiconductor substrates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072597A (en) * 1998-08-19 2000-03-07 Nippon Pillar Packing Co Ltd Single silicon carbide crystal and its production
WO2002099169A1 (en) * 2001-06-04 2002-12-12 The New Industry Research Organization Single crystal silicon carbide and method for producing the same
JP2005126248A (en) * 2003-10-21 2005-05-19 New Industry Research Organization Method for growing single crystal silicon carbide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072597A (en) * 1998-08-19 2000-03-07 Nippon Pillar Packing Co Ltd Single silicon carbide crystal and its production
WO2002099169A1 (en) * 2001-06-04 2002-12-12 The New Industry Research Organization Single crystal silicon carbide and method for producing the same
JP2005126248A (en) * 2003-10-21 2005-05-19 New Industry Research Organization Method for growing single crystal silicon carbide

Also Published As

Publication number Publication date
JP2009155140A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
TWI712701B (en) Manufacturing method of nitride semiconductor substrate, nitride semiconductor substrate and heating device thereof
JP5130468B2 (en) Method for manufacturing SiC epitaxial substrate
JP5464544B2 (en) Single crystal SiC substrate with epitaxial growth layer, carbon supply feed substrate, and SiC substrate with carbon nanomaterial
JP5360639B2 (en) Surface modified single crystal SiC substrate, single crystal SiC substrate with epitaxial growth layer, semiconductor chip, seed substrate for single crystal SiC growth, and method for producing polycrystalline SiC substrate with single crystal growth layer
JP4521588B2 (en) Method for producing single crystal SiC film
JP5418385B2 (en) Method for producing silicon carbide single crystal ingot
JP4431647B2 (en) Method for improving surface of single crystal silicon carbide substrate and method for growing single crystal silicon carbide
JP2005179155A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP4840841B2 (en) Method for producing single crystal silicon carbide substrate, and single crystal silicon carbide substrate produced by this method
JP4431643B2 (en) Single crystal silicon carbide growth method
JP2011119412A (en) Method of manufacturing semiconductor wafer
JP5732288B2 (en) Manufacturing method of free-standing substrate
WO2013031154A1 (en) Semiconductor wafer manufacturing method, and semiconductor wafer
JP4482642B2 (en) Single crystal silicon carbide growth method
JP5688780B2 (en) SiC substrate, carbon supply feed substrate, and SiC substrate with carbon nanomaterial
JP5164121B2 (en) Single crystal silicon carbide growth method
WO2019017043A1 (en) Single-crystal aln production method and single-crystal aln
KR102060188B1 (en) Manufacturing apparatus for silicon carbide single crystal and manufacturing method of silicon carbide single crystal
JP5545268B2 (en) SiC multichip substrate
KR20190134325A (en) Silicon based melting composition and manufacturing method for silicon carbide single crystal using the same
JP2017071519A (en) Liquid-phase epitaxial growth method and crucible used therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100507

R150 Certificate of patent or registration of utility model

Ref document number: 4521588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250