JP4520633B2 - Ranging method and ranging device - Google Patents

Ranging method and ranging device Download PDF

Info

Publication number
JP4520633B2
JP4520633B2 JP2000401361A JP2000401361A JP4520633B2 JP 4520633 B2 JP4520633 B2 JP 4520633B2 JP 2000401361 A JP2000401361 A JP 2000401361A JP 2000401361 A JP2000401361 A JP 2000401361A JP 4520633 B2 JP4520633 B2 JP 4520633B2
Authority
JP
Japan
Prior art keywords
signal
station
narrowband communication
communication signal
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000401361A
Other languages
Japanese (ja)
Other versions
JP2002202364A (en
Inventor
守 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd filed Critical Clarion Co Ltd
Priority to JP2000401361A priority Critical patent/JP4520633B2/en
Publication of JP2002202364A publication Critical patent/JP2002202364A/en
Application granted granted Critical
Publication of JP4520633B2 publication Critical patent/JP4520633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、狭帯域通信方式を利用して無線機等の物体間の距離を測定する測距方法並びに測距装置に関する。
【0002】
【従来の技術】
測距方法として、電波(レーザー)を利用して物体間の距離を測定するレーダー方式や、スペクトル拡散通信方式を用いて、電波の折り返しを利用して物体間の距離を測定する測距方式が知られている。レーダー方式では、測定物に電波(レーザー)を照射し、物体から反射した電波の遅延時間を計測することで物体までの距離を求めている。また、スペクトル拡散通信を利用した測距方式では、自局から送信されたスペクトル拡散信号を、他局が受信し、その周波数を変換して自局に送り返し、その信号の往復時間から物体間(自局及び他局間)距離を算出するものである。
【0003】
【発明が解決しようとする課題】
レーダー方式を用いた測距方法では、測距に特化したシステムであるため、同一のシステムを用いてのデータ通信が行えない。従って、データ通信を行いたい場合はデータ通信用システムが別途必要となる。また、スペクトル拡散通信方式を用いた測距方法では、データ通信は可能となるが、変調方式がスペクトル拡散変調方式を用いている無線機にしか応用できないという問題がある。
【0004】
そこで、本発明の目的は、現在一般に使用されている狭帯域通信方式を利用して、スペクトル拡散通信方式で行われている測距方法を応用して無線機等の物体間の距離を求める測距方法並びに測距装置を提供することになる。
【0005】
【課題を解決するための手段】
請求項1記載の発明は、狭帯域通信方式を用いて自局と他局間の距離を測定する測距方法であって、自局から他局へ第一の狭帯域通信信号を送信するステップと、他局で受信された第一の狭帯域通信信号と他局から自局へ送信する第二の狭帯域通信信号との相対時間差を検出し、その相対時間差のデータを第二の狭帯域通信信号に付加して自局に送信するステップと、自局で受信された第二の狭帯域通信信号と自局で送信した第一の狭帯域通信信号との時間差を検出し、その検出値と復調された前記相対時間差のデータとから自局と他局間の距離を算出するステップとを備え、他局における第一の狭帯域通信信号と第二の狭帯域通信信号との相対時間差を検出するステップと、自局における第二の狭帯域通信信号と第一の狭帯域通信信号との時間差を検出するステップの各々は、他局及び自局においてそれぞれ相関クロック信号を生成し、各局で相関用クロック信号と各狭帯域通信信号のベースバンド信号との間で相関をとることにより、自局及び他局での相対時間差を検出するステップを含み、前記自局及び他局での相対時間差を検出するステップは、第一の狭帯域通信信号及び第二の狭帯域通信信号のベースバンド信号である送信データあるいはそれらから復調した受信データを基に、該送信データまたは受信データのデータ波形を適宜なしきい値を設けて2値化することによりデータの変化ポイントを検出するステップと、変化ポイント毎にデータクロックの周期より狭い適宜な幅の第一のパルス信号を生成するステップと、自局及び他局にて前記データクロックの周波数と異なる周波数で生成される相関クロックから、前記第一のパルス信号と同程度の幅を有する第二のパルス信号を生成するステップと、前記第一のパルス信号と前記第二のパルス信号とを掛け合わせ、ローパスフィルタを通すことによって相関信号を得るステップとを備えることを特徴とするものである。
【0006】
請求項2記載の発明は、請求項1記載の測距方法において、前記第一及び第二の狭帯域通信信号は、位相変調(PM)、周波数変調(FM)及び振幅変調(AM)のうちの一つの変調方式に基づいて変調された信号であることを特徴とするものである。
【0009】
請求項記載の発明は、請求項記載の測距方法において、ローパスフィルタ通過後に得られる相関信号から包絡線信号を生成し、該包絡線信号のピーク位置を検出してその位置を相関信号の基準位置とするステップをさらに有することを特徴とするものである。
【0010】
請求項記載の発明は、請求項記載の測距方法において、相関信号の包絡線信号を生成するステップにおいて、相関信号パルスが欠落している場合は、欠落の前後のパルスの波高値を基にそれらの中間値のパルスを挿入してすることによって欠落パルスを補間する補間ステップをさらに有することを特徴とするものである。
【0011】
請求項記載の発明は、請求項記載の測距方法において、各相関信号の基準位置の時間差に基づいて、他局では第一の狭帯域通信信号と第二の狭帯域通信信号間の相対時間差を求め、自局では第二の狭帯域通信信号と第一の狭帯域通信信号間の時間差を求めることを特徴とするものである。
【0012】
請求項記載の発明は、請求項記載の測距方法において、他局では前記相対時間差を表すデータを第二の狭帯域通信信号に付加して自局に送信し、自局では自局で求めた時間差と、第二の狭帯域通信信号に付加されていた時間差データとに基づいて、自局並びに他局間の距離を算出することを特徴とするものである。
【0013】
請求項記載の発明は、狭帯域通信方式を用いて自局と他局間の距離を測定する、各局に設けられた測距装置であって、自局から他局へ第一の狭帯域通信信号を送信する送信部と、該第一の狭帯域通信信号の受信に応じて他局から送信された第二の狭帯域通信信号を受信する受信部とからなり、該第二の狭帯域通信信号には、他局における前記第一の狭帯域通信信号と前記第二の狭帯域通信信号間の相対時間差に関するデータが組み込まれており、前記受信部は、前記第一の狭帯域通信信号の一部と前記第二の狭帯域通信信号とを受信する受信手段と、受信信号をパルス化するパルス手段と、相関クロックパルスを生成する相関クロックパルス生成手段と、パルス化された受信信号と相関クロックパルスとの間で相関処理を行い、相関信号を得る相関手段と、該相関手段からの相関信号に補間処理を行うことで相関パルスの欠落を補う補間手段と、該補間手段の出力信号に基づいてそのピーク位置を検出し、基準ピーク信号として出力するピーク検出手段と、該ピーク検出手段により得られた、第一狭帯域通信信号並びに第二狭帯域通信信号の基準ピーク信号に基づいて各信号間の遅延時間を算出し、この遅延時間と、前記第二の狭帯域通信信号に組み込まれた前記相対時間差に基づいて、自局及び他局間の距離を測定する遅延時間算出手段とを有することを特徴とするものである。
【0015】
本発明の測距方法並びに測距装置によれば、スペクトル拡散通信で行われている測距方法を用いて、従来使用されている狭帯域通信でも測距できる方法が提供される。測距を実現するための方法として、スペクトル拡散通信で行われている相関動作ができるように、まず、受信したデータ波形をパルス状に加工し、相関動作を行わせる。次に、データが連続すると相関波形の欠落が発生するために、それを補うために波形の補間もしくは推測を行い希望する相関波形を生成する。これにより、スペクトル拡散通信で行われている測距方法を、狭帯域通信に対しても応用することが可能となる。
【0016】
【発明の実施の形態】
以下、本発明の実施形態を添付図面を参照して説明する。
【0017】
まず、本発明の測距方法について説明する。
【0018】
図1は、電波の折り返しを利用して物体間(例えば無線機間)の距離を測定する測距方式を説明するための概略図である。ここで測距を行う側の物体(無線機等)、すなわち測距用変調信号を最初に送信した側を自局と称し、測距を行われる側の物体(無線機等)、すなわち最初の測距用変調信号を受信した側を他局と称することにする。したがって、状況に応じて任意の物体が自局又は他局となり得る。図2は、他局B側で受信した自局Aからの変調信号と他局Bからの送信信号とに時間的な遅れが無い場合の、自局Aと他局Bの各信号のタイミング関係を示したものであり、図3は、他局B側で受信した自局Aからの変調信号と他局Bからの送信信号とに時間的な遅れがある場合の、自局Aと他局Bの各信号のタイミング関係を示したものである。
【0019】
図1,2において、電波の折り返しを利用して自局A側と他局B側の間の距離Lを求めようとする場合、自局Aから他局Bへ変調信号(第一の変調信号)Sを送信する。この時、自局Aは自ら送信した変調信号Sを受信し、あるいは変調信号Sの一部を受信部へ送り(この受信信号をR’とする)、このときの受信タイミングを基準として測距を行う。他局Bでは、自局A側からの変調信号と他局Bより送信すべき変調信号(第二の変調信号)Rとの間に時間的遅れ(Δτ)が発生してない場合は、そのまま自局Aに変調信号Rを送信する。自局Aでは、自局Aが送信し且つ受信した変調信号(R’)と、他局Bが送信し且つ自局Aで受信した変調信号Rとの位相差(T)を検出し、この位相差(T)に基づいて距離Lを算出する。ここで、位相差(T)は自局Aと他局B間の電波の往復遅延時間に相当するので、距離Lは位相差Tを用いて下式のように表される。
【0020】
距離L=c・T/2(cは光の速度)
図1、2中、Δtは自局Aから他局B(他局Bから自局A)へ電波が到達するのに要する時間である。また、τmは自局Aから送信された変調信号が自局A自身により受信され、その基準位置が算出されるまでの遅延時間である。
【0021】
一方、他局Bで受信した自局Aからの変調信号(Rs)と、他局Bから自局Aへの送信変調信号(Ss)とに時間的遅れ(Δτ)が発生している場合は、変調信号(Rs,Ss)間の位相差(τs)を検出し、この位相差情報を送信変調信号(Ss)に載せて自局A側へ送信する。自局Aでは、自ら送信し且つ受信した変調信号(R’)と、他局Bからの受信信号Rとの位相差(T)を検出し、さらに他局Bから送信された位相差データ(τs)を復調し、他局B側での位相差によって発生した誤差を補正し、他局Bまでの距離Lを算出する。ここで、距離Lは位相差Tとτsを用いて下式のように表される。
【0022】
距離L=c・(T−τs)/2(cは光の速度)
上述した変調信号は、スペクトル拡散方式以外の変調方式、例えば、PM(位相変調)、FM(周波数変調)またはAM(振幅変調)に基づいて変調された信号である。スペクトル拡散通信を利用した測距方法の場合、変調信号は基準PN符号により逆拡散(相関)を行うことで基準位置(基準ピーク)を検出することが可能であるが、上述した狭帯域通信の変調信号をそのまま用いては、スペクトル拡散通信のこのような相関動作を行わせることができない。従って、狭帯域通信のデータ(RD)をパルス化して、相関ができるようにする必要がある。
【0023】
図4は狭帯域信号のパルス化と相関動作を示したタイミングチャートであり、この動作により各変調信号の基準位置(基準ピーク)を検出することが可能となる。
【0024】
図4で示されるように、自局Aでは、他局Bからの変調信号(受信データ(RD))の変化ポイント(0→1,1→0)をあるしきい値で2値化し、幅の狭いパルス信号(Rp)を生成する(図4(a),(b),(c))。また、相関をとるもう一方のパルス(Cp)を図4(d)で示される相関用クロック(CK)から生成する(図4(e))。この相関用クロックは、送受信データのクロックに対して、ごくわずかな周波数が異なるものである。この2つのパルス信号の相関動作(RpとCpとの掛け算)を行い(図4(f))、フィルタを通過させることで相関波形(RCp)を生成する(図4(g))。この時、受信データにデータの変化ポイントがない場合は、相関信号が出力されない。従って、この欠落した相関信号を補い(図4(h))、個々の相関パルスのピーク値を基にした包絡線信号(RC)を生成し(図4(i))、その信号の最大値の位置を基準ピーク信号(R)とする(図4(j))。同様な処理を、自局Aが送信し、且つ自ら受信した信号に対して行い、基準ピーク信号(R’)を生成する。
【0025】
以上の処理により狭帯域信号を用いても受信信号の基準ピーク(基準位置)を検出することが可能となり、受信信号の遅延時間差(位相差)に基づいた測距が可能となる。
【0026】
図5は上述した測距方法に基づく測距システムの自局と他局とに設けた構成の一実施態様を示したものである。
【0027】
図5で示される測距システムは、測距用のデータ(変調信号)を送信する送信部と、該変調信号並びに他局からの送信信号を受信する受信部とから構成されている。
【0028】
送信部では、データクロック生成部1で生成したデータクロック「FD」を基に送信データ2を放出する。送信データは帯域通過フィルタ(BPF)3通過後に、搬送波(f)で変調され、増幅器4にて増幅後にアンテナを介して送信される。この時、送信信号の一部は受信部側に送られる。
一方受信部では、送信信号の一部または受信信号の増幅を増幅器5で行い、搬送波(f)で変調し、帯域通過フィルタ(BPF)6を通過後にAGC(自動利得制御器)7により信号レベルを一定にする。しかる後、AGC7からの出力信号はデータ復調部8に送られ、受信データの復調を行う。受信データは、パルス生成部9にてパルス化され、相関クロックパルスと掛け算が行われ、相関がとられる。ここで、相関クロックパルスは、相関用クロック生成部10で生成された相関クロック「Fc」をパルス生成部11でパルス化することで得られる。その後、相関処理された信号はLPF(低域フィルタ)12を通過後、波形整形部13にて相関パルスの欠落を補い、ピーク検出器14にて相関パルスの包絡線信号を生成し、相関の基準ピーク信号(R’、R)を発生する。相関パルスの欠落の補間は、欠落前後のパルス波高値の中間値の波高のパルスを挿入することで行われる。
【0029】
送信部のデータクロック「Fd」に対しても同様な処理が施される。すなわち、データクロック生成部1で生成したデータクロック「Fd」はパルス生成部15でパルス化され、相関クロックパルスとの相関を行った後、LPF(低域フィルタ)16を通過後、波形整形部17にて波形の補間が行われ、さらにピーク検出器18にて相関の基準ピーク信号が得られる(S)。
【0030】
ここで、基準ピーク信号(SまたはR’)を基準として、他局から送られてきた受信信号の基準ピーク信号(R)とを比較器19で比較し、その位相差を時間差検出部20で検出する。この時、無線機が他局側になっているときは、時間差データが、受信した信号と送信信号の時間的な遅れ(Δτ)を表しているため、自局側へデータとして送信する。その後、遅延時間算出部21で他局から送られてきた受信信号(Δτ)とともに計算され距離が算出される。
【0031】
【発明の効果】
以上説明したように、本発明によれば、現在使用されている狭帯域無線機に、測距機能を簡単に付加することができ、無線機の位置等が把握できる。
【図面の簡単な説明】
【図1】電波の折り返しを利用して物体間の距離を測定する測距方式を説明するための概略図である。
【図2】他局B側で受信した自局Aからの変調信号と他局Bからの送信信号とに時間的な遅れが無い場合の、自局Aと他局Bの各信号のタイミング関係を示したものである。
【図3】他局B側で受信した自局Aからの変調信号と他局Bからの送信信号とに時間的な遅れがある場合の、自局Aと他局Bの各信号のタイミング関係を示したものである。本発明による測距方法を示した概略図である。
【図4】狭帯域信号のパルス化と相関動作を示したタイミングチャートである。
【図5】本発明の測距方法に基づく測距システムの自局と他局とに設けた構成の一実施態様を示したものである。
【符号の説明】
A 自局
B 他局
1 データクロック生成部
8 データ復調部
9,11,15 パルス生成部
10 相関用クロック生成部
13、17 波形整形部
14、18 ピーク検出部
20 時間差検出部
21 遅延時間算出部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a distance measuring method and a distance measuring apparatus that measure a distance between objects such as a wireless device using a narrowband communication method.
[0002]
[Prior art]
As a distance measurement method, there are a radar method that measures the distance between objects using radio waves (laser) and a distance measurement method that measures the distance between objects using the spread of radio waves using the spread spectrum communication method. Are known. In the radar system, the distance to an object is obtained by irradiating a measurement object with a radio wave (laser) and measuring the delay time of the radio wave reflected from the object. In the ranging method using spread spectrum communication, the other station receives the spread spectrum signal transmitted from the own station, converts the frequency and sends it back to the own station. The distance between the own station and other stations is calculated.
[0003]
[Problems to be solved by the invention]
The distance measurement method using the radar method is a system specialized for distance measurement, and therefore cannot perform data communication using the same system. Therefore, a separate data communication system is required to perform data communication. In addition, although the distance measurement method using the spread spectrum communication method enables data communication, there is a problem that the modulation method can be applied only to a radio device using the spread spectrum modulation method.
[0004]
Therefore, an object of the present invention is to use a narrowband communication method that is generally used at present and apply a distance measurement method performed in a spread spectrum communication method to obtain a distance between objects such as a radio. A distance method and a distance measuring device are provided.
[0005]
[Means for Solving the Problems]
The invention according to claim 1 is a distance measuring method for measuring a distance between the own station and another station using a narrowband communication method, and a step of transmitting a first narrowband communication signal from the own station to the other station. And a relative time difference between the first narrowband communication signal received at the other station and the second narrowband communication signal transmitted from the other station to the local station, and the relative time difference data is detected as the second narrowband communication signal. Detecting the time difference between the step of adding to the communication signal and transmitting to the local station, and the time difference between the second narrowband communication signal received by the local station and the first narrowband communication signal transmitted by the local station, and the detected value And calculating the distance between the local station and the other station from the demodulated relative time difference data, and calculating the relative time difference between the first narrowband communication signal and the second narrowband communication signal in the other station. Detecting the second narrowband communication signal and the first narrowband communication signal at the local station Each of the steps of detecting the difference between the respective stations generates a correlation clock signal in the other station and the own station, and obtains a correlation between the correlation clock signal and the baseband signal of each narrowband communication signal in each station, Detecting a relative time difference between the local station and the other station, the step of detecting a relative time difference between the local station and the remote station comprising: a baseband of the first narrowband communication signal and the second narrowband communication signal; Detecting a data change point by binarizing the transmission data or the reception data by setting an appropriate threshold value based on the transmission data as a signal or reception data demodulated from the transmission data; Generating a first pulse signal having an appropriate width narrower than the period of the data clock for each point; and the frequency of the data clock at the local station and other stations A step of generating a second pulse signal having a width comparable to that of the first pulse signal from a correlation clock generated at a frequency obtained by multiplying the first pulse signal by the second pulse signal. And obtaining a correlation signal by passing through a low-pass filter .
[0006]
According to a second aspect of the present invention, in the distance measuring method according to the first aspect, the first and second narrowband communication signals include phase modulation (PM), frequency modulation (FM), and amplitude modulation (AM). This is a signal modulated based on one of the modulation methods.
[0009]
According to a third aspect of the invention, the distance measuring method according to claim 1, wherein, to generate an envelope signal from the correlation signal obtained after passing through the low-pass filter, the correlation signal of the position by detecting the peak position of the envelope signal The method further includes a step of setting the reference position.
[0010]
According to a fourth aspect of the present invention, in the distance measuring method according to the third aspect , in the step of generating the envelope signal of the correlation signal, if the correlation signal pulse is missing, the peak values of the pulses before and after the missing are calculated. The method further includes an interpolation step of interpolating missing pulses by inserting pulses of intermediate values thereof.
[0011]
According to a fifth aspect of the present invention, in the distance measuring method according to the third aspect , based on the time difference between the reference positions of the respective correlation signals, the other station determines whether the first narrowband communication signal is the second narrowband communication signal. A relative time difference is obtained, and the own station obtains a time difference between the second narrowband communication signal and the first narrowband communication signal.
[0012]
According to a sixth aspect of the present invention, in the distance measuring method according to the fifth aspect , the other station adds data representing the relative time difference to the second narrowband communication signal and transmits it to the own station. The distance between the local station and the other station is calculated on the basis of the time difference obtained in step 1 and the time difference data added to the second narrowband communication signal.
[0013]
The invention according to claim 7 is a distance measuring device provided in each station for measuring the distance between the own station and the other station using a narrowband communication method, wherein the first narrowband is transmitted from the own station to the other station. A transmission unit that transmits a communication signal; and a reception unit that receives a second narrowband communication signal transmitted from another station in response to reception of the first narrowband communication signal. The communication signal incorporates data relating to the relative time difference between the first narrowband communication signal and the second narrowband communication signal in the other station, and the receiving unit receives the first narrowband communication signal. Receiving means for receiving a part of the second narrowband communication signal, pulse means for pulsing the received signal, correlation clock pulse generating means for generating a correlation clock pulse, and a pulsed received signal, Correlation is performed with the correlation clock pulse, and the correlation signal is Correlating means, interpolating means for compensating for missing correlation pulses by interpolating the correlation signal from the correlating means, detecting the peak position based on the output signal of the interpolating means, and outputting it as a reference peak signal Calculating a delay time between the signals based on the peak detection means, the reference peak signal of the first narrowband communication signal and the second narrowband communication signal obtained by the peak detection means, and the delay time, And delay time calculating means for measuring a distance between the own station and another station based on the relative time difference incorporated in the second narrowband communication signal .
[0015]
According to the distance measuring method and the distance measuring apparatus of the present invention, there is provided a method capable of measuring a distance using a conventionally used narrowband communication by using a distance measuring method performed by spread spectrum communication. As a method for realizing the distance measurement, the received data waveform is first processed into a pulse shape so that the correlation operation performed in the spread spectrum communication can be performed, and the correlation operation is performed. Next, when data continues, a correlation waveform is lost. To compensate for this, waveform interpolation or estimation is performed to generate a desired correlation waveform. This makes it possible to apply the distance measurement method performed in spread spectrum communication to narrowband communication.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
[0017]
First, the distance measuring method of the present invention will be described.
[0018]
FIG. 1 is a schematic diagram for explaining a distance measuring method for measuring the distance between objects (for example, between wireless devices) using the return of radio waves. Here, an object (such as a wireless device) that performs distance measurement, that is, a side that first transmits a modulation signal for distance measurement is referred to as an own station, and an object (such as a wireless device) that performs distance measurement, that is, the first The side that has received the modulation signal for distance measurement will be referred to as another station. Therefore, an arbitrary object can be the local station or another station depending on the situation. FIG. 2 shows the timing relationship between the signals of the own station A and the other station B when there is no time delay between the modulation signal from the own station A and the transmission signal from the other station B received on the other station B side. FIG. 3 shows the local station A and the other station when there is a time delay between the modulation signal from the local station A and the transmission signal from the other station B received on the other station B side. The timing relationship of each signal of B is shown.
[0019]
1 and 2, when the distance L between the own station A side and the other station B side is to be obtained using the return of the radio wave, a modulation signal (first modulation signal) is transmitted from the own station A to the other station B. ) Send S. At this time, the own station A receives the modulation signal S transmitted by itself or sends a part of the modulation signal S to the receiving unit (this reception signal is R ′), and distance measurement is performed with reference to the reception timing at this time. I do. In the other station B, if there is no time delay (Δτ) between the modulation signal from the own station A side and the modulation signal (second modulation signal) R to be transmitted from the other station B, it remains as it is. The modulation signal R is transmitted to the own station A. The own station A detects the phase difference (T) between the modulated signal (R ′) transmitted and received by the own station A and the modulated signal R transmitted by the other station B and received by the own station A. The distance L is calculated based on the phase difference (T). Here, since the phase difference (T) corresponds to the round-trip delay time of the radio wave between the own station A and the other station B, the distance L is expressed by the following equation using the phase difference T.
[0020]
Distance L = c · T / 2 (c is the speed of light)
1 and 2, Δt is the time required for radio waves to reach from the own station A to the other station B (from the other station B to the own station A). Further, τm is a delay time until the modulation signal transmitted from the own station A is received by the own station A itself and its reference position is calculated.
[0021]
On the other hand, when there is a time delay (Δτ) between the modulation signal (Rs) received from the other station B from the own station A and the transmission modulation signal (Ss) from the other station B to the own station A. The phase difference (τs) between the modulation signals (Rs, Ss) is detected, and this phase difference information is placed on the transmission modulation signal (Ss) and transmitted to the own station A side. The own station A detects the phase difference (T) between the modulated signal (R ′) transmitted and received by itself and the received signal R from the other station B, and further, the phase difference data ( τs) is demodulated, an error caused by the phase difference on the other station B side is corrected, and the distance L to the other station B is calculated. Here, the distance L is expressed by the following equation using the phase difference T and τs.
[0022]
Distance L = c · (T−τs) / 2 (c is the speed of light)
The modulated signal described above is a signal modulated based on a modulation method other than the spread spectrum method, for example, PM (phase modulation), FM (frequency modulation), or AM (amplitude modulation). In the case of the ranging method using spread spectrum communication, the modulation signal can detect the reference position (reference peak) by performing despreading (correlation) with the reference PN code. If the modulated signal is used as it is, such a correlation operation of spread spectrum communication cannot be performed. Therefore, it is necessary to pulse the narrowband communication data (RD) so that correlation can be achieved.
[0023]
FIG. 4 is a timing chart showing the pulsing and correlation operation of the narrowband signal. By this operation, the reference position (reference peak) of each modulation signal can be detected.
[0024]
As shown in FIG. 4, the own station A binarizes the change point (0 → 1, 1 → 0) of the modulation signal (received data (RD)) from the other station B with a certain threshold value, A narrow pulse signal (Rp) is generated (FIGS. 4A, 4B, and 4C). Further, the other pulse (Cp) for correlation is generated from the correlation clock (CK) shown in FIG. 4 (d) (FIG. 4 (e)). This correlation clock has a very small frequency with respect to the clock of transmission / reception data. A correlation operation (multiplication of Rp and Cp) of these two pulse signals is performed (FIG. 4 (f)), and a correlation waveform (RCp) is generated by passing through the filter (FIG. 4 (g)). At this time, if there is no data change point in the received data, no correlation signal is output. Therefore, the missing correlation signal is compensated (FIG. 4 (h)), an envelope signal (RC) based on the peak value of each correlation pulse is generated (FIG. 4 (i)), and the maximum value of the signal is obtained. Is the reference peak signal (R) (FIG. 4 (j)). Similar processing is performed on the signal transmitted by the local station A and received by itself, and the reference peak signal (R ′) is generated.
[0025]
With the above processing, it is possible to detect the reference peak (reference position) of the received signal even if a narrowband signal is used, and distance measurement based on the delay time difference (phase difference) of the received signal becomes possible.
[0026]
FIG. 5 shows an embodiment of the configuration provided in the own station and other stations of the distance measuring system based on the distance measuring method described above.
[0027]
The ranging system shown in FIG. 5 includes a transmitting unit that transmits ranging data (modulated signal) and a receiving unit that receives the modulated signal and a transmission signal from another station.
[0028]
The transmission unit emits transmission data 2 based on the data clock “FD” generated by the data clock generation unit 1. The transmission data is modulated by the carrier wave (f) after passing through the band-pass filter (BPF) 3, amplified by the amplifier 4 and transmitted via the antenna. At this time, a part of the transmission signal is sent to the receiving unit side.
On the other hand, in the receiving section, a part of the transmission signal or the reception signal is amplified by the amplifier 5, modulated by the carrier wave (f), passed through the band pass filter (BPF) 6, and then signal level by the AGC (automatic gain controller) 7. To be constant. Thereafter, the output signal from the AGC 7 is sent to the data demodulator 8 to demodulate the received data. The received data is pulsed by the pulse generation unit 9 and multiplied with a correlation clock pulse to be correlated. Here, the correlation clock pulse is obtained by pulsing the correlation clock “Fc” generated by the correlation clock generation unit 10 by the pulse generation unit 11. After that, the correlation-processed signal passes through the LPF (low-pass filter) 12, the waveform shaping unit 13 compensates for the lack of the correlation pulse, the peak detector 14 generates the correlation pulse envelope signal, and the correlation signal A reference peak signal (R ′, R) is generated. Interpolation of the missing correlation pulse is performed by inserting a pulse having a pulse height intermediate between the pulse height values before and after the loss.
[0029]
A similar process is performed on the data clock “Fd” of the transmitter. That is, the data clock “Fd” generated by the data clock generation unit 1 is pulsed by the pulse generation unit 15, and after correlation with the correlation clock pulse, after passing through the LPF (low-pass filter) 16, the waveform shaping unit The waveform is interpolated at 17, and a correlation reference peak signal is obtained at the peak detector 18 (S).
[0030]
Here, using the reference peak signal (S or R ′) as a reference, the reference peak signal (R) of the received signal transmitted from another station is compared by the comparator 19, and the phase difference is compared by the time difference detection unit 20. To detect. At this time, when the wireless device is on the other station side, the time difference data represents the time delay (Δτ) between the received signal and the transmission signal, and therefore the data is transmitted to the own station side as data. Thereafter, the delay time calculation unit 21 calculates the distance together with the received signal (Δτ) sent from another station.
[0031]
【The invention's effect】
As described above, according to the present invention, a ranging function can be easily added to a currently used narrowband radio, and the position of the radio can be grasped.
[Brief description of the drawings]
FIG. 1 is a schematic diagram for explaining a distance measuring method for measuring a distance between objects by using radio wave folding;
FIG. 2 is a timing relationship between signals of own station A and other station B when there is no time delay between the modulation signal from own station A and the transmission signal from other station B received on the other station B side; Is shown.
FIG. 3 is a timing relationship between signals of own station A and other station B when there is a time delay between the modulated signal from own station A and the transmission signal from other station B received on the other station B side; Is shown. It is the schematic which showed the ranging method by this invention.
FIG. 4 is a timing chart showing pulsing of narrowband signals and correlation operations.
FIG. 5 shows an embodiment of a configuration provided in the own station and other stations of the distance measuring system based on the distance measuring method of the present invention.
[Explanation of symbols]
A own station B other station 1 data clock generating unit 8 data demodulating unit 9, 11, 15 pulse generating unit 10 correlation clock generating unit 13, 17 waveform shaping unit 14, 18 peak detecting unit 20 time difference detecting unit 21 delay time calculating unit

Claims (7)

狭帯域通信方式を用いて自局と他局間の距離を測定する測距方法であって、自局から他局へ第一の狭帯域通信信号を送信するステップと、他局で受信された第一の狭帯域通信信号と他局から自局へ送信する第二の狭帯域通信信号との相対時間差を検出し、その相対時間差のデータを第二の狭帯域通信信号に付加して自局に送信するステップと、自局で受信された第二の狭帯域通信信号と自局で送信した第一の狭帯域通信信号との時間差を検出し、その検出値と復調された前記相対時間差のデータとから自局と他局間の距離を算出するステップとを備え
他局における第一の狭帯域通信信号と第二の狭帯域通信信号との相対時間差を検出するステップと、自局における第二の狭帯域通信信号と第一の狭帯域通信信号との時間差を検出するステップの各々は、他局及び自局においてそれぞれ相関クロック信号を生成し、各局で相関用クロック信号と各狭帯域通信信号のベースバンド信号との間で相関をとることにより、自局及び他局での相対時間差を検出するステップを含み、
前記自局及び他局での相対時間差を検出するステップは、第一の狭帯域通信信号及び第二の狭帯域通信信号のベースバンド信号である送信データあるいはそれらから復調した受信データを基に、該送信データまたは受信データのデータ波形を適宜なしきい値を設けて2値化することによりデータの変化ポイントを検出するステップと、変化ポイント毎にデータクロックの周期より狭い適宜な幅の第一のパルス信号を生成するステップと、自局及び他局にて前記データクロックの周波数と異なる周波数で生成される相関クロックから、前記第一のパルス信号と同程度の幅を有する第二のパルス信号を生成するステップと、前記第一のパルス信号と前記第二のパルス信号とを掛け合わせ、ローパスフィルタを通すことによって相関信号を得るステップとを備えることを特徴とする測距方法。
A distance measurement method for measuring a distance between a local station and another station using a narrowband communication method, wherein the first narrowband communication signal is transmitted from the local station to the other station, and received by the other station. Detecting the relative time difference between the first narrowband communication signal and the second narrowband communication signal transmitted from the other station to the local station, and adding the relative time difference data to the second narrowband communication signal Detecting the time difference between the second narrowband communication signal received at the local station and the first narrowband communication signal transmitted at the local station, and the detected value and the demodulated relative time difference Calculating the distance between the own station and other stations from the data ,
Detecting a relative time difference between the first narrowband communication signal and the second narrowband communication signal in the other station; and a time difference between the second narrowband communication signal and the first narrowband communication signal in the local station. Each of the detecting steps generates a correlation clock signal in each of the other station and the own station, and correlates between the correlation clock signal and the baseband signal of each narrowband communication signal in each station, Detecting a relative time difference at another station,
The step of detecting the relative time difference between the local station and the other station is based on transmission data which is a baseband signal of the first narrowband communication signal and the second narrowband communication signal or reception data demodulated therefrom. A step of detecting a data change point by binarizing the data waveform of the transmission data or the reception data by providing an appropriate threshold value, and a first of an appropriate width narrower than the cycle of the data clock at each change point A step of generating a pulse signal, and a second pulse signal having a width similar to that of the first pulse signal from a correlation clock generated at a frequency different from the frequency of the data clock at the local station and another station. Generating a correlation signal by multiplying the first pulse signal and the second pulse signal and passing through a low-pass filter. Ranging method characterized by comprising the flop.
前記第一及び第二の狭帯域通信信号は、位相変調(PM)、周波数変調(FM)及び振幅変調(AM)のうちの一つの変調方式に基づいて変調された信号であることを特徴とする請求項1記載の測距方法。  The first and second narrowband communication signals are signals modulated based on one modulation method of phase modulation (PM), frequency modulation (FM), and amplitude modulation (AM). The distance measuring method according to claim 1. ローパスフィルタ通過後に得られる相関信号から包絡線信号を生成し、該包絡線信号のピーク位置を検出してその位置を相関信号の基準位置とするステップをさらに有することを特徴とする請求項記載の測距方法。Generating an envelope signal from the correlation signal obtained after passing through the low-pass filter, according to claim 1, characterized in that it further comprises a step of the reference position of the correlation signal of the position by detecting the peak position of the envelope signal Ranging method. 相関信号の包絡線信号を生成するステップにおいて、相関信号パルスが欠落している場合は、欠落の前後のパルスの波高値を基にそれらの中間値のパルスを挿入してすることによって欠落パルスを補間する補間ステップをさらに有することを特徴とする請求項記載の測距方法。In the step of generating the envelope signal of the correlation signal, if the correlation signal pulse is missing, the missing pulse is inserted by inserting the pulse of the intermediate value based on the peak value of the pulse before and after the missing. 4. The distance measuring method according to claim 3 , further comprising an interpolation step for performing interpolation. 各相関信号の基準位置の時間差に基づいて、他局では第一の狭帯域通信信号と第二の狭帯域通信信号間の相対時間差を求め、自局では第二の狭帯域通信信号と第一の狭帯域通信信号間の時間差を求めることを特徴とする請求項記載の測距方法。Based on the time difference of the reference position of each correlation signal, the other station obtains the relative time difference between the first narrowband communication signal and the second narrowband communication signal, and the own station determines the second narrowband communication signal and the first narrowband communication signal. 4. The distance measuring method according to claim 3 , wherein a time difference between the narrowband communication signals is obtained. 他局では前記相対時間差を表すデータを第二の狭帯域通信信号に付加して自局に送信し、自局では自局で求めた時間差と、第二の狭帯域通信信号に付加されていた時間差データとに基づいて、自局並びに他局間の距離を算出することを特徴とする請求項記載の測距方法。In other stations, data representing the relative time difference is added to the second narrowband communication signal and transmitted to the local station, and the local station adds the time difference obtained by the local station and the second narrowband communication signal. 6. The distance measuring method according to claim 5 , wherein a distance between the own station and another station is calculated based on the time difference data. 狭帯域通信方式を用いて自局と他局間の距離を測定する、各局に設けられた測距装置であって、自局から他局へ第一の狭帯域通信信号を送信する送信部と、該第一の狭帯域通信信号の受信に応じて他局から送信された第二の狭帯域通信信号を受信する受信部とからなり、該第二の狭帯域通信信号には、他局における前記第一の狭帯域通信信号と前記第二の狭帯域通信信号間の相対時間差に関するデータが組み込まれており、
前記受信部は、前記第一の狭帯域通信信号の一部と前記第二の狭帯域通信信号とを受信する受信手段と、受信信号をパルス化するパルス手段と、相関クロックパルスを生成する相関クロックパルス生成手段と、パルス化された受信信号と相関クロックパルスとの間で相関処理を行い、相関信号を得る相関手段と、該相関手段からの相関信号に補間処理を行うことで相関パルスの欠落を補う補間手段と、該補間手段の出力信号に基づいてそのピーク位置を検出し、基準ピーク信号として出力するピーク検出手段と、該ピーク検出手段により得られた、第一狭帯域通信信号並びに第二狭帯域通信信号の基準ピーク信号に基づいて各信号間の遅延時間を算出し、この遅延時間と、前記第二の狭帯域通信信号に組み込まれた前記相対時間差に基づいて、自局及び他局間の距離を測定する遅延時間算出手段とを有することを特徴とする測距装置。
A distance measuring device provided in each station for measuring a distance between the own station and another station using a narrowband communication method, wherein the transmitter transmits a first narrowband communication signal from the own station to the other station; A reception unit that receives a second narrowband communication signal transmitted from another station in response to reception of the first narrowband communication signal, and the second narrowband communication signal includes Data relating to the relative time difference between the first narrowband communication signal and the second narrowband communication signal is incorporated,
The receiving unit includes a receiving unit that receives a part of the first narrowband communication signal and the second narrowband communication signal, a pulse unit that pulses the received signal, and a correlation that generates a correlation clock pulse. Correlation processing is performed between the clock pulse generation means, the pulsed received signal and the correlation clock pulse to obtain a correlation signal, and the correlation signal from the correlation means is interpolated to perform correlation processing. Interpolating means for compensating for the omission, peak detecting means for detecting the peak position based on the output signal of the interpolating means, and outputting as a reference peak signal, the first narrowband communication signal obtained by the peak detecting means, and Based on the reference peak signal of the second narrowband communication signal, the delay time between each signal is calculated, and based on this delay time and the relative time difference incorporated in the second narrowband communication signal Distance measuring apparatus characterized by having a delay time calculating means for measuring a distance between the own station and other stations.
JP2000401361A 2000-12-28 2000-12-28 Ranging method and ranging device Expired - Fee Related JP4520633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000401361A JP4520633B2 (en) 2000-12-28 2000-12-28 Ranging method and ranging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000401361A JP4520633B2 (en) 2000-12-28 2000-12-28 Ranging method and ranging device

Publications (2)

Publication Number Publication Date
JP2002202364A JP2002202364A (en) 2002-07-19
JP4520633B2 true JP4520633B2 (en) 2010-08-11

Family

ID=18865804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000401361A Expired - Fee Related JP4520633B2 (en) 2000-12-28 2000-12-28 Ranging method and ranging device

Country Status (1)

Country Link
JP (1) JP4520633B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4553634B2 (en) * 2004-06-03 2010-09-29 セイコープレシジョン株式会社 Distance measuring device and distance measuring method
JP4704412B2 (en) * 2007-11-27 2011-06-15 株式会社日本自動車部品総合研究所 Object orientation detection apparatus and object orientation detection system
US20170115375A1 (en) * 2014-03-28 2017-04-27 Nec Corporation Wireless device, distance estimation system, position estimation system, distance estimation method, position estimation method, distance-estimation-program recording medium, and position-estimation-program recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226976A (en) * 1994-02-15 1995-08-22 Toshiba Corp Radio communication system
JPH10123243A (en) * 1996-10-05 1998-05-15 Oerlikon Contraves Ag Method and equipment for measuring distance between two stations connected through communication channel
JPH10234072A (en) * 1997-02-20 1998-09-02 Matsushita Electric Ind Co Ltd Mobile communication equipment with range measurement function

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297129A (en) * 1992-04-21 1993-11-12 Clarion Co Ltd Distance measuring device
JP4460698B2 (en) * 1999-12-24 2010-05-12 クラリオン株式会社 Ranging method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226976A (en) * 1994-02-15 1995-08-22 Toshiba Corp Radio communication system
JPH10123243A (en) * 1996-10-05 1998-05-15 Oerlikon Contraves Ag Method and equipment for measuring distance between two stations connected through communication channel
JPH10234072A (en) * 1997-02-20 1998-09-02 Matsushita Electric Ind Co Ltd Mobile communication equipment with range measurement function

Also Published As

Publication number Publication date
JP2002202364A (en) 2002-07-19

Similar Documents

Publication Publication Date Title
US7564400B2 (en) Spread spectrum radar apparatus
US7529551B2 (en) Ranging and positioning system, ranging and positioning method, and radio communication apparatus
US8726733B2 (en) Ultrasonic measuring method and ultrasonic measuring apparatus
CN109547059B (en) Chirp-GFSK combined spread spectrum modulation and demodulation system
US8416641B2 (en) Acoustic distance measurement system having cross talk immunity
WO2007094266A1 (en) Distance measuring system
US8254437B2 (en) Transmitting apparatus, receiving apparatus and communication system
JP2661534B2 (en) Spread spectrum receiving method and receiver
US7822159B2 (en) Master side communication apparatus and slave side communication apparatus
CA2487817A1 (en) Satellite twta on-line non-linearity measurement
JP4520633B2 (en) Ranging method and ranging device
JP4750660B2 (en) Receiving device, positioning system, and positioning method
JPH05256936A (en) Onboard radar apparatus
JP2006250777A (en) Ranging system
JP2008085558A5 (en)
JP4460698B2 (en) Ranging method and apparatus
JP4258301B2 (en) Receiving device, wireless communication system, and signal receiving method
JP5892288B2 (en) Radar and object detection method
JP3800157B2 (en) Ranging system
JP6959174B2 (en) Communications system
JP6966371B2 (en) Communications system
JP4877031B2 (en) Wireless communication device
JP2922702B2 (en) Ranging system
JPH1013315A (en) Propagation delay profile measurement system
JP2864930B2 (en) Synchronization holding device in spread spectrum communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees