JP4519926B2 - Natural disaster occurrence detection system - Google Patents

Natural disaster occurrence detection system Download PDF

Info

Publication number
JP4519926B2
JP4519926B2 JP2008117629A JP2008117629A JP4519926B2 JP 4519926 B2 JP4519926 B2 JP 4519926B2 JP 2008117629 A JP2008117629 A JP 2008117629A JP 2008117629 A JP2008117629 A JP 2008117629A JP 4519926 B2 JP4519926 B2 JP 4519926B2
Authority
JP
Japan
Prior art keywords
detection
circuit
disaster
transistor
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008117629A
Other languages
Japanese (ja)
Other versions
JP2009265030A (en
Inventor
正義 武井
Original Assignee
正義 武井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正義 武井 filed Critical 正義 武井
Priority to JP2008117629A priority Critical patent/JP4519926B2/en
Publication of JP2009265030A publication Critical patent/JP2009265030A/en
Application granted granted Critical
Publication of JP4519926B2 publication Critical patent/JP4519926B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Emergency Alarm Devices (AREA)
  • Alarm Systems (AREA)

Description

本発明は、鉄道施設、自動車道路、発電所、工場、農地、人家に対する自然災害、例えば、暴風雨、豪雨等による冠水、傾斜地に生じる土石流・地すべり・雪崩、河川の氾濫等、広範囲な地域に発生する自然災害の発生を予測して検知するための自然災害発生検知システムに関する。   The present invention occurs in a wide range of areas such as natural disasters to railway facilities, motorways, power plants, factories, farms, and people, such as floods caused by storms, heavy rains, debris flows, landslides, avalanches, river floods, etc. The present invention relates to a natural disaster occurrence detection system for predicting and detecting the occurrence of natural disasters.

例えば土砂崩れ・雪崩・河川の氾濫等の自然災害が起こる場合には、その前兆として土砂の移動や河川の増水等による地形状態又は水位状態(以下、土地状態等という)の変化が発生するので、土地状態等の変化をセンサで検知すれば自然災害の発生を予測して検知することができる。
自然災害の発生を予測して検知する装置としては、図10に示すように、抵抗A,抵抗A´,抵抗B,抵抗B´で構成されるブリッジ回路60において、抵抗B´に対して断線感知器を直列に接続するとともに、抵抗B´に対して短絡感知器を並列に接続する構成が存在する。断線感知器及び短絡感知器は、自然災害が発生し易い場所に設置して自然災害の前兆となる土地状態等の変化(例えば土砂の移動が発生すること)による機械的な動作により接点が閉じる(若しくは開く)構成により、その設置場所における断線や短絡をスポット的に感知するものである。
そして、上記回路において、「抵抗Aの抵抗値=抵抗A´の抵抗値」「抵抗Bの抵抗値=抵抗B´の抵抗値+配線抵抗C」とすることで、通常時においてブリッジ回路の平衡性を維持し、断線感知器61や短絡感知器62で断線や短絡を感知した場合にブリッジ回路60の抵抗値の平衡性が崩れることで、ブリッジ回路60の中間位置同士間に接続された検知器65に電流が流れて断線や短絡の発生を検知するものである。
For example, when natural disasters such as landslides, avalanches, and river floods occur, changes in the terrain or water level (hereinafter referred to as land conditions, etc.) occur due to the movement of landslides or increased river water. If changes such as land conditions are detected by a sensor, the occurrence of a natural disaster can be predicted and detected.
As a device for predicting and detecting the occurrence of a natural disaster, as shown in FIG. 10, in a bridge circuit 60 composed of a resistor A, a resistor A ′, a resistor B, and a resistor B ′, a disconnection with respect to the resistor B ′. There is a configuration in which the sensors are connected in series and the short-circuit sensor is connected in parallel to the resistor B ′. Disconnection detectors and short-circuit detectors are installed in places where natural disasters are likely to occur, and the contacts close by mechanical action due to changes in land conditions (such as the movement of earth and sand) that are precursors of natural disasters. With the (or open) configuration, a disconnection or a short circuit at the installation site is spot-detected.
In the above circuit, the balance of the bridge circuit is normally obtained by setting “the resistance value of the resistor A = the resistance value of the resistor A ′” and “the resistance value of the resistor B = the resistance value of the resistor B ′ + the wiring resistance C”. When the disconnection sensor 61 or the short circuit sensor 62 detects disconnection or a short circuit, the balance of the resistance value of the bridge circuit 60 is lost, so that the detection of the connection between the intermediate positions of the bridge circuit 60 is performed. A current flows through the device 65 to detect the occurrence of disconnection or short circuit.

また、雪崩等の自然災害を検知するに際して、その規模や発生時期の把握を行うことができる装置としては、特許文献1のような自然災害発生検出装置が提案されている。
特許第3715493号
Further, as a device capable of grasping the scale and occurrence time when detecting a natural disaster such as an avalanche, a natural disaster occurrence detection device as disclosed in Patent Document 1 has been proposed.
Japanese Patent No. 3715493

図10に示した自然災害発生検出装置の構造によれば、断線感知器及び短絡感知器の接点は、平常時にオン状態とし土石流や土砂流による浸水が生じた時にオフ状態となる(若しくは、逆にオフ状態からオン状態になる)機械的な動作を伴う構成であるため、動作完了までに時間を要し土地状態等の変化を感知するのにタイムラグが生じるという問題点があった。
また、上記構造によれば、断線感知器61や短絡感知器62を設置した場所でのスポット的な点検知であり、ある程度の範囲で検知を行うためには、多数の感知器を設置する必要があり、費用がかかるという問題があった。すなわち、上述の自然災害発生検出装置では、断線や短絡の発生を広域範囲な一定領域で検知(線状的な検知)することができないという問題点があった。
According to the structure of the natural disaster occurrence detection apparatus shown in FIG. 10, the contact points of the disconnection detector and the short-circuit detector are turned on in the normal state and turned off when the debris flow or the debris flow is inundated (or vice versa). In other words, it takes time to complete the operation, and there is a problem in that there is a time lag in sensing changes in the land state and the like.
In addition, according to the above structure, spot detection is performed at a place where the disconnection sensor 61 and the short circuit sensor 62 are installed. In order to perform detection within a certain range, it is necessary to install a large number of sensors. There was a problem that it was expensive. That is, the above-described natural disaster occurrence detection device has a problem that it is impossible to detect the occurrence of a disconnection or a short circuit in a wide area (a linear detection).

また、上述した自然災害発生検出装置によれば、ブリッジ回路60において抵抗値の均衡を保つため、「抵抗Bの抵抗値=抵抗B´の抵抗値+配線抵抗C」であることが要件となり、配線抵抗Cは設置場所の配線の長さにより変動するので、それに応じて抵抗B´の抵抗値を調整することが必要となり煩雑であるという問題点があった。   Further, according to the natural disaster occurrence detection device described above, in order to keep the resistance value balanced in the bridge circuit 60, it is a requirement that “resistance value of the resistor B = resistance value of the resistor B ′ + wiring resistance C”. Since the wiring resistance C varies depending on the length of the wiring at the installation location, it is necessary to adjust the resistance value of the resistance B ′ accordingly, and there is a problem that it is complicated.

本発明は上記実情に鑑みて提案されたもので、災害検知線を引き回すことで広範囲な場所での断線及び短絡の発生を一つの回路で選択的に検知できるとともに、一定範囲の地域において災害を検知するに際して、災害の進行状況を把握することができる自然災害発生検知システムを提供することを目的としている。   The present invention has been proposed in view of the above circumstances, and it is possible to selectively detect the occurrence of disconnection and short-circuit in a wide range by using a single circuit by drawing a disaster detection line, and to detect a disaster in a certain area. It is an object of the present invention to provide a natural disaster occurrence detection system that can grasp the progress of a disaster at the time of detection.

上記目的を達成するため請求項1の自然災害発生検知システムは、電流が流れることにより災害検知線の断線を検知する断線検知回路と、電流が流れることにより災害検知線の短絡を検知する短絡検知回路と、自然災害発生予測領域に設置した定電流器とを直流電源に対してそれぞれ並列に接続し、
前記災害検知線は、前記定電流器に対して配線を引き回して接続するとともに、配線における導電性部分が露出した裸線部を有する一方、
前記災害検知線が正常である場合には前記断線検知回路及び前記短絡検知回路に電流を流すことなく、前記災害検知線が断線した際に前記断線検知回路にのみ選択的に電流を流すとともに、前記災害検知線が短絡した際に前記短絡検知回路にのみ選択的に電流を流すように構成した制御回路と、
を具備する自然災害発生検知装置を複数準備し、前記複数の自然災害発生検知装置で一定範囲の地域における災害を検知するシステムとし、前記一定範囲の地域における複数地区に各自然災害発生検知装置の災害検知線を設置することを特徴としている。
In order to achieve the above object, the natural disaster occurrence detection system according to claim 1 includes a disconnection detection circuit that detects a disconnection of a disaster detection line when a current flows, and a short circuit detection that detects a short circuit of the disaster detection line when a current flows. Connect the circuit and the constant current device installed in the natural disaster occurrence prediction area in parallel to the DC power supply,
The disaster detection line is connected to the constant current device by routing the wiring, and has a bare wire portion where a conductive portion of the wiring is exposed,
When the disaster detection line is normal, without passing a current to the disconnection detection circuit and the short circuit detection circuit, when the disaster detection line is disconnected, a current is selectively passed only to the disconnection detection circuit, and A control circuit configured to selectively pass a current only to the short-circuit detection circuit when the disaster detection line is short-circuited;
Prepare multiple natural disaster occurrence detection device having a, a system for detecting the disaster in the region of a certain range by the plurality of natural disaster occurrence detection devices, each natural disaster occurrence detection to your Keru multiple district in the area of the certain range It is characterized by installing a disaster detection line for the device.

請求項2の自然災害発生検知システムは、自然災害発生検知装置を複数準備し、前記複数の自然災害発生検知装置で一定範囲の地域における災害を検知するシステムとし、前記一定範囲の地域における複数地区に各自然災害発生検知装置の災害検知線を設置する。
そして、各自然災害発生検知装置は、第1のトランジスタが導通状態となって電流が流れることにより災害検知線の断線を検知する断線検知回路と、第2のトランジスタが導通状態となって電流が流れることにより災害検知線の短絡を検知する短絡検知回路と、自然災害発生予測領域に設置した定電流器とを直流電源に対してそれぞれ並列に接続して成り、次の構成を含むことを特徴としている。
前記災害検知線は、前記定電流器に対して配線を引き回して接続する。
前記災害検知線は、配線における導電性部分が露出した裸線部を有する。
前記第1のトランジスタのオン・オフ制御を行う第3のトランジスタを設ける。
前記第3のトランジスタのベースに電位差を発生させるための断線検知側電位差抵抗を設ける。
前記第2のトランジスタのオン・オフ制御を行う第4のトランジスタを設ける。
前記第4のトランジスタのオン・オフ制御を行う第5のトランジスタを設ける。
前記第5のトランジスタのベースに接続された定電圧ダイオードを設ける。
前記定電圧ダイオードに電位差を発生させるための短絡検知側電位差抵抗を設ける。
Natural disaster detection system of claim 2, Prepare multiple natural disaster detection apparatus, and system for detecting disaster in the region of the predetermined range in the plurality of natural disaster detection device, Keru our regional of the predetermined range Install disaster detection lines for each natural disaster occurrence detection device in multiple districts.
Each of the natural disaster occurrence detection devices includes a disconnection detection circuit that detects disconnection of the disaster detection line when the first transistor is in a conductive state and a current flows, and a current is generated when the second transistor is in a conductive state. A short circuit detection circuit that detects a short circuit of a disaster detection line by flowing and a constant current device installed in a natural disaster occurrence prediction area are connected in parallel to the DC power supply, respectively, and includes the following configuration: It is said.
The disaster detection line is connected to the constant current device by routing the wiring.
The disaster detection line has a bare wire portion where a conductive portion in the wiring is exposed.
A third transistor for controlling on / off of the first transistor is provided.
A disconnection detecting side potential difference resistor for generating a potential difference is provided at the base of the third transistor.
A fourth transistor that performs on / off control of the second transistor is provided.
A fifth transistor for controlling on / off of the fourth transistor is provided.
A constant voltage diode connected to the base of the fifth transistor is provided.
A short-circuit detection-side potential difference resistor for generating a potential difference in the constant voltage diode is provided.

自然災害発生検知装置の災害検知線は、導電性部分が被覆された被覆部を有し、この被覆部を支柱に固定して自然災害発生予測領域に設置することが好ましい。
また、自然災害発生検知装置の定電流器は、自然災害発生予測領域において、災害検知線の短絡が発生し易い箇所に設置することが好ましい。
It is preferable that the disaster detection line of the natural disaster occurrence detection apparatus has a covering portion covered with a conductive portion, and the covering portion is fixed to a support column and installed in a natural disaster occurrence prediction region.
Moreover, it is preferable that the constant current device of the natural disaster occurrence detection device is installed at a location where a short circuit of the disaster detection line is likely to occur in the natural disaster occurrence prediction region.

請求項3は、請求項1又は請求項2に記載の自然災害発生検知システムにおいて、前記複数地区に災害の予兆を検知できる地域が含まれることにより、災害の進行状態を把握可能とすることを特徴としている。   According to claim 3, in the natural disaster occurrence detection system according to claim 1 or 2, it is possible to grasp the progress of the disaster by including an area where the signs of the disaster can be detected in the plurality of districts. It is a feature.

請求項4は、請求項2に記載の自然災害発生検知システムにおいて、各自然災害発生検知装置の前記直流電源の+端子側に、ON/OFFスイッチから構成される誤動作判別回路を接続したことを特徴としている。   According to a fourth aspect of the present invention, in the natural disaster occurrence detection system according to the second aspect, a malfunction determination circuit composed of an ON / OFF switch is connected to the + terminal side of the DC power source of each natural disaster occurrence detection device. It is a feature.

請求項5は、請求項2又は請求項4に記載の自然災害発生検知システムにおいて、各自然災害発生検知装置の前記直流電源の−端子側に、断線検知回路及び短絡検知回路側と、断線検知側電位差抵抗及び短絡検知側電位差抵抗とを選択的に接続する選択スイッチを含んで構成される誤動作判別回路を接続したことを特徴としている。   According to a fifth aspect of the present invention, in the natural disaster occurrence detection system according to the second or fourth aspect, the disconnection detection circuit and the short-circuit detection circuit side are connected to the negative terminal side of the DC power source of each natural disaster occurrence detection device, and the disconnection detection is performed. A malfunction determination circuit including a selection switch for selectively connecting the side potential difference resistor and the short circuit detection side potential difference resistor is connected.

本発明によれば、定電流器に対して配線を引き回して接続することで災害検知線を構成するので、災害検知線において地形に適した引き回し線の構造を得ることができ、災害検知線の断線や短絡を検知しやすい構成とすることができるとともに、配線を引き回した広い範囲において災害の発生を予測して検知(線状検知)することができる。
そして、複数の自然災害発生検知装置で一定範囲の地域における災害を検知するシステムとし、災害検知線を設置する複数地区において、災害の予兆を検知できる地域を含ませることにより、一定範囲の地域において災害を検知するに際して、災害の進行状況を把握することができ、一定範囲の地域内の災害発生に対して的確な対応をすることができる。
According to the present invention, since the disaster detection line is configured by routing and connecting the wiring to the constant current device, it is possible to obtain a structure of the routing line suitable for the topography in the disaster detection line. It can be configured to easily detect disconnection or short circuit, and can detect and detect (linear detection) the occurrence of a disaster in a wide range where the wiring is routed.
A system that detects disasters in a certain area with multiple natural disaster occurrence detection devices and includes areas that can detect signs of disaster in multiple areas where disaster detection lines are installed. When detecting a disaster, the progress of the disaster can be grasped, and an appropriate response can be made to the occurrence of a disaster within a certain area.

自然災害発生予測領域に設置した定電流器に接続された災害検知線に対して、断線検知回路及び短絡検知回路が並列に接続されているので、同一地点の断線検知及び短絡検知を行うことができる。   Since the disconnection detection circuit and the short-circuit detection circuit are connected in parallel to the disaster detection line connected to the constant current device installed in the natural disaster occurrence prediction area, disconnection detection and short-circuit detection at the same point can be performed. it can.

本発明の実施の一例について、図面を参照しながら説明する。
本発明の自然災害発生検知システムは、図1に示すように、自然災害発生検知装置を複数準備し、複数の自然災害発生検知装置で一定範囲の地域Xにおける災害を検知するシステムとしている。
各自然災害発生検知装置は、自然災害発生予測領域に設置した定電流器4と、定電流器4に接続された災害検知線3と、災害検知線3の断線を検知する断線検知回路1と、災害検知線3の短絡を検知する短絡検知回路2と直流電源5に対してそれぞれ並列に接続して構成されている。
各自然災害発生検知装置の断線検知回路1、短絡検知回路2、直流電源5は、同一のボックス100内に収納され、このボックス100に設けられた各地区の断線又は短絡のモニター手段(図示せず)により一つの場所で監視できるようになっている。モニター手段は、各自然災害発生検知装置に対して断線用と短絡用の2個が設けられ、例えば、断線又は短絡時に点灯する又は警報を発するような構造となっている。
An example of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the natural disaster occurrence detection system according to the present invention is a system that prepares a plurality of natural disaster occurrence detection devices and detects a disaster in a region X in a certain range with the plurality of natural disaster occurrence detection devices.
Each natural disaster occurrence detection device includes a constant current device 4 installed in a natural disaster occurrence prediction region, a disaster detection line 3 connected to the constant current device 4, and a disconnection detection circuit 1 that detects disconnection of the disaster detection line 3. The short circuit detection circuit 2 for detecting a short circuit of the disaster detection line 3 and the DC power source 5 are connected in parallel.
The disconnection detection circuit 1, the short circuit detection circuit 2, and the DC power source 5 of each natural disaster occurrence detection device are housed in the same box 100, and the disconnection or short circuit monitoring means (not shown) provided in each box 100 in each area. To monitor in one place. Two monitoring means are provided for each natural disaster occurrence detection device, one for disconnection and one for short circuit. For example, the monitor means is configured to light up or issue an alarm when disconnection or short circuit occurs.

各自然災害発生検知装置の災害検知線3は、一定範囲の地域Xにおいて、災害を検知し易い(予想し易い)複数地区a,b,c,dに設置されている。複数地区には、災害の予兆を検知できる地域を含ませることにより、複数の自然災害発生検知装置により災害の発生当初からの進行状況を把握可能にしている。
災害を検知し易い複数地区a,b,c,dとは、土砂崩れや雪崩が頻繁に発生する箇所に加えて、例えば、道路・鉄道におけるトンネルの両側位置、河川の分岐箇所、道路や鉄道の分岐点等を含ませることが考えられ、複数地区a,b,c,dの全体を監視することで、予兆を含む災害の発生当初からの進行状況が把握できるようにする。
The disaster detection line 3 of each natural disaster occurrence detection device is installed in a plurality of districts a, b, c, and d where it is easy to detect (predict) a disaster in a certain range of region X. By including areas where signs of disaster can be detected in multiple districts, it is possible to grasp the progress from the beginning of the disaster using multiple natural disaster occurrence detection devices.
Multiple districts a, b, c, and d that are easy to detect disasters include areas where landslides and avalanches occur frequently, as well as locations on both sides of tunnels, river branches, roads and railways in roads and railways. It is conceivable to include branching points, etc., and by monitoring the whole of a plurality of districts a, b, c, d, it is possible to grasp the progress from the beginning of the disaster including the sign.

一定範囲の地域Xにおいて災害が発生する場合、過去の例から地区a,d,c,bの順で土砂崩れ等の災害が発生し易いことが解っていれば、地区aに災害検知線3を設置した災害発生検知装置が断線や短絡を検知した場合、災害発生の予兆であると判断でき、続いて地区dの災害検知線3で断線や短絡を検知した際に、それまでに要した時間等から災害規模を推定することで、非難勧告が必要になる状態(例えば、地区bの災害検知線3が断線や短絡を検知する状況)までの時間を予想することができ、一定範囲の地域X内の災害発生に対して的確な対応をすることができる。
また、自然災害発生検知システムにおける各自然災害発生検知装置の直流電源5はそれぞれ独立しているので、一つの直流電源5に故障等が発生した場合においても、他の自然災害発生検知装置の動作に影響を与えることがない。各自然災害発生検知装置で電源を共有にした場合は、雷等で一つの自然災害発生検知装置が電源部まで被害が及ぶと、他の自然災害発生検知装置の回路が正常であっても使用不可能になるという欠点がある。
If a disaster occurs in a certain range of area X, if it is known from the past examples that disasters such as landslides are likely to occur in the order of districts a, d, c, b, the disaster detection line 3 is set in the district a. When the installed disaster occurrence detection device detects a disconnection or short circuit, it can be determined that it is a sign of the occurrence of a disaster, and when a disconnection or short circuit is subsequently detected on the disaster detection line 3 in the district d, the time taken until then By estimating the disaster scale from the etc., it is possible to predict the time until a blame recommendation is required (for example, the situation where the disaster detection line 3 in the district b detects a disconnection or a short circuit), and a certain range of areas It is possible to accurately respond to disasters in X.
Moreover, since the DC power supply 5 of each natural disaster occurrence detection device in the natural disaster occurrence detection system is independent, even if a failure or the like occurs in one DC power supply 5, the operation of other natural disaster occurrence detection devices Will not be affected. When each natural disaster occurrence detection device shares power, if one natural disaster occurrence detection device damages the power supply due to lightning, etc., it will be used even if other natural disaster occurrence detection devices are normal There is a drawback that it becomes impossible.

以下、自然災害発生検知システムを構成する各自然災害発生検知装置の構造について、図2〜図4を参照しながら説明する。
断線検知回路1は、断線検知回路1に直列に接続された第1のトランジスタ10が導通状態となって電流が流れることにより、この電流値を計測回路(図示せず)で測定することで災害検知線3の断線を検知し、例えばリレー回路(図示せず)を動作させ、自然災害検知装置が設置された近隣に災害発生を知らせる警報器を駆動(警報を鳴らす)して報知するようにしたり、有線・無線・衛星通信で消防署等に通達するように構成されている。
第1のトランジスタ10のベース側には、この第1のトランジスタ10のオン・オフ制御を行うための第3のトランジスタ11のコレクタ側が接続されている。第3のトランジスタ11のベース・エミッタ間には、第3のトランジスタ11のベースに電位差を発生させるための断線検知側電位差抵抗12が接続されることで、第1のトランジスタ10のオン・オフを制御する制御回路が構成されている。
Hereinafter, the structure of each natural disaster occurrence detection device constituting the natural disaster occurrence detection system will be described with reference to FIGS.
The disconnection detection circuit 1 measures the current value with a measurement circuit (not shown) when the first transistor 10 connected in series to the disconnection detection circuit 1 becomes conductive and a current flows. The disconnection of the detection line 3 is detected, for example, a relay circuit (not shown) is operated, and an alarm device that notifies of the occurrence of a disaster is driven (sounds an alarm) in the vicinity where the natural disaster detection device is installed. Or, it is configured to notify the fire department, etc. via wired, wireless or satellite communications.
The collector side of the third transistor 11 for performing on / off control of the first transistor 10 is connected to the base side of the first transistor 10. Between the base and emitter of the third transistor 11, a disconnection detection side potential difference resistor 12 for generating a potential difference is connected to the base of the third transistor 11, so that the first transistor 10 can be turned on / off. A control circuit for controlling is configured.

短絡検知回路2は、短絡検知回路2に直列に接続された第2のトランジスタ20が導通状態となって電流が流れることにより、この電流値を計測回路(図示せず)で測定することで災害検知線の短絡を検知し、例えばリレー回路(図示せず)を動作させ、自然災害検知装置が設置された近隣に災害発生を知らせる警報器を駆動(警報を鳴らす)して報知するようにしたり、有線・無線・衛星通信で消防署等に通達するように構成されている。
第2のトランジスタ20のベース側には、この第2のトランジスタのオン・オフ制御を行う第4のトランジスタ21のコレクタ側が接続されている。第4のトランジスタ21のベース・エミッタ間には、この第4のトランジスタ21のオン・オフ制御を行う第5のトランジスタ22が接続されている。
第5のトランジスタ22のベース側には定電圧ダイオード23が接続され、この定電圧ダイオードと第5のトランジスタのエミッタ間に、定電圧ダイオード23を介して、この定電圧ダイオード23に電位差を発生させて第5のトランジスタのベースに電流を流すための短絡検知側電位差抵抗24が接続されている。
したがって、第4のトランジスタ21、第5のトランジスタ22、定電圧ダイオード23、短絡検知側電位差抵抗24により、第2のトランジスタ20のオン・オフを制御する制御回路が構成されている。
When the second transistor 20 connected in series with the short-circuit detection circuit 2 is in a conductive state and the current flows, the short-circuit detection circuit 2 measures the current value with a measurement circuit (not shown), thereby causing a disaster. For example, a short circuit of the detection line is detected, for example, a relay circuit (not shown) is operated, and an alarm device for notifying the occurrence of a disaster is activated (sounding an alarm) in the vicinity where the natural disaster detection device is installed. It is configured to notify fire departments, etc. via wired, wireless and satellite communications.
The base side of the second transistor 20 is connected to the collector side of the fourth transistor 21 that performs on / off control of the second transistor. Between the base and emitter of the fourth transistor 21, a fifth transistor 22 for controlling on / off of the fourth transistor 21 is connected.
A constant voltage diode 23 is connected to the base side of the fifth transistor 22, and a potential difference is generated in the constant voltage diode 23 via the constant voltage diode 23 between the constant voltage diode and the emitter of the fifth transistor. In addition, a short-circuit detection-side potential difference resistor 24 for flowing a current to the base of the fifth transistor is connected.
Therefore, the fourth transistor 21, the fifth transistor 22, the constant voltage diode 23, and the short-circuit detection side potential difference resistor 24 constitute a control circuit that controls on / off of the second transistor 20.

断線検知側電位差抵抗12において、第3のトランジスタ11のベースに接続された側は、災害検知線3及び定電流器4に接続されている。
同様に、短絡検知側電位差抵抗24において、第5のトランジスタ22のベースに接続された側は、災害検知線3及び定電流器4に接続されている。
In the disconnection detection side potential difference resistor 12, the side connected to the base of the third transistor 11 is connected to the disaster detection line 3 and the constant current device 4.
Similarly, in the short circuit detection side potential difference resistor 24, the side connected to the base of the fifth transistor 22 is connected to the disaster detection line 3 and the constant current device 4.

定電流器4は、災害検知線3の正常時に回路に一定の電流が流れるようにするためのもので、例えば抵抗から構成されている。災害検知線3に短絡が発生した場合、図3に示すように、短絡箇所の抵抗Rsとして配線抵抗を無視すると、合成抵抗値Rt(全体の抵抗)は、抵抗Rsと定電流器4の抵抗R1と並列接続となり、その値は(RRs/(R+Rs))となる。この合成抵抗値Rtは、Rの値より小さくなるので、正常時及び短絡時の直流電源電圧をVとすると、正常時に災害検知回路3を流れる電流I(V/R)に対して、短絡時の短絡電流Isは、Is=V/Rtとなり、Rt<Rであるため、電流Iより大きな値となる。この短絡電流Is(V/Rt)が災害検知線3の正常時に流れる電流I(V/R)と十分区別できる値となるように,予め定電流器4の抵抗Rが設定されている。 The constant current device 4 is for making a constant current flow through the circuit when the disaster detection line 3 is normal, and is composed of a resistor, for example. When a short circuit occurs in the disaster detection line 3, as shown in FIG. 3, if the wiring resistance is ignored as the resistance Rs of the short circuit location, the combined resistance value Rt (total resistance) is the resistance of the resistance Rs and the constant current device 4. R1 is connected in parallel, and the value is (R 1 Rs / (R 1 + Rs)). The combined resistance value Rt is becomes smaller than the value of R 1, when the V DC power voltage during normal operation and short-circuit, with respect to the current flowing through the disaster detection circuit 3 in the normal I (V / R 1), short-circuit current is during short circuit, is = V / Rt becomes, Rt <because it is R 1, a larger value than the current I. The resistor R 1 of the constant current device 4 is set in advance so that the short-circuit current Is (V / Rt) is a value that can be sufficiently distinguished from the current I (V / R 1 ) that flows when the disaster detection line 3 is normal. .

災害検知線3は、定電流器4に対して自然災害の発生を予測して検知したい場所(丘陵の斜面や頂上部、谷、河川・湖の堤防等)に配線を引き回して接続するようになっている。この構成により、配線を引き回した広い範囲において、災害検知線3に発生する断線や短絡を検知可能とすることで、自然災害の前兆となる土地状態等の変化を検知することができる。
配線の引き回しの具体的な構造は、自然災害の発生を予測して検知し易い場所や検知したい災害の種類によって異なるものであり、具体的な配線の引き回し例については後述する。
The disaster detection line 3 is connected to the constant current device 4 by routing the wiring to a place (prevention of hill, top, valley, river / lake embankment, etc.) where the occurrence of a natural disaster is predicted and detected. It has become. With this configuration, by making it possible to detect disconnection and short-circuit that occur in the disaster detection line 3 in a wide range where the wiring is routed, it is possible to detect changes in land conditions and the like that are precursors of natural disasters.
The specific structure of the wiring is different depending on the place where it is easy to detect and detect the occurrence of a natural disaster and the type of disaster to be detected, and a specific example of wiring is described later.

また、災害検知線3は、短絡情報を得るために、配線の被覆部3bを除去して導電性部分が露出した裸線部3aを有するように構成されている。この裸線部3aは、災害検知線3の全体に亘って連続して形成されるものでも良いが、被覆部3bと裸線部3aとが交互に形成されるものが好ましい。すなわち、災害検知線3は災害発生地域に引き回して設置されるが、配線の全てが裸線部である場合には、この裸線部を所定の間隔をもって地面に設置される支柱に固定しなければなない。その場合、風等による揺れの繰り返し荷重を受け、晴天時でも断線が生じることから誤作動の要因となる可能性がある。
これに対して、図4(a)に示すように、災害検知線3の被覆部3bを支柱6に固定すれば、揺れによる断線発生を防止でき、断線検知に対する信頼性の向上を図ることができる。災害地域の地面に設置する支柱6の間隔は、地形、風土や環境及び土質の相違により異なるため、裸線部3aに対する被覆部3bの位置についても不規則な間隔に設けられている。
Further, the disaster detection line 3 is configured to have a bare wire portion 3a in which the conductive portion is exposed by removing the wiring covering portion 3b in order to obtain short-circuit information. The bare wire portion 3a may be formed continuously over the entire disaster detection line 3, but it is preferable that the covering portion 3b and the bare wire portion 3a are alternately formed. In other words, the disaster detection line 3 is installed around the disaster occurrence area, but when all of the wiring is a bare wire portion, this bare wire portion must be fixed to a column installed on the ground at a predetermined interval. It must be. In that case, it may be a factor of malfunction because it receives a repeated load of shaking due to wind or the like and breaks even in fine weather.
On the other hand, as shown in FIG. 4A, if the covering portion 3b of the disaster detection line 3 is fixed to the support column 6, occurrence of disconnection due to shaking can be prevented, and reliability for disconnection detection can be improved. it can. Since the intervals between the columns 6 installed on the ground in the disaster area differ depending on the topography, climate, environment, and soil quality, the positions of the covering portions 3b with respect to the bare wire portions 3a are also provided at irregular intervals.

図4(a)は、災害検知線3による断線検知を主として検知する場合の設置方法であるが、短絡検知を検知させる場合には、図4(b)に示すように、それぞれ水平板7aを有する支柱7,7を支柱6に対して配設し、支柱7,7の水平板7aの両端で裸線部を拡げて支持することで、支柱6に固定された被覆部に対して裸線部同士を近接位置に配置する。この構造によれば、比較的に近い位置に裸線部同士が位置させることが可能となるので、土砂や雪崩等(導電性を有する)を介して裸線部同士が接続することで短絡状態を検知できる。   FIG. 4A shows an installation method in the case of mainly detecting disconnection detection by the disaster detection line 3. However, in the case of detecting short circuit detection, as shown in FIG. The supporting columns 7 and 7 are arranged with respect to the supporting column 6, and the bare wire portions are expanded and supported at both ends of the horizontal plate 7 a of the supporting columns 7 and 7, so that the bare wires are covered with the covering portion fixed to the supporting columns 6. The parts are arranged at close positions. According to this structure, the bare wire portions can be positioned relatively close to each other, so that the bare wire portions are connected to each other via earth and sand, avalanche, etc. (having conductivity), so that the short circuit state Can be detected.

次に、上記構造の自然災害発生検知装置による災害検知線3の正常時、断線時、短絡時における回路動作について、図5(a)〜(c)を参照しながらそれぞれ説明する。
(正常時)
災害検知線3に断線や短絡がない正常時の場合(図5(a))、定電流器4の抵抗値Rを含む回路の抵抗値の抵抗値Rは、配線抵抗Rを考慮した場合、R=R+Rとなる。ただし、Rは、「R=(R×R)/(R+R)+検知線3の抵抗値」で示される。したがって、直流電源電圧をVとすると、災害検知線3には電流I(=V/(R+R))が流れる。
この電流Iにより短絡検知側電位差抵抗24の抵抗R2の両端(第5のトランジスタ22のエミッタと定電圧ダイオード23間)に電位差が発生するが、電流Iが小さいので定電圧ダイオード23が動作に十分な電位差が生じない。そのため、第5のトランジスタ22はオフ状態を維持する。
第4のトランジスタ21のベース・エミッタ間に直流電源5による電源電圧がかかりベース電流が流れる。その結果、第4のトランジスタ21がオン状態となり、第2のトランジスタ20がオフ状態となる。
同時に電流Iにより断線検知側電位差抵抗12の抵抗R3の両端(第3のトランジスタ11のエミッタとベース間)に電位差が発生する。電流Iは小さいが第3のトランジスタ11を導通させるに十分な電位差が発生する。その結果、第3のトランジスタ11がオン状態となり、第1のトランジスタ10がオフ状態を維持する。
Next, circuit operations when the disaster detection line 3 is normal, disconnected, and short-circuited by the natural disaster occurrence detection device having the above-described structure will be described with reference to FIGS.
(Normal)
For disaster detection line 3 normal no disconnection or short circuit (FIG. 5 (a)), the resistance value R of the resistance value of a circuit including a resistance value R 1 of the constant current circuit 4, considering the wiring resistance R p In this case, R = R 1 + R p . However, R p is represented by “R p = (R 2 × R 3 ) / (R 2 + R 3 ) + resistance value of the detection line 3”. Therefore, if the DC power supply voltage is V, a current I (= V / (R 1 + R p )) flows through the disaster detection line 3.
This current I causes a potential difference between both ends of the resistor R2 of the short-circuit detection-side potential difference resistor 24 (between the emitter of the fifth transistor 22 and the constant voltage diode 23). However, since the current I is small, the constant voltage diode 23 is sufficient for operation. No significant potential difference occurs. Therefore, the fifth transistor 22 is kept off.
A power supply voltage from the DC power supply 5 is applied between the base and emitter of the fourth transistor 21, and a base current flows. As a result, the fourth transistor 21 is turned on, and the second transistor 20 is turned off.
At the same time, a potential difference occurs between both ends (between the emitter and base of the third transistor 11) of the resistor R3 of the disconnection detection-side potential difference resistor 12 due to the current I. Although the current I is small, a potential difference sufficient to make the third transistor 11 conductive is generated. As a result, the third transistor 11 is turned on, and the first transistor 10 is kept off.

(断線時)
災害検知線3のいずれかの箇所に断線が生じた場合(図5(b))、災害検知線3には断線により電流が流れない。したがって、短絡検知側電位差抵抗24の抵抗R2の両端(第5のトランジスタ22のエミッタと定電圧ダイオード23間)に電位差が発生せず、定電圧ダイオード23が動作しない。そのため、第5のトランジスタがオフ状態を維持する。
一方、第4のトランジスタ21のベース・エミッタ間には直流電源5による電源電圧がかかり、ベース電流が流れるため、第4のトランジスタ21がオン状態となり、第2のトランジスタ20がオフ状態を維持する。
第3のトランジスタについては、断線検知側電位差抵抗12に電流が流れないので抵抗R3の両端に電位差が発生せず、第3のトランジスタ11がオフ状態となる。その結果、第1のトランジスタ10のベース・エミッタ間に直流電源5による電源電圧がかかり、第1のトランジスタ10がオン状態となり、断線検出回路1に電流が流れて断線発生を検知する。
(When disconnected)
When a disconnection occurs in any part of the disaster detection line 3 (FIG. 5B), no current flows through the disaster detection line 3 due to the disconnection. Therefore, a potential difference does not occur at both ends (between the emitter of the fifth transistor 22 and the constant voltage diode 23) of the resistor R2 of the short circuit detection side potential difference resistor 24, and the constant voltage diode 23 does not operate. Therefore, the fifth transistor is kept off.
On the other hand, a power supply voltage from the DC power supply 5 is applied between the base and emitter of the fourth transistor 21 and a base current flows. Therefore, the fourth transistor 21 is turned on and the second transistor 20 is kept off. .
As for the third transistor, since no current flows through the disconnection detection-side potential difference resistor 12, no potential difference occurs between both ends of the resistor R3, and the third transistor 11 is turned off. As a result, a power supply voltage by the DC power supply 5 is applied between the base and emitter of the first transistor 10, the first transistor 10 is turned on, and a current flows through the disconnection detection circuit 1 to detect the occurrence of disconnection.

(短絡時)
災害検知線3のいずれかの箇所に短絡が生じた場合(図5(c))、災害検知線3には短絡箇所により抵抗値が変動するので、それに応じた短絡電流Isが流れる。この短絡電流Isは、定電流器4の抵抗R1を流れないので、正常時に流れる電流Iよりも十分大きい値となる。
そして、この短絡電流Isにより短絡検知側電位差抵抗24の抵抗R2の両端(第5のトランジスタ22のエミッタと定電圧ダイオード23間)に定電圧ダイオード23が動作に十分な電位差が発生し、第5のトランジスタ22がオン状態となることで、第4のトランジスタ21にベース電流が流れず、第4のトランジスタ21がオフ状態を維持する。
第4のトランジスタ21がオフ状態を維持した場合、第2のトランジスタ20のベース・エミッタ間に短絡電流Isの電圧効果による電圧差が発生し、第2のトランジスタ20がオン状態となり、短絡検出回路2に電流が流れて短絡発生を検知する。
同時に、短絡電流Isにより断線検知側電位差抵抗12の抵抗R3の両端(第3のトランジスタ11のエミッタとベース間)に電位差が発生し、第3のトランジスタ11がオン状態となり、第1のトランジスタ10がオフ状態を維持する。
(When short circuit)
When a short circuit occurs in any part of the disaster detection line 3 (FIG. 5C), the resistance value fluctuates in the disaster detection line 3 depending on the short circuit part, and therefore a short circuit current Is corresponding to the resistance value flows. Since the short circuit current Is does not flow through the resistor R1 of the constant current device 4, the short circuit current Is has a value sufficiently larger than the current I flowing during normal operation.
The short-circuit current Is generates a potential difference sufficient for the operation of the constant voltage diode 23 between both ends of the resistor R2 of the short-circuit detection side potential difference resistor 24 (between the emitter of the fifth transistor 22 and the constant voltage diode 23). Since the transistor 22 is turned on, the base current does not flow through the fourth transistor 21, and the fourth transistor 21 is kept off.
When the fourth transistor 21 is kept off, a voltage difference due to the voltage effect of the short-circuit current Is is generated between the base and the emitter of the second transistor 20, the second transistor 20 is turned on, and the short-circuit detection circuit 2 detects the occurrence of a short circuit.
At the same time, a potential difference occurs between both ends (between the emitter and base of the third transistor 11) of the resistor R3 of the disconnection detection-side potential difference resistor 12 due to the short-circuit current Is, the third transistor 11 is turned on, and the first transistor 10 Remains off.

災害検知線3に短絡が発生した場合、短絡箇所の短絡抵抗Rs,断線検知回路1及び短絡検知回路2側の配線抵抗Rx,定電流器4側の配線抵抗Ryとすると、合成抵抗値Rtは、定電流器4の抵抗R1と短絡抵抗Rsとの合成抵抗に配線抵抗Rx,Ryを加算した値、すなわち、Rt=Rx+Ry+(RRs/(R+Rs))となるので、短絡電流Isの値は、直流電源電圧Vを合成抵抗値Rtで除した値(V/Rt)となる。
短絡が生じた部分の短絡抵抗Rsについては、土質、土砂や雪崩に含まれる水分や不純物の量により異なる値となる。そして、前記した合成抵抗値Rtが小さくなれば、大きい短絡電流Isが流れることになる。
短絡電流Isは異常発生を検知するため、ある一定値以上である(正常時の電流値と区別できる)必要があるが、短絡電流Isの値が同じ大きさであるとすると、配線抵抗を含む合成抵抗値Rtが同じ大きさとなる。その場合、定電流器4の抵抗Rを小さくすることにより、合成抵抗値Rtにおける配線抵抗の値を大きく設定することができる。
配線抵抗を大きく設定できるということは、芯径が同じ災害検知線3を使用した場合、それだけ長く引き回すことが可能であることを意味するので、より広範囲の領域における災害の検知を行うことができ、短絡予報の信頼性を向上させることができる。
したがって、合成抵抗値Rtの値に影響する定電流器4の抵抗Rは、可能な範囲で小さくなるように設定するのが好ましい。
When a short circuit occurs in the disaster detection line 3, assuming that the short circuit resistance Rs at the short circuit location, the wiring resistance Rx on the disconnection detection circuit 1 and the short circuit detection circuit 2 side, and the wiring resistance Ry on the constant current device 4 side, the combined resistance value Rt is The value obtained by adding the wiring resistances Rx and Ry to the combined resistance of the resistor R1 and the short-circuit resistor Rs of the constant current device 4, that is, Rt = Rx + Ry + (R 1 Rs / (R 1 + Rs)), so that the short-circuit current Is Is a value (V / Rt) obtained by dividing the DC power supply voltage V by the combined resistance value Rt.
About the short circuit resistance Rs of the part which short-circuited, it becomes a different value with the quantity of the water | moisture content and impurity contained in soil quality, earth and sand, or an avalanche. And if the above-mentioned combined resistance value Rt becomes small, a large short-circuit current Is flows.
The short-circuit current Is needs to be equal to or greater than a certain value (can be distinguished from the normal current value) in order to detect the occurrence of an abnormality. If the short-circuit current Is has the same value, the wiring resistance is included. The combined resistance value Rt has the same magnitude. In this case, by reducing the resistance R 1 of the constant current circuit 4, it is possible to set the value of the wiring resistance in the combined resistance Rt greater.
The fact that the wiring resistance can be set large means that when the disaster detection line 3 having the same core diameter is used, it can be drawn for a longer time, so it is possible to detect disasters in a wider area. The reliability of the short-circuit forecast can be improved.
Therefore, the resistance R 1 of the constant current circuit 4 that affect the value of the combined resistance value Rt is preferably set to be smaller to the extent possible.

また、定電流器が設置された箇所に災害の前兆となる土地状態等の変化が発生し定電流器を含んで短絡したような場合、定電流器の抵抗値を考慮することなく、短絡が生じた部分の抵抗で短絡電流が定まるので、合成抵抗値より小さい値となり短絡電流も大きくなる。したがって、定電流器の設置場所は、土砂崩れや雪崩等の災害が発生し易い場所するのが好ましい。   In addition, when a change in the land condition, etc., which is a precursor to a disaster occurs in a place where a constant current device is installed and a short circuit is caused including the constant current device, the short circuit may occur without considering the resistance value of the constant current device. Since the short-circuit current is determined by the resistance of the generated portion, the value becomes smaller than the combined resistance value, and the short-circuit current also increases. Therefore, it is preferable that the constant current device is installed at a place where disasters such as landslides and avalanches are likely to occur.

上記した自然災害発生検知装置の回路構成によれば、災害検知線3に断線や短絡が発生した場合、定電流器4に電流が流れない(断線時)、又は、正常時に定電流器4に流れる電流に対して大きな電流値である短絡電流が流れる(短絡時)ことにより、直流電源に対してそれぞれ並列に接続された断線検知回路1又は短絡検知回路2を動作させ、広い範囲の同一地域に対して断線であるか短絡であるかの検知を行うことができる。
災害検知線の断線及び短絡の発生は、断線検知回路1又は短絡検知回路2に電流が流れるか否かで判断されるため、災害予測検知の異常発生に対してタイムラグなく断線及び短絡の発生を検知することができる。
According to the circuit configuration of the natural disaster occurrence detection device described above, when the disaster detection line 3 is disconnected or short-circuited, no current flows through the constant current device 4 (at the time of the disconnection), or when the current is normal, the constant current device 4 When a short-circuit current having a large current value flows with respect to the flowing current (at the time of short-circuit), the disconnection detection circuit 1 or the short-circuit detection circuit 2 connected in parallel to the DC power supply is operated, and the same region in a wide range It is possible to detect whether it is a disconnection or a short circuit.
The occurrence of a disconnection or short circuit in the disaster detection line is determined by whether or not a current flows through the disconnection detection circuit 1 or the short circuit detection circuit 2. Can be detected.

続いて、配線構造の具体的な引き回し例について、図6及び図7を参照しながら説明する。
例えば、図6(a)に示すように谷における災害発生を予測して検知する場合には、図7(a)に示すように、降雨に際して水を含み易い谷の上部に定電流器4を設置し台形状に災害検知線3を引き回して構成する。
Next, a specific routing example of the wiring structure will be described with reference to FIGS.
For example, when predicting and detecting the occurrence of a disaster in a valley as shown in FIG. 6 (a), as shown in FIG. 7 (a), as shown in FIG. Install and configure the disaster detection line 3 in a trapezoidal shape.

図6(b)に示すような山や丘陵における災害発生を予測して検知する場合には、図7(b)に示すように、降雨に際して水を含んで崩れ易い頂上部に配線中央に位置する定電流器4を設置し、両側に配線の往復路を繰り返した方形状に災害検知線3を引き回して構成する。   When the occurrence of a disaster in a mountain or hill as shown in FIG. 6B is predicted and detected, as shown in FIG. The constant current device 4 is installed, and the disaster detection line 3 is routed in a square shape with repeated wiring round trips on both sides.

図6(c)に示すような河川・湖の堤防に設置する場合には、図7(c)に示すように、氾濫が生じ易い川上部に定電流器4を設置し、往復する配線を方形状に災害検知線3を引き回して構成する。   When installing on a river / lake embankment as shown in FIG. 6 (c), as shown in FIG. 7 (c), a constant current device 4 is installed on the upper part of the river where flooding is likely to occur, and a reciprocating wiring is provided. The disaster detection line 3 is routed in a rectangular shape.

図6(d)に示すような傾斜面における強度舗装地に設置する場合には、図7(d)に示すように、降雨に際して水を含んで崩れ易い上部位置に配線中央に位置する定電流器4を設置し、配線の往復路を繰り返した方形状に災害検知線3を引き回して構成する。
また、地形が複雑な場所に設置する場合には、これらの引き回し線の構成を組み合わせた引き回しの構成であってよい。
When installing on a strong pavement on an inclined surface as shown in FIG. 6 (d), as shown in FIG. 7 (d), a constant current located at the center of the wiring at an upper position that easily contains water during rainfall, The device 4 is installed, and the disaster detection line 3 is routed in a square shape in which the round trip path of the wiring is repeated.
Moreover, when installing in the place where the topography is complicated, it may be the structure of routing which combined the structure of these routing lines.

図6(a)〜(d)に示したいずれの地形においても、降雨等の自然現象に対して水を含んで崩れ易い箇所(例えば上部)や水分を含み易い箇所(災害検知線の短絡が発生し易い箇所)に定電流器4を設置することで、災害の前兆となる土地状態等の変化発生時の短絡電流値を大きくすることができ、災害発生検知装置の予報感度を高めることができる。   In any terrain shown in FIGS. 6 (a) to 6 (d), a location that easily contains water (such as the upper part) or a location that easily contains moisture (such as a short circuit of the disaster detection line) due to natural phenomena such as rainfall. By installing the constant current device 4 at a place where it is likely to occur, the short-circuit current value at the time of occurrence of changes in land conditions, etc., which is a sign of a disaster can be increased, and the forecast sensitivity of the disaster detection device can be increased. it can.

また、災害検知線3は、定電流器4に対して配線を引き回して接続することで構成されるので、災害検知線3において地形に適した引き回し線の構造を得ることができ、災害発生を予測検知しやすい構成とすることができるとともに、災害検知線3を引き回した広い範囲において災害予測の検知(線状検知)を可能とすることができる。
同一地域の配線を結ぶ定電流器4(R)の値を可能な限り小さくするように設定することは、水分を含む自然災害予報を行い次に生ずる地形変化による断線で災害発生を予測して検知して報知するに際して、信頼性の高い報知を行うことができる。
In addition, since the disaster detection line 3 is configured by routing and connecting the wiring to the constant current device 4, it is possible to obtain a structure of the routing line suitable for the terrain in the disaster detection line 3, thereby preventing the occurrence of a disaster. While being able to make it easy to predict and detect, it is possible to detect disaster prediction (linear detection) in a wide range where the disaster detection line 3 is routed.
Setting the current limiter 4 (R 1 ) connecting the wiring in the same area as small as possible is to predict the occurrence of a disaster due to a disconnection due to a landform change that occurs after a natural disaster prediction including moisture. When detecting and informing, a highly reliable notification can be performed.

次に、誤動作判別回路が接続された自然災害発生検知装置の実施例について、図8及び図9を参照しながら説明する。
図8は、図2の自然災害発生検知装置に対して、直流電源の+端子側に、ON/OFFスイッチS1から構成される誤動作判別回路40を接続して構成されている。図中、図2の回路図と同一構成をとる部分については同一符号を付している。
Next, an embodiment of a natural disaster occurrence detection apparatus to which a malfunction determination circuit is connected will be described with reference to FIGS.
FIG. 8 is configured by connecting a malfunction determination circuit 40 including an ON / OFF switch S1 to the positive terminal side of the DC power supply with respect to the natural disaster occurrence detection apparatus of FIG. In the figure, parts having the same configurations as those in the circuit diagram of FIG.

図8の回路中、第1のトランジスタ10に直列に接続されるダイオード13は、誘導電圧を防止して第1のトランジスタ10に電流が逆流するのを防止するものである。断線検知回路1に対して並列に接続されるダイオード14は、誘導電圧を防止して断線検知回路1に電流が逆流するのを防止するものである。断線検知回路1に対して並列に接続される発光ダイオード15は、誤動作確認にために点灯させるものであり、発光ダイオード15に直列に接続される抵抗16は、発光ダイオード15に小電流が流れるようにするためのものである。   In the circuit of FIG. 8, the diode 13 connected in series with the first transistor 10 prevents an induced voltage from flowing back to the first transistor 10. The diode 14 connected in parallel to the disconnection detection circuit 1 prevents an induced voltage from flowing back into the disconnection detection circuit 1. The light emitting diode 15 connected in parallel to the disconnection detection circuit 1 is lit to confirm malfunction, and the resistor 16 connected in series to the light emitting diode 15 causes a small current to flow through the light emitting diode 15. It is for making.

同様に、第2のトランジスタ20に直列に接続されるダイオード25は、誘導電圧を防止して第2のトランジスタ20に電流が逆流するのを防止するものである。短絡検知回路2に対して並列に接続されるダイオード26は、誘導電圧を防止して短絡検知回路2に電流が逆流するのを防止するものである。短絡検知回路2に対して並列に接続される発光ダイオード27は、誤動作確認にために点灯させるものであり、発光ダイオード27に直列に接続される抵抗28は、発光ダイオード27に小電流が流れるようにするためのものである。   Similarly, the diode 25 connected in series with the second transistor 20 prevents an induced voltage from flowing back to the second transistor 20. The diode 26 connected in parallel to the short circuit detection circuit 2 prevents an induced voltage from flowing back to the short circuit detection circuit 2. The light-emitting diode 27 connected in parallel to the short-circuit detection circuit 2 is lit to confirm malfunction, and the resistor 28 connected in series to the light-emitting diode 27 allows a small current to flow through the light-emitting diode 27. It is for making.

上記構成の回路によれば、ON/OFFスイッチS1を閉じた状態で断線検知装置1又は短絡検知回路2に電流が流れた場合、発光ダイオード15又は発光ダイオード27に電流が流れて点灯し、断線又は短絡の発生を知らせる。この動作の正誤を判別するに場合に、ON/OFFスイッチS1を一度オフ状態とし、再度オン状態にすると、誤報である場合は、災害検知線3が正常であるので断線検知回路若しくは短絡検知回路の動作が消滅する。正報である場合は、断線検知回路若しくは短絡検知回路の動作が続行されるので、誤動作であるか否かの判別を行うことができる。   According to the circuit having the above configuration, when a current flows through the disconnection detection device 1 or the short-circuit detection circuit 2 with the ON / OFF switch S1 closed, the current flows through the light emitting diode 15 or the light emitting diode 27 and the LED is turned on. Or inform the occurrence of a short circuit. In order to determine whether this operation is correct or not, if the ON / OFF switch S1 is turned off once and then turned on again, if there is a false alarm, the disaster detection line 3 is normal, so a disconnection detection circuit or a short circuit detection circuit. Disappears. If it is a correct report, the disconnection detection circuit or the short-circuit detection circuit continues to operate, so it is possible to determine whether or not it is a malfunction.

図9は、自然災害発生検知装置の追加・補修工事を行うに場合に、適切に工事されたか否かの試験を断線検知回路や短絡検知回路の動作なしに発光ダイオードの点灯のみで確認できる機能を有する誤動作判別回路を接続した例である。
すなわち、図2の自然災害発生検知装置に対して、直流電源の−端子側に、断線検知回路1及び短絡検知回路2側と、断線検知側電位差抵抗12及び短絡検知側電位差抵抗24とを選択的に接続する選択スイッチS2を含んで構成される誤動作判別回路50を接続して構成されている。この回路では、断線検知回路1及び短絡検知回路2側と、断線検知側電位差抵抗12及び短絡検知側電位差抵抗24との間に逆流防止用のダイオード51が選択スイッチS2に対して接続されている。
Fig. 9 shows a function that can be used to check whether or not a proper construction has been performed by simply turning on a light-emitting diode without operating the disconnection detection circuit or the short-circuit detection circuit when adding or repairing a natural disaster occurrence detection device. This is an example in which a malfunction determination circuit having
That is, the disconnection detection circuit 1 and the short circuit detection circuit 2 side, the disconnection detection side potential difference resistor 12 and the short circuit detection side potential difference resistor 24 are selected on the negative terminal side of the DC power supply with respect to the natural disaster occurrence detection device of FIG. The malfunction determining circuit 50 including the selective switch S2 to be connected is connected. In this circuit, a backflow preventing diode 51 is connected to the selection switch S2 between the disconnection detection circuit 1 and the short circuit detection circuit 2 side, and the disconnection detection side potential difference resistor 12 and the short circuit detection side potential difference resistor 24. .

上記構成の回路によれば、自然災害検知装置の追加・補修工事を行うに際して、選択スイッチS2を接点1側に接続した状態で、災害検知線3側の断線テストや短絡テストを行った場合においても、発光ダイオード15又は発光ダイオード27にのみ電流が流れ、断線検知装置1又は短絡検知回路2を動作させることなく、断線又は短絡の発生の確認(誤動作確認)の試験を行うことができる。
そして、追加・補修工事終了後に、選択スイッチS2を接点2側に接続した状態とすれば、図2と同様の断線検知装置1及び短絡検知回路2による災害検知を行うことができる。
According to the circuit having the above configuration, when performing a disconnection test or a short-circuit test on the disaster detection line 3 side with the selection switch S2 connected to the contact 1 side when adding / repairing the natural disaster detection apparatus. In addition, a current flows only through the light emitting diode 15 or the light emitting diode 27, and a test for confirming the occurrence of disconnection or short circuit (confirmation of malfunction) can be performed without operating the disconnection detection device 1 or the short circuit detection circuit 2.
If the selection switch S2 is connected to the contact 2 side after completion of the addition / repair work, disaster detection by the disconnection detection device 1 and the short-circuit detection circuit 2 similar to those in FIG. 2 can be performed.

また、直流電源の+端子側に接続される誤動作判別回路40と、直流電源の−端子側に接続される誤動作判別回路50の双方を設けたものであれば、自然災害検知装置の災害検知線等の追加工事や補修工事、メンテナンスに長時間必要な場合に際して、誤動作判別回路40のON/OFFスイッチS1をオフ状態とすることで、災害検知線3側への電圧供給を遮断させることができるので、電力消費を少なくして省エネルギー化を図ることができる。   In addition, if both the malfunction determination circuit 40 connected to the + terminal side of the DC power supply and the malfunction determination circuit 50 connected to the − terminal side of the DC power supply are provided, the disaster detection line of the natural disaster detection device is provided. When additional work such as construction, repair work, or maintenance is required for a long time, the voltage supply to the disaster detection line 3 can be cut off by turning off the ON / OFF switch S1 of the malfunction determination circuit 40. Therefore, it is possible to save energy by reducing power consumption.

本発明の自然災害発生検知システムによれば、自然災害の発生が予測される複数の領域に災害検知線を設置することにより、一定範囲の地域において災害を検知(断線検知及び短絡検知)するに際して、災害の進行状況を把握することができ、一定範囲の地域内の災害発生に対して的確な対応をすることができる。
信頼性の高い検知を行うことができる。
そして、断線検知及び短絡検知を行うことで、自然災害発生予測領域における土地状態等の変化を検知して災害発生の予測を行うことができる。
According to the natural disaster occurrence detection system of the present invention, when a disaster detection line is installed in a plurality of areas where occurrence of a natural disaster is predicted, a disaster is detected in a certain area (disconnection detection and short circuit detection). Therefore, it is possible to grasp the progress of the disaster, and to appropriately respond to the occurrence of a disaster within a certain area.
Highly reliable detection can be performed.
And by performing disconnection detection and short circuit detection, it is possible to detect changes in land conditions and the like in a natural disaster occurrence prediction area and predict disaster occurrence.

本発明の自然災害発生検知システムの構成説明図である。1 is a configuration explanatory diagram of a natural disaster occurrence detection system of the present invention. FIG. 自然災害発生検知システムを構成する自然災害発生検知装置の回路説明図である。It is circuit explanatory drawing of the natural disaster occurrence detection apparatus which comprises a natural disaster occurrence detection system. 災害検知線に短絡が発生した場合の合成抵抗値を説明するための災害検知線及び定電流器部分の回路説明図である。It is circuit explanatory drawing of the disaster detection line and constant current part part for demonstrating the synthetic | combination resistance value when a short circuit generate | occur | produces in a disaster detection line. (a)(b)は本発明の自然災害発生検知装置における災害検知線の地面への設置例を示す斜視説明図である。(A) and (b) are perspective explanatory views showing an installation example of a disaster detection line on the ground in the natural disaster occurrence detection device of the present invention. (a)〜(c)は、本発明の自然災害発生検知装置の動作を説明するための回路説明図である。(A)-(c) is circuit explanatory drawing for demonstrating operation | movement of the natural disaster occurrence detection apparatus of this invention. (a)〜(d)は、本発明の自然災害発生検知装置を設置する場所の例を示した地形説明図である。(A)-(d) is the topographical explanatory drawing which showed the example of the place which installs the natural disaster occurrence detection apparatus of this invention. (a)〜(d)は、本発明の自然災害発生検知装置における災害検知線の引き回し例を示す配線説明図である。(A)-(d) is wiring explanatory drawing which shows the example of the routing of the disaster detection line in the natural disaster occurrence detection apparatus of this invention. 直流電源の+側に誤動作判別回路を付加した自然災害発生検知装置の実施例の回路説明図である。It is circuit explanatory drawing of the Example of the natural disaster occurrence detection apparatus which added the malfunction determination circuit to the + side of DC power supply. 直流電源の−側に誤動作判別回路を付加した自然災害発生検知装置の実施例の回路説明図である。It is circuit explanatory drawing of the Example of the natural disaster occurrence detection apparatus which added the malfunction determination circuit to the-side of DC power supply. 従来の自然災害発生検出装置の回路説明図である。It is circuit explanatory drawing of the conventional natural disaster occurrence detection apparatus.

符号の説明Explanation of symbols

1 断線検知回路
2 短絡検知回路
3 災害検知線
3a 裸線部
3b 被覆部
4 定電流器
5 直流電源
6 支柱
10 第1のトランジスタ
11 第3のトランジスタ
12 断線検知側電位差抵抗
20 第2のトランジスタ
21 第4のトランジスタ
22 第5のトランジスタ
23 定電圧ダイオード
24 短絡検知側電位差抵抗
40 誤動作判別回路
50 誤動作判別回路
X 一定範囲の地域
DESCRIPTION OF SYMBOLS 1 Disconnection detection circuit 2 Short circuit detection circuit 3 Disaster detection line 3a Bare wire part 3b Covering part 4 Constant current source 5 DC power supply 6 Support | pillar 10 1st transistor 11 3rd transistor 12 Disconnection detection side potential difference resistance 20 2nd transistor 21 Fourth transistor 22 Fifth transistor 23 Constant voltage diode 24 Short-circuit detection-side potential difference resistor 40 Malfunction determination circuit 50 Malfunction determination circuit X Area in a certain range

Claims (5)

電流が流れることにより災害検知線の断線を検知する断線検知回路と、電流が流れることにより災害検知線の短絡を検知する短絡検知回路と、自然災害発生予測領域に設置した定電流器とを直流電源に対してそれぞれ並列に接続し、
前記災害検知線は、前記定電流器に対して配線を引き回して接続するとともに、配線における導電性部分が露出した裸線部を有する一方、
前記災害検知線が正常である場合には前記断線検知回路及び前記短絡検知回路に電流を流すことなく、前記災害検知線が断線した際に前記断線検知回路にのみ選択的に電流を流すとともに、前記災害検知線が短絡した際に前記短絡検知回路にのみ選択的に電流を流すように構成した制御回路とを具備する自然災害発生検知装置を複数準備し、前記複数の自然災害発生検知装置で一定範囲の地域における災害を検知するシステムとし、前記一定範囲の地域における複数地区に各自然災害発生検知装置の災害検知線を設置することを特徴とした自然災害発生検知システム。
A disconnection detection circuit that detects the disconnection of the disaster detection line when current flows, a short-circuit detection circuit that detects a short circuit of the disaster detection line when current flows, and a constant current device installed in the natural disaster occurrence prediction area Connect each power supply in parallel,
The disaster detection line is connected to the constant current device by routing the wiring, and has a bare wire portion where a conductive portion of the wiring is exposed,
When the disaster detection line is normal, without passing a current to the disconnection detection circuit and the short circuit detection circuit, when the disaster detection line is disconnected, a current is selectively passed only to the disconnection detection circuit, and A plurality of natural disaster occurrence detection devices comprising a control circuit configured to selectively flow current only to the short circuit detection circuit when the disaster detection line is short-circuited, and system for detecting disaster in the region of the predetermined range, natural disaster detection system characterized by installing a disaster detection line of each natural disaster detection device to your Keru plurality district areas of the predetermined range.
第1のトランジスタが導通状態となって電流が流れることにより災害検知線の断線を検知する断線検知回路と、第2のトランジスタが導通状態となって電流が流れることにより災害検知線の短絡を検知する短絡検知回路と、自然災害発生予測領域に設置した定電流器とを直流電源に対してそれぞれ並列に接続し、
前記災害検知線は、前記定電流器に対して配線を引き回して接続するとともに、配線における導電性部分が露出した裸線部を有する一方、
前記第1のトランジスタのオン・オフ制御を行う第3のトランジスタと、
前記第3のトランジスタのベースに電位差を発生させるための断線検知側電位差抵抗と、
前記第2のトランジスタのオン・オフ制御を行う第4のトランジスタと、
前記第4のトランジスタのオン・オフ制御を行う第5のトランジスタと、
前記第5のトランジスタのベースに接続された定電圧ダイオードと、
前記定電圧ダイオードに電位差を発生させるための短絡検知側電位差抵抗と、
を具備する自然災害発生検知装置を複数準備し、前記複数の自然災害発生検知装置で一定範囲の地域における災害を検知するシステムとし、前記一定範囲の地域における複数地区に各自然災害発生検知装置の災害検知線を設置することを特徴とした自然災害発生検知システム。
Disconnection detection circuit that detects disconnection of the disaster detection line when the first transistor becomes conductive and current flows, and short circuit of the disaster detection line is detected when the second transistor becomes conductive and current flows Connecting the short-circuit detection circuit to the DC power supply in parallel with the constant current device installed in the natural disaster occurrence prediction area,
The disaster detection line is connected to the constant current device by routing the wiring, and has a bare wire portion where a conductive portion of the wiring is exposed,
A third transistor for controlling on / off of the first transistor;
A disconnection detection-side potential difference resistor for generating a potential difference at the base of the third transistor;
A fourth transistor for controlling on / off of the second transistor;
A fifth transistor that performs on / off control of the fourth transistor;
A constant voltage diode connected to a base of the fifth transistor;
A short-circuit detection-side potential difference resistor for generating a potential difference in the constant voltage diode;
Prepare multiple natural disaster occurrence detection device having a, a system for detecting the disaster in the region of a certain range by the plurality of natural disaster occurrence detection devices, each natural disaster occurrence detection to your Keru multiple district in the area of the certain range A natural disaster occurrence detection system characterized by installing a device disaster detection line.
前記複数地区に災害の予兆を検知できる地域が含まれることにより、災害の進行状態を把握可能とする請求項1又は請求項2に記載の自然災害発生検知システム。   The natural disaster occurrence detection system according to claim 1 or 2, wherein the plurality of districts include areas where a sign of a disaster can be detected, so that the progress of the disaster can be grasped. 各自然災害発生検知装置の前記直流電源の+端子側に、ON/OFFスイッチから構成される誤動作判別回路を接続した請求項2に記載の自然災害発生検知システム。   The natural disaster occurrence detection system according to claim 2, wherein a malfunction determination circuit composed of an ON / OFF switch is connected to the + terminal side of the DC power supply of each natural disaster occurrence detection device. 各自然災害発生検知装置の前記直流電源の−端子側に、断線検知回路及び短絡検知回路側と、断線検知側電位差抵抗及び短絡検知側電位差抵抗とを選択的に接続する選択スイッチを含んで構成される誤動作判別回路を接続した請求項2又は請求項4に記載の自然災害発生検知システム。   A configuration including a selection switch that selectively connects the disconnection detection circuit and the short circuit detection circuit side to the disconnection detection side potential difference resistor and the short circuit detection side potential difference resistor on the negative terminal side of the DC power source of each natural disaster occurrence detection device The natural disaster occurrence detection system according to claim 2 or 4, wherein a malfunction determination circuit is connected.
JP2008117629A 2008-04-28 2008-04-28 Natural disaster occurrence detection system Expired - Fee Related JP4519926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008117629A JP4519926B2 (en) 2008-04-28 2008-04-28 Natural disaster occurrence detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008117629A JP4519926B2 (en) 2008-04-28 2008-04-28 Natural disaster occurrence detection system

Publications (2)

Publication Number Publication Date
JP2009265030A JP2009265030A (en) 2009-11-12
JP4519926B2 true JP4519926B2 (en) 2010-08-04

Family

ID=41391050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008117629A Expired - Fee Related JP4519926B2 (en) 2008-04-28 2008-04-28 Natural disaster occurrence detection system

Country Status (1)

Country Link
JP (1) JP4519926B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118655A (en) * 2010-11-30 2012-06-21 Shinshu Univ Remote monitoring system
JP5977903B1 (en) * 2015-03-17 2016-08-24 有限会社インパクト Earth and sand disaster detection system
CN110111537B (en) * 2019-04-29 2021-08-10 深圳市科迈爱康科技有限公司 Early warning method and device applied to snowfield exploration and intelligent shoes
CN117437756B (en) * 2023-12-20 2024-04-30 贵州地矿基础工程有限公司 Dangerous rock deformation monitoring and early warning device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198768A (en) * 1990-11-28 1992-07-20 Shimadzu Corp Trouble monitoring device for connecting cable
JPH05100052A (en) * 1991-08-21 1993-04-23 Tokyo Sokushin:Kk Predicting method and monitoring device for avalanche occurrence
JPH11230791A (en) * 1998-02-17 1999-08-27 Toshiba Eng Co Ltd Monitor
JPH11352247A (en) * 1998-06-09 1999-12-24 Railway Technical Res Inst Natural disaster occurrence detecting device and method therefor, and avalanche occurrence detecting device and method therefor
JP2001183466A (en) * 1999-12-27 2001-07-06 Railway Technical Res Inst Device and method for detecting natural disaster occurrence
JP2009156714A (en) * 2007-12-26 2009-07-16 Masayoshi Takei Natural disaster occurrence detection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198768A (en) * 1990-11-28 1992-07-20 Shimadzu Corp Trouble monitoring device for connecting cable
JPH05100052A (en) * 1991-08-21 1993-04-23 Tokyo Sokushin:Kk Predicting method and monitoring device for avalanche occurrence
JPH11230791A (en) * 1998-02-17 1999-08-27 Toshiba Eng Co Ltd Monitor
JPH11352247A (en) * 1998-06-09 1999-12-24 Railway Technical Res Inst Natural disaster occurrence detecting device and method therefor, and avalanche occurrence detecting device and method therefor
JP2001183466A (en) * 1999-12-27 2001-07-06 Railway Technical Res Inst Device and method for detecting natural disaster occurrence
JP2009156714A (en) * 2007-12-26 2009-07-16 Masayoshi Takei Natural disaster occurrence detection device

Also Published As

Publication number Publication date
JP2009265030A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP4519926B2 (en) Natural disaster occurrence detection system
KR101365688B1 (en) System for alarming a flooded road using a flooded road sensing device
US20210302268A1 (en) System and method for monitoring hydrogeological risk
US11776376B2 (en) Flood monitoring unit and system
KR102418897B1 (en) A access control system for flooding expectation area
KR20100008109A (en) Method of providing road weather information and system thereof
JP4268207B1 (en) Natural disaster occurrence detection device
KR20190080258A (en) Muti danger sensing system for slope
JP6635296B2 (en) Debris flow generation prediction system and debris flow generation prediction method
KR101391388B1 (en) A limit device of vehicle passage and system for monitoring disaster
KR20160038596A (en) Preparing method for the risk arising from the road or underground
JP2016183498A (en) Landslide disaster prediction system and landslide disaster prediction method
JP2007083971A (en) Abnormality detection device for railroad
JP2007183874A (en) Flood information management system and its management device
KR101691790B1 (en) Decision system of collapse hazard levels of the steep slope-land
KR20110050046A (en) Debris flow sensing system and method using vibrating sensor
JP2009293958A (en) Liquid depth monitoring system
JP6455356B2 (en) Elevator monitoring system
KR101598985B1 (en) Land slide alarming apparatus
US20190227112A1 (en) Device, system and method for indicating and predicting a status of an outdoor object
CN101858987A (en) Collapse monitoring device based on omnibearing tilt sensor
JP5361621B2 (en) Precipitation abnormality detection method, precipitation abnormality detection system, and manhole cover
KR101633737B1 (en) Per unit area tosacheung whether the collapse detection system
KR20160114375A (en) System and method for warning and managing rockfall damage in realtime
JP3455430B2 (en) Natural disaster occurrence detection device and natural disaster occurrence detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100217

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100325

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees