JP4515048B2 - Rotating shaft seal - Google Patents

Rotating shaft seal Download PDF

Info

Publication number
JP4515048B2
JP4515048B2 JP2003165544A JP2003165544A JP4515048B2 JP 4515048 B2 JP4515048 B2 JP 4515048B2 JP 2003165544 A JP2003165544 A JP 2003165544A JP 2003165544 A JP2003165544 A JP 2003165544A JP 4515048 B2 JP4515048 B2 JP 4515048B2
Authority
JP
Japan
Prior art keywords
lip
sliding contact
pressure
rotary shaft
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003165544A
Other languages
Japanese (ja)
Other versions
JP2005003055A (en
Inventor
敬三 森本
健 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2003165544A priority Critical patent/JP4515048B2/en
Priority to US10/849,876 priority patent/US7134670B2/en
Priority to DE602004012193T priority patent/DE602004012193T2/en
Priority to EP04012319A priority patent/EP1482219B1/en
Priority to KR1020040038106A priority patent/KR20040103402A/en
Publication of JP2005003055A publication Critical patent/JP2005003055A/en
Priority to US11/546,282 priority patent/US7398975B2/en
Priority to US11/979,406 priority patent/US7467798B2/en
Application granted granted Critical
Publication of JP4515048B2 publication Critical patent/JP4515048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sealing With Elastic Sealing Lips (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回転軸シールに係り、特に、ガス等の高圧流体を密封するのに用いられる回転軸シールに関する。
【0002】
【従来の技術】
従来、図2(C)と図3(C)に示すような回転軸シール31が知られている(例えば、特許文献1参照)。この従来の回転軸シール31の概略の構成は、次のようであった。即ち、回転軸32の表面に摺接する摺接部S0 をゴム製シール部のリップ33の先端部33aに有し、そのリップ33の形状が、アウタケース34から密封流体側Cへ略L字状に延伸した断面形状であった。そして、回転軸32と(図外の)ケーシングとの間に介装されるこの回転軸シール31は、アウタケース34の内鍔36を包囲して接着や焼付にて一体化されたゴム製シール部を備え、面L字状の背面サポート金具38が、ゴム製シール部のリップ33を、低圧側及び内周面側から(背後から)、支持している。
そして、従来からこの種の回転軸シールにあっては、リップ33の先端部33a───摺接部S0 ───が、回転軸32に対して周方向に如何に均等に摺接させるか、設計上及び製造上、努力が払われてきた。従って、背面サポート金具38の筒状サポート部38aは滑らかな円筒壁部から成り、正確な円形横断面を有することを当然のことと考えられてきた。
【0003】
【特許文献1】
特開2003−97723号公報
【0004】
【発明が解決しようとする課題】
密封流体室39に高圧が作用すると、図3(C)に示すように、リップ先端部33a(摺接部S0 )は回転軸32に対して大きな接触面圧Pで全周( 360°)にわたって均等に接触する。これによって、密封流体の中の潤滑油が回転軸32と摺接部S0 との界面に浸入(導入)することが困難となり、リップ先端部33a(摺接部S0 )の摩耗が促進され、この摺接部S0 は、えぐられるように摩耗が進行して、密封性(シール性)が急に悪化し、流体の外部漏洩を発生する。言い換えれば、高圧環境下に於て、ゴム製リップ33の先端部33aが、回転軸32に強く押し付けられることに加え、回転軸32の全周にわたって均一に圧接するため、冷媒等の流体中の潤滑油が、その摺接部S0 と回転軸32の界面に浸入できず、摩擦抵抗が増加し、発熱し、これに伴って摺接部S0 が早期に摩耗してしまうという問題が生じていた。
【0005】
【課題を解決するための手段】
そこで、本発明は、回転軸の表面に接触する摺接部を内周端縁に有する軸心直交壁部を備えたゴム製シール部、及び、該軸心直交壁部を低圧側から支持する軸心直交状サポート金具を、具備し、さらに、上記ゴム製シール部の上記軸心直交壁部が上記サポート金具に対応する背面側に環状凹溝を形成して、受圧により圧縮されたゴムの内径方向への流れを該環状凹溝によって遮断及び/又は吸収するように構成し、かつ、該環状凹溝の深さ寸法・幅寸法・径方向位置の内の少なくとも1つを、周方向に変化するように設定して、上記摺接部の上記回転軸の表面への接触面圧を周方向に不均等となるよう構成したものである。
または、回転軸の表面に接触する摺接部をリップの先端部に有するゴム製シール部、及び、上記ゴム製シール部のリップを内周面側から支持する筒状サポート部を有する背面サポート金具を、具備し、さらに、上記背面サポート金具の上記筒状サポート部の横断面形状を多角形状として、上記リップの先端部の摺接部の上記回転軸の表面への接触面圧を周方向に不均等となるように構成したものである。
または、回転軸の表面に接触する摺接部をリップの先端部に有するゴム製シール部、及び、上記ゴム製シール部のリップを内周面側から支持する筒状サポート部を有する背面サポート金具を、具備し、さらに、上記背面サポート金具の上記筒状サポート部の横断面形状を凹凸波形環状として、上記リップの先端部の摺接部の上記回転軸の表面への接触面圧を周方向に不均等となるように構成したものである。
または、回転軸の表面に接触する摺接部をリップの先端部に有するゴム製シール部、及び、上記ゴム製シール部のリップを内周面側から支持する筒状サポート部を有する背面サポート金具を、具備し、さらに、上記背面サポート金具の上記筒状サポート部の横断面形状を凹凸段差付き環状として、上記リップの先端部の摺接部の上記回転軸の表面への接触面圧を周方向に不均等となるように構成したものである。
【0006】
【発明の実施の形態】
以下、図示の実施の形態に基づき、本発明を詳説する。
図1は本発明の実施の一形態を示し、図1(A)は要部の縦断面を示し、図1(B)は要部を軸心L方向から見た簡略構成説明図であって、この回転軸シールは、例えば、密封流体室21側に高圧の冷媒等の流体を密封するものであり、図1(A)では、回転軸シールの断面の半分のみを示し、かつ、実線は自由状態───未装着状態───を示し、回転軸20とハウジング(ケーシング)22は2点鎖線にて示す。この回転軸20とハウンジング22の間に介装された装着状態では、各部は弾性変形する。
【0007】
図1に於て、1は内鍔部2,3を有する金属製アウタケースであり、このアウタケース1の円筒壁部4の外周面、及び、密封流体側C(密封流体室21側)の内鍔部2の前後両面に、接着・溶着・焼付け等にてゴム製シール部5が一体状に固着保持されている。また、このシール部5よりも反密封流体側(低圧側・大気側)Zに、螺旋溝6付きのシールエレメント7が設けられている。このシールエレメント7の材質はPTFE等フッ素系樹脂が好ましい。
【0008】
8は断面I字状のサポート金具である。つまり、円環平板状のサポート金具8が、その外周端縁部8aが、アウタケース1の円筒壁部4の内周面に接触するように嵌入されている。このサポート金具8、第1インナーケース9、第2インナーケース10、上記シールエレメント7、インナー部材11と順次重ね合うようにして、両内鍔部2,3間に保持固定されている。
【0009】
アウタケース1に一体状に固着されたゴム製シール部5は、ハウジング22内周面に弾発的に接して密封作用を成すための(自由状態では)凹凸波形に外周面が形成された円筒部被覆部5aと、内鍔部2の前後両面を被覆する断面U字形の内鍔被覆部を上部に有して内径方向に延伸すると共に摺接部23を内周端縁に有する軸心直交壁部5bとを、具備する。
【0010】
即ち、回転軸20(回転軸シール)の軸心Lに直交する軸心直交壁部5bを、ゴム製シール部5が備えており、この軸心直交壁部5bの内周端縁が丸味(アール部)を有する摺接部23を構成している。軸心Lに直交状の円環平板状のサポート金具8は、この軸心直交壁部5bを低圧側───反密封流体側Z───から支持(圧接)している。
しかも、ゴム製シール部5の軸心直交壁部5bがサポート金具8に対応(圧接)する背面側に環状凹溝24を有している。図1(B)は、その環状凹溝24の一例を示した背面図(軸心L方向から見た図)である。
【0011】
後述するように、この環状凹溝24は、軸心直交壁部5bが受圧により圧縮されたゴムが内径方向───径方向内方───へ流れるのを、吸収し、及び/又は、遮断する。
言い換えれば、アウタケース1は密封流体側Cの内端部に内鍔部2を有し、この内鍔部2を含む軸心直交面P0 上に、摺接部23が配設されている。
即ち、内鍔部2には(小さな)厚みが存在するから、軸心直交面P0 もその(小さな)厚み分だけ、軸心方向に位置をずらせて、複数枚だけ存在するが、その内の少なくとも一つの直交面P0 上に、摺接部23の軸心方向位置を配設する。なお、摺接部23の軸心方向位置とは、最大使用圧力時に、回転軸20に摺接する部位の接触圧力Pの重心位置G(図3A参照)を指すものと定義する。
【0012】
なお、図示省略するが、この摺接部23の軸心方向位置を、前記軸心直交面P0 の近傍位置に配設するも、好ましい(図示省略)。ここで、近傍とは、上記内鍔部2の厚みの5倍以下の偏在を言う。
あるいは、摺接部23の軸心方向位置を、アウタケース1の軸心方向幅寸法M内に、配設したと、言い換えることも可能である。但し、本発明では、上記軸心方向幅寸法Mとは、内鍔部2を被覆した密封流体側Cのゴム被覆層17の肉厚寸法T17を含んだ(プラスした)寸法と定義する。このような構成により、摺接部23の受圧時の接触圧力(面圧)P分布の重心位置Gの径方向外側には、密封流体側Cからの圧力が掛る部位が存在しないこととなる。図3(A)と、従来の図3(C)とを比較すれば、この点は明らかとなる。
【0013】
次に、本発明の一つの大きな特徴点について、説明する。図1(A)(B)及び図2(A)(B)と図3(A)(B)に於て、環状凹溝24は、その深さ寸法を周方向に変化するように設定して、摺接部23の回転軸20の表面への接触面圧Pを、周方向に不均等───不均一───となるようにしている。図1(A)に於て、実線は凹溝24の深さ寸法の浅い(小さい)部位D1 を示し、破線は深さ寸法の深い(大きい)部位D2 を示す。図1(B)の例では、中心角αが約60°の深さ寸法の浅い部位D1 ,D1 ,D1 と、中心角βが約60°の深さ寸法の深い部位D2 ,D2 ,D2 とを、交互に配設した場合を例示する。なお、α>βに設定したり、又は逆に、α<βのように設定するも可能であり、図3(B)のように深さ寸法の深い部位D2 では接触面圧Pが小さく、流体中の潤滑油が導入されやすく、摺接部23全周に行き渡って、ゴムの摩耗を抑制できる。
【0014】
ところで、図1及び図2(A)(B)に於て、ゴム製シール部5の軸心直交壁部5bの形状について追加説明すると、自由状態(未装着状態)で、摺接部23は円弧凸状であって、サポート金具8への当接部までは、その円弧凸状のままで連続している。しかしながら、密封流体側Cへは、鳥の嘴状(三角山状)に突出形成された突出部13を有する。
言い換えると、軸心直交壁部5bの密封流体室21側の端面14の大半部分は平坦面(平面)であるが、摺接部23の近傍位置で、鳥の嘴状(三角山状)に突出した突出部13を有する。
【0015】
摺接部23が、回転軸20との摺動によって摩耗した際に、流体圧力を受けて、この突出部13から(新たに)ゴムが送られてくるように設けられている。即ち、上記摩耗した際にも、新たにゴムが突出部13から供給されて、回転軸20と常時摺接部23を摺接状態を保って、密封性を維持可能となる。
【0016】
なお、念を入れて説明すれば、図2と図3は、図1に示した実施の形態の要部と、従来例の要部を、各々(A)(B)と(C)として並べて示した図であって、図2は自由状態での比較、図3は流体圧力が作用した受圧(使用)状態での比較のための図である。そして、図2(A)と図3(A)は、環状凹溝24の深さ寸法の浅い部位D1 の断面であり、図2(B)と図3(B)は深い部位D2 の断面であり、図2(C)と図3(C)は従来例を示している。
【0017】
この図2と図3からも明らかなように、図1に示した本発明の実施の一形態では、(軸心Lに平行な)円筒状延伸部33c及び筒状サポート部38aを全く有しておらず、CO2 ガス等の高圧ガス圧力が作用したとき(受圧時)、圧力の影響は摺接部23に直接及ばない(影響しない)。従って、図3(C)に示した接触面圧分布グラフ15のように従来のシールでは大きな面圧を生ずるのに対し、図3(A)(B)に示した接触面圧分布グラフ15のように本発明の実施の一形態を示したシールでは面圧が低減し、かつ、分布も緩やかとなる。なお、図3に於て、2点鎖線は自由状態を示し、実線は6MPaの流体圧力が作用した受圧時を示す。
【0018】
FEMを用いて接触面圧の解析を行ったところ、流体圧力6MPaの場合に、図3(C)の従来例では最大接触面圧が約11MPaに達したのに対し、本願発明の図3(A)では、約8MPaと約3MPaも低減できる。かつ、図3(B)では約5MPaである。なお、図示省略したが、上記FEM解析でゴムの内部応力分布を解析したところ、高応力領域は凹溝24の周辺に集中しているが、摺接部23近傍は絶対値が小さく、かつ、広い領域に分散していることが、判明した。(これに対し、図3(C)の従来例では、摺接部S0 に高応力領域が集中している。)
【0019】
図1及び図2(A)(B)と図3(A)(B)に示した本発明の実施の形態(及び後述の図5〜図7の別の実施の形態)に係る回転軸シールの作用(作動)は、一般的なOリングのような自封性効果によって接触面圧を得る点で、従来例(図3(C))とは、全く相違している。即ち、従来例では、密封流体側Cへ(大きく)延伸したリップ先端部33aに直接に径方向内側への流体圧力を作用して、かつ、矢印F方向のゴムの流れによる押圧力もプラスされて、摺接部S0 は接触面圧Pを高めていたが、本発明に係る実施の形態に係るシールでは、流体圧力は、まず、軸心直交壁部5bの端面14に作用するが、その作用の方向は軸心Lと平行な方向なので、軸心直交状サポート金具8に対して押圧される圧縮力として働くこととなり、ゴムは圧縮変形しつつ径方向内方へ移動し、摺接部23を───間接的に───押圧して、シール力(密封性)を発揮する。いわゆるOリングの自封効果に相当する作用(作動)を示す。このようにして、必要以上に強い押圧力が掛ることを防止し、図3(A)(B)の接触面圧分布図15の如く、緩やかな山型の比較的低い面圧となって、好ましい耐久性の改善を図り得る。
【0020】
しかも、凹溝24を有することにより、径方向内側へ移動せんとするゴムを吸収し(2点鎖線から実線のように凹溝24が縮小している)、及び/又は、径方向内側への移動を遮断し、摺接部23への接触面圧増加への影響を低減している。
【0021】
この凹溝24の作用効果は、次の図4で明らかである。図4に於て、(A)は凹溝24の有る場合(図1に対応)、(B)は凹溝24の無い比較例であって、FEM解析を用いて接触面圧を解析して接触面圧分布グラフ15を描いた。図4は流体圧力が6MPaの場合である。比較例で流体圧力零では、締め代 0.6mmのとき凹溝24の無い場合では、最大接触面圧Pは3MPa以上であるが、凹溝24を設ければ、約2MPaとなって、約1MPaも低減する。そして、6MPaの流体圧力が作用したとき(圧力負荷状態)、図4(B)の比較例では最大接触面圧Pは 9.6MPaであるのに対し、図4(A)では 8.5MPaと約1MPaも低い。
【0022】
次に、図5は他の実施の形態を示す。即ち、図5(A)は要部の縦断面図、図5(B)は環状凹溝24を軸心Lと平行な方向から見た(背面)図であって、環状凹溝24の径方向位置を、所定中心角α,β毎に交互に変化させている。
即ち、図5(A)に於て、同一符号は図1(A)と同様の構成であるが、相違するのは、次の通りである。つまり、実線は凹溝24の径方向位置が軸心Lから近い円弧部D3 であり、破線は凹溝24の径方向位置が軸心Lから遠い円弧部D4 であって、両円弧部D3 ,D4 は、例えば、約60°の夫々の中心角α,βをもって、交互に配設されている。言い換えると、中心角αの円弧部D3 は、軸心点からの半径が小さく、中心角βの円弧部D4 ───図5(B)では斜線にて示した───は軸心点からの半径が大きい。両円弧部D3 ,D4 は段差部を介して、連通して、全体環状に凹溝24を形成する。なお、各円弧部D3 ,D4 を4個以上に設定したり、また、α>βに設定したり、又は、α<βに設定するも、自由である。図5(B)のように軸心点からの半径寸法が小さい円弧部D3 では、摺接部23の接触面圧Pが小さく、流体中の潤滑油が導入されやすく、摺接部23全周に行き渡って、ゴムの摩耗を抑制できる。
【0023】
このように、図5の実施の形態では、環状凹溝24は、その径方向位置を周方向に変化させ、摺接部23の回転軸20の表面への接触面圧Pを周方向に不均等(不均一)となるように構成し、接触面圧の低い箇所(円弧部D3 が対応する位置)から、潤滑油を導入しやすくして、摺接部23全周に、回転軸20の回転と伴って、潤滑油を行き渡らせ、摩擦熱の発生を抑え、早期摩耗を阻止して、耐久性向上を図っている。
【0024】
次に、図6(A)(B)は夫々別の実施の形態を示し、前述した図1(B)、図5(B)に対応する図である。即ち、図6(A)では軸心Lと平行な方向から見て、環状凹溝24を、6角形等の多角形状(角数の増減は自由である)に形成して、凹溝24の径方向位置───軸心点から凹溝24の各点までの距離寸法───を、周方向に変化するようにした構成である。また、図6(B)に於て、軸心Lと平行な方向から見て、環状凹溝24が、基本円の図形をベースとして凹凸波状に描いた形状であり、例えば、花型や丸味のあるギア型等であって、凹溝24の径方向位置───軸心点から凹溝24の各点までの距離寸法───を、周方向に滑らかに変化するようにした構成である。
【0025】
このように、図6(A)又は(B)に示す実施の形態では、環状凹溝24はその径方向位置が周方向に変化する形状とされ、摺接部23の回転軸の表面への接触面圧Pを周方向に不均等(不均一)となるように構成し、接触面圧の低い位置(図6(A)の各辺の中間部位、又は、図6(B)の谷底近傍部位)から、潤滑油を導入して、摺接部全周に(回転軸の回転に伴って)潤滑油を行き渡らせ、早期摩耗を防止し、耐久性向上を図っている。なお、図6(A)の多角形の辺数の増減、図6(B)の山谷の個数の増減は、自由に設定できる。
【0026】
次に、図7はさらに別の実施の形態を示す。前述した図1に対応する図である。即ち、図7(A)に於て、同一符号は図1(A)と同様の構成であるが、相違するのは次の通りである。つまり、実線は凹溝24の幅寸法が小さい円弧部D5 であり、破線は幅寸法が大きい円弧部D6 であって、図7(B)に示すように、両円弧部D5 ,D6 は、例えば、約60°の夫々の中心角α,βをもって、交互に配設されている。なお、各円弧部D5 ,D6 を4個以上に設定したり、α>βに設定したり、又は、α<βに設定するも、自由である。なお、図7(B)に於て、幅寸法の大きい円弧部D6 を斜線をもって区別して示す。
【0027】
このように、図7(A)(B)に示す実施の形態では、環状凹溝24はその幅寸法が(周方向に行くに従って)増減変化し、前記接触面圧Pを周方向に不均等(不均一)となるように構成して、接触面圧の低い部位(幅寸法の大きい円弧部D6 )から、潤滑油を導入して、摺接部23全周にわたって潤滑油を行き渡らせ、早期摩耗を防止し、耐久性を向上している。
【0028】
ところで、以上述べた(図1と図5と図6と図7の)実施の各形態を、組合わせる構成とするも、好ましい。例えば、凹溝24の深さと径方向位置とを、共に周方向に変化させたり、あるいは、凹溝24の深さと幅寸法とを、周方向に変化させたり、若しくは、凹溝24の幅寸法と径方向位置を、周方向に共に変化させる等も、望ましい(図示省略)。
【0029】
次に、図8に示すさらに別の実施の形態では、上記図2(C)と図3(C)の従来例に於て、図1、図5、図6、図7等で既に述べた、周方向に接触面圧Pを不均等となるように、改良を加えた発明である。
図8(A)の要部縦断面図、及び、図8(B)の要部横断面図に示す実施の形態では、基本的には、図2(C)と図3(C)と同様であって、回転軸20の表面に接触する摺接部S0 をリップ33の先端部33aに有するゴム製シール部26を備え、さらに、アウタケース34は一対の内鍔36, 37を有し、ゴム製シール部26は焼付や接着等にて、このアウタケース34に一体に固着されている。
【0030】
ゴム製シール部26を背面側から支持する背面サポート金具28は、断面L字状であって、ゴム製シール部26のリップ33を内周面側から支持する筒状サポート部28aと、軸心Lと直交する直交壁部28bとを、有する。そして、この筒状サポート部28aの横断面形状を、(基本の仮想の)円形に対して径方向に不均一な形状とする。即ち、この筒状サポート部28aの横断面形状を、図8(B)のように、多角形に形成して、リップ先端部33aの摺接部S0 の(回転軸20の表面への)接触面圧Pを、周方向に、不均等となるよう構成している。また、図8(C)(D)は図8(B)に対応する別の実施の形態を示し、図8(C)のように、筒状サポート部28aを凹凸波形環状に形成したり、図8(D)のように、凹凸段差付き環状に形成している。いずれにせよ、リップ先端部33aの回転軸20の表面への接触面圧Pを、周方向に不均等(不均一)になるよう構成している。
【0031】
図8(B)では角部、図8(C)では山部、図8(D)では凸状円弧部に於て、摺接部S0 の接触面圧(P)を小さくして、摺接部S0 への潤滑油の導入(浸入)を容易として、回転軸20の回転に伴って、摺接部S0 の全周に、潤滑油を行き渡らせて、早期摩耗を防止し、耐久性を改善している。なお、図8に於て、符号7,9,10, 11等は、ほぼ図1と同様であるので、説明を省略する。
【0032】
ところで、本発明の上述した各実施の形態に対して、各形態の環状凹溝24を真円形状・同一深さ・同一幅形状とし、又は、背面サポート金具28を真円形状として、かつ、自由状態に於ける摺接部23, S0 自体を(真円ではなく)凹凸波形のある円形として、回転軸20を挿入したときに、回転軸20の表面への接触面圧Pを周方向に不均等(不一致)とすることもできるが、密封流体の低圧時又は非加圧状態で、気密性に問題を生ずる。
【0033】
なお、本発明は上述の実施の形態に限定されず、例えば、ゴム製リップ部を、ゴム製シール部5とは別に、低圧側に付設した構造としたり、シールエレメント7を2つ以上としたり、逆にシールエレメント7を省略したり、サポート金具8の形状、あるいは、インナーケース9,10やインナー部材11の個数の増減や形状は、変更可能である。
【0034】
上述した図1(図2(A)(B),図3(A)(B))、図5、図6、図7の実施の形態のように構成すれば、流体圧力による径方向内側への押圧力が摺接部23に働かないので、過大な接触面圧Pとなることを防止でき、適切な値の接触面圧Pを保ち、回転軸20との潤滑状態を良好に維持し、摩耗を抑制して、長期間にわたって良好なシール性(密封性)を発揮できる。特に高圧ガスの密封用として好適である。さらに、回転軸シールの軸心方向寸法を減小して、コンパクト化を図り得る。
【0035】
【発明の効果】
本発明は、上述の構成により次のような著大な効果を奏する。
(請求項1によれば、)接触面圧Pを周方向に不均等として、小さな接触面圧Pの部位から潤滑油を、摺接部23と回転軸20との間に、導入・浸入させて、回転に伴って、摺接部23全周に潤滑油を行き渡らせ、摩擦熱の発生を防止し、早期摩耗を防ぎ、長寿命を図ることができる。かつ、摺接部23自体に凹凸を付設する等の場合の気密性不良の問題は生じないという、利点もある。
【0036】
(請求項によれば、)流体圧力による軸心Lと平行な方向の圧力を、サポート金具8が受け止めて、ゴムを径方向内方へ移動させることによって、間接的に摺接部23に伝達するので、回転軸20に対する摺接部23の接触面圧Pを、過大とならないように確実に抑制可能となる。さらに、回転軸シール全体の軸心方向寸法を確実に減少して、コンパクト化を図り得る。
しかも、接触面圧Pを周方向に不均等として、小さな接触面圧Pの部位から潤滑油を、摺接部23と回転軸20との間に、導入・浸入させて、回転に伴って、摺接部23全周に潤滑油を行き渡らせ、摩擦熱の発生を防止し、早期摩耗を防ぎ、長寿命を図ることができる。かつ、摺接部23自体に凹凸を付設する等の場合の気密性不良の問題は生じないという、利点もある。
【0037】
(請求項2又は3又は4によれば、)請求項ほどの高圧には好適でないとしても、かなりの高い圧力に於ても、接触面圧Pを周方向に不均等として、小さな接触面圧Pの部位から潤滑油を、摺接部 0 と回転軸20との間に、導入・浸入させて、回転に伴って、摺接部 0 全周に潤滑油を行き渡らせ、摩擦熱の発生を防止し、早期摩耗を防ぎ、長寿命を図ることができる。かつ、摺接部 0 自体に凹凸を付設する等の場合の気密性不良の問題は生じないという、利点もある。しかも、従来品の構成部品の内で、従来の背面サポート金具38を本発明の背面サポート金具28に交換するだけで良いので、製品の切換えが容易である。
【図面の簡単な説明】
【図1】本発明の実施の一形態を示す図であって、(A)は要部側面断面図、(B)は要部背面図である。
【図2】本発明の実施の一形態と従来例の形状の拡大対比説明図である。
【図3】本発明と従来例の形状比較及び作用比較のための説明図である。
【図4】本発明の実施の一形態と比較例との対比説明図である。
【図5】他の実施の形態を示す図であって、(A)は要部側面断面図、(B)は要部背面図である。
【図6】本発明の夫々別の実施の形態を示す要部背面図である。
【図7】本発明のさらに他の実施の形態を示す図であって、(A)は要部側面断面図、(B)は要部背面図である。
【図8】本発明のさらに別の実施の形態を示す図であって、(A)は要部側面断面図、(B)(C)(D)は要部背面図である。
【符号の説明】
1 アウタケース
5 ゴム製シール部
5b 軸心直交壁部
8 サポート金具
20 回転軸
23 摺接部
24 環状凹溝
26 ゴム製シール部
28 背面サポート金具
28a 筒状サポート部
33 リップ
33a 先端部
C 密封流体側
L 軸心
P 接触面圧
0 摺接部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotary shaft seal, and more particularly to a rotary shaft seal used to seal a high-pressure fluid such as gas.
[0002]
[Prior art]
Conventionally, a rotating shaft seal 31 as shown in FIGS. 2C and 3C is known (see, for example, Patent Document 1). The general configuration of the conventional rotary shaft seal 31 was as follows. In other words, a sliding contact portion S 0 slidably contacting the surface of the rotating shaft 32 is provided at the distal end portion 33a of the lip 33 of the rubber seal portion, and the shape of the lip 33 is substantially L-shaped from the outer case 34 to the sealed fluid side C. It was the cross-sectional shape extended | stretched in the shape. The rotary shaft seal 31 interposed between the rotary shaft 32 and the casing (not shown) surrounds the inner flange 36 of the outer case 34 and is integrated by adhesion or baking. comprising a part, the cross-sectional plane L-shaped rear support bracket 38, a rubber sealing portion of the lip 33, (from behind) from the low pressure side and the inner peripheral surface side and supports.
Conventionally, in this type of rotating shaft seal, the tip 33a of the lip 33 --- sliding contact portion S 0 --- is brought into sliding contact with the rotating shaft 32 evenly in the circumferential direction. Efforts have been made in design and manufacturing. Therefore, it has been considered that the cylindrical support portion 38a of the back support metal fitting 38 is formed of a smooth cylindrical wall portion and has an accurate circular cross section.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2003-97723
[Problems to be solved by the invention]
When a high pressure is applied to the sealed fluid chamber 39, as shown in FIG. 3C, the lip tip portion 33a (sliding contact portion S 0 ) has a large contact surface pressure P with respect to the rotating shaft 32 and has a full circumference (360 °). Contact evenly over. This makes it difficult for the lubricating oil in the sealing fluid to enter (introduce) the interface between the rotary shaft 32 and the sliding contact portion S 0, and promote wear of the lip tip portion 33 a (sliding contact portion S 0 ). The sliding contact portion S 0 is worn away, and the sealing performance (sealability) is abruptly deteriorated to cause external leakage of fluid. In other words, in a high-pressure environment, the tip 33a of the rubber lip 33 is pressed strongly against the rotating shaft 32 and is uniformly pressed over the entire circumference of the rotating shaft 32. Lubricating oil cannot enter the interface between the sliding contact portion S 0 and the rotary shaft 32, increasing the frictional resistance and generating heat, resulting in a problem that the sliding contact portion S 0 wears out early. It was.
[0005]
[Means for Solving the Problems]
Accordingly, the present invention is supported, the rubber sealing portion having an axis-orthogonal wall portion having the sliding portion in contact with the surface of the rotating shaft on the inner peripheral edge, and, the shaft center-orthogonal wall portion from the low-pressure side And a rubber that is compressed by receiving pressure, wherein the axially orthogonal wall portion of the rubber seal portion forms an annular groove on the back side corresponding to the support bracket. The annular groove is configured to block and / or absorb the flow in the inner diameter direction, and at least one of the depth dimension, the width dimension, and the radial position of the annular groove is circumferential. The contact surface pressure on the surface of the rotating shaft of the sliding contact portion is configured to be uneven in the circumferential direction.
Alternatively, a back support metal fitting having a rubber seal portion having a sliding contact portion in contact with the surface of the rotating shaft at a tip portion of the lip, and a cylindrical support portion supporting the lip of the rubber seal portion from the inner peripheral surface side. and comprising, further, the cross-sectional shape of the tubular support portion of the rear support brackets as polygonal shape, the contact surface pressure to the surface of the rotary shaft of the sliding contact portion of the tip portion of the lip circumferential direction It is configured to be non-uniform.
Alternatively, a back support metal fitting having a rubber seal portion having a sliding contact portion in contact with the surface of the rotating shaft at a tip portion of the lip, and a cylindrical support portion supporting the lip of the rubber seal portion from the inner peripheral surface side. Furthermore, the cross-sectional shape of the cylindrical support portion of the back support metal fitting is an uneven corrugated annular shape, and the contact surface pressure to the surface of the rotating shaft of the sliding contact portion of the tip end portion of the lip is set in the circumferential direction. It is configured to be non-uniform.
Alternatively, a back support metal fitting having a rubber seal portion having a sliding contact portion in contact with the surface of the rotating shaft at a tip portion of the lip, and a cylindrical support portion supporting the lip of the rubber seal portion from the inner peripheral surface side. Further, the cross-sectional shape of the cylindrical support portion of the back support metal fitting is made an annular shape with an uneven step, and the contact surface pressure to the surface of the rotating shaft of the sliding contact portion of the tip portion of the lip is measured. It is configured to be unequal in the direction.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on the illustrated embodiment.
FIG. 1 shows an embodiment of the present invention, FIG. 1 (A) shows a longitudinal section of the main part, and FIG. 1 (B) is a simplified configuration explanatory view of the main part viewed from the direction of the axis L. The rotary shaft seal, for example, seals a fluid such as a high-pressure refrigerant on the sealed fluid chamber 21 side. In FIG. 1A, only a half of the cross section of the rotary shaft seal is shown, and the solid line indicates The free state --- not-mounted state-- is shown, and the rotating shaft 20 and the housing (casing) 22 are indicated by a two-dot chain line. In the mounted state interposed between the rotating shaft 20 and the housing 22, each part is elastically deformed.
[0007]
In FIG. 1, reference numeral 1 denotes a metal outer case having inner flange portions 2 and 3, and the outer peripheral surface of the cylindrical wall portion 4 of the outer case 1 and the sealing fluid side C (sealing fluid chamber 21 side). The rubber seal portions 5 are fixed and held integrally on both the front and rear surfaces of the inner collar portion 2 by adhesion, welding, baking, or the like. Further, a seal element 7 with a spiral groove 6 is provided on the anti-sealing fluid side (low pressure side / atmosphere side) Z from the seal portion 5. The material of the seal element 7 is preferably a fluorine resin such as PTFE.
[0008]
Reference numeral 8 denotes a support fitting having an I-shaped cross section. That is, the annular flat plate-like support fitting 8 is fitted so that the outer peripheral edge 8 a is in contact with the inner peripheral surface of the cylindrical wall portion 4 of the outer case 1. The support metal fitting 8, the first inner case 9, the second inner case 10, the sealing element 7, and the inner member 11 are sequentially held and fixed between the inner flange portions 2 and 3.
[0009]
The rubber seal portion 5 fixed integrally to the outer case 1 is a cylinder having an outer peripheral surface formed in a corrugated corrugated shape (in a free state) for elastically contacting the inner peripheral surface of the housing 22 to form a sealing action. An axial center orthogonal part having an inner cover part having a U-shaped cross section covering the front and rear surfaces of the inner cover part 2 and the inner cover part 2 extending in the inner diameter direction and having a sliding contact part 23 on the inner peripheral edge. And a wall portion 5b.
[0010]
That is, the rubber seal part 5 is provided with a shaft center orthogonal wall part 5b orthogonal to the axis L of the rotation shaft 20 (rotation shaft seal), and the inner peripheral edge of the shaft center orthogonal wall part 5b is round ( A slidable contact portion 23 having a rounded portion is formed. An annular flat plate-like support fitting 8 orthogonal to the shaft center L supports (pressure contact) the shaft center orthogonal wall portion 5b from the low pressure side --- the anti-sealing fluid side Z--.
Moreover, the axially orthogonal wall portion 5b of the rubber seal portion 5 has an annular groove 24 on the back side corresponding to (press contact) with the support fitting 8. FIG. 1B is a rear view (viewed from the direction of the axis L) showing an example of the annular groove 24.
[0011]
As will be described later, the annular concave groove 24 absorbs and / or absorbs the flow of the rubber whose axial center orthogonal wall portion 5b is compressed by receiving pressure in the inner diameter direction, that is, in the radial direction. Cut off.
In other words, the outer case 1 has the inner flange portion 2 at the inner end portion of the sealed fluid side C, and the sliding contact portion 23 is disposed on the axis orthogonal plane P 0 including the inner flange portion 2. .
That is, since the inner flange portion 2 has a (small) thickness, the axial center orthogonal plane P 0 is shifted in the axial direction by the (small) thickness, and there are only a plurality of them. The axial direction position of the sliding contact portion 23 is disposed on at least one orthogonal plane P 0 . The axial direction position of the slidable contact portion 23 is defined to indicate the center of gravity position G (see FIG. 3A) of the contact pressure P at the portion slidably contacting the rotating shaft 20 at the maximum operating pressure.
[0012]
Although not shown in the drawings, it is also preferable to arrange the axial direction position of the sliding contact portion 23 in the vicinity of the axial center orthogonal plane P 0 (not shown). Here, the vicinity means the uneven distribution of not more than 5 times the thickness of the inner flange portion 2.
Alternatively, it can be paraphrased that the axial position of the sliding contact portion 23 is disposed within the axial width dimension M of the outer case 1. However, in the present invention, the axial width dimension M is defined as a dimension including (plus) the thickness T 17 of the rubber coating layer 17 on the sealed fluid side C covering the inner flange portion 2. With such a configuration, there is no portion to which the pressure from the sealed fluid side C is applied on the radially outer side of the center of gravity position G of the contact pressure (surface pressure) P distribution when the sliding contact portion 23 receives pressure. This point becomes clear when FIG. 3A is compared with the conventional FIG.
[0013]
Next, one major feature of the present invention will be described. In FIGS. 1A, 1B, 2A, 2B and 3A, 3B, the annular groove 24 is set so that its depth dimension changes in the circumferential direction. Thus, the contact surface pressure P to the surface of the rotating shaft 20 of the sliding contact portion 23 is set to be non-uniform in the circumferential direction. In FIG. 1A, a solid line indicates a shallow (small) portion D 1 having a depth dimension of the concave groove 24, and a broken line indicates a deep (large) portion D 2 having a depth dimension. In the example of FIG. 1 (B), shallow portions D 1 , D 1 , D 1 with a central angle α of about 60 ° and a deep portion D 2 , with a central angle β of about 60 ° and a deep size. A case where D 2 and D 2 are alternately arranged will be exemplified. Incidentally, setting the alpha> beta, or conversely, alpha <are also possible to set as beta, FIG 3 (B) of such deep site D 2 in the contact pressure P of depth is small The lubricating oil in the fluid can be easily introduced and can spread over the entire circumference of the sliding contact portion 23, thereby suppressing rubber wear.
[0014]
Incidentally, in FIGS. 1 and 2A and 2B, the shape of the axial center orthogonal wall portion 5b of the rubber seal portion 5 will be additionally described. In a free state (non-mounted state), the sliding contact portion 23 is It has a circular arc shape, and continues to the contact portion with the support fitting 8 while maintaining the circular arc shape. However, the sealing fluid side C has a protruding portion 13 formed to protrude like a bird cage (triangular mountain shape).
In other words, most of the end surface 14 on the side of the sealed fluid chamber 21 of the axial center orthogonal wall 5b is a flat surface (planar), but in the vicinity of the sliding contact portion 23, it has a bird cage shape (triangular mountain shape). It has a protruding portion 13 that protrudes.
[0015]
When the slidable contact portion 23 is worn by sliding with the rotary shaft 20, it is provided so that rubber is sent (newly) from the protruding portion 13 under fluid pressure. That is, even when worn, the rubber is newly supplied from the protruding portion 13 so that the rotating shaft 20 and the slidable contact portion 23 are kept in a slidable contact state, and the sealing performance can be maintained.
[0016]
2 and 3 are arranged with the main part of the embodiment shown in FIG. 1 and the main part of the conventional example as (A), (B), and (C), respectively. 2 is a diagram for comparison in a free state, and FIG. 3 is a diagram for comparison in a pressure receiving (use) state in which fluid pressure is applied. 2 (A) and 3 (A) are cross-sections of the shallow portion D 1 having a depth dimension of the annular groove 24, and FIGS. 2 (B) and 3 (B) are views of the deep portion D 2 . FIG. 2C and FIG. 3C show a conventional example.
[0017]
As apparent from FIGS. 2 and 3, the embodiment of the present invention shown in FIG. 1 has a cylindrical extending portion 33c (parallel to the axis L) and a cylindrical support portion 38a. However, when high-pressure gas pressure such as CO 2 gas is applied (during pressure reception), the influence of the pressure does not directly affect the sliding contact portion 23 (does not affect). Therefore, as shown in the contact surface pressure distribution graph 15 shown in FIG. 3 (C), the conventional seal generates a large surface pressure, whereas the contact surface pressure distribution graph 15 shown in FIGS. 3 (A) and 3 (B). As described above, in the seal showing one embodiment of the present invention, the surface pressure is reduced and the distribution is also gentle. In FIG. 3, a two-dot chain line indicates a free state, and a solid line indicates a pressure receiving time when a fluid pressure of 6 MPa is applied.
[0018]
When the contact surface pressure was analyzed using FEM, when the fluid pressure was 6 MPa, the maximum contact surface pressure reached about 11 MPa in the conventional example of FIG. In A), about 8 MPa and about 3 MPa can be reduced. And in FIG. 3 (B), it is about 5 MPa. Although not shown, when the internal stress distribution of the rubber is analyzed by the FEM analysis, the high stress region is concentrated around the concave groove 24, but the absolute value is small in the vicinity of the sliding contact portion 23, and It was found to be distributed over a wide area. (In contrast, in the conventional example of FIG. 3 (C), the high stress region to the sliding portion S 0 are concentrated.)
[0019]
Rotating shaft seal according to an embodiment of the present invention (and another embodiment of FIGS. 5 to 7 described later) shown in FIGS. 1 and 2A, 3B and 3A, 3B. The operation (operation) of is different from the conventional example (FIG. 3C) in that the contact surface pressure is obtained by a self-sealing effect like a general O-ring. That is, in the conventional example, the fluid pressure inward in the radial direction is directly applied to the lip tip 33a extending (largely) to the sealed fluid side C, and the pressing force due to the rubber flow in the direction of arrow F is also added. The sliding contact portion S 0 has increased the contact surface pressure P. However, in the seal according to the embodiment of the present invention, the fluid pressure first acts on the end surface 14 of the axial center orthogonal wall portion 5b. Since the direction of the action is a direction parallel to the shaft center L, it acts as a compressive force pressed against the support member 8 orthogonal to the shaft center, and the rubber moves inward in the radial direction while being compressed and deformed. Depresses part 23 ─── indirectly ─── and exerts sealing power (sealing performance). The action (operation) corresponding to the self-sealing effect of the so-called O-ring is shown. In this way, it is possible to prevent an excessively strong pressing force from being applied. As shown in the contact surface pressure distribution diagrams 15 of FIGS. Desirable improvement in durability can be achieved.
[0020]
In addition, by having the concave groove 24, it absorbs the rubber that moves inward in the radial direction (the concave groove 24 is reduced from the two-dot chain line to the solid line) and / or radially inward. The movement is blocked, and the influence on the increase of the contact surface pressure on the sliding contact portion 23 is reduced.
[0021]
The effect of the concave groove 24 is apparent in FIG. In FIG. 4, (A) shows a case with a concave groove 24 (corresponding to FIG. 1), and (B) shows a comparative example without a concave groove 24. The contact surface pressure was analyzed using FEM analysis. A contact pressure distribution graph 15 was drawn. FIG. 4 shows the case where the fluid pressure is 6 MPa. In the comparative example, when the fluid pressure is zero, the maximum contact surface pressure P is 3 MPa or more when there is no concave groove 24 when the tightening allowance is 0.6 mm. Is also reduced. When a fluid pressure of 6 MPa is applied (pressure load state), the maximum contact surface pressure P is 9.6 MPa in the comparative example of FIG. 4B, whereas 8.5 MPa in FIG. 4A is about 1 MPa. Is also low.
[0022]
Next, FIG. 5 shows another embodiment. 5A is a longitudinal sectional view of the main part, and FIG. 5B is a rear view of the annular groove 24 viewed from a direction parallel to the axis L, and the diameter of the annular groove 24 is shown in FIG. The direction position is alternately changed for each predetermined central angle α, β.
That is, in FIG. 5A, the same reference numerals are the same as those in FIG. 1A, but the differences are as follows. That is, the solid line is the arc part D 3 where the radial position of the concave groove 24 is close to the axis L, and the broken line is the arc part D 4 where the radial position of the concave groove 24 is far from the axis L. D 3 and D 4 are alternately arranged, for example, with respective central angles α and β of about 60 °. In other words, the arc portion D 3 with the central angle α has a small radius from the axial center point, and the circular arc portion D 4 with the central angle β is indicated by hatching in FIG. 5B. The radius from the point is large. Both arc portions D 3 and D 4 communicate with each other through a step portion to form a groove 24 in an annular shape as a whole. It should be noted that it is free to set each of the arc portions D 3 and D 4 to four or more, set α> β, or set α <β. In Figure 5 the arc portion D 3 in the radial dimension from the axis point is smaller as (B), small contact surface pressure P of the sliding portion 23, the lubricating oil is easily introduced in the fluid, the sliding portion 23 total The wear of rubber can be suppressed by spreading around the circumference.
[0023]
As described above, in the embodiment of FIG. 5, the annular groove 24 changes its radial position in the circumferential direction, and the contact surface pressure P to the surface of the rotary shaft 20 of the sliding contact portion 23 is not circumferentially changed. configured so that uniform (heterogeneous) of low contact surface pressure portion (arc portion D 3 corresponding position), and easy to introduce lubricating oil, the entire circumference sliding portion 23, the rotary shaft 20 With the rotation of the oil, the lubricating oil is distributed, the generation of frictional heat is suppressed, the early wear is prevented, and durability is improved.
[0024]
Next, FIGS. 6A and 6B show different embodiments, and correspond to FIGS. 1B and 5B described above. That is, in FIG. 6A, when viewed from the direction parallel to the axis L, the annular groove 24 is formed in a polygonal shape such as a hexagon (increase / decrease in the number of corners). In this configuration, the radial position—the distance dimension from the axial center point to each point of the concave groove 24—changes in the circumferential direction. Further, in FIG. 6B, when viewed from the direction parallel to the axis L, the annular groove 24 is a shape drawn in a concavo-convex shape based on a basic circle figure, for example, flower shape or roundness. It is a gear type, etc., with a configuration in which the radial position of the groove 24-the distance from the axial center point to each point of the groove 24-is smoothly changed in the circumferential direction. is there.
[0025]
As described above, in the embodiment shown in FIG. 6A or 6B, the annular groove 24 has a shape in which the radial position thereof changes in the circumferential direction, and the sliding contact portion 23 is formed on the surface of the rotating shaft. The contact surface pressure P is configured to be non-uniform (non-uniform) in the circumferential direction, and the position where the contact surface pressure is low (the intermediate portion of each side of FIG. 6A or the vicinity of the valley bottom of FIG. 6B) Lubricating oil is introduced from the part), and the lubricating oil is spread over the entire circumference of the sliding contact portion (with rotation of the rotating shaft) to prevent premature wear and improve durability. In addition, increase / decrease in the number of sides of the polygon in FIG. 6A and increase / decrease in the number of peaks and valleys in FIG. 6B can be freely set.
[0026]
Next, FIG. 7 shows still another embodiment. It is a figure corresponding to FIG. 1 mentioned above. That is, in FIG. 7A, the same reference numerals are the same as those in FIG. 1A, but the differences are as follows. That is, the solid line is the circular arc portion D 5 where the width dimension of the concave groove 24 is small, and the broken line is the circular arc portion D 6 where the width dimension is large, as shown in FIG. 7B, both arc portions D 5 , D For example, 6 are alternately arranged with respective central angles α and β of about 60 °. Note that it is free to set each of the arc portions D 5 and D 6 to four or more, set α> β, or set α <β. In FIG. 7B, the arc portion D 6 having a large width dimension is indicated by being hatched.
[0027]
As described above, in the embodiment shown in FIGS. 7A and 7B, the width of the annular groove 24 increases and decreases (as it goes in the circumferential direction), and the contact surface pressure P is uneven in the circumferential direction. (Non-uniform), introducing the lubricating oil from the portion having a low contact surface pressure (arc portion D 6 having a large width), and spreading the lubricating oil over the entire circumference of the sliding contact portion 23, Prevents early wear and improves durability.
[0028]
By the way, it is also preferable to combine the above-described embodiments (FIGS. 1, 5, 6 and 7). For example, both the depth and radial position of the concave groove 24 are changed in the circumferential direction, or the depth and width dimension of the concave groove 24 are changed in the circumferential direction, or the width dimension of the concave groove 24 is changed. It is also desirable to change the radial position together in the circumferential direction (not shown).
[0029]
Next, in still another embodiment shown in FIG. 8, in the conventional example of FIG. 2 (C) and FIG. 3 (C), it has already been described with reference to FIG. 1, FIG. 5, FIG. This is an invention in which improvements are made so that the contact surface pressure P becomes uneven in the circumferential direction.
In the embodiment shown in the vertical cross-sectional view of the main part in FIG. 8A and the cross-sectional view in the main part in FIG. 8B, it is basically the same as FIG. 2C and FIG. In addition, a rubber seal portion 26 having a sliding contact portion S 0 that contacts the surface of the rotating shaft 20 at the tip portion 33a of the lip 33 is provided, and the outer case 34 has a pair of inner flanges 36 and 37. The rubber seal portion 26 is integrally fixed to the outer case 34 by baking or bonding.
[0030]
Rear support bracket 28 for supporting the rubber sealing portion 26 from the rear side, a longitudinal L-shaped section, a cylindrical support portion 28a for supporting the inner peripheral surface of the lip 33 of the rubber sealing portion 26, the shaft And an orthogonal wall portion 28b orthogonal to the center L. And the cross-sectional shape of this cylindrical support part 28a is made non-uniform in the radial direction with respect to the (basic virtual) circle. That is, the cross-sectional shape of the tubular support portion 28a, as shown in FIG. 8 (B), the formed polygonal, the sliding portion S 0 of the lip end portion 33a (to the surface of the rotary shaft 20) The contact surface pressure P is configured to be uneven in the circumferential direction. 8 (C) and 8 (D) show another embodiment corresponding to FIG. 8 (B). As shown in FIG. 8 (C), the cylindrical support portion 28a is formed in an uneven corrugated annular shape, As shown in FIG. 8D, it is formed in an annular shape with uneven steps. In any case, the contact surface pressure P to the surface of the rotating shaft 20 of the lip tip 33a is configured to be non-uniform (non-uniform) in the circumferential direction.
[0031]
Corner in FIG. 8 (B), the peak portions in FIG. 8 (C), the At a convexly curved portion in FIG. 8 (D), the to reduce the contact surface pressure of the sliding portion S 0 (P), sliding Easy introduction (penetration) of the lubricating oil into the contact portion S 0 , and with the rotation of the rotary shaft 20, the lubricating oil is spread over the entire circumference of the sliding contact portion S 0 to prevent premature wear and durability Improves sex. In FIG. 8, reference numerals 7, 9, 10, 11 and the like are substantially the same as those in FIG.
[0032]
By the way, for each of the above-described embodiments of the present invention, the annular groove 24 of each form has a perfect circle shape, the same depth, and the same width shape, or the back support fitting 28 has a perfect circle shape, and a circular with a free state in (rather than a perfect circle) in the sliding portion 23, S 0 itself irregularities waveform, upon insertion of the rotary shaft 20, a contact surface pressure P to the surface of the rotary shaft 20 circumferentially However, there is a problem in airtightness when the sealing fluid is at a low pressure or in a non-pressurized state.
[0033]
In addition, this invention is not limited to the above-mentioned embodiment, For example, it is set as the structure which attached the rubber lip part to the low voltage | pressure side separately from the rubber seal part 5, or two or more seal elements 7 On the contrary, the seal element 7 can be omitted, or the shape of the support fitting 8 or the number of the inner cases 9 and 10 and the inner member 11 can be changed or changed.
[0034]
1 (FIG. 2 (A) (B), FIG. 3 (A) (B)), FIG. 5, FIG. 6, and FIG. Since the pressing force does not act on the sliding contact portion 23, an excessive contact surface pressure P can be prevented, an appropriate value of the contact surface pressure P is maintained, and the lubrication state with the rotary shaft 20 is maintained well. Abrasion can be suppressed and good sealing performance (sealing performance) can be exhibited over a long period of time. It is particularly suitable for sealing high pressure gas. Furthermore, the axial dimension of the rotary shaft seal can be reduced to achieve compactness.
[0035]
【The invention's effect】
The present invention has the following remarkable effects by the above-described configuration.
(According to claim 1), the contact surface pressure P is made uneven in the circumferential direction, and lubricating oil is introduced and infiltrated between the sliding contact portion 23 and the rotary shaft 20 from the portion of the small contact surface pressure P. Thus, with rotation, the lubricating oil can be spread over the entire circumference of the sliding contact portion 23 to prevent generation of frictional heat, prevent early wear, and achieve a long life. In addition, there is an advantage that there is no problem of poor airtightness in the case where unevenness is provided on the sliding contact portion 23 itself.
[0036]
(According to claim 1 ), the support fitting 8 receives the pressure in the direction parallel to the axis L due to the fluid pressure, and moves the rubber radially inward to indirectly contact the sliding contact portion 23. Therefore, the contact surface pressure P of the sliding contact portion 23 with respect to the rotating shaft 20 can be reliably suppressed so as not to be excessive. Furthermore, the axial direction dimension of the entire rotary shaft seal can be surely reduced to achieve compactness.
Moreover, the contact surface pressure P is made uneven in the circumferential direction, and lubricating oil is introduced and infiltrated between the sliding contact portion 23 and the rotary shaft 20 from the portion of the small contact surface pressure P, and with rotation, Lubricating oil can be spread all around the sliding contact portion 23 to prevent generation of frictional heat, prevent premature wear, and achieve a long life. In addition, there is an advantage that there is no problem of poor airtightness in the case where unevenness is provided on the sliding contact portion 23 itself.
[0037]
(According to claim 2 or 3 or 4) if not suitable for high pressure as claimed in claim 1, even at quite high pressures, as unequal contact pressure P in the circumferential direction, the small contact surface Lubricating oil is applied to the sliding contact portion S 0 from the portion of the pressure P. Between the rotary shaft 20 and the rotary shaft 20 and the sliding contact portion S 0 as it rotates. Lubricating oil can be spread all around, preventing the generation of frictional heat, preventing early wear, and extending the service life. And the sliding contact part S 0 There is also an advantage that the problem of poor airtightness does not occur when unevenness is provided on itself. Moreover, it is only necessary to replace the conventional back support bracket 38 with the back support bracket 28 of the present invention among the components of the conventional product, so that the product can be easily switched.
[Brief description of the drawings]
1A and 1B are diagrams showing an embodiment of the present invention, in which FIG. 1A is a side sectional view of an essential part, and FIG.
FIG. 2 is an explanatory view for explaining an enlarged comparison of the shape of an embodiment of the present invention and a conventional example.
FIG. 3 is an explanatory diagram for comparing shapes and operations of the present invention and a conventional example.
FIG. 4 is an explanatory diagram for comparison between an embodiment of the present invention and a comparative example.
5A and 5B are diagrams showing another embodiment, in which FIG. 5A is a side cross-sectional view of the main part, and FIG. 5B is a rear view of the main part.
FIG. 6 is a main part rear view showing another embodiment of the present invention.
7A and 7B are diagrams showing still another embodiment of the present invention, in which FIG. 7A is a side sectional view of a main part, and FIG. 7B is a rear view of the main part.
FIGS. 8A and 8B are diagrams showing still another embodiment of the present invention, in which FIG. 8A is a side cross-sectional view of a main part, and FIGS.
[Explanation of symbols]
1 Outer case 5 Rubber seal 5b Axis center orthogonal wall 8 Support bracket
20 axis of rotation
23 Sliding part
24 Annular groove
26 Rubber seal
28 Rear support bracket
28a Tubular support
33 Lip
33a Tip part C Sealed fluid side L Shaft center P Contact surface pressure S 0 Sliding part

Claims (4)

回転軸(20)の表面に接触する摺接部(23)を内周端縁に有する軸心直交壁部(5b)を備えたゴム製シール部(5)、及び、該軸心直交壁部(5b)を低圧側から支持する軸心直交状サポート金具(8)を、具備し、さらに、上記ゴム製シール部(5)の上記軸心直交壁部(5b)が上記サポート金具(8)に対応する背面側に環状凹溝(24)を形成して、受圧により圧縮されたゴムの内径方向への流れを該環状凹溝(24)によって遮断及び/又は吸収するように構成し、かつ、該環状凹溝(24)の深さ寸法・幅寸法・径方向位置の内の少なくとも1つを、周方向に変化するように設定して、上記摺接部(23)の上記回転軸(20)の表面への接触面圧(P)を周方向に不均等となるよう構成したことを特徴とする回転軸シール。 A rubber seal portion (5) having an axial orthogonal wall portion (5b) having a sliding contact portion (23) in contact with the surface of the rotating shaft (20) at the inner peripheral edge, and the axial orthogonal wall portion (5b) is provided with a shaft center orthogonal support bracket (8) that supports the low pressure side, and the shaft center orthogonal wall portion (5b) of the rubber seal portion (5 ) is the support bracket (8). An annular groove (24) is formed on the back side corresponding to the structure, and the flow in the inner diameter direction of the rubber compressed by pressure is blocked and / or absorbed by the annular groove (24), and , At least one of the depth dimension, the width dimension, and the radial position of the annular groove (24) is set so as to change in the circumferential direction, and the rotation shaft ( A rotary shaft seal characterized in that the contact surface pressure (P) to the surface of 20) is uneven in the circumferential direction. 回転軸(20)の表面に接触する摺接部(S0 )をリップ(33)の先端部(33a)に有するゴム製シール部(26)、及び、上記ゴム製シール部(26)のリップ(33)を内周面側から支持する筒状サポート部(28a)を有する背面サポート金具(28)を、具備し、
さらに、上記背面サポート金具(28)の上記筒状サポート部(28a)の横断面形状を多角形状として、上記リップ(33)の先端部(33a)の摺接部(S0 )の上記回転軸(20)の表面への接触面圧(P)を周方向に不均等となるよう構成したことを特徴とする回転軸シール。
A rubber seal portion (26) having a sliding contact portion (S 0 ) in contact with the surface of the rotating shaft (20) at the tip end portion (33a) of the lip (33 ), and a lip of the rubber seal portion (26) (33) comprises a back support fitting (28) having a cylindrical support portion (28a) for supporting the inner peripheral surface from the inner peripheral surface side ,
Furthermore, the cross-sectional shape of the cylindrical support portion (28a) of the back support fitting (28) is a polygonal shape, and the rotation shaft of the sliding contact portion (S 0 ) of the tip portion (33a) of the lip (33) A rotary shaft seal characterized in that the contact surface pressure (P) to the surface of (20) is uneven in the circumferential direction.
回転軸(20)の表面に接触する摺接部(S0 )をリップ(33)の先端部(33a)に有するゴム製シール部(26)、及び、上記ゴム製シール部(26)のリップ(33)を内周面側から支持する筒状サポート部(28a)を有する背面サポート金具(28)を、具備し、
さらに、上記背面サポート金具(28)の上記筒状サポート部(28a)の横断面形状を凹凸波形環状として、上記リップ(33)の先端部(33a)の摺接部(S0 )の上記回転軸(20)の表面への接触面圧(P)を周方向に不均等となるように構成したことを特徴とする回転軸シール。
A rubber seal portion (26) having a sliding contact portion (S 0 ) in contact with the surface of the rotating shaft (20) at the tip end portion (33a) of the lip (33), and a lip of the rubber seal portion (26) (33) comprises a back support fitting (28) having a cylindrical support portion (28a) for supporting the inner peripheral surface from the inner peripheral surface side,
Further, the cylindrical support portion of the rear support brackets (28) the cross-sectional shape of (28a) as uneven wave ring-like, above the tip of the lip (33) sliding contact portion (33a) (S 0) A rotary shaft seal characterized in that the contact surface pressure (P) to the surface of the rotary shaft (20) is uneven in the circumferential direction.
回転軸(20)の表面に接触する摺接部(SSliding contact portion (S) that contacts the surface of the rotating shaft (20) 00 )をリップ(33)の先端部(33a)に有するゴム製シール部(26)、及び、上記ゴム製シール部(26)のリップ(33)を内周面側から支持する筒状サポート部(28a)を有する背面サポート金具(28)を、具備し、 ) At the tip end (33a) of the lip (33), and a cylindrical support portion for supporting the lip (33) of the rubber seal (26) from the inner peripheral surface side ( A back support bracket (28) having 28a),
さらに、上記背面サポート金具(28)の上記筒状サポート部(28a)の横断面形状を凹凸段差付き環状として、上記リップ(33)の先端部(33a)の摺接部(S  Furthermore, the cross-sectional shape of the cylindrical support portion (28a) of the back support fitting (28) is an annular shape with an uneven step, and the sliding contact portion (S of the tip portion (33a) of the lip (33) (S 00 )の上記回転軸(20)の表面への接触面圧(P)を周方向に不均等となるように構成したことを特徴とする回転軸シール。 The rotary shaft seal is characterized in that the contact surface pressure (P) to the surface of the rotary shaft (20) is uneven in the circumferential direction.
JP2003165544A 2003-05-29 2003-06-10 Rotating shaft seal Expired - Fee Related JP4515048B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003165544A JP4515048B2 (en) 2003-06-10 2003-06-10 Rotating shaft seal
US10/849,876 US7134670B2 (en) 2003-05-29 2004-05-21 Rotation shaft seal
EP04012319A EP1482219B1 (en) 2003-05-29 2004-05-25 Rotary shaft seal
DE602004012193T DE602004012193T2 (en) 2003-05-29 2004-05-25 Radial shaft seal
KR1020040038106A KR20040103402A (en) 2003-05-29 2004-05-28 Rotation shaft seal
US11/546,282 US7398975B2 (en) 2003-05-29 2006-10-12 Rotation shaft seal
US11/979,406 US7467798B2 (en) 2003-05-29 2007-11-02 Rotation shaft seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003165544A JP4515048B2 (en) 2003-06-10 2003-06-10 Rotating shaft seal

Publications (2)

Publication Number Publication Date
JP2005003055A JP2005003055A (en) 2005-01-06
JP4515048B2 true JP4515048B2 (en) 2010-07-28

Family

ID=34091993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003165544A Expired - Fee Related JP4515048B2 (en) 2003-05-29 2003-06-10 Rotating shaft seal

Country Status (1)

Country Link
JP (1) JP4515048B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6589155B2 (en) * 2016-03-28 2019-10-16 イーグル工業株式会社 Stern tube seal ring and stern tube sealing structure
DE102016124457A1 (en) 2016-12-15 2018-06-21 Universität Stuttgart Device for sealing an object
DE102017202608A1 (en) * 2017-02-17 2018-08-23 Trelleborg Sealing Solutions Germany Gmbh Sealing arrangement with optimized lubrication behavior

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56106263U (en) * 1980-01-16 1981-08-18
JPS56106262U (en) * 1980-01-16 1981-08-18
JPS6380370U (en) * 1986-11-14 1988-05-27
JPH0216862U (en) * 1988-07-21 1990-02-02
JPH03130964U (en) * 1990-04-17 1991-12-27
JPH0632839U (en) * 1992-10-02 1994-04-28 エヌオーケー株式会社 Packing
JP2003035373A (en) * 2001-07-23 2003-02-07 Toyota Industries Corp Shaft sealing device, compressor and shaft sealing method provided with the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56106263U (en) * 1980-01-16 1981-08-18
JPS56106262U (en) * 1980-01-16 1981-08-18
JPS6380370U (en) * 1986-11-14 1988-05-27
JPH0216862U (en) * 1988-07-21 1990-02-02
JPH03130964U (en) * 1990-04-17 1991-12-27
JPH0632839U (en) * 1992-10-02 1994-04-28 エヌオーケー株式会社 Packing
JP2003035373A (en) * 2001-07-23 2003-02-07 Toyota Industries Corp Shaft sealing device, compressor and shaft sealing method provided with the same

Also Published As

Publication number Publication date
JP2005003055A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
US5860656A (en) Seal for rotating shaft
US9322475B2 (en) Frictionless shaft seal
US7398975B2 (en) Rotation shaft seal
KR101085159B1 (en) Lip-type seal
JP5100128B2 (en) Rotating shaft seal
US6276691B1 (en) Oil seal
JP4579110B2 (en) Rotating shaft seal
JP4515048B2 (en) Rotating shaft seal
JP2006300191A (en) Seal device
EP3891421B1 (en) Crankshaft seal design
JP2001074143A (en) Lip type seal
JP2003056718A (en) Oil seal
JP4763480B2 (en) Rotating shaft seal
JP7051310B2 (en) Sealing device
JP2003254440A (en) Sealing device
US6543783B1 (en) Sealing ring with sloping support body
JP2004353765A (en) Rotating shaft seal
JP2005240932A (en) Sealing device
JP2597961Y2 (en) Sealing device
JP2008169933A (en) Sealing device
JP2001173798A (en) Oil seal with screw
JP2001153232A (en) Rotating shaft seal
JP2001050397A (en) Lip type seal
JP4258174B2 (en) Sealing device
JPH11280916A (en) Rotary shaft seal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees