JP4515736B2 - Amorphous complex oxide fine particles and method and apparatus for producing the same - Google Patents

Amorphous complex oxide fine particles and method and apparatus for producing the same Download PDF

Info

Publication number
JP4515736B2
JP4515736B2 JP2003334685A JP2003334685A JP4515736B2 JP 4515736 B2 JP4515736 B2 JP 4515736B2 JP 2003334685 A JP2003334685 A JP 2003334685A JP 2003334685 A JP2003334685 A JP 2003334685A JP 4515736 B2 JP4515736 B2 JP 4515736B2
Authority
JP
Japan
Prior art keywords
fine particles
oxide fine
composite oxide
firing
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003334685A
Other languages
Japanese (ja)
Other versions
JP2005097055A (en
Inventor
政七 岸
義男 大根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003334685A priority Critical patent/JP4515736B2/en
Publication of JP2005097055A publication Critical patent/JP2005097055A/en
Application granted granted Critical
Publication of JP4515736B2 publication Critical patent/JP4515736B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Catalysts (AREA)
  • Compounds Of Iron (AREA)

Description

本発明は、少なくとも一方が強磁性体酸化物である2種類の金属酸化物の微粒子からなる非晶質の複合酸化物微粒子と、その製造方法及び製造装置に関する。複合酸化物は、強磁性体酸化物である第2酸化鉄と、弱磁性体酸化物である酸化チタンとの複合酸化物等によって代表的に例示される。本発明の要点は、磁界を印加した焼成エリア中を帯電して移動する複合酸化物粒子に作用するローレンツ力を利用して、複合酸化物粒子を分離し急速に冷却することによって、複合酸化物の極めて微小な非晶質粒子を製造可能とした点にある。   The present invention relates to amorphous composite oxide fine particles composed of two types of metal oxide fine particles, at least one of which is a ferromagnetic oxide, and a method and apparatus for producing the same. The composite oxide is typically exemplified by a composite oxide of second iron oxide that is a ferromagnetic oxide and titanium oxide that is a weak magnetic oxide. The main point of the present invention is that the composite oxide particles are separated and rapidly cooled by utilizing the Lorentz force acting on the composite oxide particles that are charged and moved in the firing area to which a magnetic field is applied. This makes it possible to produce extremely fine amorphous particles.

近年、各種の機能を持つ金属酸化物微粒子の多様な分野での利用が注目されている。例えば、磁性を持つフェライト等の微粒子は、磁気テープ、磁気ディスク、電磁波遮蔽用材料等への活用が見込まれている。又、酸化チタン、酸化亜鉛、酸化タングステン等の光触媒微粒子は、例えばシックハウス症候群の原因であるアルデヒド系物質や、窒素酸化物等の大気汚染成分に対する分解活性が認められており、家具、壁面材、道路面構成材等に適用されている。又、酸化チタンや酸化銅等には、いわゆる抗菌作用が認められ、例えばトイレ用材等の各種の衛生製品に適用されている。   In recent years, the use of metal oxide fine particles having various functions in various fields has attracted attention. For example, fine particles such as magnetic ferrite are expected to be used in magnetic tapes, magnetic disks, electromagnetic wave shielding materials, and the like. In addition, photocatalytic fine particles such as titanium oxide, zinc oxide, and tungsten oxide are recognized to have decomposition activity against air polluting components such as aldehyde substances and nitrogen oxides that cause sick house syndrome, for example, furniture, wall materials, It is applied to road surface components. In addition, titanium oxide, copper oxide, and the like have a so-called antibacterial action, and are applied to various sanitary products such as toilet materials.

これらは多様な利用例の一部に過ぎないし、更に、二種類以上の金属の複合酸化物微粒子を用いれば、それぞれの金属酸化物成分が持つ機能を複合して発揮させることも可能となる。   These are only a part of various usage examples. Furthermore, if composite oxide fine particles of two or more kinds of metals are used, the functions of the respective metal oxide components can be combined and exhibited.

特開平10−34143号公報 上記の特許文献1には、酸化チタンの粉末と酸化鉄の粉末とを混合し加熱焼成した複合酸化物たる光活性水処理剤が開示されている。そして、この光活性水処理剤においては、光触媒である酸化チタンが主に紫外線領域に光活性を有するために可視光線の利用率が極めて悪いところ、励起光波長が可視光線領域にある酸化鉄が可視光線によって励起され、その励起エネルギーが隣接する酸化チタンに影響して、結果的に可視光線によっても酸化チタンによる光触媒活性が有効に発揮される、としている。JP, 10-34143, A The above-mentioned patent documents 1 are indicating the photoactive water treating agent which is the compound oxide which mixed the powder of titanium oxide, and the powder of iron oxide, and heat-fired. In this photoactive water treatment agent, titanium oxide, which is a photocatalyst, has photoactivity mainly in the ultraviolet region, so that the utilization rate of visible light is extremely poor. Excited by visible light, the excitation energy affects adjacent titanium oxide, and as a result, the photocatalytic activity by titanium oxide is effectively exhibited also by visible light.

特開2002−173327号公報 上記の特許文献2は結晶性フェライト微粉末の迅速製造方法に関し、尿素−金属塩の加圧水熱反応系にマイクロ波照射して迅速にスピネルフェライトのナノ結晶粒子を製造する方法を開示している。これらのフェライト粉末としては、ジンクフェライト、コバルトフェライト、ニッケルフェライト、マンガンフェライト、ジンクニッケルフェライト、ジンクマンガンフェライト、ジンクコバルトフェライト等が例示され、更に、この方法は光触媒機能を有する酸化チタン微粒子の製造にも適用可能である、としている。JP-A-2002-173327 JP-A-2002-173327 relates to a rapid production method of crystalline ferrite fine powder, and relates to rapid production of spinel ferrite nanocrystal particles by microwave irradiation to a pressurized hydrothermal reaction system of urea-metal salt. A method is disclosed. Examples of these ferrite powders include zinc ferrite, cobalt ferrite, nickel ferrite, manganese ferrite, zinc nickel ferrite, zinc manganese ferrite, zinc cobalt ferrite, and the like. Is also applicable.

上記特許文献1では複合酸化物の焼成工程を詳細に述べていないが、例えば、未公開の特願2002−144510号の明細書等にも開示されているように、一般的に、例えば酸化鉄と酸化チタンの複合酸化物粉末を製造する場合、酸化鉄と酸化チタンとの微粒子を調製したもとで、そのまま混合して、あるいは必要により凝集材等を用いて顆粒状等に混合造粒して焼成し、その後はそのまま自然冷却させている。   Although the above-mentioned Patent Document 1 does not describe the firing process of the composite oxide in detail, for example, as disclosed in, for example, the specification of unpublished Japanese Patent Application No. 2002-144510, generally, for example, iron oxide When the composite oxide powder of titanium oxide and titanium oxide is produced, the fine particles of iron oxide and titanium oxide are prepared and mixed as they are, or if necessary, they are granulated into a granular shape using an agglomerate or the like. After that, it is fired and then allowed to cool naturally.

ところで、本願発明者は、「発明の効果」欄において後述する理由から、極めて微細でしかも非晶質の複合酸化物粒子を製造することが重要な技術的意味を持つと考えている。   By the way, the inventor of the present application considers that it is important to produce extremely fine and amorphous composite oxide particles for the reason described later in the “Effects of the Invention” column.

しかし、上記従来の複合酸化物粉末製造方法では、極めて微細でしかも非晶質の複合酸化物を製造することは困難である。なぜなら、自然冷却のような緩徐な冷却過程では、複合酸化物の結晶化が起こることは不可避であり、更に結晶の成長が促進されることも不可避であって、複合酸化物粒子が結晶化及び大粒径化するからである。又、焼成過程及び冷却過程において複合酸化物粒子は相互に接触した状態にあるため、この点からも複合酸化物粒子の凝集に基づく大粒径化は避け難いからである。   However, it is difficult to produce an extremely complex and amorphous composite oxide by the above-described conventional composite oxide powder manufacturing method. This is because, in a slow cooling process such as natural cooling, crystallization of the composite oxide is unavoidable, and further, it is inevitable that crystal growth is promoted. This is because the particle size is increased. Further, since the composite oxide particles are in contact with each other in the firing process and the cooling process, it is difficult to avoid an increase in particle size based on the aggregation of the composite oxide particles.

一方、上記特許文献2に開示された発明では、水熱合成系にマイクロ波照射を行ってスピネルフェライトのナノ結晶粒子を製造するとしているが、強力な加圧装置とマイクロ波照射装置と言う高価な装置を必要とするため、複合酸化物微粒子の製造コストが上昇する。又、特許文献2では、非晶質の複合酸化物微粒子を製造する点に関して特段に開示していない。   On the other hand, in the invention disclosed in Patent Document 2, spinel ferrite nanocrystal particles are manufactured by performing microwave irradiation on a hydrothermal synthesis system. However, a high pressure device and a microwave irradiation device are expensive. A large apparatus is required, which increases the production cost of the composite oxide fine particles. Further, Patent Document 2 does not particularly disclose the point of producing amorphous composite oxide fine particles.

そこで本発明は、極めて微細でしかも非晶質の複合酸化物粒子とその製造方法及び製造装置を提供すること、更に、これらの製造方法及び製造装置を簡易かつ安価な加工手段を用いて実施できるように構成することを、解決すべき技術的課題とする。   Accordingly, the present invention provides extremely fine and amorphous composite oxide particles, a method for manufacturing the same, and a manufacturing apparatus thereof, and further, these manufacturing method and apparatus can be implemented using simple and inexpensive processing means. Such a configuration is a technical problem to be solved.

(第1発明の構成)
上記課題を解決するための本願第1発明の構成は、下記の(1)焼成工程と、(2)急速冷却工程とを含む、複合酸化物微粒子の製造方法である。
(1)少なくとも一方が強磁性体酸化物である2種類の金属酸化物の微粒子を高温の気相媒体中で混合して焼成することにより、双方の微粒子が溶融接合した複合酸化物微粒子を生成させる焼成工程。
(2)前記焼成工程を経過した気相媒体に磁界を作用させることにより、複合酸化物微粒子を気相媒体から分離させると共に冷却系へ導入し、急速冷却によって非晶質の複合酸化物微粒子を生成させる急速冷却工程。
(Configuration of the first invention)
The configuration of the first invention of the present application for solving the above-described problem is a method for producing composite oxide fine particles, which includes the following (1) firing step and (2) rapid cooling step.
(1) Two kinds of metal oxide fine particles, at least one of which is a ferromagnetic oxide, are mixed and fired in a high-temperature gas phase medium to produce composite oxide fine particles in which both fine particles are melt bonded. Firing step.
(2) By applying a magnetic field to the vapor phase medium that has passed through the firing step, the composite oxide fine particles are separated from the vapor phase medium and introduced into the cooling system, and the amorphous complex oxide fine particles are removed by rapid cooling. Rapid cooling process to be generated.

なお、上記した2種類の金属酸化物微粒子の「溶融接合」とは、両者の微粒子が合金化あるいは接合面を構成する状態を言う。又、「非晶質である」とは、非晶質材料の製造過程における一般常識に基づき、「かなりの割合で非晶質粒子を含む」あるいは「実用上許容される範囲以上には結晶質微粒子を含まない」との意味であって、「結晶質微粒子を全く含まない」との意味ではない。非晶質粒子の具体的なパーセンテージは、非晶質粒子の用途や製造時の実施条件によって異なり、数値による一律の規定は困難であるが、あえて規定すれば、50重量%以上が非晶質粒子であることを言う。   Note that the above-mentioned “melt-bonding” of the two types of metal oxide fine particles refers to a state in which both fine particles are alloyed or constitute a bonding surface. The term “amorphous” means “contains a considerable proportion of amorphous particles” or “is more crystalline than is practically acceptable, based on common general knowledge in the process of manufacturing amorphous materials. It does not mean "no fine particles", and does not mean "no crystalline fine particles". The specific percentage of the amorphous particles varies depending on the use of the amorphous particles and the operating conditions at the time of manufacture, and it is difficult to uniformly define the numerical values. Say that it is a particle.

(第2発明の構成)
上記課題を解決するための本願第2発明の構成は、前記第1発明に係る2種類の金属酸化物の微粒子が、強磁性体酸化物である第2酸化鉄の微粒子と、弱磁性体酸化物である酸化チタンの微粒子とである、複合酸化物微粒子の製造方法である。
(Configuration of the second invention)
The structure of the second invention of the present application for solving the above-described problem is that the two types of metal oxide fine particles according to the first invention are formed of a second iron oxide fine particle which is a ferromagnetic oxide, and a weak magnetic material oxidation. This is a method for producing composite oxide fine particles, which are titanium oxide fine particles.

(第3発明の構成)
上記課題を解決するための本願第3発明の構成は、前記第1発明又は第2発明に係る焼成を750°C〜1500°Cの範囲内の温度で行い、かつ、前記急速冷却工程においては、複合酸化物微粒子を気相媒体より分離した後、10万°C〜1億5000万°C/秒の割合で固化温度以下まで急速冷却する、複合酸化物微粒子の製造方法である。
(Configuration of the third invention)
The configuration of the third invention of the present application for solving the above-described problem is that the firing according to the first invention or the second invention is performed at a temperature in the range of 750 ° C. to 1500 ° C., and in the rapid cooling step Then, after separating the composite oxide fine particles from the vapor phase medium, the composite oxide fine particles are rapidly cooled to a solidification temperature or lower at a rate of 100,000 ° C. to 150 million ° C./second.

(第4発明の構成)
上記課題を解決するための本願第4発明の構成は、前記第1発明〜第3発明のいずれかに係る2種類の金属酸化物の微粒子の平均粒径が10μm以下であり、複合酸化物微粒子の平均粒径が1〜10μmの範囲内である、複合酸化物微粒子の製造方法である。
(Configuration of the fourth invention)
The structure of the fourth invention of the present application for solving the above problem is that the two kinds of metal oxide fine particles according to any one of the first to third inventions have an average particle size of 10 μm or less, and composite oxide fine particles Is a method for producing composite oxide fine particles having an average particle size of 1 to 10 μm.

(第5発明の構成)
上記課題を解決するための本願第5発明の構成は、少なくとも一方が強磁性体酸化物である2種類の金属酸化物の微粒子が焼成により溶融接合したものであり、かつ、非晶質である、複合酸化物微粒子である。
(Structure of the fifth invention)
The structure of the fifth invention of the present application for solving the above-described problem is that two kinds of metal oxide fine particles, at least one of which is a ferromagnetic oxide, are melt-bonded by firing and are amorphous. The composite oxide fine particles.

(第6発明の構成)
上記課題を解決するための本願第6発明の構成は、前記第5発明に係る2種類の金属酸化物の微粒子が、強磁性体酸化物である第2酸化鉄の微粒子と、弱磁性体酸化物である酸化チタンの微粒子とである、複合酸化物微粒子である。
(Structure of the sixth invention)
The structure of the sixth invention of the present application for solving the above-described problem is that the two types of metal oxide fine particles according to the fifth invention are composed of the second iron oxide fine particles which are ferromagnetic oxides, and the weak magnetic substance oxidation. These are composite oxide fine particles which are titanium oxide fine particles.

(第7発明の構成)
上記課題を解決するための本願第7発明の構成は、前記第5発明又は第6発明に係る複合酸化物微粒子の平均粒径が、1〜10μmの範囲内である、複合酸化物微粒子である。
(Structure of the seventh invention)
The structure of the seventh invention of the present application for solving the above problem is a composite oxide fine particle in which the average particle size of the composite oxide fine particle according to the fifth invention or the sixth invention is in the range of 1 to 10 μm. .

(第8発明の構成)
上記課題を解決するための本願第8発明の構成は、以下の(3)〜(6)の手段を備える、複合酸化物微粒子の製造装置である。
(3)少なくとも一方が強磁性体酸化物である2種類の金属酸化物の微粒子を気相媒体中で混合された状態において焼成エリアに供給し、又は焼成エリアを通過させる原料供給手段。
(4)焼成エリアにおいて所定の焼成温度を実現するための、燃焼手段を含み又は含まない加熱手段。
(5)複合酸化物微粒子を急速に冷却させ得る冷却手段。
(6)焼成エリアで生成した複合酸化物微粒子を上記冷却手段へ導くための磁界印加手段。
(Configuration of the eighth invention)
The configuration of the eighth invention of the present application for solving the above-described problem is a complex oxide microparticle production apparatus including the following means (3) to (6).
(3) Raw material supply means for supplying fine particles of two kinds of metal oxides, at least one of which is a ferromagnetic oxide, to a firing area in a mixed state in a gas phase medium, or passing through the firing area.
(4) Heating means including or not including combustion means for realizing a predetermined firing temperature in the firing area.
(5) A cooling means capable of rapidly cooling the composite oxide fine particles.
(6) Magnetic field applying means for guiding the composite oxide fine particles generated in the firing area to the cooling means.

(第1発明の効果)
第1発明の複合酸化物微粒子の製造方法によれば、原料として少なくとも一方が強磁性体酸化物である2種類の金属酸化物の微粒子を用いる限りにおいて、微細でしかも非晶質の複合酸化物微粒子を製造することができる。
(Effect of the first invention)
According to the method for producing composite oxide fine particles of the first invention, as long as two kinds of metal oxide fine particles, at least one of which is a ferromagnetic oxide, are used as raw materials, the composite oxide is fine and amorphous. Fine particles can be produced.

その第1の理由は、複合酸化物微粒子が磁界を印加した焼成エリア中を帯電して移動することで生じるローレンツ力を利用して、複合酸化物微粒子を高温の気相媒体から分離し、急速に冷却させる点にある。複合酸化物微粒子を気相媒体ごと冷却しようとすると、ある程度の緩徐な冷却となることは避けられないが、複合酸化物微粒子を高温の気相媒体から迅速に分離して冷却する場合には、その冷却手段が何であれ、急速に冷却することは容易である。一般的に、熱溶融状態又はそれに近い状態にある金属酸化物微粒子や金属複合酸化物微粒子を、数十万°C/秒程度の冷却速度で急速冷却すると、微粒子が非晶質化し粒子径も成長しないことが良く知られている。更に、熱溶融状態又はそれに近い状態にある金属酸化物微粒子や金属複合酸化物微粒子を、1億°C/秒程度の冷却速度で急速冷却すると、微粒子が非晶質化すると共に、その粒子径が原料微粒子よりも却って微細化することも良く知られている。   The first reason is that the composite oxide fine particles are separated from the high-temperature gas phase medium by utilizing the Lorentz force generated by charging and moving the composite oxide fine particles in the firing area to which a magnetic field is applied. It is in the point to let it cool. When trying to cool the composite oxide fine particles together with the gas phase medium, it is inevitable that the cooling will be somewhat slow, but when the composite oxide fine particles are rapidly separated from the high temperature gas phase medium and cooled, Whatever the cooling means, it is easy to cool rapidly. In general, when metal oxide fine particles and metal composite oxide fine particles in a heat-melted state or a state close thereto are rapidly cooled at a cooling rate of about several hundreds of thousands of degrees C / second, the fine particles become amorphous and the particle size also increases. It is well known that it does not grow. Furthermore, when the metal oxide fine particles and metal composite oxide fine particles in a heat-melted state or a state close thereto are rapidly cooled at a cooling rate of about 100 million ° C./second, the fine particles become amorphous and the particle size thereof becomes smaller. It is also well known that the material is made finer than the raw material fine particles.

その第2の理由は、少なくとも一方が強磁性体酸化物である2種類の金属酸化物微粒子を気相媒体中で溶融接合させて、複合酸化物微粒子を焼成する点にある。この場合、個々の複合酸化物微粒子は気相媒体中で分散状態にあるため、微粒子同士の接触・一体化に基づく粒子径の成長も起こり難い。   The second reason is that two kinds of metal oxide fine particles, at least one of which is a ferromagnetic oxide, are melt-bonded in a gas phase medium, and the composite oxide fine particles are fired. In this case, since the individual composite oxide fine particles are in a dispersed state in the gas phase medium, the particle diameter hardly grows based on the contact / integration of the fine particles.

そして、第1発明の製造方法を実施するためには、原料である2種類の金属酸化物微粒子を気相媒体中で混合された状態で供給する手段と、焼成のための加熱手段と、磁界印加手段と、冷却手段とがあれば足りる。これらの手段はいずれも安価、簡易かつ汎用的な技術要素であって、それらの組み合わせにより比較的安価にかつ簡易に製造装置を構成できる。従って、第1発明の製造方法によれば、極めて微細でしかも非晶質の複合酸化物微粒子を安価かつ簡易に製造することができる。「極めて微細でしかも非晶質の複合酸化物微粒子」の有用性については、「第5発明の効果」欄において後述する。   In order to carry out the manufacturing method of the first invention, means for supplying two kinds of metal oxide fine particles as raw materials in a mixed state in a gas phase medium, heating means for firing, magnetic field The application unit and the cooling unit are sufficient. All of these means are inexpensive, simple and general technical elements, and a combination of them makes it possible to construct a manufacturing apparatus relatively inexpensively and simply. Therefore, according to the manufacturing method of the first invention, extremely fine and amorphous composite oxide fine particles can be manufactured inexpensively and easily. The usefulness of “very fine and amorphous composite oxide fine particles” will be described later in the “Effects of Fifth Invention” column.

(第2発明の効果)
第1発明において前記した2種類の金属酸化物微粒子の種類は限定されないが、強磁性体酸化物である第2酸化鉄の微粒子と、弱磁性体酸化物である酸化チタンの微粒子とであることが、特に好ましい。その理由は、「第6発明の効果」欄において後述する。
(Effect of the second invention)
In the first invention, the types of the two kinds of metal oxide fine particles described above are not limited, but are the fine particles of the second iron oxide which is a ferromagnetic oxide and the fine particles of a titanium oxide which is a weak magnetic oxide. Is particularly preferred. The reason will be described later in the “Effect of the sixth invention” column.

(第3発明の効果)
焼成工程での焼成温度(雰囲気温度)は、発明の目的を阻害しない限りにおいて限定されないが、750°C〜1500°Cの範囲内が好ましい。焼成温度が750°C未満であると、複合酸化物微粒子の生成が不十分となる恐れがある。焼成温度の上限に関しては1500°C程度で十分である。発明の目的達成上は、1500°Cを超える温度域での焼成を行っても構わないが、この場合には、焼成に要するエネルギーの浪費となる恐れがある。
(Effect of the third invention)
The firing temperature (atmosphere temperature) in the firing step is not limited as long as the object of the invention is not impaired, but is preferably in the range of 750 ° C. to 1500 ° C. If the firing temperature is less than 750 ° C., the generation of composite oxide fine particles may be insufficient. As for the upper limit of the firing temperature, about 1500 ° C. is sufficient. In order to achieve the object of the invention, firing may be performed in a temperature range exceeding 1500 ° C., but in this case, energy required for firing may be wasted.

又、急速冷却工程での複合酸化物微粒子の冷却速度も、発明の目的が達成される限りにおいて限定されないが、複合酸化物微粒子を気相媒体より分離した後、10万°C〜1億5000万°C/秒の割合で固化温度以下まで急速冷却することが、特に好ましい。複合酸化物微粒子の冷却速度が、10万°C/秒〜数十万°C/秒程度である場合には、複合酸化物微粒子が非晶質化し、粒子径も成長しない。複合酸化物微粒子の冷却速度が、1億°C/秒〜1億5000万°C/秒程度に到ると、複合酸化物微粒子が非晶質化すると共に、その粒子径が原料たる金属酸化物微粒子の平均粒径よりも更に微細化して、極めて微細な複合酸化物微粒子を得る。   Further, the cooling rate of the composite oxide fine particles in the rapid cooling step is not limited as long as the object of the invention is achieved, but after the composite oxide fine particles are separated from the gas phase medium, the temperature is 100,000 ° C. to 15000 ° C. It is particularly preferred to rapidly cool to below the solidification temperature at a rate of 10,000 ° C / second. When the cooling rate of the composite oxide fine particles is about 100,000 ° C./second to several hundred thousand ° C./second, the composite oxide fine particles become amorphous and the particle diameter does not grow. When the cooling rate of the composite oxide fine particles reaches about 100 ° C./sec to about 150 million ° C./second, the composite oxide fine particles become amorphous and the particle diameter becomes the metal oxide as a raw material. Finer composite oxide fine particles are obtained by further miniaturization than the average particle size of the product fine particles.

(第4発明の効果)
第4発明のように、原料たる2種類の金属酸化物微粒子の平均粒径が10μm以下であり、複合酸化物微粒子の平均粒径が1〜10μmの範囲内であることが、特に好ましい。
(Effect of the fourth invention)
As in the fourth invention, it is particularly preferable that the average particle size of the two types of metal oxide fine particles as the raw material is 10 μm or less and the average particle size of the composite oxide fine particles is in the range of 1 to 10 μm.

(第5発明の効果)
第5発明に係る「少なくとも一方が強磁性体酸化物である2種類の金属酸化物微粒子が焼成により溶融接合したものであり、かつ、非晶質である」複合酸化物微粒子は、架空の概念としては比較的容易にイメージできるとしても、実際に製造された事例及びその製造方法は余り見聞したことがなく、非常にユニークなものである。
(Effect of the fifth invention)
The composite oxide fine particles according to the fifth aspect of the present invention are “the two types of metal oxide fine particles, at least one of which is a ferromagnetic oxide, are melt-bonded by firing and are amorphous”. However, even though it can be imaged relatively easily, examples of actual production and methods for producing the same have never been heard and are very unique.

複合酸化物微粒子が非晶質であることは、微粒子の粒子径の成長を抑制する上で有利な条件であり、かつ、強磁性体の透磁率を高め同時に保磁力を低め、電波吸収効果を増大させる条件である。従って、複合酸化物微粒子は強磁性体(例えば、酸化第2鉄)に基づく優れた電磁波遮蔽効果を期待できるため、例えばビルの壁面材等に適用すると、電波を遮蔽し、高密度な通信環境の実現(高い品位な電波伝播都市の実現)等に有効である。   The fact that the composite oxide fine particles are amorphous is an advantageous condition for suppressing the growth of the particle diameter of the fine particles, and at the same time, increases the magnetic permeability of the ferromagnetic material and lowers the coercive force, thereby improving the radio wave absorption effect. It is a condition to increase. Accordingly, the composite oxide fine particles can be expected to have an excellent electromagnetic wave shielding effect based on a ferromagnetic material (for example, ferric oxide). Therefore, when applied to a wall material of a building, for example, the composite oxide fine particles shield radio waves and have a high-density communication environment. It is effective for the realization (realization of high quality radio wave propagation city).

又、強磁性体である酸化第2鉄等は、触媒機能に優れた一種のn型半導体であって、複合酸化物の相手材に対して電子ドナーとして機能すると考えられるが、複合酸化物が非晶質であること、及び微細な粒子であることは、酸化第2鉄等の上記ドナー機能を強める。その結果、酸化第2鉄等が、複合酸化物の相手材が持つ固有の特性を強化する場合が多い。その一例が第6発明に係る酸化第2鉄−酸化チタン複合酸化物微粒子である。   In addition, ferric oxide, which is a ferromagnetic material, is a kind of n-type semiconductor having an excellent catalytic function, and is considered to function as an electron donor for the counterpart material of the composite oxide. Being amorphous and being fine particles enhance the donor function such as ferric oxide. As a result, ferric oxide or the like often reinforces the inherent characteristics of the composite oxide counterpart. One example is the ferric oxide-titanium oxide composite oxide fine particles according to the sixth invention.

又、複合酸化物が微細な粒子であることは、詳細な理論的根拠の説明は省略するが、第1に、複合酸化物粒子全体としての表面積が著しく増大することから、第2に、複合酸化物粒子を構成する2種類の金属酸化物の分子間距離が短縮されて電気空乏層が縮退し空乏層内の電界が強まり、その結果静電容量としての機能が強化されて電波吸収効果が増大することから、極めて有効である。   Also, the detailed explanation of the theoretical basis is omitted for the fact that the composite oxide is a fine particle, but first, the surface area of the composite oxide particle as a whole is remarkably increased. The intermolecular distance between the two types of metal oxide composing the oxide particles is shortened, the electric depletion layer is degenerated, the electric field in the depletion layer is strengthened, and as a result, the function as a capacitance is strengthened and the radio wave absorption effect is enhanced. Since it increases, it is extremely effective.

(第6発明の効果)
複合酸化物微粒子が、第6発明のように、強磁性体酸化物である第2酸化鉄の微粒子と、弱磁性体酸化物である酸化チタンの微粒子とが溶融接合した複合酸化物微粒子である場合には、上記の第5発明の効果に加えて、以下の効果を期待することができる。
(Effect of the sixth invention)
The composite oxide fine particles are composite oxide fine particles in which the fine particles of the second iron oxide, which is a ferromagnetic oxide, and the fine particles of a titanium oxide, which is a weak magnetic oxide, are melt-bonded as in the sixth invention. In this case, in addition to the effects of the fifth invention, the following effects can be expected.

まず、酸化チタンは光触媒活性を持ち、アルデヒド、窒素酸化物等の人体に有害な空気中成分に対する分解活性を期待できる。光触媒には抗菌作用も認められている。そして第5発明において上記したように、第2酸化鉄のドナー機能が強いので、酸化チタンに基づく上記の光触媒活性と抗菌作用が強化される。従って、第6発明の複合酸化物微粒子は、壁面材、家具、衛生用材等への非常に有効な適用を期待できる。   First, titanium oxide has a photocatalytic activity and can be expected to have a decomposition activity on components in air such as aldehydes and nitrogen oxides harmful to the human body. The photocatalyst is also recognized as having antibacterial action. And as above-mentioned in 5th invention, since the donor function of 2nd iron oxide is strong, said photocatalytic activity and antimicrobial action based on a titanium oxide are strengthened. Therefore, the composite oxide fine particles of the sixth invention can be expected to be applied very effectively to wall materials, furniture, sanitary materials and the like.

(第7発明の効果)
前記したように、複合酸化物微粒子の平均粒径が小さい程、その各種の有用な機能も強化される。但し、複合酸化物微粒子の平均粒径は、「第3発明の効果」欄で前記したように極めて迅速な冷却により原料微粒子よりも更に微細化される場合を除き、原料たる金属酸化物微粒子の平均粒径によって規定される。このため、一般的には、その平均粒径が1〜10μmの範囲内であることが現実的であり、好ましい。
(Effect of the seventh invention)
As described above, the smaller the average particle diameter of the composite oxide fine particles, the stronger the various useful functions. However, the average particle diameter of the composite oxide fine particles is the same as that of the metal oxide fine particles as the raw material, except when the fine particles are further refined by the extremely rapid cooling as described above in the section “Effect of the third invention”. Defined by average particle size. For this reason, it is practical and preferable that the average particle diameter is generally in the range of 1 to 10 μm.

(第8発明の効果)
第8発明の製造装置を用いて、上記した複合酸化物微粒子を有利に製造することができる。この製造装置を構成する前記(3)〜(6)の手段はいずれも汎用的な技術要素であり、比較的安価にかつ簡易に構成できる。従って、複合酸化物微粒子を安価かつ簡易に製造することができる。
(Effect of the eighth invention)
The composite oxide fine particles described above can be advantageously produced using the production apparatus of the eighth invention. The means (3) to (6) constituting the manufacturing apparatus are all general-purpose technical elements, and can be configured relatively inexpensively and simply. Therefore, the composite oxide fine particles can be manufactured inexpensively and easily.

次に、本願の第1発明〜第8発明を実施するための形態を、その最良の形態を含めて説明する。以下において単に「本発明」と言う時は、本願の各発明を一括して指している。   Next, modes for carrying out the first to eighth inventions of the present application will be described including the best mode. In the following, the term “present invention” refers to each invention of the present application collectively.

〔複合酸化物微粒子の製造方法〕
本発明に係る複合酸化物微粒子の製造方法は、少なくとも下記の焼成工程と、急速冷却工程とを含む。焼成工程と急速冷却工程とは、通常は、連続して行われる。
[Production method of composite oxide fine particles]
The method for producing composite oxide fine particles according to the present invention includes at least the following firing step and rapid cooling step. The firing step and the rapid cooling step are usually performed continuously.

本発明の効果を阻害しない限りにおいて、焼成工程と急速冷却工程以外の任意の工程を付加することもできる。例えば、前処理として、原料たる2種類の金属酸化物微粒子を調製したり、篩別等によりそれらの粒径を揃えたり、2種類の金属酸化物微粒子を均一に混合したりする工程等を前置することができる。必要又は有益な任意の後処理工程を付加することもできる。   Any process other than the firing process and the rapid cooling process can be added as long as the effect of the present invention is not impaired. For example, as a pretreatment, a process of preparing two kinds of metal oxide fine particles as raw materials, making the particle diameters uniform by sieving, etc., or mixing two kinds of metal oxide fine particles uniformly Can be placed. Any post-processing steps necessary or beneficial can also be added.

焼成工程と急速冷却工程との実施の態様として、原料たる2種類の金属酸化物微粒子を含む気相媒体全体が一定の方向へ流動しつつ行われる場合、このような気相媒体全体が特定のエリアに止まりつつ行われる場合、一般的な粒状体乾燥工程で良く見られるように、垂直な流路内を加熱された気相媒体が上昇し、上方又は横方向より供給された原料微粒子を重力の作用によって下降させるクロス方式等の任意の態様を採用できる。本発明においては、これらの任意の方式に加えて、急速冷却工程で、印加した磁界の作用によって気相媒体中の複合酸化物微粒子を冷却手段の設置方向へ誘導する処理が組み合わされる。   As an embodiment of the firing step and the rapid cooling step, when the entire gas phase medium containing two kinds of metal oxide fine particles as a raw material flows while flowing in a certain direction, such an entire gas phase medium is specified as When carried out while remaining in the area, as is often seen in a general granule drying process, the heated gas phase medium rises in the vertical flow path, and the raw material fine particles supplied from above or from the side are gravity Arbitrary modes such as a cross system that lowers by the action of can be adopted. In the present invention, in addition to these arbitrary methods, in the rapid cooling process, a process of inducing the composite oxide fine particles in the gas phase medium in the direction of installation of the cooling means by the action of the applied magnetic field is combined.

〔焼成工程〕
焼成工程においては、原料である2種類の金属酸化物微粒子を高温の気相媒体中で混合して焼成することにより、双方の微粒子が溶融接合した複合酸化物微粒子を生成させる。気相媒体としては、燃料と酸化ガスの混合ガスを用いても良いし、焼成工程における加熱手段が燃焼でない場合には、空気等の酸化性ガスや窒素ガス等の不活性ガスを用いることも可能である。
[Baking process]
In the firing step, two kinds of metal oxide fine particles as raw materials are mixed and fired in a high-temperature gas phase medium to produce composite oxide fine particles in which both fine particles are melt-bonded. As the gas phase medium, a mixed gas of fuel and oxidizing gas may be used. When the heating means in the firing step is not combustion, an oxidizing gas such as air or an inert gas such as nitrogen gas may be used. Is possible.

原料である2種類の金属酸化物微粒子は、少なくともその一方が強磁性体酸化物の微粒子である限りにおいて、種類を限定されない。ここに「強磁性体酸化物の微粒子」とは、1種類又は2種類以上(合金)の強磁性体からなる酸化物微粒子を言い、又はこのような強磁性体からなる酸化物を少なくとも一部に含む酸化物微粒子を言う。   The types of the two kinds of metal oxide fine particles as raw materials are not limited as long as at least one of them is a ferromagnetic oxide fine particle. Here, the term “ferromagnetic oxide fine particles” refers to oxide fine particles made of one kind or two or more kinds (alloys) of a ferromagnetic substance, or at least a part of such a ferromagnetic oxide. Oxide fine particles contained in

又、原料である2種類の金属酸化物微粒子は、2種類の金属酸化物微粒子の一方が上記した意味での強磁性体金属の酸化物の微粒子で、他方が弱磁性体金属の酸化物の微粒子であっても良いし、両方が強磁性体金属の酸化物の微粒子であっても良い。   Also, the two types of metal oxide fine particles as the raw material are one of the two types of metal oxide fine particles and the other is a ferromagnetic metal oxide fine particle in the above-described meaning, and the other is a weak magnetic metal oxide fine particle. Fine particles may be used, or both may be fine particles of a ferromagnetic metal oxide.

「強磁性体金属」及び「弱磁性体金属」の概念の内容は、社会通念あるいは技術常識に従うものであり、特段に限定されない。より具体的に述べれば、強磁性体金属としては、鉄、ニッケルその他各種のいわゆる「遷移金属」が代表的に例示され、これらの1種又は2種以上の合金を典型的に例示することができる。弱磁性体金属としては、亜鉛、コバルト、マンガン、チタン等や、これらの2種以上の合金が好ましく例示される。とりわけチタンやその合金が好ましい。   The content of the concept of “ferromagnetic metal” and “weak magnetic metal” is not particularly limited, and follows social conventions or common technical knowledge. More specifically, as the ferromagnetic metal, iron, nickel and other so-called “transition metals” are typically exemplified, and one or more of these alloys are typically exemplified. it can. Preferable examples of the weak magnetic metal include zinc, cobalt, manganese, titanium and the like, and alloys of two or more of these. In particular, titanium and its alloys are preferable.

結局のところ、本発明に係る複合酸化物微粒子とは、少なくとも一方が強磁性体金属の酸化物である2種類の金属酸化物微粒子が溶融接合したものであって、この内、強磁性体金属の酸化物である金属酸化物微粒子とは、少なくとも強磁性体金属の酸化物を一部に含む微粒子である。従って、本発明に係る複合酸化物微粒子は、少なくとも一部に強磁性体金属の酸化物を含む限りにおいて、2元系及び3元系以上の任意の金属複合酸化物微粒子を広範囲に包含するものである。   After all, the composite oxide fine particles according to the present invention are obtained by fusion-bonding two kinds of metal oxide fine particles, at least one of which is an oxide of a ferromagnetic metal. The metal oxide fine particles which are oxides of the above are fine particles containing at least a ferromagnetic metal oxide in part. Therefore, the composite oxide fine particles according to the present invention include a wide range of binary and ternary or higher arbitrary metal composite oxide fine particles as long as at least a part thereof includes a ferromagnetic metal oxide. It is.

焼成工程において、少なくとも一方が強磁性体酸化物である2種類の金属酸化物の微粒子を混合状態で含む気相媒体は、750°C〜1500°Cの範囲内の温度、より好ましくは、1000°C〜1350°Cの範囲内の温度とされる。そのための手段として、上記の原料を含む気相媒体を、ガスバーナー等における燃料の燃焼により生じた高温の燃焼気と混合しても良いし、原料を含む気相媒体を電熱炉等の高温加熱炉中を通過させても良い。   In the firing step, the gas phase medium containing two kinds of metal oxide fine particles, at least one of which is a ferromagnetic oxide, in a mixed state is a temperature in the range of 750 ° C. to 1500 ° C., more preferably 1000 ° C. The temperature is in the range of ° C to 1350 ° C. For this purpose, the gas phase medium containing the above raw material may be mixed with high-temperature combustion gas generated by the combustion of fuel in a gas burner or the like, or the gas phase medium containing the raw material may be heated at a high temperature such as an electric furnace. It may be passed through the furnace.

ガスバーナー等の燃料噴出式の加熱手段を利用する場合、燃料噴出路の内部又は燃料噴出口の近傍に原料たる金属酸化物微粒子の供給口を設け、ガスバーナー等の燃料噴出又は燃焼気噴出の負圧を利用して、原料微粒子を燃焼気中に吸い出す方式が可能である。特に、燃料噴出路の内部に原料微粒子の供給口を設ける場合、原料微粒子が予め燃料混合気中に良好に混合されて噴出・着火されるので、焼成工程がよりスムーズに行われる。   When using fuel jet type heating means such as a gas burner, a supply port for metal oxide fine particles as a raw material is provided inside the fuel jet passage or in the vicinity of the fuel jet outlet, and fuel jet or combustion gas jet such as a gas burner is provided. A method of sucking raw material fine particles into the combustion air using negative pressure is possible. In particular, when the raw material fine particle supply port is provided in the fuel ejection path, the raw material fine particles are well mixed in advance in the fuel mixture and ejected and ignited, so that the firing process is performed more smoothly.

それに加えて、空気中におけるガスバーナー等の燃焼炎は中心部が相対的に低温の還元炎、周辺部が相対的に高温の酸化炎であるため、原料微粒子は最初に還元炎中において十分に燃焼され還元されながら微粒子間の接触面が溶融接合し、良好な複合化(合金化)微粒子となって、次に酸化炎中へ移行して更に加熱され、接合面以外は十分に酸化された複合酸化物微粒子となる。   In addition, the combustion flame such as a gas burner in the air is a reducing flame with a relatively low temperature at the center and an oxidizing flame with a relatively high temperature at the periphery. The contact surfaces between the fine particles melted and bonded while being burned and reduced to form good composite (alloyed) fine particles, then moved into the oxidation flame and further heated, and the other surfaces were fully oxidized It becomes complex oxide fine particles.

焼成された粒子が比較的大径で十分に複合化されていない場合、酸化炎中での酸化が不十分となる恐れがある。この意味でも、複合酸化物微粒子となるべき複合化微粒子の平均粒径が、1〜10μmの範囲内であることが好ましい。なお、焼成工程においては、少なくとも一方が強磁性体酸化物である2種類の金属酸化物微粒子が気相媒体中で良好に攪拌・混合された状態にあることが好ましい。   If the fired particles are relatively large in diameter and not sufficiently complexed, oxidation in the oxidation flame may be insufficient. Also in this sense, it is preferable that the average particle diameter of the composite fine particles to be the composite oxide fine particles is in the range of 1 to 10 μm. In the firing step, it is preferable that two kinds of metal oxide fine particles, at least one of which is a ferromagnetic oxide, be well stirred and mixed in a gas phase medium.

焼成工程に用いる金属酸化物の微粒子は、それぞれ、平均粒径が1〜10μmの範囲内であって、なるべく粒径のバラツキの少ないものが好ましい。2種類の金属酸化物微粒子の用量比は限定されないが、強磁性体酸化物微粒子と弱磁性体酸化物微粒子とを用いる場合には、強磁性体酸化物微粒子が重量基準で1/2以下であることが好ましい。   The metal oxide fine particles used in the firing step are preferably those having an average particle diameter in the range of 1 to 10 μm and with as little variation in particle diameter as possible. The dose ratio of the two types of metal oxide fine particles is not limited, but when using the ferromagnetic oxide fine particles and the weak magnetic oxide fine particles, the ferromagnetic oxide fine particles are ½ or less on a weight basis. Preferably there is.

焼成により生成した複合酸化物微粒子を焼成工程の温度雰囲気に長く止めることは、溶融している複合酸化物微粒子が互いに凝集して大きな粒径の粒子に成長すると言う理由から好ましくない。従って、原料たる2種類の金属酸化物微粒子を焼成工程に投入して複合酸化物微粒子を生成させた後は、迅速に急速冷却工程に移行することが望ましい。   It is not preferable to keep the composite oxide fine particles generated by firing in the temperature atmosphere of the firing step for a long time because the melted composite oxide fine particles aggregate with each other and grow into particles having a large particle size. Therefore, it is desirable that the two types of metal oxide fine particles as raw materials are input into the firing step to generate composite oxide fine particles, and then the process is quickly shifted to the rapid cooling step.

〔急速冷却工程〕
急速冷却工程においては、焼成工程を経過した気相媒体に磁界を作用させることにより、複合酸化物微粒子を気相媒体から分離させると共に冷却系へ導入し、急速冷却によって非晶質の複合酸化物微粒子を生成させる。作用させる磁界は、固定磁石等による静的な磁界でも、ダイナミック磁界でも良い。
[Rapid cooling process]
In the rapid cooling process, the composite oxide fine particles are separated from the vapor phase medium by applying a magnetic field to the vapor phase medium that has passed through the firing process, and introduced into the cooling system. Generate fine particles. The applied magnetic field may be a static magnetic field such as a fixed magnet or a dynamic magnetic field.

冷却系の種類及び構成は限定されないが、例えば、焼成エリアの下方に冷却水流を準備することができる。又、磁界により複合酸化物微粒子を誘導する方向に、冷却ドラム等の適宜な冷却装置を設置しておいても良い。   Although the kind and structure of a cooling system are not limited, For example, a cooling water flow can be prepared below a baking area. Further, an appropriate cooling device such as a cooling drum may be installed in the direction in which the composite oxide fine particles are induced by the magnetic field.

前記したように、急速冷却工程における複合酸化物微粒子の急速冷却は重要な技術的意味を持つ。その急速冷却の内容は必ずしも限定されないが、複合酸化物微粒子を気相媒体より分離した後、10万°C〜1億5000万°C/秒の割合で固化温度以下まで急速冷却することが好ましい。   As described above, rapid cooling of the composite oxide fine particles in the rapid cooling step has an important technical meaning. Although the content of the rapid cooling is not necessarily limited, it is preferable that the composite oxide fine particles are separated from the gas phase medium and then rapidly cooled to a solidification temperature or lower at a rate of 100,000 ° C to 150 million ° C / second. .

溶融状態の複合酸化物微粒子を冷却水流に投入して冷却速度が1億°C/秒を超える急速な冷却を行うと、複合酸化物の溶融微粒子が冷却水流中で粉砕されて更に微細化される効果を期待できる。冷却水に塩化カルシウム等の沸騰促進剤を混ぜて安定した蒸気爆発を連続させることにより、上記のような粒子の粉砕効果を一層高めることができる。   When molten composite oxide fine particles are put into a cooling water flow and a rapid cooling is performed at a cooling rate exceeding 100 million ° C / second, the composite oxide fine particles are pulverized in the cooling water flow and further refined. Can be expected. By mixing a boiling accelerator such as calcium chloride in the cooling water and continuing a stable vapor explosion, the above-mentioned particle pulverization effect can be further enhanced.

〔複合酸化物微粒子〕
複合酸化物微粒子は、少なくとも一方が強磁性体酸化物である2種類の金属酸化物微粒子が所定の高温下で溶融接合された非晶質微粒子である。溶融接合の形態は限定されず、例えば2種類の金属酸化物微粒子が明瞭な粒子境界を以て接合された形態、合金化が進んで多元物質密度がグラデュエーションを成す合金接合面となった形態等を例示できる。
[Composite oxide fine particles]
The composite oxide fine particles are amorphous fine particles in which two types of metal oxide fine particles, at least one of which is a ferromagnetic oxide, are melt-bonded at a predetermined high temperature. The form of fusion bonding is not limited, for example, a form in which two types of metal oxide fine particles are joined together with a clear grain boundary, a form in which alloying has progressed and an alloy joint surface in which multi-material density forms a gradation, etc. Can be illustrated.

複合酸化物微粒子の平均粒径は、「発明の効果」欄において前記した理由から1〜10μmの範囲内であることが好ましく、かつ、なるべく粒径のバラツキの少ないものが好ましい。複合酸化物微粒子の「非晶質」の度合いに関し、微粒子が100%非晶質であることが最も好ましいが、現実問題としては、本発明に限らず一般的に完全非晶質化は困難であり、好ましくは複合酸化物微粒子の50重量%以上が非晶質であり、より好ましくは70重量%以上が非晶質であり、更に好ましくは90重量%以上が非晶質である。   The average particle size of the composite oxide fine particles is preferably in the range of 1 to 10 μm for the reason described above in the “Effects of the Invention” column, and preferably has as little variation in particle size as possible. Regarding the degree of “amorphous” of the composite oxide fine particles, it is most preferable that the fine particles are 100% amorphous. However, the actual problem is not limited to the present invention. Preferably, 50% by weight or more of the composite oxide fine particles are amorphous, more preferably 70% by weight or more are amorphous, and still more preferably 90% by weight or more are amorphous.

〔複合酸化物微粒子の製造装置〕
複合酸化物微粒子の製造装置は、少なくとも、以下の(3)〜(6)の手段を備えたものであるが、「実施例」欄において、その2、3の具体例を述べる。
(3)少なくとも一方が強磁性体酸化物である2種類の金属酸化物微粒子を気相媒体中で混合された状態において焼成エリアに供給し、又は焼成エリアを通過させる原料供給手段。
(4)焼成エリアにおいて所定の焼成温度を実現するための、燃焼手段を含み又は含まない加熱手段。
(5)複合酸化物微粒子を急速に冷却させ得る冷却手段。
(6)焼成エリアで生成した複合酸化物微粒子を上記冷却手段へ導くための磁界印加手段。
[Production equipment for complex oxide fine particles]
The complex oxide fine particle production apparatus includes at least the following means (3) to (6), and a few specific examples will be described in the “Example” column.
(3) Raw material supply means for supplying two kinds of metal oxide fine particles, at least one of which is a ferromagnetic oxide, to a firing area in a mixed state in a gas phase medium, or passing through the firing area.
(4) Heating means including or not including combustion means for realizing a predetermined firing temperature in the firing area.
(5) A cooling means capable of rapidly cooling the composite oxide fine particles.
(6) Magnetic field applying means for guiding the composite oxide fine particles generated in the firing area to the cooling means.

次に、図面に基づき、参考例と共に本発明の幾つかの実施例を説明する。なお、これらの図面において、部品番号の一部は、該当する部品や部位を示す図形線中に直接に表記することにより、引出し線を伴わずに示している。   Next, several embodiments of the present invention will be described with reference examples based on the drawings. In these drawings, a part of a part number is shown without a leader line by being directly described in a graphic line indicating the corresponding part or part.

(参考例)
図1に示す複合酸化物微粒子の製造装置において、ガスバーナー1には燃料ガス噴出口2が内蔵され、この噴出口の外周部には、磁性酸化鉄微粒子と酸化チタン微粒子とを空気等の気相媒体中に混合状態で含む混合ガスを供給する混合ガス供給路3が合流している。混合ガスの供給は、燃料ガス噴出口2による噴出の負の気圧によっても良いし、混合ガス供給路3に加える正の気圧(押出し圧)によっても良い。
(Reference example)
In the complex oxide fine particle production apparatus shown in FIG. 1, a fuel gas outlet 2 is built in a gas burner 1, and magnetic iron oxide fine particles and titanium oxide fine particles are placed in the outer peripheral portion of the jet outlet such as air. A mixed gas supply path 3 for supplying a mixed gas included in the phase medium in a mixed state is joined. The supply of the mixed gas may be performed by the negative pressure of the jet from the fuel gas outlet 2 or by the positive pressure (extrusion pressure) applied to the mixed gas supply path 3.

ガスバーナー1の燃焼気噴出口の近傍4では、燃料ガスと混合ガスとが十分に混ざり合い、燃焼気噴出口で燃料ガスが着火される。そして還元炎5中で磁性酸化鉄微粒子と酸化チタン微粒子が溶融接合して良好な複合化微粒子となり、次いで酸化炎6中で複合酸化物微粒子となる。この複合酸化物微粒子7は慣性力によって酸化炎6の域外まで飛行し、鉄製回転ローラー式の冷却装置8の冷却面上に付着する。そして急速に冷却されて、非晶質で微細な複合酸化物微粒子9として集積される。   In the vicinity 4 of the combustion air outlet of the gas burner 1, the fuel gas and the mixed gas are sufficiently mixed, and the fuel gas is ignited at the combustion air outlet. Then, the magnetic iron oxide fine particles and the titanium oxide fine particles are melt-bonded in the reducing flame 5 to form good composite fine particles, and then in the oxide flame 6 to become composite oxide fine particles. The composite oxide fine particles 7 fly out of the range of the oxidation flame 6 by inertia and adhere to the cooling surface of the iron rotary roller type cooling device 8. Then, it is rapidly cooled and accumulated as fine amorphous oxide fine particles 9.

(実施例1)
図2に示す複合酸化物微粒子の製造装置においては、ガスバーナー1の噴出炎(酸化炎部分)を囲む位置に、磁極板10,11及びソレノイド12,13が設置されている。磁極板10,11により印加される磁界により、噴出炎中で帯電した複合酸化物微粒子にローレンツ力が作用し、ガスバーナー1の噴出炎の下方に設置された冷水プール14の方向へ付勢されて冷水プール14中へ落下する。そして冷水プール14中で1億°C/秒を超える急速な冷却作用と粉砕作用を受けて、極めて微細で非晶質の複合酸化物微粒子を生成する。
Example 1
In the complex oxide fine particle manufacturing apparatus shown in FIG. 2, the magnetic pole plates 10 and 11 and the solenoids 12 and 13 are installed at positions surrounding the jet flame (oxidation flame portion) of the gas burner 1. The Lorentz force acts on the composite oxide particles charged in the ejection flame by the magnetic field applied by the magnetic pole plates 10 and 11 and is urged toward the cold water pool 14 installed below the ejection flame of the gas burner 1. Falls into the cold water pool 14. Then, in the cold water pool 14, it receives a rapid cooling action and pulverization action exceeding 100 ° C./second to produce extremely fine and amorphous composite oxide fine particles.

噴出炎中の複合酸化物の一部は、冷水プール14中へ落下し切れず、慣性力によって飛行して冷却装置8の冷却面上に付着し、10万°C/秒程度の急速な冷却作用を受けて、微細で非晶質の複合酸化物微粒子を生成する。   A part of the complex oxide in the jet flame does not fall into the cold water pool 14 but flies by the inertial force and adheres to the cooling surface of the cooling device 8 and rapidly cools down to about 100,000 ° C./second. Under the action, fine and complex composite oxide fine particles are generated.

この実施例1において、上記の説明以外の点は、前記参考例と同様である。   In Example 1, points other than those described above are the same as in the reference example.

(実施例2)
図3に示す複合酸化物微粒子の製造装置においては、1対のMHD発電用電極17,17をガスバーナー1の噴出炎(酸化炎部分)を囲む位置に付加した点以外は、実施例1と同じ構成であり作用・効果も同様である。MHD発電用電極17,17はいわゆるMHD発電作用を示し、複合酸化物微粒子は噴出炎中で帯電し磁界中を高速に飛行するので、磁界と飛行方向との直交方向に電流が発生する。この電流をソレノイド12,13に流れる電流に合流させ、磁界発生の用に供し、装置の電力消費量を低減する。
(Example 2)
In the complex oxide fine particle manufacturing apparatus shown in FIG. 3, the pair of MHD power generation electrodes 17 and 17 is the same as that in Example 1 except that a pair of MHD power generation electrodes 17 and 17 is added to a position surrounding the jet flame (oxidation flame portion) of the gas burner 1. It is the same composition and the operation and effect are also the same. The electrodes 17 and 17 for MHD power generation exhibit a so-called MHD power generation action, and the composite oxide fine particles are charged in the ejection flame and fly at high speed in the magnetic field, so that a current is generated in a direction orthogonal to the magnetic field and the flight direction. This current is combined with the current flowing through the solenoids 12 and 13 to generate a magnetic field, thereby reducing the power consumption of the apparatus.

(実施例3)
図4に示す複合酸化物微粒子の製造装置において、全体として六角形の回路状のトンネル式キルンが構成されている。このキルンの外周壁15及び内周壁16を含む壁部全体は非磁性体材料を以て構成され、トンネル構造を形成している。このトンネル式キルン内部の底部は、冷却用の水が貯留され又は流れている冷却用の冷水プール14とされている。
(Example 3)
In the complex oxide fine particle manufacturing apparatus shown in FIG. 4, a hexagonal circuit-shaped tunnel kiln is configured as a whole. The entire wall portion including the outer peripheral wall 15 and the inner peripheral wall 16 of the kiln is made of a non-magnetic material and forms a tunnel structure. The bottom of the tunnel kiln is a cooling cold water pool 14 in which cooling water is stored or flowing.

六角形のキルンの各辺に該当する壁部の所定部位には、それぞれガスバーナー1が取り付けられ、それらの燃焼気噴出口はキルンの内部に開口している。又、ガスバーナー1の噴出炎(酸化炎部分)を囲む位置において、外周壁15及び内周壁16にわたって磁極板10,11及びソレノイド12,13が設置されて、噴出炎中で生成した複合酸化物微粒子を下方へ付勢して冷水プール14中へ落下させるようになっている。   Gas burners 1 are respectively attached to predetermined portions of the wall portions corresponding to the respective sides of the hexagonal kiln, and their combustion gas outlets are opened inside the kiln. Further, at the position surrounding the jet flame (oxidation flame portion) of the gas burner 1, the pole plates 10 and 11 and the solenoids 12 and 13 are installed over the outer peripheral wall 15 and the inner peripheral wall 16, and the composite oxide generated in the jet flame. The fine particles are urged downward to fall into the cold water pool 14.

図4に示す複合酸化物微粒子の製造装置において、図3に示したものと同様の1対のMHD発電用電極17,17を図3の場合と同様の位置に付加することが可能である。その作用・効果は前記した通りである。   In the complex oxide microparticle production apparatus shown in FIG. 4, a pair of MHD power generation electrodes 17, 17 similar to those shown in FIG. 3 can be added at the same positions as in FIG. The operation and effect are as described above.

この実施例3において、上記の説明以外の点は、前記参考例と同様である。   In Example 3, points other than the above description are the same as in the reference example.

本発明は、金属複合酸化物粒子とその製造方法及び製造装置を提供するものであって、金属複合酸化物粒子の多様な利用分野において有用であり、更に、極めて微細でしかも非晶質の複合酸化物粒子を提供するので、新たな利用分野を開拓できる可能性がある。   The present invention provides a metal composite oxide particle, a method for manufacturing the metal composite oxide particle, and a manufacturing apparatus, and is useful in various fields of application of the metal composite oxide particle. Since oxide particles are provided, there is a possibility of opening up new fields of application.

参考例に係る複合酸化物微粒子の製造装置を簡略化して示す図である。It is a figure which simplifies and shows the manufacturing apparatus of the complex oxide microparticles | fine-particles which concern on a reference example. 実施例に係る複合酸化物微粒子の製造装置を簡略化して示す図である。It is a figure which simplifies and shows the manufacturing apparatus of the complex oxide microparticles | fine-particles which concern on an Example. 実施例に係る複合酸化物微粒子の製造装置を簡略化して示す図である。It is a figure which simplifies and shows the manufacturing apparatus of the complex oxide microparticles | fine-particles which concern on an Example. 実施例に係る複合酸化物微粒子の製造装置を簡略化して示す図である。It is a figure which simplifies and shows the manufacturing apparatus of the complex oxide microparticles | fine-particles which concern on an Example.

符号の説明Explanation of symbols

1 ガスバーナー
2 燃料ガス噴出口
3 混合ガス供給路
4 燃焼気噴出口の近傍
5 還元炎
6 酸化炎
7 複合酸化物微粒子
8 冷却装置
9 非晶質の複合酸化物微粒子
10 磁極板
11 磁極板
12 ソレノイド
13 ソレノイド
14 冷水プール
15 外周壁
16 内周壁
17 MHD発電用電極
DESCRIPTION OF SYMBOLS 1 Gas burner 2 Fuel gas outlet 3 Mixed gas supply path 4 The vicinity of a combustion-gas outlet 5 Reducing flame 6 Oxidation flame 7 Composite oxide fine particle 8 Cooling device 9 Amorphous composite oxide fine particle 10 Magnetic pole plate 11 Magnetic pole plate 12 Solenoid 13 Solenoid 14 Cold water pool 15 Outer peripheral wall 16 Inner peripheral wall 17 MHD power generation electrode

Claims (5)

下記の(1)焼成工程と(2)急速冷却工程とを含むことを特徴とする複合酸化物微粒子の製造方法。
(1)少なくとも一方が強磁性体金属の酸化物である2種類の金属酸化物の微粒子を高温の気相媒体中で混合して焼成することにより、双方の微粒子が溶融接合した複合酸化物微粒子を生成させる焼成工程。
(2)前記焼成工程を経過した気相媒体に磁界を作用させることにより、複合酸化物微粒子を気相媒体から分離させると共に冷却系へ導入し、10万°C〜1億5000万°C/秒の割合で固化温度以下まで急速冷却することによって非晶質の複合酸化物微粒子を生成させる急速冷却工程。
The manufacturing method of composite oxide microparticles | fine-particles characterized by including the following (1) baking process and (2) rapid cooling process.
(1) Composite oxide fine particles in which two fine particles of a metal oxide, at least one of which is an oxide of a ferromagnetic metal, are mixed and fired in a high-temperature gas phase medium so that both fine particles are melt bonded. The baking process which produces | generates.
(2) By applying a magnetic field to the vapor phase medium that has passed through the firing step, the composite oxide fine particles are separated from the vapor phase medium and introduced into the cooling system, and the temperature is 100,000 ° C. to 150 million ° C. / A rapid cooling process in which amorphous composite oxide fine particles are generated by rapidly cooling to a solidification temperature or less at a rate of seconds.
前記2種類の金属酸化物の微粒子が、強磁性体金属の酸化物である第2酸化鉄の微粒子と、弱磁性体金属の酸化物である酸化チタンの微粒子とであることを特徴とする請求項1に記載の複合酸化物微粒子の製造方法。 The fine particles of the two kinds of metal oxides are fine particles of a second iron oxide that is an oxide of a ferromagnetic metal and fine particles of a titanium oxide that is an oxide of a weak magnetic metal. Item 2. A method for producing composite oxide fine particles according to Item 1. 前記焼成を750°C〜1500°Cの範囲内の温度で行うことを特徴とする請求項1又は請求項2に記載の複合酸化物微粒子の製造方法。 The method for producing composite oxide fine particles according to claim 1 or 2, wherein the firing is performed at a temperature within a range of 750 ° C to 1500 ° C. 前記2種類の金属酸化物微粒子の平均粒径が10μm以下であり、複合酸化物微粒子の平均粒径が1〜10μmの範囲内であることを特徴とする請求項1〜請求項3のいずれかに記載の複合酸化物微粒子の製造方法。 4. The average particle size of the two kinds of metal oxide fine particles is 10 μm or less, and the average particle size of the composite oxide fine particles is in the range of 1 to 10 μm. 5. A method for producing the composite oxide fine particles as described in 1. above. 以下の(3)〜(6)の手段を備えることを特徴とする複合酸化物微粒子の製造装置。
(3)少なくとも一方が強磁性体金属の酸化物である2種類の金属酸化物の微粒子を気相媒体中で混合された状態において焼成エリアに供給し、又は焼成エリアを通過させる原料供給手段。
(4)焼成エリアにおいて所定の焼成温度を実現するための、燃焼手段を含み又は含まない加熱手段
(5)複合酸化物微粒子を10万°C〜1億5000万°C/秒の割合で固化温度以下まで急速に冷却させ得る冷却手段。
(6)焼成エリアで生成した複合酸化物微粒子を上記冷却手段へ導くための磁界印加手段。
An apparatus for producing composite oxide fine particles, comprising the following means (3) to (6).
(3) Raw material supply means for supplying fine particles of two kinds of metal oxides, at least one of which is an oxide of a ferromagnetic metal, to a firing area in a mixed state in a gas phase medium, or passing through the firing area.
(4) Heating means including or not including combustion means for realizing a predetermined firing temperature in the firing area (5) Solidifying composite oxide fine particles at a rate of 100,000 ° C to 150 million ° C / second Cooling means that can be rapidly cooled to below the temperature.
(6) Magnetic field applying means for guiding the composite oxide fine particles generated in the firing area to the cooling means.
JP2003334685A 2003-09-26 2003-09-26 Amorphous complex oxide fine particles and method and apparatus for producing the same Expired - Fee Related JP4515736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003334685A JP4515736B2 (en) 2003-09-26 2003-09-26 Amorphous complex oxide fine particles and method and apparatus for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003334685A JP4515736B2 (en) 2003-09-26 2003-09-26 Amorphous complex oxide fine particles and method and apparatus for producing the same

Publications (2)

Publication Number Publication Date
JP2005097055A JP2005097055A (en) 2005-04-14
JP4515736B2 true JP4515736B2 (en) 2010-08-04

Family

ID=34462289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003334685A Expired - Fee Related JP4515736B2 (en) 2003-09-26 2003-09-26 Amorphous complex oxide fine particles and method and apparatus for producing the same

Country Status (1)

Country Link
JP (1) JP4515736B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8118905B2 (en) 2007-09-27 2012-02-21 M Technique Co., Ltd. Method for producing magnetic microparticles, magnetic microparticles obtained therefrom, magnetic fluid, and method for producing magnetic product

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215757A (en) * 1988-02-25 1989-08-29 Teikoku Kako Co Ltd Signal line noise-reducing material
JPH04254184A (en) * 1991-02-04 1992-09-09 Kawasaki Steel Corp Dust reducing method in production smelting of powdered ore
JPH06115942A (en) * 1992-10-08 1994-04-26 High Frequency Heattreat Co Ltd Ultrafine particle compound oxide of titanium-iron and its production
JPH07278777A (en) * 1994-04-06 1995-10-24 Ishikawajima Harima Heavy Ind Co Ltd Production of functional particulate and device therefor
JPH09286610A (en) * 1996-04-24 1997-11-04 Denki Kagaku Kogyo Kk High purity silica powder and its production and application
JP2002060732A (en) * 2000-06-15 2002-02-26 Degussa Ag Method for producing blast particle coated with titanium dioxide, use of thus obtained blast particle, and method for reinforcing adhesive bond of precoated material to metal framework in artificial tooth
JP2003221218A (en) * 2002-01-30 2003-08-05 Admatechs Co Ltd Spherical silica particles containing fine particles of iron-based oxide and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215757A (en) * 1988-02-25 1989-08-29 Teikoku Kako Co Ltd Signal line noise-reducing material
JPH04254184A (en) * 1991-02-04 1992-09-09 Kawasaki Steel Corp Dust reducing method in production smelting of powdered ore
JPH06115942A (en) * 1992-10-08 1994-04-26 High Frequency Heattreat Co Ltd Ultrafine particle compound oxide of titanium-iron and its production
JPH07278777A (en) * 1994-04-06 1995-10-24 Ishikawajima Harima Heavy Ind Co Ltd Production of functional particulate and device therefor
JPH09286610A (en) * 1996-04-24 1997-11-04 Denki Kagaku Kogyo Kk High purity silica powder and its production and application
JP2002060732A (en) * 2000-06-15 2002-02-26 Degussa Ag Method for producing blast particle coated with titanium dioxide, use of thus obtained blast particle, and method for reinforcing adhesive bond of precoated material to metal framework in artificial tooth
JP2003221218A (en) * 2002-01-30 2003-08-05 Admatechs Co Ltd Spherical silica particles containing fine particles of iron-based oxide and manufacturing method therefor

Also Published As

Publication number Publication date
JP2005097055A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
Mishra et al. An overview of recent progress on noble metal modified magnetic Fe 3 O 4 for photocatalytic pollutant degradation and H 2 evolution
Amendola et al. Magnetic nanoparticles of iron carbide, iron oxide, iron@ iron oxide, and metal iron synthesized by laser ablation in organic solvents
Yuan et al. Synthesis of ZnO–Pt nanoflowers and their photocatalytic applications
Grammatikopoulos et al. Nanoparticle design by gas-phase synthesis
Zhang et al. Cuprous oxide nanoshells with geometrically tunable optical properties
Zahid et al. Metal ferrites and their graphene-based nanocomposites: synthesis, characterization, and applications in wastewater treatment
DE602005026133D1 (en) DENSITY MIXED OXIDE POWDER COMPOUND OF TITANIUM AND LITHIUM, METHOD OF MANUFACTURING THEREOF, AND ELECTRODE THEREFOR
Wang et al. One-step preparation of amorphous iron nanoparticles by laser ablation
Kharissova et al. Ultrasound in nanochemistry: recent advances
Farhadi et al. Synthesis and structural characterization of magnetic cadmium sulfide–cobalt ferrite nanocomposite, and study of its activity for dyes degradation under ultrasound
KR20170088317A (en) Apparatus and method for producing amorphous alloy powder, and alloy powder
Gaikwad et al. Magneto-structural properties and photocatalytic performance of sol-gel synthesized cobalt substituted NiCu ferrites for degradation of methylene blue under sunlight
TW201542038A (en) Method and apparatus for producing core-shell type metal nanoparticles
Kim et al. Mechanistic insight into the yolk@ shell transformation of MnO@ silica nanospheres incorporating Ni2+ ions toward a colloidal hollow nanoreactor
Khan et al. Designing novel nonsymmetric ag/AgI Nanoplates for superior photocatalytic activity
JP4515736B2 (en) Amorphous complex oxide fine particles and method and apparatus for producing the same
CN104493192A (en) Micron-sized ultrafine iron powder preparation method
JP2004067508A5 (en)
Moradnia et al. Green synthesis and characterization of NiFe2O4@ ZnMn2O4 magnetic nanocomposites: An efficient and reusable spinel nanocatalyst for the synthesis of tetrahydropyrimidine and polyhydroquinoline derivatives under microwave irradiation
WO2014126262A1 (en) A method of irradiating a magnetic fluid containing a semiconductor pigment and metal microparticles with microwaves, thereby creating a mixed-phase fluid, and amplifying the superfluid state energy by means of the quantum turbulence phenomenon.
Kamilla et al. Cobalt ferrite: a review
JP2016160531A (en) Production of assembly of fine particles dispersed in organic compound and production method thereof
Moussa et al. Laser-assisted synthesis of magnetic Fe/Fe 2 O 3 core: carbon-shell nanoparticles in organic solvents
Abbas et al. A facile synthesis of directly gas-phase ordered high anisotropic SmCo based non-segregated nanoalloys by cluster beam deposition method
JP2008106301A (en) Hollow magnetic spherical body, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees