JP4521326B2 - Molding method of thermoplastic material - Google Patents

Molding method of thermoplastic material Download PDF

Info

Publication number
JP4521326B2
JP4521326B2 JP2005207431A JP2005207431A JP4521326B2 JP 4521326 B2 JP4521326 B2 JP 4521326B2 JP 2005207431 A JP2005207431 A JP 2005207431A JP 2005207431 A JP2005207431 A JP 2005207431A JP 4521326 B2 JP4521326 B2 JP 4521326B2
Authority
JP
Japan
Prior art keywords
molding
thermoplastic material
heat transfer
heating
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005207431A
Other languages
Japanese (ja)
Other versions
JP2007022850A (en
Inventor
元右 三坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005207431A priority Critical patent/JP4521326B2/en
Publication of JP2007022850A publication Critical patent/JP2007022850A/en
Application granted granted Critical
Publication of JP4521326B2 publication Critical patent/JP4521326B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ガラスやプラスチック等の熱可塑性素材を加熱軟化し、型成形により成形品を得る熱可塑性素材の成形方法に関する。 The present invention relates to a method for molding a thermoplastic material that softens a thermoplastic material such as glass or plastic and obtains a molded product by molding.

この種、熱可塑性素材の成形技術として、例えば特許文献1には、光学機器に使用されるガラスレンズを成形手段により成形する技術が開示されている。この特許文献1によると、成形サイクルの各段階を、加熱ステージ及び設定温度の異なる複数の加圧ステージで構成し、押型及びスリーブ型からなる型セットを、前記各ステージ間を逐次移動させることで、加熱、成形、冷却の一連の成形工程が完結する構成とし、各ステージにおける加熱/冷却の反復を不要にして、成形工程の能率向上及び成形精度の向上を実現しようとしている。   As a molding technique for this kind of thermoplastic material, for example, Patent Document 1 discloses a technique for molding a glass lens used in an optical apparatus by a molding means. According to this Patent Document 1, each stage of the molding cycle is composed of a heating stage and a plurality of pressure stages having different set temperatures, and a mold set consisting of a pressing mold and a sleeve mold is moved sequentially between the stages. In this configuration, a series of molding processes of heating, molding, and cooling is completed, and it is attempted to improve the efficiency of the molding process and the molding accuracy by eliminating the need for repeated heating / cooling in each stage.

また、この特許文献1では、成形素材を変形成形に先立って加熱して適当な柔らかさに加熱軟化させており、その加熱工程の加熱条件は、加熱ステージ(加熱板)の温度と加熱工程の時間(加熱時間)によってのみ決定していた。すなわち、ガラス素材と成形型の一体として構成した型セットを、ガラスの成形に必要な温度に保持した加熱ステージ上に載置する。すると、一定時間後に型セットの温度はガラスの成形に必要な温度になるため、その型セットを一定時間後に、すばやく加圧ステージに移し変えて成形するというものである。
特公平5−47488公報
Moreover, in this patent document 1, the molding material is heated and softened to an appropriate softness prior to deformation molding, and the heating conditions of the heating process are the temperature of the heating stage (heating plate) and the heating process. It was determined only by time (heating time). That is, a mold set constituted by integrating a glass material and a mold is placed on a heating stage maintained at a temperature necessary for glass molding. Then, since the temperature of the mold set becomes a temperature necessary for molding the glass after a certain time, the mold set is quickly transferred to the pressure stage and molded after the certain time.
Japanese Patent Publication No. 5-47488

しかしながら、特許文献1では、成形毎の成形素材の素材体積のバラツキ、素材含有成分量のバラツキ、装置加熱手段であるヒータの経時変化、温度センサの経時変化、などの装置コンディションの変化、及び型表面の変質など、条件変動要素に起因して同じ設定温度で同じ時間だけ加熱工程を実施したとしても、常に同じ熱量が素材に与えられるとは限らない。このため、成形素材は、成形に必要な柔らかさまで軟化されないか、又は軟化され過ぎていることがあり得る。この場合は、次工程である成形工程における適正な変形ができなくなり、成形品の厚さが予想したよりも厚くなったり又は薄くなったり、或いは十分な転写精度が得られないなど、高品質な成形品を得ることが困難となるおそれがある。   However, in Patent Document 1, variation in the material condition of the molding material for each molding, variation in the amount of material-containing components, change in the device condition such as change in the heater as the device heating means, change in the temperature sensor over time, etc. Even if the heating process is carried out for the same time at the same set temperature due to condition variation factors such as surface alteration, the same amount of heat is not always given to the material. For this reason, the molding material may not be softened to the softness required for molding, or may be too soft. In this case, proper deformation in the molding process, which is the next process, cannot be performed, and the thickness of the molded product becomes thicker or thinner than expected, or sufficient transfer accuracy cannot be obtained. It may be difficult to obtain a molded product.

本発明は斯かる課題を解決するためになされたもので、その目的とするところは、熱可塑性素材の加熱・軟化の状態を検知しつつ加熱を行うことで、高精度な成形品を得ることのできる熱可塑性素材の成形方法を提供することにある。 The present invention has been made to solve such a problem, and the object is to obtain a highly accurate molded product by performing heating while detecting the heating / softening state of the thermoplastic material. It is an object of the present invention to provide a method for forming a thermoplastic material that can be used.

前記目的を達成するため、本発明は、
熱可塑性素材を挟んで対向する一対の成形型及び前記成形型が挿嵌されるスリーブを含む型セットを、加熱手段を有する加熱工程にて加熱・昇温し、前記熱可塑性素材を軟化させ、次いで成形工程にて押圧成形する熱可塑性素材の成形方法であって、
前記加熱工程において、前記一対の成形型で前記熱可塑性素材を、該熱可塑性素材が熱膨張して拡大する際の付勢圧よりも小さい挟持圧で挟持した状態で、前記一対の成形型の型間距離を検知しながら、前記型セットを加熱・昇温していき、前記一対の成形型の型間距離が拡大方向から縮小方向に転じた時点を検知した際、又はその後該熱可塑性素材の全体の硬さが均質となるように馴染ませ加熱時間を経過させた際に、該型セットを前記加熱手段による挟持から開放する、ことを特徴とする。
In order to achieve the above object, the present invention provides:
A mold set including a pair of molding dies opposed to each other with a thermoplastic material interposed therebetween and a sleeve into which the molding dies are inserted is heated and heated in a heating process having a heating means, to soften the thermoplastic material, Next, a method of molding a thermoplastic material that is press-molded in a molding process,
In the heating step, the thermoplastic material is sandwiched between the pair of molds with a sandwiching pressure smaller than an urging pressure when the thermoplastic material is expanded by thermal expansion . While detecting the distance between the molds, the mold set is heated and heated to detect the time when the distance between the molds of the pair of molding dies changes from the expansion direction to the reduction direction , or thereafter the thermoplastic material. The mold set is released from nipping by the heating means when the total hardness of the mold is adjusted to be uniform and the heating time is allowed to elapse .

本発明によれば、熱可塑性素材の加熱・軟化の状態を検知しつつ加熱を行うことで、装置コンディションの変化等に影響されることなく、常に適度な熱量を熱可塑性素材に与えることができ、熱可塑性素材の成形に必要な柔らかさを付与して高精度な成形製品を得ることができる。   According to the present invention, by performing heating while detecting the heating / softening state of the thermoplastic material, it is possible to always give an appropriate amount of heat to the thermoplastic material without being affected by changes in apparatus conditions. Further, it is possible to obtain a highly accurate molded product by imparting the softness necessary for molding a thermoplastic material.

以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。
図1は、本発明の実施の形態の成形装置に供される型セットの構成例を示す断面図であり、図2は、成形装置の構成例を示す概念図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view showing a configuration example of a mold set used in the molding apparatus according to the embodiment of the present invention, and FIG. 2 is a conceptual diagram showing a configuration example of the molding apparatus.

図1において、本実施の形態の型セット1は、上型2、下型3、スリーブ型4を含んでいる。上型2及び下型3は、スリーブ型4の内側で、それぞれの成形面2a及び成形面3aが対向するように当該スリーブ型4の両端側から挿嵌されている。そして、本実施の形態では、上型2はスリーブ型4の軸方向に摺動可能になっている。上型2の成形面2aと下型3の成形面3aとの間には、ガラスやプラスチック等の熱可塑性素材5が配置されている。なお、上型2及び下型3は、例えばタングステンカーバイド(WC)等の超硬合金を研磨して製作されている。   In FIG. 1, a mold set 1 according to the present embodiment includes an upper mold 2, a lower mold 3, and a sleeve mold 4. The upper mold 2 and the lower mold 3 are inserted from both ends of the sleeve mold 4 so that the molding surface 2a and the molding surface 3a face each other inside the sleeve mold 4. In the present embodiment, the upper mold 2 is slidable in the axial direction of the sleeve mold 4. Between the molding surface 2a of the upper mold 2 and the molding surface 3a of the lower mold 3, a thermoplastic material 5 such as glass or plastic is disposed. The upper mold 2 and the lower mold 3 are manufactured by polishing a cemented carbide such as tungsten carbide (WC).

一方、図2に示すように、成形装置6は、加熱工程部18、成形工程部19、及び冷却工程部20を備えている。
加熱工程部18は、上下に対向する加熱手段としての一対の上伝熱板8及び下伝熱板9と、上伝熱板8を上下(対向)方向に駆動する駆動手段としてのエアシリンダ15を含んでいる。エアシリンダ15による上伝熱板8の昇降動作により、加熱工程部18における型セット1の挟持、挟圧、解放等の動作が行われる。上伝熱板8及び下伝熱板9には、該上伝熱板8及び下伝熱板9の温度制御を行う不図示の温度調節器が接続されている。また、エアシリンダ15のロッド15aには検知片27が固定されていて、この検知片27の変位量(すなわち、上下型2、3の型間距離の変位量)は、センサ(検知手段)28によって検出されるようになっている。なお、このセンサ28による変位量の検知については後述する。
On the other hand, as shown in FIG. 2, the molding apparatus 6 includes a heating process unit 18, a molding process unit 19, and a cooling process unit 20.
The heating process section 18 includes a pair of upper heat transfer plate 8 and lower heat transfer plate 9 as heating means opposed vertically, and an air cylinder 15 as drive means for driving the upper heat transfer plate 8 in the vertical (opposite) direction. Is included. As the upper heat transfer plate 8 is moved up and down by the air cylinder 15, operations such as clamping, clamping and releasing of the mold set 1 in the heating process section 18 are performed. The upper heat transfer plate 8 and the lower heat transfer plate 9 are connected to a temperature controller (not shown) that controls the temperature of the upper heat transfer plate 8 and the lower heat transfer plate 9. A detection piece 27 is fixed to the rod 15 a of the air cylinder 15, and the displacement amount of the detection piece 27 (that is, the displacement amount between the upper and lower molds 2 and 3) is determined by a sensor (detection means) 28. It is supposed to be detected by. The detection of the displacement amount by the sensor 28 will be described later.

成形工程部19は、上下に対向する加熱手段としての一対の上伝熱板10及び下伝熱板11と、上伝熱板10を上下(対向)方向に駆動する駆動手段としてのエアシリンダ16を含んでいる。エアシリンダ16による上伝熱板10の昇降動作により、成形工程部19における型セット1の挟持、挟圧、解放等の動作が行われる。上伝熱板10及び下伝熱板11には、該上伝熱板10及び下伝熱板11の温度制御を行う不図示の温度調節器が接続されている。   The molding process unit 19 includes a pair of upper and lower heat transfer plates 10 and 11 as heating units opposed vertically, and an air cylinder 16 as a drive unit that drives the upper heat transfer plate 10 in the vertical (opposite) direction. Is included. As the upper heat transfer plate 10 is moved up and down by the air cylinder 16, operations such as clamping, clamping and releasing of the mold set 1 in the molding process section 19 are performed. The upper heat transfer plate 10 and the lower heat transfer plate 11 are connected to a temperature controller (not shown) that controls the temperature of the upper heat transfer plate 10 and the lower heat transfer plate 11.

この成形工程部19では、上伝熱板10及び下伝熱板11は、熱可塑性素材5の転移点近傍の温度に温度設定されている。
冷却工程部20は、上下に対向する加熱手段としての一対の上伝熱板12及び下伝熱板13と、上伝熱板12を上下(対向)方向に駆動する駆動手段としてのエアシリンダ17を含んでいる。エアシリンダ17による上伝熱板12の昇降動作により、冷却工程部20における型セット1の挟持、挟圧、解放等の動作が行われる。上伝熱板12及び下伝熱板13には、該上伝熱板12及び下伝熱板13の温度制御を行う不図示の温度調節器が接続されている。
In the molding process section 19, the upper heat transfer plate 10 and the lower heat transfer plate 11 are set to a temperature in the vicinity of the transition point of the thermoplastic material 5.
The cooling process unit 20 includes a pair of upper heat transfer plate 12 and lower heat transfer plate 13 as heating means opposed vertically, and an air cylinder 17 as drive means for driving the upper heat transfer plate 12 in the vertical (opposite) direction. Is included. As the upper heat transfer plate 12 is moved up and down by the air cylinder 17, operations such as clamping, clamping and releasing of the mold set 1 in the cooling process unit 20 are performed. The upper heat transfer plate 12 and the lower heat transfer plate 13 are connected to a temperature controller (not shown) that controls the temperature of the upper heat transfer plate 12 and the lower heat transfer plate 13.

この冷却工程部20では、上伝熱板12及び下伝熱板13は、熱可塑性素材5の転移点以下の温度に温度設定されている。
加熱工程部18、成形工程部19、及び冷却工程部20の各々を構成する一対の上伝熱板8、10、12と下伝熱板9、11、13は、成形室7に収容されている。前記センサ28は、成形室7のフレームに取付けられている。また、下伝熱板9、11、13は、成形室7の底面に断熱的に固定されている。
In the cooling process unit 20, the upper heat transfer plate 12 and the lower heat transfer plate 13 are set to a temperature equal to or lower than the transition point of the thermoplastic material 5.
A pair of upper heat transfer plates 8, 10, 12 and lower heat transfer plates 9, 11, 13 constituting each of the heating process unit 18, the molding process unit 19, and the cooling process unit 20 are accommodated in the molding chamber 7. Yes. The sensor 28 is attached to the frame of the molding chamber 7. Further, the lower heat transfer plates 9, 11, 13 are fixed to the bottom surface of the molding chamber 7 in an adiabatic manner.

制御部30は、温度制御部32、荷重制御部33、動作制御部34を有し、個々の工程部18、19、20での、上伝熱板8〜下伝熱板13の初期温度等の設定、さらには加熱方向又は冷却方向への温度変更、及びエアシリンダ15〜エアシリンダ17による荷重の作用の有無等の制御を行う。また、制御部30は、高さ監視部31を有し、この高さ監視部31は、内部に設定されたプログラムにより上型2及び下型3の型間距離が伸長方向から縮小方向に転じた時点を演算する機能を有する(詳しくは後述する)。   The control unit 30 includes a temperature control unit 32, a load control unit 33, and an operation control unit 34, and initial temperatures of the upper heat transfer plate 8 to the lower heat transfer plate 13 in the individual process units 18, 19, and 20. In addition, the temperature is changed in the heating direction or the cooling direction, and the presence / absence of the action of a load by the air cylinder 15 to the air cylinder 17 is controlled. In addition, the control unit 30 includes a height monitoring unit 31, and the height monitoring unit 31 changes the distance between the upper mold 2 and the lower mold 3 from the extension direction to the reduction direction by a program set therein. It has a function of calculating the time point (details will be described later).

また、成形室7の内部には、加熱工程部18、成形工程部19、及び冷却工程部20の間における型セット1の移動を行うための移動アーム25が設けられている。
本実施の形態において、成形作業は、型セット1が加熱工程部18、成形工程部19、及び冷却工程部20の下伝熱板9、11、13上を移動アーム25によって移動させられながら、エアシリンダ15、16、17によって上伝熱板8、10、12を降下させて型セット1を挟持しつつ、順次各工程の温度と圧力を付与して成形が進められる。
In addition, a moving arm 25 for moving the mold set 1 between the heating process section 18, the molding process section 19, and the cooling process section 20 is provided inside the molding chamber 7.
In the present embodiment, the molding operation is performed while the mold set 1 is moved by the moving arm 25 on the lower heat transfer plates 9, 11, 13 of the heating process unit 18, the molding process unit 19, and the cooling process unit 20. While the upper heat transfer plates 8, 10, and 12 are lowered by the air cylinders 15, 16, and 17 to sandwich the mold set 1, molding is performed by sequentially applying the temperature and pressure of each process.

まず、成形室7外において準備された型セット1は、移動アーム25によって成形室7内に搬送され、加熱工程部18の下伝熱板9上に載置される。その後、この加熱工程部18において、型セット1はエアシリンダ15により上伝熱板8で挟持され、所定時間加熱されて転移点以上の温度まで上昇し、内部の熱可塑性素材5が軟化する。この場合、本実施の形態では、熱可塑性素材5の加熱時の挟持圧は、該熱可塑性素材5が熱膨張して拡大する時の付勢圧よりも小さく設定されている。その理由は、図3において後述する。   First, the mold set 1 prepared outside the molding chamber 7 is transported into the molding chamber 7 by the moving arm 25 and placed on the lower heat transfer plate 9 of the heating process section 18. Thereafter, in the heating process section 18, the mold set 1 is sandwiched between the upper heat transfer plates 8 by the air cylinder 15 and heated for a predetermined time to rise to a temperature equal to or higher than the transition point, and the internal thermoplastic material 5 is softened. In this case, in this embodiment, the sandwiching pressure when the thermoplastic material 5 is heated is set smaller than the biasing pressure when the thermoplastic material 5 expands due to thermal expansion. The reason will be described later with reference to FIG.

熱可塑性素材5が軟化した後、エアシリンダ15によって上伝熱板8を上昇させ、型セット1を解放する。次いで、型セット1を移動アーム25によって次工程である成形工程部19の下伝熱板11上に移動させる。   After the thermoplastic material 5 is softened, the upper heat transfer plate 8 is raised by the air cylinder 15 to release the mold set 1. Next, the mold set 1 is moved onto the lower heat transfer plate 11 of the molding process section 19 which is the next process by the moving arm 25.

成形工程部19に搬入された型セット1は、下伝熱板11上に載置された後、エアシリンダ16によって上伝熱板10で挟持され、転移点近傍の温度にまで冷却されながら熱可塑性素材5は硬化し、所定時間、所定圧力で押圧されて変形成形される。そして、熱可塑性素材5を所定の厚さに変形成形した後、エアシリンダ16によって上伝熱板10を上昇させ、型セット1を解放する。更に、解放された型セット1を、移動アーム25によって冷却工程部20の下伝熱板13上に移動させる。   The mold set 1 carried into the molding process unit 19 is placed on the lower heat transfer plate 11 and then sandwiched between the upper heat transfer plates 10 by the air cylinder 16 and heated while being cooled to a temperature near the transition point. The plastic material 5 is cured and is deformed by being pressed at a predetermined pressure for a predetermined time. After the thermoplastic material 5 is deformed and molded to a predetermined thickness, the upper heat transfer plate 10 is raised by the air cylinder 16 to release the mold set 1. Further, the released mold set 1 is moved onto the lower heat transfer plate 13 of the cooling process unit 20 by the moving arm 25.

冷却工程部20に搬入された型セット1は、下伝熱板13上に載置された後、エアシリンダ17によって上伝熱板12で挟持され、外部に放出可能な温度にまで所定時間冷却される。この冷却後、エアシリンダ17によって上伝熱板12を上昇させ、型セット1を解放する。更に、解放された型セット1を、移動アーム25によって成形室7の外部に放出する。この後、型セット1を分解して内部の成形品を取り出し、成形の全工程を完了する。   After the mold set 1 carried into the cooling process unit 20 is placed on the lower heat transfer plate 13, it is sandwiched between the upper heat transfer plates 12 by the air cylinder 17 and cooled to a temperature at which it can be discharged to the outside for a predetermined time. Is done. After this cooling, the upper heat transfer plate 12 is raised by the air cylinder 17 to release the mold set 1. Further, the released mold set 1 is discharged to the outside of the molding chamber 7 by the moving arm 25. Thereafter, the mold set 1 is disassembled and the molded product inside is taken out to complete the entire molding process.

次に、本実施の形態の成形方法について説明する。
図3は、加熱工程部18において、型セット1を上伝熱板8と下伝熱板9で挟持したときの断面図を示す。同図を参照して、本実施の形態の技術的思想上の原理を簡単に説明する。
Next, the molding method of the present embodiment will be described.
FIG. 3 shows a cross-sectional view when the mold set 1 is sandwiched between the upper heat transfer plate 8 and the lower heat transfer plate 9 in the heating process section 18. The principle of the technical idea of the present embodiment will be briefly described with reference to FIG.

まず、型セット1全体を上伝熱板8と下伝熱板9で加熱して温度を上昇させていくと、その過程において、型セット1内部の熱可塑性素材5は温度上昇に伴い膨張する。この場合、熱可塑性素材5の加熱時の挟持圧は、その熱可塑性素材5が熱膨張して拡大する時の付勢圧よりも小さく設定されている。   First, when the temperature of the mold set 1 is heated by the upper heat transfer plate 8 and the lower heat transfer plate 9 and the temperature is raised, the thermoplastic material 5 inside the mold set 1 expands as the temperature rises. . In this case, the clamping pressure at the time of heating the thermoplastic material 5 is set smaller than the urging pressure when the thermoplastic material 5 expands due to thermal expansion.

すなわち、図において、加熱時に熱可塑性素材5には、上型2、上伝熱板8、及びエアシリンダ15のロッド15aの自重を加算した荷重が加えられている。このため、これらの荷重合計が、熱可塑性素材5の熱膨張時の付勢圧よりも大きいと、熱可塑性素材5が熱膨張してもロッド15aが上昇することができない。そこで、本実施の形態では、上型2等の荷重合計が、熱可塑性素材5の熱膨張時の付勢圧よりも小さく設定している。   That is, in the drawing, a load obtained by adding the weights of the upper die 2, the upper heat transfer plate 8, and the rod 15 a of the air cylinder 15 is applied to the thermoplastic material 5 during heating. For this reason, if the total load is larger than the biasing pressure at the time of thermal expansion of the thermoplastic material 5, the rod 15a cannot be raised even if the thermoplastic material 5 is thermally expanded. Therefore, in the present embodiment, the total load of the upper mold 2 and the like is set to be smaller than the urging pressure at the time of thermal expansion of the thermoplastic material 5.

以上により、加熱工程部18では、熱可塑性素材5が膨張して、上型2と下型3の型間距離が拡大し、上伝熱板8は図の上方に向けて上昇する。続いて、更に加熱して熱可塑性素材5の温度を上昇させていくと、型セット1の内部の熱可塑性素材5の軟化が始まる。そして、今度は前記と逆に、上型2等の荷重合計により熱可塑性素材5が潰れはじめて、上型2と下型3の型間距離が縮小し、上伝熱板8は図の下方に向けて下降する。   As described above, in the heating process section 18, the thermoplastic material 5 expands, the distance between the upper mold 2 and the lower mold 3 increases, and the upper heat transfer plate 8 rises upward in the drawing. Subsequently, when the temperature of the thermoplastic material 5 is further increased by heating, the softening of the thermoplastic material 5 inside the mold set 1 starts. Then, contrary to the above, the thermoplastic material 5 starts to be crushed due to the total load of the upper mold 2 and the like, the distance between the upper mold 2 and the lower mold 3 is reduced, and the upper heat transfer plate 8 is located below the figure. Move down.

そこで、この上型2と下型3の型間距離、すなわち上伝熱板8(ロッド15a)の変位量を連続的かつ正確に検知すべく、ロッド部15aに固定された検知片27の変位量を、センサ28によって検知している。これにより、型セット1における上型2と下型3の型間距離を、加熱工程の開始から軟化完了まで連続的に検知することを可能としている。高さ監視部31では、前記センサ28からの検出信号に基づき、上伝熱板8と下伝熱板9による熱可塑性素材5の温度上昇の過程で、上型2と下型3の型間距離が拡大から縮小に切り替わる時点を捉える。そして、熱可塑性素材5の軟化のタイミングを、各成形毎の素材体積のバラツキや素材含有成分量のバラツキなど、条件変動要素の影響を受けることなく正確に捉えることとしている。   Therefore, in order to detect the distance between the upper die 2 and the lower die 3, that is, the amount of displacement of the upper heat transfer plate 8 (rod 15a) continuously and accurately, the displacement of the detection piece 27 fixed to the rod portion 15a. The amount is detected by the sensor 28. Thereby, it is possible to continuously detect the distance between the upper mold 2 and the lower mold 3 in the mold set 1 from the start of the heating process to the completion of the softening. In the height monitoring unit 31, based on the detection signal from the sensor 28, the temperature of the thermoplastic material 5 by the upper heat transfer plate 8 and the lower heat transfer plate 9 is increased between the upper mold 2 and the lower mold 3. Capture the time when the distance switches from expansion to reduction. Then, the timing of softening the thermoplastic material 5 is accurately captured without being influenced by condition variation factors such as variation in material volume and variation in the amount of material-containing components for each molding.

図4は、加熱工程における加熱時間と上下型2、3の型間距離との関係を示している。同図に示すように、加熱工程部18において、型セット1を上下伝熱板8,9で挟持して加熱・昇温を開始すると(a点)、該型セット1内部の熱可塑性素材5は温度の上昇に従い膨張が始まり(矢印A方向)、上型2と下型3の型間距離はだんだん拡大していく。この状況は、センサ28によって高さ位置を連続的に検知され、その検知信号は制御部30の高さ監視部31に送られる。   FIG. 4 shows the relationship between the heating time in the heating process and the distance between the upper and lower molds 2 and 3. As shown in the figure, in the heating process section 18, when the mold set 1 is sandwiched between the upper and lower heat transfer plates 8, 9 and heating / heating is started (point a), the thermoplastic material 5 inside the mold set 1. As the temperature rises, expansion begins (in the direction of arrow A), and the distance between the upper mold 2 and the lower mold 3 gradually increases. In this situation, the height position is continuously detected by the sensor 28, and the detection signal is sent to the height monitoring unit 31 of the control unit 30.

なお、本実施の形態において、後述する成形条件を用いた場合は、図4における熱可塑性素材5の膨張(距離)量は、例えば0.2mm〜0.5mmであり、加熱時間は略60sec程度であった。   In the present embodiment, when the molding conditions described later are used, the amount of expansion (distance) of the thermoplastic material 5 in FIG. 4 is, for example, 0.2 mm to 0.5 mm, and the heating time is about 60 seconds. Met.

そして、更なる加熱により、型セット1内部の熱可塑性素材5の温度が転移点以上に上昇してくると、熱可塑性素材5は前記と逆方向に変形可能に軟化する(b点)。そして、序々に熱可塑性素材5の変形が始まり(矢印B方向)、上型2に押込まれて潰れていく。こうして、前記と逆に上型2と下型3の型間距離は次第に縮小していく。
When the temperature of the thermoplastic material 5 inside the mold set 1 rises above the transition point due to further heating, the thermoplastic material 5 softens so as to be deformable in the opposite direction to the above (point b). Then, the deformation of the thermoplastic material 5 starts gradually (in the direction of arrow B) and is pushed into the upper mold 2 and is crushed. Thus, contrary to the above, the distance between the upper mold 2 and the lower mold 3 is gradually reduced.

このとき、高さ監視部31では、上型2と下型3の型間距離が拡大方向から縮小方向に転じたその時点(b点)を、内蔵するコンピュータのアルゴリズムプログラム等により捉えて、熱可塑性素材5の軟化が確認された時点として検知する。そして、その検知信号を、制御部30の温度制御部32に送る。温度制御部32では、この検知信号に基づき加熱工程を完了させる動作指令を成形室7に行う。   At this time, the height monitoring unit 31 captures the time (b point) when the distance between the molds of the upper mold 2 and the lower mold 3 changes from the enlargement direction to the reduction direction by an algorithm program of a built-in computer, and the like. It is detected as the time when softening of the plastic material 5 is confirmed. Then, the detection signal is sent to the temperature control unit 32 of the control unit 30. In the temperature control part 32, the operation command which completes a heating process is given to the molding chamber 7 based on this detection signal.

なお、本実施の形態の加熱工程完了の動作は、前述のようにエアシリンダ15を上昇させ、上伝熱板8を上昇し、型セット1を解放した後、移動アーム25によって型セット1を成形工程部19に押し出して下伝熱板11上に移動させて完了となる。   In the operation of completing the heating process of the present embodiment, the air cylinder 15 is raised as described above, the upper heat transfer plate 8 is raised, the mold set 1 is released, and then the mold set 1 is moved by the moving arm 25. Extrusion to the molding process section 19 and movement onto the lower heat transfer plate 11 are completed.

本実施の形態によれば、熱可塑性素材5の加熱昇温による軟化状態を検知して加熱条件を制御しているので、成形ごとの素材体積のバラツキや、素材含有成分のバラツキや、ヒータの経時変化、温度センサの経時変化、などの装置コンディションの変化、及び上下型表面の変質などの条件変動要素があったとしても、常に適度な熱量を熱可塑性素材5に与えることができる。こうして、個々の熱可塑性素材5の成形に必要な柔らかさを付与して高精度の成形製品を得ることができる。   According to the present embodiment, since the heating condition is controlled by detecting the softened state of the thermoplastic material 5 due to heating and temperature rise, the variation in material volume for each molding, the variation in material-containing components, the heater Even if there is a condition variation element such as a change in apparatus condition such as a change with time, a change with time of the temperature sensor, and a change in the upper and lower mold surfaces, an appropriate amount of heat can always be given to the thermoplastic material 5. In this way, the softness required for molding of the individual thermoplastic materials 5 can be imparted, and a highly accurate molded product can be obtained.

特に、温度と時間のみを監視して加熱する方法では、例えば久しぶりに成形を行ったときに、使用装置が冷えていること等により、1個目から良品を得ることは難しかったが、本実施の形態によれば、熱可塑性素材5の軟化状態を常時検知しているので、1個目から良品を得ることができる。
(第2の実施の形態)
第1の実施の形態では、加熱工程部18にて加熱昇温中に、上型2と下型3の型間距離を監視しながら、高さ監視部31が上型2と下型3の型間距離が拡大方向から縮小方向に転じたその時点を基準に、加熱工程を完了させることとした。しかし、この加熱昇温による熱可塑性素材5の軟化は、実際のところ軟化の開始直後ゆえ、素材内部及び素材全体が均一に軟化されていない場合がある。このように、均一に軟化されていない状態で押圧成形を行うと、高品質の成形品が得られないおそれがある。
In particular, in the method of heating by monitoring only the temperature and time, it was difficult to obtain a good product from the first piece because, for example, when the molding was performed after a long time, the device used was cold. According to the form, since the softened state of the thermoplastic material 5 is always detected, a good product can be obtained from the first piece.
(Second Embodiment)
In the first embodiment, the height monitoring unit 31 includes the upper mold 2 and the lower mold 3 while monitoring the distance between the upper mold 2 and the lower mold 3 while the heating process unit 18 is heating and heating. The heating process was completed based on the point in time when the distance between the molds changed from the enlargement direction to the reduction direction. However, since the softening of the thermoplastic material 5 due to the heating temperature is actually just after the start of the softening, the inside of the material and the whole material may not be softened uniformly. Thus, when press molding is performed in a state where it is not uniformly softened, a high-quality molded product may not be obtained.

そこで、これを回避すべく、発明者の実験によれば、上型2と下型3の型間距離が、拡大方向から縮小方向に転じた時点に、数秒ないし数十秒の時間を馴染ませ加熱時間として加えることで、加熱時間を延長すると転写性に良好な結果が得られることがわかった。これは、上下伝熱板8,9から熱可塑性素材5に熱が略均等に伝達されるまでの時間を加えることで、熱可塑性素材5が略均一に軟化されることによるものと考えられている。   Therefore, in order to avoid this, according to the inventor's experiment, when the distance between the upper die 2 and the lower die 3 changes from the enlargement direction to the reduction direction, the time of several seconds to several tens of seconds is adjusted. It was found that when the heating time was extended by adding as the heating time, good results were obtained in transferability. This is considered to be due to the fact that the thermoplastic material 5 is softened substantially uniformly by adding time until the heat is transferred from the upper and lower heat transfer plates 8 and 9 to the thermoplastic material 5 substantially evenly. Yes.

なお、本実施の形態において、後述する成形条件を用いた場合は、図4における変形距離は、数10μm程度であり、また、熱なじませ加熱時間は、略10sec程度であった。   In the present embodiment, when the molding conditions described later are used, the deformation distance in FIG. 4 is about several tens of μm, and the thermal acclimation heating time is about 10 sec.

本実施の形態では、上下伝熱板8、9の加熱と温度上昇による熱可塑性素材5の軟化直後に、加熱工程を完了するのではなく、加熱時間を追加延長して、熱可塑性素材5の全体の温度を適正に馴染ませることを行い、熱可塑性素材5の硬さを均質化している。このため、熱可塑性素材5の軟化開始直後に成形工程に移行するよりも、変形成形状態を安定的に行うことが可能である。また、熱可塑性素材5の全体の硬さが均質となるため、結果的に転写性も向上するというメリットを有する。
(成形条件)
以下に、本発明の第1と第2の実施の形態において、良好な成形品が得られたときの各種成形条件を示す。但し、これはあくまでも一例であって、この条件に限られるものではないことは勿論である。
(1)成形素材 光学ガラス(OHARA製)S−LAH58
素材形状 球状直径φ4mm 成形外径 5mm
加熱工程 上下伝熱板温度 870℃ 馴染ませ加熱時間 10秒
成形工程 上下伝熱板温度 800℃ 成形時荷重 15N
冷却工程 上下伝熱板温度 500℃
(2)成形素材 光学ガラス(OHARA製)L−LAH53
素材形状 球状直径φ4mm 成形外径 5mm
加熱工程 上下伝熱板温度 680℃ 馴染ませ加熱時間 10秒
成形工程 上下伝熱板温度 620℃ 成形時荷重 15N
冷却工程 上下伝熱板温度 300℃
In the present embodiment, immediately after the heating of the upper and lower heat transfer plates 8 and 9 and the softening of the thermoplastic material 5 due to the temperature rise, the heating process is not completed, but the heating time is additionally extended, and the thermoplastic material 5 The entire temperature is appropriately adjusted so that the hardness of the thermoplastic material 5 is homogenized. For this reason, it is possible to perform a deformation | transformation shaping | molding state stably rather than shifting to a shaping | molding process immediately after the softening start of the thermoplastic raw material 5. FIG. Further, since the entire hardness of the thermoplastic material 5 is uniform, there is an advantage that transferability is improved as a result.
(Molding condition)
Hereinafter, various molding conditions when a good molded product is obtained in the first and second embodiments of the present invention will be described. However, this is only an example, and it is needless to say that the conditions are not limited.
(1) Molding material Optical glass (made by OHARA) S-LAH58
Material shape Spherical diameter φ4mm Molding outer diameter 5mm
Heating process Upper and lower heat transfer plate temperature 870 ℃ Heating time 10 seconds Molding process Upper and lower heat transfer plate temperature 800 ℃ Molding load 15N
Cooling process Upper and lower heat transfer plate temperature 500 ℃
(2) Molding material Optical glass (made by OHARA) L-LAH53
Material shape Spherical diameter φ4mm Molding outer diameter 5mm
Heating process Upper and lower heat transfer plate temperature 680 ° C Fatigue heating time 10 seconds Molding process Upper and lower heat transfer plate temperature 620 ° C Molding load 15N
Cooling process Upper and lower heat transfer plate temperature 300 ℃

本発明の成形装置に供される型セットの構成を示す断面図である。It is sectional drawing which shows the structure of the type | mold set with which the shaping | molding apparatus of this invention is provided. 本発明の成形方法を実施する成形装置の構成を示す概念図である。It is a conceptual diagram which shows the structure of the shaping | molding apparatus which enforces the shaping | molding method of this invention. 本発明の成形装置の一部を取り出して示す断面図である。It is sectional drawing which takes out and shows a part of shaping | molding apparatus of this invention. 加熱工程における加熱時間と上下型の型間距離との関係を示す図である。It is a figure which shows the relationship between the heating time in a heating process, and the distance between upper and lower mold | types.

符号の説明Explanation of symbols

1 型セット
2 上型
2a 成形面
3 下型
3a 成形面
4 スリーブ
5 成形素材
6 成形装置
7 成形室
8 上伝熱板
9 下伝熱板
10 上伝熱板
11 下伝熱板
12 上伝熱板
13 下伝熱板
15 エアシリンダ
15a ロッド部
16 エアシリンダ
17 エアシリンダ
18 加熱工程部
19 成形工程部
20 冷却工程部
25 移動アーム
27 検知片
28 センサ
30 制御部
31 高さ監視部
32 温度制御部
33 荷重制御部
34 動作制御部

1 mold set 2 upper mold 2a molding surface 3 lower mold 3a molding surface 4 sleeve 5 molding material 6 molding apparatus 7 molding chamber 8 upper heat transfer plate 9 lower heat transfer plate 10 upper heat transfer plate 11 lower heat transfer plate 12 upper heat transfer Plate 13 Lower heat transfer plate 15 Air cylinder 15a Rod part 16 Air cylinder 17 Air cylinder 18 Heating process part 19 Molding process part 20 Cooling process part 25 Moving arm 27 Detection piece 28 Sensor 30 Control part 31 Height monitoring part 32 Temperature control part 33 Load control unit 34 Operation control unit

Claims (1)

熱可塑性素材を挟んで対向する一対の成形型及び前記成形型が挿嵌されるスリーブを含む型セットを、加熱手段を有する加熱工程にて加熱・昇温し、前記熱可塑性素材を軟化させ、次いで成形工程にて押圧成形する熱可塑性素材の成形方法であって、
前記加熱工程において、前記一対の成形型で前記熱可塑性素材を、該熱可塑性素材が熱膨張して拡大する際の付勢圧よりも小さい挟持圧で挟持した状態で、前記一対の成形型の型間距離を検知しながら、前記型セットを加熱・昇温していき、前記一対の成形型の型間距離が拡大方向から縮小方向に転じた時点を検知した際、又はその後該熱可塑性素材の全体の硬さが均質となるように馴染ませ加熱時間を経過させた際に、該型セットを前記加熱手段による挟持から開放する、熱可塑性素材の成形方法。
A mold set including a pair of molding dies opposed to each other with a thermoplastic material interposed therebetween and a sleeve into which the molding dies are inserted is heated and heated in a heating process having a heating means, to soften the thermoplastic material, Next, a method of molding a thermoplastic material that is press-molded in a molding process,
In the heating step, the thermoplastic material is sandwiched between the pair of molds with a sandwiching pressure smaller than an urging pressure when the thermoplastic material is expanded by thermal expansion . While detecting the distance between the molds, the mold set is heated and heated, and when the time when the distance between the molds of the pair of molding dies changes from the expansion direction to the reduction direction , or thereafter, the thermoplastic material A method for molding a thermoplastic material , wherein the mold set is released from being sandwiched by the heating means when the heating time is allowed to elapse so that the overall hardness is uniform .
JP2005207431A 2005-07-15 2005-07-15 Molding method of thermoplastic material Expired - Fee Related JP4521326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005207431A JP4521326B2 (en) 2005-07-15 2005-07-15 Molding method of thermoplastic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005207431A JP4521326B2 (en) 2005-07-15 2005-07-15 Molding method of thermoplastic material

Publications (2)

Publication Number Publication Date
JP2007022850A JP2007022850A (en) 2007-02-01
JP4521326B2 true JP4521326B2 (en) 2010-08-11

Family

ID=37784109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005207431A Expired - Fee Related JP4521326B2 (en) 2005-07-15 2005-07-15 Molding method of thermoplastic material

Country Status (1)

Country Link
JP (1) JP4521326B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839228B2 (en) * 2007-01-10 2011-12-21 オリンパス株式会社 Method and apparatus for manufacturing molded product
JP4790658B2 (en) * 2007-05-09 2011-10-12 オリンパス株式会社 Method and apparatus for molding thermoplastic material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001058837A (en) * 1999-08-18 2001-03-06 Matsushita Electric Ind Co Ltd Method for molding optical element and device for molding optical element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001058837A (en) * 1999-08-18 2001-03-06 Matsushita Electric Ind Co Ltd Method for molding optical element and device for molding optical element

Also Published As

Publication number Publication date
JP2007022850A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP5826243B2 (en) Press molding die and press molding method using the same
JP2017226225A5 (en) Method for manufacturing shaped film, method for manufacturing polarizing film, and method for manufacturing polarizing lens
JPH0551224A (en) Method for press-forming optical element and device therefor
WO2005075184A1 (en) Pressing/molding apparatus, mold, and pressing/molding method
JP4142674B2 (en) Mold apparatus and method for producing molded body using the same
JP4521326B2 (en) Molding method of thermoplastic material
JP4559315B2 (en) Optical element molding method
KR20010053073A (en) Method and apparatus for molding optical device
JP4629017B2 (en) Optical element molding method and molding apparatus therefor
JP6371626B2 (en) Resin molded product manufacturing apparatus and resin molded product manufacturing method
TW201012621A (en) Molding method for an optical element and optical element molding apparatus
JP4166619B2 (en) Optical element molding method and molding apparatus
JP6653135B2 (en) Method and apparatus for manufacturing optical element
JP2002249328A (en) Method for forming optical element
JP2006124193A (en) Method for shaping optical element
JP4573678B2 (en) Glass forming equipment
JP2008083190A (en) Method for molding optical element
JP2009274237A (en) Transfer method and device
JP2954427B2 (en) Glass forming method
RU2564317C2 (en) Making of multilayer article
JP2008179488A (en) Method for molding optical device
JPH04338120A (en) Method for forming glass optical element
JP4347629B2 (en) Glass element molding equipment
JP2005298233A (en) Apparatus and method for molding optical glass element
JP2005206389A (en) Method and apparatus for forming optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4521326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees