JP4515543B2 - SAW filter - Google Patents
SAW filter Download PDFInfo
- Publication number
- JP4515543B2 JP4515543B2 JP05329398A JP5329398A JP4515543B2 JP 4515543 B2 JP4515543 B2 JP 4515543B2 JP 05329398 A JP05329398 A JP 05329398A JP 5329398 A JP5329398 A JP 5329398A JP 4515543 B2 JP4515543 B2 JP 4515543B2
- Authority
- JP
- Japan
- Prior art keywords
- filter
- transfer function
- exp
- saw filter
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、SAWフィルタに係り、特に伝送形SAWフィルタに関するものである。
【0002】
【従来の技術】
SAW(Surface Acoustic Wave )フィルタは、固体の表面を伝搬する超音波である弾性表面波をフィルタに応用したものであり、携帯電話用各種フィルタやカラーテレビジョン受像機の映像中間フィルタとして普及している。
SAWフィルタには、金属/誘電体ストリップ反射器を内部に有する共振子で構成した共振子形フィルタと、送受信側にすだれ状電極を配置し、各電極指の励振強度に重みを付けてフィルタ特性を得る伝送形フィルタとがある。共振子形は、狭帯域な特性を有し、アナログ音声信号処理装置などの振幅特性、特に挿入損失を重視する帯域通過フィルタに適しており、伝送形は、遅延時間特性が問題になる映像信号処理装置や波形伝送特性が問題になる装置の比較的広帯域のフィルタに適している。
【0003】
当初から現在において広く研究され実用化されているSAW共振器は、反射壁としてグレーティング反射器を用いたものである。その最大の特徴は通常の水晶振動子が適用困難な周波数帯であるVHF帯からUHF帯において小形でスプリアスモードの少ない特性を容易に実現できる点にある。すなわち、従来の水晶振動子のような板の厚み振動を用いた場合には、共振周波数が板の厚みで決められるため、周波数が高くなると基本モード振動の振動子の製作が困難になり、また高次モード励振を使うと容量比が大きくなる。これに対して、SAW共振器の共振周波数は反射器の構造周期で決まるため、高い周波数の共振器もフォトリソグラフィ技術により容易に製作でき、また反射器が周波数選択性を持っていることから不要な共振モードも少ない。
【0004】
これ故、SAW共振器が水晶振動子に代わって使われることになる。しかし、共振子形のSAW共振器には、帯域を広くとることが難しいという欠点がある。そこで、より帯域を広げるために共振子形に代わり伝送形を用いることで特性を改善することができる。
伝送形のSAWフィルタは、入力側と出力側にすだれ状電極(IDT:interdigital transducer )を配置し、各電極指の励振強度に重みを付けてフィルタ特性を得る素子である。その特徴として、振幅特性と位相特性を独立に設計できるという、従来のフィルタには無い優れた特徴を持っている。要するに重み関数値を持っ各電極部の振動源(伝搬)距離を長く確保することで、より広帯域で挿入損失の無い帯域通過フィルタを実現できるものである。
【0005】
【発明が解決しようとする課題】
ところで、昨今の電子機器等の小型化に対応するためには、フィルタ自体も小型化せざるを得ない状況にある。特に、最近急激な市場拡大を遂げている移動体通信機器(携帯電話)では、パーソナルユース、携帯性を重要視するために小型、軽量の経路を辿っているのが現状である。過密化する携帯電話の通信使用周波数を正確に分離するためのフィルタは、高い周波数帯を効率よく確実に分離する必要があり、そのためにはSAWフィルタ、その中でも伝送形フィルタが必要不可欠となる。
しかし、伝送形のSAWフィルタでは、弾性表面波の伝搬距離を長く確保する必要があるため、伝搬方向の寸法が大きくなり、小型化が難しいという問題点があった。
本発明は、上記課題を解決するためになされたもので、小型化の要求に容易に対応することができるSAWフィルタを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、請求項1に記載のように、弾性表面波の全伝搬距離の一部を構成する単位フィルタを複数直列に接続したSAWフィルタであって、前記単位フィルタを複数直列に接続したフィルタの所望の伝達関数H(z)は、位相の遅延が最小である最小位相システムの伝達関数H M (z)の対数伝達関数をG(z)としたとき、H(z)=exp(G(z)/2)・exp(G(z)/2)のように分割され、各単位フィルタは、前記分割後の指数関数exp(G(z)/2)に基づいて決定された形状の入力すだれ状電極及び出力すだれ状電極を有するものである。
このように単位フィルタのすだれ状電極の形状を指数関数に基づいて決定することにより、SAWフィルタを複数の単位フィルタに分割することができる。
【0007】
【発明の実施の形態】
実施の形態の1.
次に、本発明の実施の形態について図面を参照して詳細に説明する。図1(a)は本発明の第1の実施の形態となるSAWフィルタのブロック図である。
伝送形のSAWフィルタは、前述のように弾性表面波の伝搬距離でフィルタの特性が決まるため、伝搬方向の寸法が大きくなる。そこで、本実施の形態では、フィルタ特性を維持しながら小型化の要求に対応するために、伝搬距離を分割、すなわちSAWフィルタを複数の単位フィルタ1a,1bに分割し、単位フィルタ1a,1bの直列接続によって所望の特性を実現している。
【0008】
図1(b)に単位フィルタ1a,1bの構造を示す。単位フィルタ1a,1bは、圧電基板2、基板2上に形成された入力すだれ状電極3、出力すだれ状電極4をそれぞれ有するものである。なお、図1(b)では、単位フィルタ1aのみを示しているが、単位フィルタ1bの構造も同様である。
【0009】
入力すだれ状電極3の入力端子INに入力された電気信号は、電極3によって音響信号(弾性表面波9)に変換され、この音響信号が出力すだれ状電極4によって電気信号に変換されて出力端子OUTから出力される。図1(a)のSAWフィルタは、単位フィルタ1aの出力端子OUTと単位フィルタ1bの入力端子INを接続したものである。
【0010】
すだれ状電極3,4は、例えば図1(c)のように、金属からなる櫛状の対向する2つの電極部5,6をそれぞれ有している。そして、各電極部5,6には、対向電極部に向かって交互に突出した複数の電極指7,8が設けられている。電極指7,8の1本ずつの組み合わせを対と呼ぶ。なお、図1(c)では、すだれ状電極3のみを示しているが、すだれ状電極4の構造も同様である。
本実施の形態では、このような単位フィルタ1a,1bのすだれ状電極3,4の形状を以下の設計手法で決定する。
【0011】
フィルタとは、入力信号の中から必要な周波数成分のみを通過させ出力し、不要な周波数成分を遮断して出力させないようなシステムのことを言う。このシステム系は、伝達関数で表現される。通過帯域幅、遮断周波数、減衰量、通過域最大許容減衰量、通過域リップル等の所望特性を満足させる伝達関数を決定することがフィルタの設計である。
【0012】
決定した伝達関数に基づいてすだれ状電極の形状を設定すれば、所望のSAWフィルタ特性が得られる。SAWフィルタでは、電極指の対数が多ければ多いほど細かい特性を表現できるが、所望の特性を満足する範囲でできるだけ少ない対数の形状を決定することが望ましい。このためには、システムのインパルスレスポンスの遅延が減るように時間軸=0の近傍に集中させることが必要で、位相の遅延を最小にすることが必要である。
【0013】
そこで、所望のフィルタの伝達関数H(z)を、指数関数を利用してH(z)=exp(G(z))で設計する。通常の伝達関数ではsに虚数項が含まれるので、分割することができないが、指数関数を利用すれば、H(z)=exp(G(z)/2)・exp(G(z)/2)のように分割することができる。
【0014】
以下、所望のフィルタの伝達関数H(z)のより具体的な決定方法について説明する。ここでは、図2(a)に示すような仕様を満たす周波数特性のフィルタの設計を目標とする。
図2(a)の特性を規格化して表現すると、図2(b)のような特性となる。続いて、図2(b)の特性をπ/2ずらして図2(c)のようなローパスフィルタに変換する。
【0015】
次に、図2(c)の特性より、ワグナー関数QQ(k)が次式のようになるワグナーフィルタを設計する。
QQ(k)=1/{1+(k/BQ)2L} ・・・(1)
式(1)において、BQはカットオフ周波数、Lはワグナー関数の次数である。
続いて、ワグナー関数QQ(k)の対数関数を求め、これをM(k)とする。
M(k)=ln(QQ(k)) ・・・(2)
【0016】
次に、位相の遅延が最小である最小位相システムの伝達関数HM(z) の対数伝達関数G(z)、すなわちln(HM(z)) は、次式のように表すことができる。
【0017】
【数1】
【0018】
式(3)において、Nは入力側のすだれ状電極の電極指の対数、gk はタップ係数である。
式(3)より、z=exp(j2πm/N)とすると、次式が得られる。
【0019】
【数2】
【0020】
式(4)より、タップ係数gk を次式のように表すことができる。
【0021】
【数3】
【0022】
さらに、k<0でgk =0とすることにより、タップ係数gk を次式のように求めることができる。
【0023】
【数4】
【0024】
ここで、先に求めたワグナー関数QQ(k)は最小位相システムの伝達関数HM(z) に相当するものなので、ワグナー関数QQ(k)を離散時間系に変換した結果を式(6)中のHに代入する。
対数伝達関数G(z)の指数関数exp(G(z))は、式(6)のタップ係数gk より次式のように求めることができる。
【0025】
【数5】
【0026】
次に、所望のフィルタの伝達関数H(z)は次式のように表すことができる。
H(z)=HD(z)・HM(z)=HD(z)・exp(G(z))・・・(8)
HD(z) は受け側の伝達関数であり、次式のように表すことができる。
【0027】
【数6】
【0028】
式(9)において、MDは受け側のすだれ状電極の電極指の対数である。
式(3)〜式(9)の説明では、フィルタの分割について記述していないが、式(3)よりG(z)/2を求めることにより、式(7)に相当するexp(G(z)/2)を求めることができ、式(8)を次式のように変形することができる。
H(z)=HD(z)・exp(G(z)/2)・exp(G(z)/2)
・・・(10)
【0029】
以上の計算では、バンドパスフィルタをローパスフィルタに変換した上で計算を行っているため、式(10)の結果をπ/2ずらしてバンドパスフィルタに変換し、最終的な伝達関数H(z)を求める。
【0030】
このように、フィルタの伝達関数H(z)を指数関数を利用して設計することで、所望の特性を得るために必要なインパルス数の数を変更しないで電極指の対数を分割することができる。こうして、すだれ状電極3,4の形状を決定することができる。
【0031】
以上のように本実施の形態では、SAWフィルタを単位フィルタ1a,1bに分割することができるので、図1(d)のように単位フィルタ1a,1bを伝搬方向(図1左右方向)と直角の方向に並べて配置すれば、伝搬方向の長さは、図1(e)に示す従来のSAWフィルタの約半分となり、伝搬方向の小型化が可能になる。例えば、従来のSAWフィルタで1800対数の電極指が必要であったとすれば、本実施の形態の単位フィルタ1a,1bで必要な電極指の対数はそれぞれ900対である。
【0032】
実施の形態の2.
なお、実施の形態の1では、SAWフィルタを2分割したが、これに限るものではなく、例えば図3に示すように、SAWフィルタを単位フィルタ1a,1b,1cの3つに分割してもよいし、4つ以上に分割してもよい。
【0033】
【発明の効果】
本発明によれば、SAWフィルタを複数の単位フィルタに分割することができるので、伝搬方向の小型化が可能になる。その結果、SAWフィルタを複数の単位フィルタの積層構造とすることにより、1単位フィルタの面積まで搭載面積を小さくすることができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態となるSAWフィルタのブロック図及び単位フィルタの構造を示す図である。
【図2】 SAWフィルタの周波数特性を示す図である。
【図3】 本発明の他の実施の形態となるSAWフィルタのブロック図である。
【符号の説明】
1a、1b、1c…単位フィルタ、2…圧電基板、3…入力すだれ状電極、4…出力すだれ状電極、7、8…電極指。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a SAW filter, it relates to heat Okukatachi SAW filter especially.
[0002]
[Prior art]
SAW (Surface Acoustic Wave) filters apply surface acoustic waves, which are ultrasonic waves propagating on solid surfaces, to filters, and are widely used as filters for mobile phones and video intermediate filters for color television receivers. Yes.
The SAW filter has a resonator-type filter composed of a resonator having a metal / dielectric strip reflector inside, and a comb-like electrode arranged on the transmitting and receiving sides, weighting the excitation strength of each electrode finger, and filter characteristics. There is a transmission type filter to obtain The resonator type has narrow band characteristics and is suitable for amplitude characteristics such as analog audio signal processing devices, especially bandpass filters that place emphasis on insertion loss. The transmission type is a video signal whose delay time characteristics are a problem. It is suitable for a relatively wide band filter of a processing device or a device in which waveform transmission characteristics are a problem.
[0003]
A SAW resonator that has been extensively studied and put into practical use from the beginning to the present uses a grating reflector as a reflecting wall. The greatest feature is that a small characteristic with few spurious modes can be easily realized from the VHF band to the UHF band, which is a frequency band in which a normal crystal resonator is difficult to apply. That is, when using plate thickness vibration like a conventional crystal resonator, the resonance frequency is determined by the thickness of the plate, so that it becomes difficult to manufacture a fundamental mode vibration resonator as the frequency increases. When higher-order mode excitation is used, the capacitance ratio increases. On the other hand, since the resonance frequency of the SAW resonator is determined by the structure period of the reflector, a high-frequency resonator can be easily manufactured by photolithography technology, and is unnecessary because the reflector has frequency selectivity. There are also few resonance modes.
[0004]
Therefore, the SAW resonator is used in place of the crystal resonator. However, the resonator-type SAW resonator has a drawback that it is difficult to widen the band. Therefore, the characteristics can be improved by using a transmission type instead of the resonator type in order to further widen the band.
A transmission-type SAW filter is an element in which interdigital transducers (IDT) are arranged on the input side and the output side, and filter characteristics are obtained by weighting the excitation intensity of each electrode finger. As a feature thereof, it has an excellent feature that the conventional filter does not have, that is, the amplitude characteristic and the phase characteristic can be designed independently. In short, by securing a long vibration source (propagation) distance of each electrode section having a weight function value, a bandpass filter having a wider band and no insertion loss can be realized.
[0005]
[Problems to be solved by the invention]
By the way, in order to cope with the recent downsizing of electronic devices and the like, the filter itself must be downsized. In particular, mobile communication devices (cell phones), which have recently undergone rapid market expansion, are currently following a small and lightweight route to place importance on personal use and portability. The filter for accurately separating the communication frequency of the cellular phone that is becoming dense is required to efficiently and reliably separate a high frequency band, and for that purpose, a SAW filter, among them, a transmission type filter is indispensable.
However, the transmission-type SAW filter has a problem that it is difficult to reduce the size because the propagation distance of the surface acoustic wave needs to be ensured to be long, and the size in the propagation direction becomes large.
The present invention has been made to solve the above problems, and an object thereof is to provide a S AW filter that can be easily adapted to the requirements of miniaturization.
[0006]
[Means for Solving the Problems]
The present invention provides a SAW filter in which a plurality of unit filters constituting a part of the total propagation distance of a surface acoustic wave are connected in series, wherein the unit filters are connected in series. The desired transfer function H (z) of H (z) = exp (G, where G (z) is the logarithmic transfer function of the transfer function H M (z) of the minimum phase system with the minimum phase delay. (Z) / 2) · exp (G (z) / 2), and each unit filter has a shape determined based on the exponential function exp (G (z) / 2) after the division. It has an input interdigital electrode and an output interdigital electrode .
Thus, by determining the shape of the interdigital electrode of the unit filter based on an exponential function, the SAW filter can be divided into a plurality of unit filters.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
1. Embodiment
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1A is a block diagram of a SAW filter according to the first embodiment of the present invention.
The transmission-type SAW filter has a larger size in the propagation direction because the filter characteristics are determined by the propagation distance of the surface acoustic wave as described above. Therefore, in this embodiment, in order to meet the demand for downsizing while maintaining the filter characteristics, the propagation distance is divided, that is, the SAW filter is divided into a plurality of
[0008]
FIG. 1B shows the structure of the
[0009]
The electrical signal input to the input terminal IN of the input
[0010]
The
In the present embodiment, the shapes of the
[0011]
A filter refers to a system that passes and outputs only necessary frequency components from an input signal and blocks and outputs unnecessary frequency components. This system system is expressed by a transfer function. The design of the filter is to determine a transfer function that satisfies desired characteristics such as the passband width, cutoff frequency, attenuation, passband maximum allowable attenuation, and passband ripple.
[0012]
If the shape of the interdigital electrode is set based on the determined transfer function, desired SAW filter characteristics can be obtained. In the SAW filter, the more the number of electrode fingers, the more detailed characteristics can be expressed. However, it is desirable to determine the shape of the logarithm as small as possible within a range that satisfies the desired characteristics. For this purpose, it is necessary to concentrate in the vicinity of time axis = 0 so as to reduce the delay of the impulse response of the system, and it is necessary to minimize the delay of the phase.
[0013]
Therefore, the transfer function H (z) of a desired filter is designed by H (z) = exp (G (z)) using an exponential function. In an ordinary transfer function, s includes an imaginary term and cannot be divided. However, if an exponential function is used, H (z) = exp (G (z) / 2) · exp (G (z) / It can be divided as in 2).
[0014]
Hereinafter, a more specific method for determining the transfer function H (z) of a desired filter will be described. Here, the design of a filter having a frequency characteristic that satisfies the specifications as shown in FIG.
When the characteristics shown in FIG. 2A are standardized, the characteristics shown in FIG. 2B are obtained. Subsequently, the characteristic of FIG. 2B is shifted by π / 2 and converted to a low-pass filter as shown in FIG.
[0015]
Next, a Wagner filter in which the Wagner function QQ (k) is represented by the following equation is designed from the characteristics shown in FIG.
QQ (k) = 1 / {1+ (k / BQ) 2L } (1)
In Equation (1), BQ is the cutoff frequency, and L is the order of the Wagner function.
Subsequently, a logarithmic function of the Wagner function QQ (k) is obtained, and this is defined as M (k).
M (k) = ln (QQ (k)) (2)
[0016]
Next, the logarithmic transfer function G (z) of the transfer function H M (z) of the minimum phase system with the smallest phase delay, that is, ln (H M (z)) can be expressed as: .
[0017]
[Expression 1]
[0018]
In Expression (3), N is the number of electrode fingers of the interdigital electrode on the input side, and g k is the tap coefficient.
From the equation (3), when z = exp (j2πm / N), the following equation is obtained.
[0019]
[Expression 2]
[0020]
From the equation (4), the tap coefficient g k can be expressed as the following equation.
[0021]
[Equation 3]
[0022]
Further, by setting g k = 0 when k <0, the tap coefficient g k can be obtained as follows.
[0023]
[Expression 4]
[0024]
Here, since the previously obtained Wagner function QQ (k) corresponds to the transfer function H M (z) of the minimum phase system, the result obtained by converting the Wagner function QQ (k) into a discrete time system is expressed by Equation (6). Substitute for H inside.
The exponential function exp (G (z)) of the logarithmic transfer function G (z) can be obtained from the tap coefficient g k of Equation (6) as follows:
[0025]
[Equation 5]
[0026]
Next, the transfer function H (z) of the desired filter can be expressed as:
H (z) = H D (z) · H M (z) = H D (z) · exp (G (z)) (8)
H D (z) is a transfer function on the receiving side and can be expressed as follows.
[0027]
[Formula 6]
[0028]
In Equation (9), MD is the number of electrode fingers of the interdigital electrode on the receiving side.
In the description of Expressions (3) to (9), filter division is not described, but exp (G () corresponding to Expression (7) is obtained by obtaining G (z) / 2 from Expression (3). z) / 2) can be obtained, and the equation (8) can be transformed into the following equation.
H (z) = H D (z) · exp (G (z) / 2) · exp (G (z) / 2)
... (10)
[0029]
In the above calculation, the calculation is performed after converting the bandpass filter to the lowpass filter. Therefore, the result of Expression (10) is shifted by π / 2 and converted to the bandpass filter, and the final transfer function H (z )
[0030]
In this way, by designing the transfer function H (z) of the filter using an exponential function, the logarithm of the electrode finger can be divided without changing the number of impulses necessary to obtain a desired characteristic. it can. Thus, the shape of the
[0031]
As described above, in the present embodiment, the SAW filter can be divided into the unit filters 1a and 1b, so that the unit filters 1a and 1b are perpendicular to the propagation direction (left and right direction in FIG. 1) as shown in FIG. If arranged side by side in this direction, the length in the propagation direction is about half that of the conventional SAW filter shown in FIG. 1 (e), and the propagation direction can be reduced in size. For example, if 1800 pairs of electrode fingers are required in the conventional SAW filter, the number of pairs of electrode fingers required in the unit filters 1a and 1b of the present embodiment is 900 pairs.
[0032]
2. Embodiment
In the first embodiment, the SAW filter is divided into two. However, the present invention is not limited to this. For example, as shown in FIG. 3, the SAW filter may be divided into three
[0033]
【The invention's effect】
According to the present invention, since the SAW filter can be divided into a plurality of unit filters, the propagation direction can be reduced. As a result, the mounting area can be reduced to the area of one unit filter by making the SAW filter a laminated structure of a plurality of unit filters.
[Brief description of the drawings]
FIG. 1 is a block diagram of a SAW filter and a structure of a unit filter according to a first embodiment of the present invention.
FIG. 2 is a diagram illustrating frequency characteristics of a SAW filter.
FIG. 3 is a block diagram of a SAW filter according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF
Claims (1)
前記単位フィルタを複数直列に接続したフィルタの所望の伝達関数H(z)は、位相の遅延が最小である最小位相システムの伝達関数H M (z)の対数伝達関数をG(z)としたとき、H(z)=exp(G(z)/2)・exp(G(z)/2)のように分割され、
各単位フィルタは、前記分割後の指数関数exp(G(z)/2)に基づいて決定された形状の入力すだれ状電極及び出力すだれ状電極を有することを特徴とするSAWフィルタ。 A SAW filter in which a plurality of unit filters constituting a part of the total propagation distance of a surface acoustic wave are connected in series,
A desired transfer function H (z) of a filter in which a plurality of unit filters are connected in series is G (z) as a logarithmic transfer function of a transfer function H M (z) of a minimum phase system having a minimum phase delay . H (z) = exp (G (z) / 2) · exp (G (z) / 2)
Each unit filter has an input interdigital electrode and an output interdigital electrode having a shape determined based on the exponential function exp (G (z) / 2) after the division.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05329398A JP4515543B2 (en) | 1998-03-05 | 1998-03-05 | SAW filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05329398A JP4515543B2 (en) | 1998-03-05 | 1998-03-05 | SAW filter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11251870A JPH11251870A (en) | 1999-09-17 |
JP4515543B2 true JP4515543B2 (en) | 2010-08-04 |
Family
ID=12938688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05329398A Expired - Lifetime JP4515543B2 (en) | 1998-03-05 | 1998-03-05 | SAW filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4515543B2 (en) |
-
1998
- 1998-03-05 JP JP05329398A patent/JP4515543B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11251870A (en) | 1999-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3244386B2 (en) | Surface acoustic wave device | |
US5592135A (en) | Surface acoustic wave filter with different filter portions satisfying complex conjugate relationship of impedances | |
US6522219B2 (en) | Surface acoustic wave ladder filter with two series resonators having different apodization weighting | |
EP0924857A2 (en) | Surface acoustic wave filter | |
JPH08265087A (en) | Surface acoustic wave filter | |
JPH07283682A (en) | Surface acoustic wave resonator filter | |
JPH0648246U (en) | Surface acoustic wave filter for eliminating ground-to-ground interference in satellite communication receivers. | |
US6424239B1 (en) | Differential surface acoustic wave filter | |
JP2004023611A (en) | Surface acoustic wave filter, wave demultiplexer, communication device | |
JP3310132B2 (en) | Surface acoustic wave device and antenna duplexer using the same | |
KR20010050053A (en) | Surface acoustic wave filter, duplexer and communication apparatus | |
JP4515543B2 (en) | SAW filter | |
JPH0766668A (en) | Surface acoustic wave device | |
Yamamoto et al. | SAW composite longitudinal mode resonator (CLMR) filters and their application to new synthesized resonator filters | |
JP3315913B2 (en) | Surface acoustic wave filter | |
WO1998000914A1 (en) | Surface acoustic wave device | |
JP3839866B2 (en) | Surface acoustic wave filter and method of forming pass frequency band | |
Komatsu et al. | Design of narrow bandwidth ladder-type filters with sharp transition bands using mutually connected resonator elements | |
JP4817875B2 (en) | Duplexer and communication device | |
JP3131573B2 (en) | Surface acoustic wave filter | |
EP0762642A1 (en) | Surface wave resonator | |
JPH09246901A (en) | Surface acoustic wave resonator filter | |
JPH0786871A (en) | Surface acoustic wave high frequency filter | |
WO2023132354A1 (en) | Filter device, splitter, and communication device | |
JP3331733B2 (en) | Surface acoustic wave resonator filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040715 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060620 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060804 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070109 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100513 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |