JP4514449B2 - Method for determining remaining capacity of secondary storage battery, method and apparatus for detecting remaining capacity of secondary battery mounted on vehicle using determination result, and terminal for determining remaining capacity of secondary storage battery Method and apparatus for determining slope and intercept used to calculate voltage - Google Patents

Method for determining remaining capacity of secondary storage battery, method and apparatus for detecting remaining capacity of secondary battery mounted on vehicle using determination result, and terminal for determining remaining capacity of secondary storage battery Method and apparatus for determining slope and intercept used to calculate voltage Download PDF

Info

Publication number
JP4514449B2
JP4514449B2 JP2003427411A JP2003427411A JP4514449B2 JP 4514449 B2 JP4514449 B2 JP 4514449B2 JP 2003427411 A JP2003427411 A JP 2003427411A JP 2003427411 A JP2003427411 A JP 2003427411A JP 4514449 B2 JP4514449 B2 JP 4514449B2
Authority
JP
Japan
Prior art keywords
soc
remaining capacity
discharge
storage battery
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003427411A
Other languages
Japanese (ja)
Other versions
JP2005188965A (en
Inventor
史和 岩花
敏幸 佐藤
秀人 中村
哲也 加納
克己 稲庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2003427411A priority Critical patent/JP4514449B2/en
Publication of JP2005188965A publication Critical patent/JP2005188965A/en
Application granted granted Critical
Publication of JP4514449B2 publication Critical patent/JP4514449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、鉛蓄電池などの二次蓄電池を搭載した車両において二次蓄電池の残存容量(残存寿命または劣化状態)または充電状態(SOC)を判定する方法と、それを用いた判定結果を用いて車両に搭載された二次電池の残存容量を検出する方法と装置に関する。
また本発明は、二次蓄電池の残存容量を判定するための端子電圧を演算するために使用する傾きと切片とを求める方法と装置に関する。
The present invention uses a method for determining the remaining capacity (remaining life or deterioration state) or state of charge (SOC) of a secondary storage battery in a vehicle equipped with a secondary storage battery such as a lead storage battery, and a determination result using the method. The present invention relates to a method and an apparatus for detecting a remaining capacity of a secondary battery mounted on a vehicle.
The present invention also relates to a method and an apparatus for obtaining a slope and an intercept used for calculating a terminal voltage for determining a remaining capacity of a secondary storage battery.

乗用車などの車両に搭載した鉛蓄電池などの二次蓄電池の残存容量またはSOCを事前に検知できることは非常に有用である。
たとえば、適切なタイミングで車載の二次蓄電池の残存寿命を検知できれば、適切なタイミングで二次蓄電池を交換でき、二次蓄電池の寿命が尽きて、または残存容量、SOCが不足して車両が再動作できなくなることを未然に防止できる。
It is very useful to be able to detect in advance the remaining capacity or SOC of a secondary storage battery such as a lead storage battery mounted on a vehicle such as a passenger car.
For example, if the remaining life of an in-vehicle secondary storage battery can be detected at an appropriate timing, the secondary storage battery can be replaced at an appropriate timing, and the life of the secondary storage battery is exhausted or the remaining capacity and SOC are insufficient, causing the vehicle to restart. It is possible to prevent the operation from becoming impossible.

また、環境汚染の低減および車両の燃費の向上のため、車両が交差点で信号待ちのために一時停車したとき、渋滞で停車しているときなど、内燃機関(エンジン)を停止するアイドリングストップ機能を有する車両の実用化が鋭意進められている。このようなアイドリングストップを行う場合、アイドリングストップ後に車両を再起動できるだけ車載の二次蓄電池に残存容量が存在すること、または、二次蓄電池の劣化状態を知ることが必要である。   In order to reduce environmental pollution and improve vehicle fuel efficiency, the vehicle has an idling stop function that stops the internal combustion engine (engine), such as when the vehicle is temporarily stopped at an intersection to wait for a signal or when it is stopped due to traffic jams. The vehicles that have them are being put into practical use. When performing such an idling stop, it is necessary to know that the in-vehicle secondary storage battery has a remaining capacity as much as possible after restarting the vehicle after the idling stop, or to know the deterioration state of the secondary storage battery.

そのような二次蓄電池としては、鉛蓄電池などの蓄電池が多用されている。以下、蓄電池を車両に搭載した場合の蓄電池の残存容量またはSOCなど蓄電池の状態を判定する従来方法と装置について述べる。
蓄電池の残存容量を測定する方法は種々試みられている。以下、従来の蓄電池の残存容量の測定方法について概観する。
Storage batteries such as lead storage batteries are frequently used as such secondary storage batteries. A conventional method and apparatus for determining the state of the storage battery such as the remaining capacity of the storage battery or the SOC when the storage battery is mounted on a vehicle will be described below.
Various methods for measuring the remaining capacity of a storage battery have been tried. Hereinafter, an overview of a conventional method for measuring the remaining capacity of a storage battery will be given.

鉛蓄電池は、放電により水を生じ、充電により硫酸を生ずるので、放電すると硫酸水溶液の比重が小さくなり、充電で硫酸水溶液の比重が元に戻る。この現象を利用して、電解液の比重を指標として鉛蓄電池の残存容量を推定する方法が知られている。
しかしながら、鉛蓄電池に収容されている電解液の濃度分布が不均一になる場合がしばしばあるので、この方法では鉛蓄電池の残存容量を常に正確に推定することが出来ない。 また、近年、電解液が極めて少ないシール型鉛蓄電池が採用されている。このようなシール型鉛蓄電池については電解液の比重の測定自体が困難なので、鉛蓄電池の残存容量を推定できない。
Since lead acid batteries produce water by discharging and produce sulfuric acid by charging, the specific gravity of the sulfuric acid aqueous solution is reduced when discharged, and the specific gravity of the sulfuric acid aqueous solution is restored by charging. Using this phenomenon, a method of estimating the remaining capacity of a lead storage battery using the specific gravity of the electrolyte as an index is known.
However, since the concentration distribution of the electrolyte contained in the lead storage battery often becomes non-uniform, this method cannot always accurately estimate the remaining capacity of the lead storage battery. In recent years, sealed lead-acid batteries with very little electrolyte have been adopted. For such a sealed lead-acid battery, it is difficult to measure the specific gravity of the electrolyte itself, so the remaining capacity of the lead-acid battery cannot be estimated.

特開昭53−127646号公報は、スタータクランキング時のスタータ電流と、バッテリ端子電圧との関係からバッテリの出力インピーダンスを算出し、この出力インピーダンスからバッテリの状態を検出する技術を開示している。
より詳細に述べると、特開昭53−127646号公報は、(1)エンジンのスタートキーを回す際に生じているオルタネータの過渡的な電流値をオルタネータと車載の鉛蓄電池(バッテリ)との間に介在させた抵抗に流れる電流として計測し、さらにバッテリの端子電圧を計測し、これらの計測結果を演算増幅器で演算して出力インピーダンスを算出し、求めた出力インピーダンスから車両の走行直前のバッテリの初期残存容量を求め、(2)さらに車両走行中の充電量あるいは充放電量を求め、(3)初期残存容量と充放電量とを比較してバッテリの残存容量を算出する方法を開示している。
しかしながら、バッテリ内の分極の影響により出力インピーダンスが大きく変化するから、大きく変化する出力インピーダンスを用いてバッテリの状態を決定することはできない。出力インピーダンスが安定するまで待機すればよいが、出力インピーダンスが安定するまで待機するには、車両を数時間以上停止させておく必要があり、実用的ではない。
Japanese Patent Laid-Open No. 53-127646 discloses a technique for calculating the output impedance of a battery from the relationship between the starter current during starter cranking and the battery terminal voltage, and detecting the state of the battery from this output impedance. .
More specifically, Japanese Patent Laid-Open No. 53-127646 discloses (1) the transient current value of the alternator generated when the engine start key is turned between the alternator and the in-vehicle lead acid battery (battery). Measured as the current flowing through the resistor interposed in the battery, further measured the terminal voltage of the battery, calculated the output impedance by calculating these measurement results with an operational amplifier, from the obtained output impedance of the battery just before the vehicle traveled Disclosed is a method for obtaining an initial remaining capacity, (2) further obtaining a charge amount or charge / discharge amount while the vehicle is running, and (3) calculating a remaining battery capacity by comparing the initial remaining capacity and the charge / discharge amount. Yes.
However, since the output impedance changes greatly due to the influence of polarization in the battery, the state of the battery cannot be determined using the output impedance that changes greatly. It is sufficient to wait until the output impedance is stabilized. However, in order to wait until the output impedance is stabilized, the vehicle needs to be stopped for several hours or more, which is not practical.

特開平1−129177号公報は、上記特開昭53−127646号公報に記載されている方法を改良した発明を開示している。特開平1−129177号公報に記載されている方法は、バッテリの開放電圧(開回路電圧)の変化が少なくなると出力インピーダンスが安定することに着目して、車両が停止した状態においてバッテリの開放電圧の変化が所定以下になったことを検出して、その状態における出力インピーダンスを用いてバッテリの状態を検出する方法である。
しかしながら、そのようにして算出した出力インピーダンスだけを用いても、バッテリの状態を充分正確に検出できないし、いずれにしても、バッテリの分極が安定するまで待機する必要があるのでバッテリの状態の検出に時間がかかるから、さらに短時間でバッテリの状態を検出する方法が要望されている。
Japanese Laid-Open Patent Publication No. 1-129177 discloses an invention obtained by improving the method described in Japanese Laid-Open Patent Publication No. 53-127646. In the method described in Japanese Patent Laid-Open No. 1-129177, focusing on the fact that the output impedance is stabilized when the change in the open circuit voltage (open circuit voltage) of the battery is reduced, the open circuit voltage of the battery when the vehicle is stopped. This is a method of detecting the state of the battery using the output impedance in that state by detecting that the change in the battery has become below a predetermined value.
However, even if only the output impedance calculated in this way is used, the state of the battery cannot be detected sufficiently accurately, and in any case, it is necessary to wait until the polarization of the battery becomes stable. Therefore, a method for detecting the state of the battery in a shorter time is desired.

特開昭63−27776号公報は、(1)最初にバッテリを車両に搭載したときの新品のバッテリにおけるエンジン始動中の放電電荷量に対するバッテリの端子電圧降下分を実測し、(2)その後、エンジン停止と始動との間にバッテリ特性が蘇る(分極が安定する)のに必要な時間を経過したこと、および、バッテリ残存容量が所定以上であることを条件として、車両走行ごとにエンジン始動中の放電電荷量に対するバッテリの端子電圧降下分を実測して、(3)上記初期の電圧降下分と走行後の電圧降下分を用いて演算してバッテリの寿命を予測する方法を開示している。
この方法も、上記のように、バッテリの分極が安定するまで待機しなければならず、しかも電圧降下のみを用いてもバッテリの状態を正確に検知することはできない。
Japanese Patent Laid-Open No. 63-27776 (1) actually measures the terminal voltage drop of the battery relative to the amount of discharge charge during engine start-up in a new battery when the battery is first installed in the vehicle, and (2) The engine is starting every time the vehicle travels, provided that the time required for battery characteristics to recover (polarization stabilizes) has elapsed between engine stop and start, and that the remaining battery capacity is greater than or equal to a predetermined value. (3) Disclosed is a method for predicting the battery life by calculating the terminal voltage drop of the battery with respect to the amount of discharge charge and calculating using the initial voltage drop and the voltage drop after running. .
As described above, this method also has to wait until the polarization of the battery is stabilized, and the state of the battery cannot be accurately detected even using only the voltage drop.

特開平1−39068号公報は、(1)スタータの起動時などの大電流放電中における互いに異なる値を示す複数時点のバッテリの放電電流と、各放電電流流出時のバッテリの端子電圧を検出し、(2)検出した電流と電圧値からバッテリの内部抵抗値と電力を算出し、(3)予め実験的に求めたバッテリの容量と内部抵抗と起電力の相関関係を表す関数を用いて算出した内部抵抗と起電力からバッテリの状態を検出する方法を開示している。 しかしながら、この方法も正確にバッテリの状態を検知できないし、この方法の処理は複雑である。   JP-A-1-39068 (1) detects the discharge current of a battery at a plurality of time points indicating different values during a large current discharge such as when the starter is started, and the terminal voltage of the battery when each discharge current flows out. (2) The internal resistance value and power of the battery are calculated from the detected current and voltage values, and (3) calculated using a function representing the correlation between the battery capacity, the internal resistance, and the electromotive force obtained experimentally in advance. Discloses a method for detecting the state of the battery from the internal resistance and the electromotive force. However, this method cannot accurately detect the state of the battery, and the processing of this method is complicated.

蓄電池の短時間検査方法として開発された他の例として、蓄電池の内部インピーダンスを測定する方法が知られている。
たとえば、特許第2536257号公報(特開平4−95788号公報)は鉛蓄電池の残存容量を検出するため内部インピーダンスを用いる発明を開示している。この発明においては、(1)鉛蓄電池の内部インピーダンスを測定し、(2)測定した鉛蓄電池の内部インピーダンスを、鉛蓄電池のインダクタンス成分L、電解液抵抗RΩ、電荷移動抵抗Rct、電気二重層容量Cd、ワールブルグ・インピーダンスW、ワールブルグ係数σからなる等価回路に当てはめて最適解を求め、(3)L、RΩ、Rct、Cd、W、σの少なくとも一つを初期の値と比較して、その相違から鉛蓄電池の寿命を判定する。
しかしながら、この発明を車両に搭載された鉛蓄電池の状態の検査に用いる場合、エンジンの回転に伴って稼動している発電機から鉛蓄電池への影響、車両に搭載された装備の負荷変動などの影響を受けて鉛蓄電池の内部インピーダンスの測定が困難になる。鉛蓄電池の内部インピーダンスが測定できなければ、初期値と比較できず、寿命も判定できない。
さらにこの発明を実施すると、測定装置の構成が複雑で寸法も大きくなり、価格も高くなる。
As another example developed as a short-time inspection method for a storage battery, a method for measuring the internal impedance of the storage battery is known.
For example, Japanese Patent No. 2536257 (Japanese Patent Laid-Open No. 4-95788) discloses an invention that uses an internal impedance to detect the remaining capacity of a lead-acid battery. In the present invention, (1) the internal impedance of the lead storage battery is measured, and (2) the measured internal impedance of the lead storage battery is converted into an inductance component L, an electrolyte resistance RΩ, a charge transfer resistance Rct, and an electric double layer capacity. Apply an equivalent circuit consisting of Cd, Warburg impedance W, and Warburg coefficient σ to find an optimal solution. (3) Compare at least one of L, RΩ, Rct, Cd, W, and σ with the initial value, The life of the lead storage battery is determined from the difference.
However, when this invention is used for the inspection of the state of the lead storage battery mounted on the vehicle, the influence on the lead storage battery from the generator operating as the engine rotates, the load fluctuation of the equipment mounted on the vehicle, etc. It is difficult to measure the internal impedance of lead-acid batteries under the influence. If the internal impedance of the lead-acid battery cannot be measured, it cannot be compared with the initial value and the life cannot be determined.
Further, when the present invention is implemented, the configuration of the measuring apparatus is complicated, the size is increased, and the price is increased.

また、蓄電池の短時間検査方法として開発された他の例として、蓄電池から放電または充電される電流値を常時測定し、その電流測定値を積算することで、蓄電池の残存容量またはSOCを判定する方法(以下、「電流積算法」と呼ぶ)が知られている。
電流積算法においては、電流値の測定誤差により、積算値の誤差が次第に大きくなり、蓄電池の状態が正確に求めることができなくなるという問題点があった。
Further, as another example developed as a short-time inspection method for a storage battery, the current value discharged or charged from the storage battery is constantly measured, and the current measurement value is integrated to determine the remaining capacity or SOC of the storage battery. A method (hereinafter referred to as “current integration method”) is known.
The current integration method has a problem in that the error in the integrated value gradually increases due to the measurement error in the current value, and the state of the storage battery cannot be obtained accurately.

そのため、「電流積算法」を改良した方法が、特許第2791751号公報(特開平8−19103号公報)、特開平9−171065号公報などに提案されている。   For this reason, methods that improve the “current integration method” have been proposed in Japanese Patent No. 2791751 (Japanese Patent Laid-Open No. 8-19103), Japanese Patent Laid-Open No. 9-71065, and the like.

特許第2791751号の発明は、電流積算方式と内部抵抗検出方式を併用してデータ処理して、電気自動車用鉛蓄電池の残存容量を測定する方法であり、電流積算法で蓄電池の残存容量を算出しておき、その残存容量を補正する技術である。すなわち、(1)まず、電流積算法で電気自動車に搭載された鉛蓄電池の残存容量を算出し、(2)さらに、電気自動車用鉛蓄電池の満充電完了時および自動車の走行中の一時停止時に鉛蓄電池の内部インピーダンスを測定し、(3)内部インピーダンスから導出する放電率によって電流積算法で求めた蓄電池の残存容量の値を補正する。
このように、補正残存容量の算出は、予め特定の放電電流値での定電流放電における端子電圧と残存容量のデータテーブルを準備し、自動車走行中に前記特定の放電電流値が一定時間継続したことを検知し、その時の蓄電池の端子電圧を測定し、測定した端子電圧を前記データテーブルに参照して補正のための蓄電池の残存容量を求める。そして、算出した補正用残存容量で、事前に求めた電流積算法の残存容量を補正する。
この方法は自動車用蓄電池の残存容量の検査法として有用であり、鉛蓄電池の残存容量を正確に知る必要がある電気自動車においては重要な技術である。
しかしながら、この発明は、電流積算法による測定に加えて、内部インピーダンスによる測定も実施する必要があり、この方法を実現する測定装置を製造した場合、装置価格が高くなる。特に、この発明は上述した内部インピーダンスを測定することが困難な事態がある。
The invention of Japanese Patent No. 2791751 is a method of measuring the remaining capacity of a lead storage battery for an electric vehicle by processing data using both the current integration method and the internal resistance detection method, and calculating the remaining capacity of the storage battery by the current integration method. A technique for correcting the remaining capacity. That is, (1) First, the remaining capacity of a lead storage battery mounted on an electric vehicle is calculated by a current integration method. (2) Further, when the full charge of the lead storage battery for an electric vehicle is completed and when the vehicle is temporarily stopped The internal impedance of the lead storage battery is measured, and (3) the value of the remaining capacity of the storage battery obtained by the current integration method is corrected by the discharge rate derived from the internal impedance.
Thus, the correction remaining capacity is calculated by preparing a terminal voltage and remaining capacity data table in constant current discharge at a specific discharge current value in advance, and the specific discharge current value continues for a certain period of time while the vehicle is running. This is detected, the terminal voltage of the storage battery at that time is measured, and the remaining terminal capacity of the storage battery for correction is obtained by referring to the measured terminal voltage in the data table. Then, the remaining capacity of the current integration method obtained in advance is corrected with the calculated remaining capacity for correction.
This method is useful as a method for inspecting the remaining capacity of a storage battery for automobiles, and is an important technique in an electric vehicle that needs to know the remaining capacity of a lead storage battery accurately.
However, according to the present invention, in addition to the measurement by the current integration method, it is also necessary to perform the measurement by the internal impedance. When a measuring device that realizes this method is manufactured, the device price becomes high. In particular, according to the present invention, it is difficult to measure the internal impedance described above.

特開平9−171065号公報に開示された発明は、電気自動車などの電動車両に搭載された蓄電池(バッテリ)の残存容量を測定するに適した技術である。その理由は、電気自動車においては、その車両が常用する走行速度での放電電流値を上記の特定の放電電流値とすることにより蓄電池の残存容量を求める機会が多いからである。
しかしながら、特開平9−171065号公報に開示された発明は、内燃機関で動作する車両(通常の自動車)に搭載した蓄電池の残存容量に適さない。その理由は、通常の自動車においては、自動車走行中に頻繁に一定時間継続するような特定の電流値が出現する機会が少ないので、蓄電池の残存容量を求める機会が極めて少ないので、補正すべき残存容量を求めることができないからである。
The invention disclosed in Japanese Patent Laid-Open No. 9-171655 is a technique suitable for measuring the remaining capacity of a storage battery (battery) mounted on an electric vehicle such as an electric vehicle. The reason for this is that in an electric vehicle, there are many opportunities to obtain the remaining capacity of the storage battery by setting the discharge current value at the travel speed normally used by the vehicle as the specific discharge current value.
However, the invention disclosed in Japanese Patent Application Laid-Open No. 9-171065 is not suitable for the remaining capacity of a storage battery mounted on a vehicle (normal automobile) operating with an internal combustion engine. The reason for this is that in ordinary cars, there are few opportunities for specific current values that frequently continue for a certain period of time while the car is running, so there are very few opportunities to determine the remaining capacity of the storage battery, so the This is because the capacity cannot be obtained.

特開平9−171065号公報に開示された発明の上記問題を解決する方法としては、たとえば、端子電圧と残存容量のデータテーブルを複数個用意し、複数の電流値で残存容量の判定を行うことも考えられる。
しかしながら、そのような方法を実施するためには、複数個のデータテーブルを用意する必要があり、処理が複雑になる。正確な残存容量の測定のためには、温度と劣化状態により該蓄電池の端子電圧と残存容量の関係が変化する場合、それに応じてさらに多くのデータテーブルを用意することが必要になるので、多量のデータを記憶させ、処理させるには複雑な装置が必要になると推察される。また、そのような多量のデータを作成する作業も厄介である。蓄電池の劣化状態の判断も難しい。
As a method for solving the above-described problem of the invention disclosed in Japanese Patent Laid-Open No. 9-171655, for example, a plurality of terminal voltage and remaining capacity data tables are prepared, and the remaining capacity is determined by a plurality of current values. Is also possible.
However, in order to implement such a method, it is necessary to prepare a plurality of data tables, and the processing becomes complicated. In order to accurately measure the remaining capacity, if the relationship between the terminal voltage of the storage battery and the remaining capacity changes depending on the temperature and the deterioration state, it is necessary to prepare more data tables accordingly. It is assumed that a complicated device is required to store and process the data. In addition, it is troublesome to create such a large amount of data. It is also difficult to judge the deterioration state of the storage battery.

特開昭53−127646号公報JP-A-53-127646 特開平1−129177号公報Japanese Patent Laid-Open No. 1-129177 特開昭63−27776号公報JP 63-27776 A 特開平1−39068号公報JP-A-1-39068 特許第2536257号Japanese Patent No. 2536257 特許第2791751号(特開平8−19103号公報)Japanese Patent No. 2791751 (JP-A-8-19103) 特開平9−171065号公報Japanese Patent Laid-Open No. 9-171065

以上の様な従来技術を車両に搭載された蓄電池の残存容量測定方法に適用するには、従来技術では、確実な判定が出来ない等の問題点があった。
たとえば、電流積算法にあっては、適切なタイミングで、他の手法によって蓄電池の残存容量またはSOCを判定し、その測定値と電流の積算によって求めた残存容量またはSOCとを互いに参照して、残存容量またはSOCの修正を行う方法を開発する必要がある。
In order to apply the conventional technology as described above to a method for measuring the remaining capacity of a storage battery mounted on a vehicle, the conventional technology has a problem that a reliable determination cannot be made.
For example, in the current integration method, the remaining capacity or SOC of the storage battery is determined by another method at an appropriate timing, and the measured value and the remaining capacity or SOC obtained by integration of the current are referred to each other, There is a need to develop a method for correcting the remaining capacity or SOC.

本発明の目的は、精度の高い二次蓄電池の残存容量またはSOCを判定可能な方法を提供することにある。
また本発明の他の目的は、簡便な方法で車両などに搭載された二次蓄電池の残存容量またはSOCを実時間で判定可能な方法と装置を提供することにある。
さらに本発明の目的は、二次蓄電池の残存容量を判定するための端子電圧を演算するために使用する傾きと切片とを求める方法と装置を提供することにある。
An object of the present invention is to provide a method capable of determining the remaining capacity or SOC of a secondary storage battery with high accuracy.
Another object of the present invention is to provide a method and apparatus capable of determining in real time the remaining capacity or SOC of a secondary storage battery mounted on a vehicle or the like by a simple method.
A further object of the present invention is to provide a method and apparatus for determining the slope and intercept used to calculate the terminal voltage for determining the remaining capacity of the secondary storage battery.

本願発明者は、二次蓄電池の残存容量またはSOCが端子電圧で規定できること、そして、その端子電圧と放電電流との関係において一次式として規定されることを見いだした。
そのような二次蓄電池を車両に搭載した場合における残存容量またはSOCの判定に際しては、測定した二次蓄電池の端子電圧をそのまま使用すると判定誤差が発生する可能性がある。そこで、実際の二次蓄電池の放電電流を測定し、測定した放電電流を上記一次式として規定される関係式に導入して演算した演算端子電圧を求め、さらに、その演算端子電圧と実測した端子電圧とから車載の二次蓄電池の残存容量またはSOCを判定することとした。
The inventor of the present application has found that the remaining capacity or SOC of the secondary storage battery can be defined by the terminal voltage and that it is defined as a primary expression in the relationship between the terminal voltage and the discharge current.
In determining the remaining capacity or SOC when such a secondary storage battery is mounted on a vehicle, a determination error may occur if the measured inter- terminal voltage of the secondary storage battery is used as it is. Therefore, to measure the discharge current of the actual secondary storage battery, the measured discharge current seek operation terminal voltage which is calculated by introducing the relational expression is defined as a primary expression above, further, found a voltage between its operational terminal The remaining capacity or SOC of the in-vehicle secondary storage battery is determined from the voltage between the terminals.

また本願発明者は、上記負荷などの影響を受けない二次蓄電池の残存容量またはSOCを判定するための端子電圧と放電電流との関係式(一次式)における傾きと切片を求めるに際して、精度を高める方法を見いだした。
もちろん、関係式(一次式)における傾きと切片を求める作業(処理)は、実時間性が要求されないから、多少時間がかかってもよいし、上述した方法、たとえば、電流積算法などを適用することもできる。
Further, the inventor of the present application uses accuracy when obtaining the slope and intercept in the relational expression (primary expression) between the terminal voltage and the discharge current for determining the remaining capacity or SOC of the secondary storage battery not affected by the load or the like. I found a way to increase it.
Of course, the work (processing) for obtaining the slope and intercept in the relational expression (primary expression) does not require real-time characteristics, and therefore may take some time, and the above-described method, for example, the current integration method or the like is applied. You can also.

本発明によれば、二次蓄電池の残存容量またはSOCを判定するために用いる、V SOC =a SOC ×I j +b SOC (V SOC は二次蓄電池の各残存容量または各SOCにおける演算により求める演算端子間電圧、I j は放電電流、a SOC は傾きを意味する第1係数、b SOC は切片を意味する第2係数である)の一次式で規定される演算端子間電圧の演算に用いる、第1係数および第2係数を求める方法であって、
第1放電特性試験として、前記二次蓄電池の各残存容量またはSOCにおいて、値を順次低下させた複数の第1放電電流(Ij )で前記二次蓄電池の端子電圧が安定する第1放電時間の間放電し、当該第1放電特性試験における前記二次蓄電池の端子電圧を測定する第1の工程と、前記各残存容量または前記各SOCにおいて前記測定して得られた複数組の端子電圧と前記各第1放電電流とから、前記各残存容量または前記各SOCにおける、前記第1係数(aSOC )を求める第2の工程と、第2放電特性試験として、前記二次蓄電池を満充電状態から第2放電電流で定電流放電し当該第2放電特性試験における前記二次蓄電池の端子電圧を測定する第3の工程と、前記第2放電特性試験で得られた時間経過の間測定した各残存容量または各SOCにおける端子電圧と、前記求めた第1係数と放電電流とを前記一次式に導入して、各残存容量または各SOCにおける前記第2係数(bSOC)を求める第4の工程と、を有する、
二次蓄電池の残存容量またはSOCを判定するために用いる演算端子間電圧の演算に用いる、第1係数および第2係数を求める方法が提供される。
According to the present invention , V SOC = a SOC × I j + b SOC (V SOC is a calculation obtained by calculation in each remaining capacity or each SOC of the secondary storage battery, which is used to determine the remaining capacity or SOC of the secondary storage battery. A voltage between terminals, I j is a discharge current, a SOC is a first coefficient that means a slope, and b SOC is a second coefficient that means an intercept). A method for determining a first coefficient and a second coefficient,
As a first discharge characteristic test, in each remaining capacity or each SOC of the secondary storage battery, a first discharge in which the terminal voltage of the secondary storage battery is stabilized by a plurality of first discharge currents (I j ) whose values are sequentially decreased. discharge during the time, the first step, a plurality of sets of terminals obtained by the measurement in each of the remaining capacity or the respective SOC measuring the inter-terminal voltage of the secondary battery in the first discharge characteristic test wherein a between voltages from the respective first discharge current, the in each remaining capacity or the respective SOC, the first coefficient (a SOC) and determined Mel second step, a second discharge characteristic test, the secondary constant current discharge battery from a fully charged state at a second discharge current, and a third step of measuring the inter-terminal voltage of the secondary battery in the second discharge characteristic test, obtained by the second discharge characteristics test each residual volume was measured during the time course Or the inter-terminal voltage at each SOC, by introducing a first coefficient determined the a discharge current to the primary equation, a fourth step of obtaining the second coefficient in the remaining capacity or the SOC (b SOC) Having
There is provided a method for obtaining a first coefficient and a second coefficient used for calculating a voltage between calculation terminals used for determining a remaining capacity or SOC of a secondary storage battery .

好ましくは、前記第1の工程における前記第1放電特性試験において、次の残存容量または次のSOCにおける第1放電特性試験を行うため、今回の第1放電特性試験の後、所定の放電電流で放電して前記次の残存容量または前記次のSOCの値に調整する調整用放電を行う。 Preferably, in the first discharge characteristic test in the first step, in order to perform the first discharge characteristic test in the next remaining capacity or the next SOC, after the current first discharge characteristic test, a predetermined discharge current is used. An adjustment discharge is performed to discharge and adjust to the next remaining capacity or the next SOC value.

また好ましくは、前記第3の工程における前記二次蓄電池の満充電時において、それぞれ一定の複数の第1放電電流(I1〜I4)を第1放電時間(T11、T12)の間だけ放電し、この時の端子間電圧を測定する第1測定工程と、前記第3の工程における一定の第2放電電流での定電流放電を任意の時間継続して放電容量を調整する第1調整工程と、前記第1測定工程と前記第1調整工程とを、前記第1調整工程中に前記二次蓄電池の端子電圧が規定最低電圧(V0 )以下になるまで反復させる反復工程と、前記二次蓄電池の端子電圧が前記規定最低電圧(V0 )以下になったとき、前記一定の複数の第1電流と前記第1放電時間の積の総和である前記第1測定工程にて放電される放電容量と、前記反復工程において前記第1測定工程を実施した回数(n)の積で規定される第1の放電容量と、前記第1調整工程において前記二次蓄電池の端子電圧が前記規定最低電圧(V0 )まで降下するまで繰り返して実施され、前記一定の第2放電電流で定電流放電した時間の合計時間と前記一定の第2放電電流との積で規定される第2放電容量と、前記第1放電容量と前記第2放電容量とを合計した第3放電容量を前記二次蓄電池の全放電容量(Q1)と規定する工程と、前記各第1測定工程を実施する前までに、前記第2放電電流による放電容量および前記第1測定工程によって放電される放電容量の合計容量を、前記二次蓄電池の全放電容量(Q1)から差し引いた各残存容量について、前記測定して得られた複数組の端子間電圧と前記各第1放電電流とから前記第1係数(aSOC )を求める第1係数算出工程と、前記第1係数(aSOC )を求める際の前記二次蓄電池の各残存容量の百分率(An)を前記第1係数(aSOC )を求める際の前記二次蓄電池の各残存容量と前記二次蓄電池の全放電容量(Q1)とから求める工程と、前記二次蓄電池、または、前記二次蓄電池と容量及び充放電特性が同じ他の二次蓄電池の満充電時において、一定の第3電流(Id3)で任意の放電時間継続して所定の端子間電圧まで降下するまで放電し、このときの端子間電圧を測定する第2測定工程と、前記第3電流(Id3)と前記放電時間(T3)との積で規定される第4放電容量を全放電容量(Q2)と規定し、全放電容量(Q2)の百分率(Bn)と前記端子間電圧との関係を求めて、その結果と、前記求めた第1係数と放電電流と、前記各第1放電電流を前記一次式に導入して、各残存容量または各SOCにおける前記第2係数(bSOC )を求める第2係数算出工程とを有する。 Preferably, at the time of full charge of the secondary storage battery in the third step , each of the fixed first discharge currents (I1 to I4) is discharged only during the first discharge time (T11, T12), A first measurement step of measuring the voltage between the terminals at this time, a first adjustment step of adjusting the discharge capacity by continuing constant current discharge at a constant second discharge current in the third step for an arbitrary time, A repetitive step of repeating the first measurement step and the first adjustment step until a terminal voltage of the secondary storage battery becomes a specified minimum voltage (V 0 ) or less during the first adjustment step; and the secondary storage battery when the inter-terminal voltage falls below the prescribed minimum voltage (V 0), a discharge is discharged by a sum of products of the constant and the plurality of first current the first discharge period of time the first measuring step capacity and the first measurement step in the iteration step A first discharge capacity is defined by the product of the number of times was performed (n), the terminal voltage of said secondary battery in the first adjustment step is performed repeatedly until drops until said prescribed minimum voltage (V 0), a second discharge capacity is defined by the product of the total time and the constant second discharge current of time constant current discharging at the constant second discharge current, the first discharge capacity and the second discharge capacity The step of defining the total third discharge capacity as the total discharge capacity (Q1) of the secondary storage battery, and the discharge capacity by the second discharge current and the first measurement before performing the first measurement steps. For each remaining capacity obtained by subtracting the total capacity of the discharge capacity discharged in the process from the total discharge capacity (Q1) of the secondary storage battery, a plurality of sets of inter-terminal voltages and the first discharges obtained by the measurement are obtained. wherein the current first coefficient (a SOC ) And the determined Mel first coefficient calculating step, for each remaining capacity of the secondary battery for obtaining the first coefficient (a SOC) percentage (An) to the time of obtaining the first coefficient (a SOC) and determined Mel steps from a total discharge capacity (Q1) of each remaining capacity of the secondary battery and the secondary battery, the secondary battery or the secondary battery and the capacity and charge-discharge characteristics of the same other two, A second measurement step of measuring the inter-terminal voltage at this time by discharging the secondary storage battery at a predetermined third current (Id3) for a predetermined discharge time until it drops to a predetermined inter-terminal voltage when fully charged; , a fourth discharge capacity is defined by the product of said third current (Id3) and the discharge time (T3) defined as the total discharge capacity (Q2), wherein the percentage (Bn) of the total discharge capacity (Q2) Obtain the relationship with the voltage between the terminals, the result, the obtained first coefficient and the discharge current And a second coefficient calculation step for obtaining the second coefficient (b SOC ) in each remaining capacity or each SOC by introducing each first discharge current into the linear equation .

好ましくは、前記全放電容量(Q2)の百分率(Bn)と端子間電圧との関係を示す結果から、前記請求項1記載の百分率(An)と一致する百分率(Bn)のときの端子間電圧(Vn)及び前記放電電流(Id3)を求める工程を有する。 Preferably, the results showing the relationship between the terminal voltage and the percentage (Bn) of the total discharge capacity (Q2), between the terminals when the the percentage according to claim 1 (An) matching percentage and (Bn) A step of obtaining a voltage (Vn) and the discharge current (Id3).

また好ましくは、前記一次式の傾きを示す前記第1の係数と、前記百分率(Bn)のときの端子間電圧(Vn)および前記放電電流(Id3)とから、各残存容量または各SOCにおける、前記一次式の切片を意味する前記第2係数(bSOC )を求める工程を有する。 Preferably, from the first coefficient indicating the slope of the linear expression, the voltage (Vn) between the terminals at the time of the percentage (Bn), and the discharge current (Id3), in each remaining capacity or each SOC, A step of obtaining the second coefficient (b SOC ), which means an intercept of the linear expression .

また本発明によれば、上記いずれかに記載の方法で求めた、各残存容量または各SOCにおける、前記第1係数(aSOCおよび前記第2係数(bSOCを前記各残存容量または前記各SOCに対応づけてテーブル化しておき、前記第1係数(a SOC )および前記第2係数(b SOC )を求めた二次蓄電池と同じ容量と同じ充放電特性を持つ、残存容量またはSOC判定すべき二次蓄電池の放電電流と端子電圧とを測定し、該測定した放電電流と、前記テーブル化された前記第1係数(a SOC )と前記第2係数(b SOC )とを前記関係式に導入して演算端子電圧(VSOC )を算出し、前記測定した端子電圧と前記算出した演算端子電圧(VSOC )とを比較照合して前記残存容量またはSOCを判定すべき二次蓄電池の残存容量またはSOCを判定する、次蓄電池の残存容量を判定する方法が提供される。
好ましくは、前記測定した端子間電圧が、前記演算端子間電圧の隣接する2つの間に位置するとき、補間して対応する端子間電圧を算出し、該算出した端子間電圧に基づいて前記残存容量またはSOCを判定すべき二次蓄電池の残存容量またはSOCを判定する。
According to the present invention, the obtained by the method according to any, of each remaining capacity or the SOC, the first coefficient (a SOC) and the respective remaining capacity or the said second coefficient (b SOC) A table corresponding to each SOC , the remaining capacity or SOC having the same capacity and charge / discharge characteristics as the secondary storage battery for which the first coefficient (a SOC ) and the second coefficient (b SOC ) were obtained. and measuring the discharge current and the terminal voltage of the secondary battery to be judged, and the discharge current was the measurement, and the tabled said first coefficient (a SOC) and the second coefficient (b SOC) Introduced into the relational expression, the inter- operation terminal voltage (V SOC ) is calculated, and the remaining capacity or SOC is determined by comparing and comparing the measured inter- terminal voltage and the calculated inter- operation terminal voltage (V SOC ). the remaining capacity or SOC of should do secondary battery Determining, method of determining the remaining capacity of the secondary battery is provided.
Preferably, when the measured inter-terminal voltage is located between two adjacent ones of the calculation inter-terminal voltages, a corresponding inter-terminal voltage is calculated by interpolation, and the remaining voltage is calculated based on the calculated inter-terminal voltage. The remaining capacity or SOC of the secondary storage battery whose capacity or SOC is to be determined is determined.

さらに本発明によれば、上記いずれかに記載の方法により、二次蓄電池の各残存容量またはSOCにおける放電電流(Ij )とそのときの演算端子間電圧(VSOC )とを関連付ける一次式、VSOC=aSOC ×Ij +bSOC (ただし、VSOC演算端子間電圧、Ij は放電電流、aSOC傾きを意味する第1係数、bSOC切片を意味する第2係数である)における第1係数および第2係数を求める工程と、
前記二次蓄電池と同じ容量および同じ充放電特性を持つ、残存容量またはSOCを判定すべき二次蓄電池が車両に搭載されているとき、前記残存容量またはSOCを判定すべき二次蓄電池の端子電圧と放電電流とを測定する工程と、
前記測定した放電電流と前記第1係数および第2係数を前記一次式に導入して前記演算端子電圧(VSOC )を求める工程と、
前記測定した端子電圧と前記求めた演算端子電圧とを比較照合して前記車両に搭載された残存容量またはSOCを判定すべき二次蓄電池の残存容量またはSOCを判定する工程とを有する、
二次蓄電池の残存容量を判定する方法が提供される。
Further, according to the present invention, a linear expression that associates each remaining capacity of the secondary storage battery or the discharge current (I j ) in each SOC with the voltage (V SOC ) between the calculation terminals at that time by any one of the methods described above. , V SOC = a SOC × I j + b SOC (where V SOC is a voltage between operation terminals , I j is a discharge current, a SOC is a first coefficient indicating a slope , and b SOC is a second coefficient indicating an intercept. Obtaining a first coefficient and a second coefficient in
When a secondary storage battery having the same capacity and the same charge / discharge characteristics as the secondary storage battery and whose remaining capacity or SOC is to be determined is mounted on a vehicle, between the terminals of the secondary storage battery whose remaining capacity or SOC should be determined Measuring voltage and discharge current;
Introducing the measured discharge current and the first coefficient and the second coefficient into the linear equation to determine the inter- operation terminal voltage (V SOC );
Comparing the measured inter- terminal voltage and the calculated inter- operation terminal voltage to determine the remaining capacity or SOC of the secondary storage battery to determine the remaining capacity or SOC mounted on the vehicle,
A method for determining the remaining capacity of a secondary storage battery is provided.

好ましくは、前記一次式における第1係数および第2係数を求める工程において前記第1係数(aSOC )および第2係数(bSOCと、端子電圧とを残存容量またはSOCに対応づけてテーブル化し、前記残存容量またはSOCを判定すべき前記二次蓄電池の放電電流と端子電圧とを測定し、該測定した放電電流と、前記テーブル化された前記第1係数(a SOC )および第2係数(b SOC )とを前記一次式に導入して演算端子電圧(VSOC )を算出し、前記測定した端子電圧と前記算出した演算端子電圧(VSOC )とを比較照合して、前記残存容量またはSOCを判定すべき二次蓄電池の残存容量またはSOCを判定する。 Preferably, in the step of obtaining the first coefficient and the second coefficient in the linear expression , the first coefficient (a SOC ) and the second coefficient (b SOC ) and the terminal voltage are associated with each remaining capacity or each SOC. tabulated Te, the discharge current and the terminal voltage of the remaining capacity or said secondary battery to be judged SOC measured, the discharge current was the measurement, the tabled said first coefficient (a SOC) and The second coefficient (b SOC ) is introduced into the linear equation to calculate the inter- operation terminal voltage (V SOC ), and the measured inter- terminal voltage is compared with the calculated inter- operation terminal voltage (V SOC ). Then, the remaining capacity or SOC of the secondary storage battery for which the remaining capacity or SOC is to be determined is determined.

好ましくは、前記測定した端子電圧が、前記演算端子電圧の隣接する2つの間に位置するとき、補間して対応する端子電圧を算出し、該算出した端子電圧に基づいて前記二次蓄電池の残存容量またはSOCを判定する。 Preferably, the measured inter-terminal voltage, when located between two adjacent voltage between said operation terminals, calculates the inter-terminal voltage corresponding to the interpolation, on the basis of the inter-terminal voltage the calculated two The remaining capacity or SOC of the secondary storage battery is determined.

さらに本発明によれば、上記いずれかの二次蓄電池の残存容量を判定する方法で判定した前記残存容量またはSOCを判定すべき二次蓄電池の残存容量またはSOCが、車両をアイドリングストップさせた後、当該車両を再始動させることが可能な残存容量またはSOCであるか否かを判断する、二次蓄電池の残存容量を判定する方法が提供される。 Further, according to the present invention, after the remaining capacity or SOC of the secondary storage battery for which the remaining capacity or SOC determined by the method for determining the remaining capacity of any of the secondary storage batteries is to be determined , the vehicle is idling stopped. There is provided a method for determining the remaining capacity of a secondary storage battery for determining whether the remaining capacity or SOC is capable of restarting the vehicle .

本発明によれば,上記いずれかの方法で求めた、二次蓄電池の各残存容量またはSOCにおける放電電流(Ij )とそのときの端子電圧(VSOC )とを関連付ける一次式、VSOC=aSOC ×Ij +bSOC (ただし、VSOC演算端子間電圧、Ij は放電電流、aSOC は第1係数、bSOC は第2係数である)に用いる第1係数および第2係数を各残存容量または各SOCに対応づけて保存するメモリ手段と、前記二次蓄電池、または、前記二次蓄電池と同じ容量と同じ充放電特性を持つ残存容量またはSOCを判定すべきの二次蓄電池が車両に搭載されているとき、前記車両に搭載されている二次蓄電池の端子電圧と放電電流とを測定する手段と、前記測定した放電電流と、前記メモリ手段に各残存容量または各SOCに対応づけて保存されている前記第1係数および前記第2係数を前記一次式に導入して前記演算端子電圧(VSOC )を求める第1演算手段と、前記測定した端子電圧と前記演算端子電圧とを比較照合して前記車両に搭載された残存容量またはSOCを判定すべきの二次蓄電池の残存容量またはSOCを判定する判定手段とを有する、二次蓄電池の残存容量を判定する装置が提供される。
本発明によれば、上記二次蓄電池の残存容量を判定する装置で判定した二次蓄電池の残存容量またはSOCが、車両をアイドリングストップさせた後、車両を再始動させることが可能な残存容量またはSOCであるか否かを判断する手段を有する、
アイドリングストップ機能を有する車両が提供される。
According to the present invention, the obtained in either method, a linear equation relating the discharge current in each remaining capacity or the SOC of the secondary battery (I j) and the inter-terminal voltage at that time (V SOC), V SOC = a SOC × I j + b SOC (where V SOC is a voltage between operation terminals , I j is a discharge current, a SOC is a first coefficient, and b SOC is a second coefficient) . memory means for storing the coefficients in association with each remaining capacity or the SOC, before Symbol secondary storage battery or the to be determined residual capacity or SOC with the same charge and discharge characteristics and the same capacity as the secondary蓄 battery, When the secondary storage battery is mounted on the vehicle, the means for measuring the voltage between the terminals and the discharge current of the secondary storage battery mounted on the vehicle, the measured discharge current, and each remaining capacity in the memory means Or stored in association with each SOC. Comparing and collating a first computing means for obtaining the operation terminal voltage (V SOC) introducing the first coefficient and the second coefficient to the linear expression, a voltage of the operational inter-terminal voltage between terminals of said measured Thus, there is provided an apparatus for determining a remaining capacity of a secondary storage battery, comprising: a determination means for determining a remaining capacity or SOC of a secondary storage battery for determining a remaining capacity or SOC mounted on the vehicle.
According to the present invention, the remaining capacity or SOC of the secondary storage battery determined by the device for determining the remaining capacity of the secondary storage battery can be restarted after the idling stop of the vehicle. Having means for determining whether or not it is SOC ;
A vehicle having an idling stop function is provided.

本発明においては、二次電池の各残存容量またはSOCにおける端子電圧と電流との関係式を一次方程式として表し、その一次方程式の係数として2種の放電特性試験により求めた2種の係数、すなわち、第1係数aSOC と第2係数bSOC とを用いるので、正確な残存容量またはSOCが判定できる。 In the present invention, a relational expression between the terminal voltage and current in each remaining capacity or SOC of the secondary battery is expressed as a linear equation, and two coefficients obtained by two kinds of discharge characteristic tests as coefficients of the linear equation, that is, Since the first coefficient a SOC and the second coefficient b SOC are used, an accurate remaining capacity or SOC can be determined.

このように求めた関係式を実際の、たとえば、車載の二次蓄電池の残存容量またはSOCの判定に使用するとき、実際に測定した端子電圧を関係式で演算して求めた端子電圧と比較対照させるので、車載の二次蓄電池の残存容量またはSOCを正確に判定できる。
なお、関係式は1次式であるため、演算が容易である。
When the relational expression thus obtained is used for determination of the remaining capacity or SOC of an in-vehicle secondary storage battery, for example, it is compared with the terminal voltage obtained by calculating the terminal voltage actually measured by the relational expression. Therefore, the remaining capacity or SOC of the in-vehicle secondary storage battery can be accurately determined.
Since the relational expression is a linear expression, the calculation is easy.

本発明の基本態様
図1を参照して本発明の基本態様を述べる。
図1は本発明の基本形態としての処理工程を図解した図である。
Referring to the basic aspects Figure 1 of the present invention describes the basic aspect of the present invention.
FIG. 1 is a diagram illustrating processing steps as a basic form of the present invention.

ステップS1:残存容量またはSOCが既知の鉛蓄電池について事前に端子電圧V SOC と放電電流との関係式を求める。
本発明の第1実施の形態において、二次蓄電池、たとえば、蓄電池の各残存容量またはSOCが、端子電圧と放電電流との関係式として規定されることを前提として、下記関係式における第1係数aSOC および第2係数bSOC を求める(ステップS1)。
Step S1: A relational expression between the terminal voltage V SOC and the discharge current is obtained in advance for a lead storage battery with a known remaining capacity or SOC .
In the first embodiment of the present invention, assuming that each remaining capacity or SOC of a secondary storage battery, for example, a storage battery, is defined as a relational expression between terminal voltage and discharge current, the first coefficient in the following relational expression a SOC and the second coefficient b SOC are obtained (step S1).

SOC =aSOC ×I+bSOC
ただし、VSOC はある残存容量またはSOCにおける
蓄電池の端子電圧であり、
Iは放電電流であり、
SOC は第1係数であり、
SOC は第2係数である。
・・・(1)
V SOC = a SOC × I + b SOC
However, V SOC is at a certain remaining capacity or SOC
Is the terminal voltage of the storage battery,
I is the discharge current,
a SOC is the first coefficient,
b SOC is the second coefficient.
... (1)

残存容量またはSOCが既知の鉛蓄電池について蓄電池のある残存容量またはSOCにおける端子電圧VSOC が式1で規定できると、既知の残存容量またはSOCと同じ車載など他の状況で利用される二次蓄電池、たとえば、蓄電池についても、簡単な演算で実測した放電電流から端子電圧VSOC が計算でき、計算して求めた演算端子電圧VSOC を用いてその蓄電池の残存容量またはSOCを求めることができる。
残存容量またはSOCの測定方法の実施には実時間性は要求されないので、公知の正確な残存容量またはSOCを測定する方法、たとえば、上述したいずれかの方法、たとえば、電流積算法を改善した方法などを適用することができる。
Remaining capacity or the SOC is the terminal voltage V SOC in remaining capacity or SOC of the storage battery for a known lead-acid battery can be defined by Equation 1, the secondary battery to be used in other situations, such as the same vehicle as the known remaining capacity or SOC For example, also for a storage battery, the terminal voltage V SOC can be calculated from the discharge current measured by simple calculation, and the remaining capacity or SOC of the storage battery can be determined using the calculated terminal voltage V SOC obtained by calculation.
Since the real-time property is not required for the implementation of the method for measuring the remaining capacity or the SOC, a known accurate method for measuring the remaining capacity or the SOC, for example, any of the above-described methods, for example, a method in which the current integration method is improved. Etc. can be applied.

式1は簡単な一次式であり、演算が容易である上に、メモリに記憶するデータが基本的には、第1係数aSOC と第2係数bSOC とだけで良いのでメモリの記憶量も少なくて済むという利点がある。
このように放電電流を測定し、測定した放電電流から端子電圧VSOC を求め、原理的に求めた端子電圧VSOC を用いて蓄電池の残存容量またはSOCを判定することは、種々の制限が課される車載の蓄電池の残存容量またはSOCの判定には好適である。
そこで、残存容量またはSOCが既知の蓄電池について、各残存容量またはSOCについて事前に、式1を満足させる第1係数および第2係数を求めて、式1を確立させる。
式1における第1係数aSOC および第2係数bSOC の求め方については後述する。
Equation 1 is a simple linear equation, which is easy to calculate. In addition, since the data stored in the memory is basically only the first coefficient a SOC and the second coefficient b SOC , the storage amount of the memory is also large. There is an advantage that less.
Measuring the discharge current in this way, determining the terminal voltage V SOC from the measured discharge current, and determining the remaining capacity or SOC of the storage battery using the terminal voltage V SOC obtained in principle is subject to various limitations. This is suitable for determining the remaining capacity or SOC of an on-vehicle storage battery.
Therefore, for a storage battery with a known remaining capacity or SOC, a first coefficient and a second coefficient that satisfy Expression 1 are obtained in advance for each remaining capacity or SOC, and Expression 1 is established.
A method for obtaining the first coefficient a SOC and the second coefficient b SOC in Equation 1 will be described later.

ステップS2:実際の鉛蓄電池の残存容量またはSOCの判定
式1が求まると、式1を求めるときに使用した蓄電池と同じか同等の蓄電池が負荷などの影響を受ける蓄電池、たとえば、車載した蓄電池について放電電流を測定して式1に導入すると、原理的には、車載の蓄電池の残存容量またはSOCの実時間判定に使用できる。そのため下記のステップS2a〜S2cの処理を行う。
Step S2: When the remaining capacity of the actual lead storage battery or the SOC judgment formula 1 is obtained, a storage battery that is the same or equivalent to the storage battery used when obtaining the formula 1 is affected by the load, for example, an in-vehicle storage battery If the discharge current is measured and introduced into Equation 1, in principle, it can be used to determine the remaining capacity of the on-vehicle storage battery or the SOC in real time. Therefore, the following steps S2a to S2c are performed.

ステップS2a:データテーブル化処理
実時間での実際の、たとえば、車載の鉛蓄電池の残存容量またはSOCの判定の準備作業として、式1の第1係数および第2係数を端子電圧VSOC に対応付けて、たとえば、図10を参照して後述する演算手段10のメモリ部に記憶する。
Step S2a: Corresponding the first coefficient and the second coefficient of Equation 1 to the terminal voltage V SOC as preparation work for the determination of the remaining capacity or SOC of the actual lead storage battery, for example, in real time in the data table process For example, the data is stored in a memory unit of the calculation means 10 described later with reference to FIG.

ステップS2b〜S2cの詳細については後述するが、これの処理過程において、二次蓄電池の残存容量またはSOCを算出する。   Although details of steps S2b to S2c will be described later, in this process, the remaining capacity or SOC of the secondary storage battery is calculated.

ステップS3:判定した残存容量またはSOCの活用
必要に応じて、判定した残存容量またはSOCに基づいて、たとえば、鉛蓄電池の交換時期の判断、または、第2実施の形態として述べるアイドリングストップ処理などを行う。
Step S3: Utilization of the determined remaining capacity or SOC If necessary, based on the determined remaining capacity or SOC, for example, the determination of the replacement time of the lead storage battery or the idling stop process described as the second embodiment, etc. Do.

第1実施の形態
本発明の第1実施の形態として、図2を参照して、事前に既知の残存容量またはSOCの蓄電池について、式1を満足させる第1係数aSOC および第2係数bSOC を求める方法の概要について述べる。
図2は式1における第1係数aSOC および第2係数bSOC の求め方を図解した工程図である。
First Embodiment As a first embodiment of the present invention, referring to FIG. 2, a first coefficient a SOC and a second coefficient b SOC satisfying Equation 1 for a battery having a known remaining capacity or SOC in advance The outline of the method for obtaining
FIG. 2 is a process diagram illustrating how to obtain the first coefficient a SOC and the second coefficient b SOC in Equation 1.

第1係数a SOC の算出
ステップS11:式1の第1係数aSOC を求めるために、図3を参照して述べる第1放電特性試験を行う。
First coefficient a SOC calculation step S11: In order to obtain the first coefficient a SOC of Equation 1, a first discharge characteristic test described with reference to FIG. 3 is performed.

ステップS12:第1放電試験の測定結果である端子電圧と放電電流との関係から第1係数aSOC を求める。 Step S12: The first coefficient a SOC is obtained from the relationship between the terminal voltage and the discharge current, which is the measurement result of the first discharge test.

第2係数b SOC の算出
ステップS13:式1の第2係数bSOC を求めるために、図5(A)〜(D)を参照して述べる満充電状態の蓄電池について第2放電試験を行い、放電時間と端子電圧との関係を求める。
Second coefficient b SOC calculation step S13: In order to obtain the second coefficient b SOC of Equation 1, a second discharge test is performed on the fully charged storage battery described with reference to FIGS. Find the relationship between discharge time and terminal voltage.

ステップS14:第2放電試験で求めた満充電状態の蓄電池の結果から各残存容量またはSOCについての端子電圧と放電電流との関係を求める。   Step S14: The relationship between the terminal voltage and the discharge current for each remaining capacity or SOC is obtained from the result of the fully charged storage battery obtained in the second discharge test.

ステップS15:ステップS14の結果から第2係数bSOC を求める。 Step S15: The second coefficient b SOC is obtained from the result of step S14.

第1係数の求め方の詳細
以下、第1係数aSOC の求め方の詳細を図3を参照して述べる。
図3は第1係数aSOC の求め方を図解した工程図である。図3に図解した工程は手動でも行うことができるが、本実施の形態においては、たとえば、コンピュータを用いて自動的に行う場合について述べる。
第1係数aSOC および第2係数bSOC の算出に際しては、たとえば、車載の蓄電池と同等または同じ規格で特性が公知(既知)の蓄電池を準備する。以下、この蓄電池について下記の処理を行う。
Details of how to obtain the first coefficient Hereinafter, details of how to obtain the first coefficient a SOC will be described with reference to FIG.
FIG. 3 is a process diagram illustrating how to obtain the first coefficient a SOC . Although the steps illustrated in FIG. 3 can be performed manually, in the present embodiment, for example, a case where it is automatically performed using a computer will be described.
When calculating the first coefficient a SOC and the second coefficient b SOC , for example, a storage battery having a known (known) characteristic is prepared in accordance with the same or the same standard as an in-vehicle storage battery. Hereinafter, the following processing is performed for the storage battery.

ステップS21:放電特性試験反復回数指標nを1に初期化する。
放電特性試験反復回数指標nは下記に述べる放電特性試験を何回行い、その結果、蓄電池からどれだけ放電されたからを演算するために使用する指標である。
Step S21: The discharge characteristic test repetition index n is initialized to 1.
The discharge characteristic test repetition number index n is an index used to calculate how many times the discharge characteristic test described below is performed and how much is discharged from the storage battery as a result.

ステップS22:放電電流管理指標jを1に初期化する。
放電電流管理指標jは図4を参照して後述するように、放電試験を行うとき放電電流の値Ij を異ならせることを管理する指標である。
Step S22: The discharge current management index j is initialized to 1.
As will be described later with reference to FIG. 4, the discharge current management index j is an index for managing different values of the discharge current I j when performing a discharge test.

放電特性試験反復回数指標nおよび放電電流管理指標jとも手動で放電試験を行う場合は、放電試験者が記憶していればよいので特に必要ではない。しかしながら、コンピュータで自動的に放電特性試験を行う場合には便利である。   When the discharge test is manually performed for both the discharge characteristic test repetition index n and the discharge current management index j, it is not particularly necessary because the discharge tester only needs to store the discharge test. However, it is convenient when a discharge characteristic test is automatically performed by a computer.

ステップS23〜25:図4および下記に例示する各第1放電電流Ij で各第1放電時間tj の間、連続的に放電を行い、そのときの既知の蓄電池の端子電圧V1〜V4を測定する。
本実施の形態においては、図4に図解したように、I1〜I4(j=1〜4)の4種の第1放電電流で連続的に放電試験を行い蓄電池の端子電圧V1〜V4を測定する。本実施の形態では最大放電電流管理指標jmax は4である。
図4は本発明の第1放電特性試験を方法を図解したグラフであり、横軸は時間経過を示し(または放電時間を示し)、縦軸は第1放電電流の値と変化を示す図である。
Steps S23 to 25: The first discharge current I j illustrated in FIG. 4 and below is continuously discharged for each first discharge time t j , and the terminal voltages V1 to V4 of the known storage battery at that time are obtained. taking measurement.
In the present embodiment, as illustrated in FIG. 4, the discharge voltage is continuously measured with four first discharge currents I1 to I4 (j = 1 to 4), and the terminal voltages V1 to V4 of the storage battery are measured. To do. In the present embodiment, the maximum discharge current management index j max is 4.
FIG. 4 is a graph illustrating the method of the first discharge characteristic test of the present invention, in which the horizontal axis indicates the passage of time (or discharge time), and the vertical axis indicates the value and change of the first discharge current. is there.

たとえば、充電時の蓄電池の容量が20Ahの蓄電池をサンプル(試料)として用い、満充電状態の蓄電池について第1放電試験を行う場合の、第1放電電流I1〜I4と放電時間tj の例示を下記表1に示す。
ただし、第1放電電流と第1放電時間は設定したものであるが、端子電圧V1〜V4は測定値であり、設定値ではない。
For example, using a battery capacity of the storage battery during charging 20Ah as a sample (sample), in the case of performing the first discharge test for battery in a fully charged state, the illustration of the first discharge current I1~I4 the discharge time t j Shown in Table 1 below.
However, although the first discharge current and the first discharge time are set, the terminal voltages V1 to V4 are measured values and not set values.

(表1)
インデックスj 放電電流 放電時間 端子電圧
j=1 I1= 5A t1=T11(秒) V1
j=2 I1=10A t2=T12(秒) V2
j=3 I1=20A t3=T12(秒) V3
j=4 I1=30A t4=T12(秒) V4
(Table 1)
Index j Discharge current Discharge time Terminal voltage j = 1 I1 = 5A t1 = T11 (seconds) V1
j = 2 I1 = 10A t2 = T12 (seconds) V2
j = 3 I1 = 20A t3 = T12 (seconds) V3
j = 4 I1 = 30A t4 = T12 (seconds) V4

本例では、簡単化のため、t2=t3=t4=T12(秒)とした。
このように、たとえば、I1〜I4の4種の第1放電電流で連続的に放電試験を行い、そのときの端子電圧V1〜V4を測定する。
第1放電電流Ij の値を変化させるのは、ある残存容量またはSOCにおける種々の状態で端子電圧を測定するためであり、さらに、この放電処理を行うことにより、初期状態に満充電状態の蓄電池の残存容量またはSOCを2回目のために、たとえば、70%まで低下させ、3回目のために、たとえば、40%まで低下させ、4回目のために、たとえば、10%まで低下させるために設定している。
このように、第1放電電流の値は比較的大きいので、第1放電時間t1〜t4は長くとる必要はなく、端子電圧が安定して正確な測定ができるだけの時間であればよい。
In this example, for simplification, t2 = t3 = t4 = T12 (seconds).
Thus, for example, the discharge test is continuously performed with four types of first discharge currents I1 to I4, and the terminal voltages V1 to V4 at that time are measured.
The value of the first discharge current I j is changed in order to measure the terminal voltage in various states in a certain remaining capacity or SOC, and further, by performing this discharge process, the initial state is fully charged. To reduce the remaining capacity or SOC of the storage battery for the second time, for example to 70%, for the third time, for example to 40%, for the fourth time, for example to reduce to 10% It is set.
As described above, since the value of the first discharge current is relatively large, the first discharge times t1 to t4 do not need to be long, and may be any time as long as the terminal voltage is stable and accurate measurement is possible.

ステップS26:一定の第2放電電流(定電流放電用放電電流)Id で第2放電時間(定電流放電用放電期間)td だけ定電流放電を行う。
この定電流放電処理は次の放電特性試験のために残存容量またはSOCの調整を行うためである。
たとえば、第2放電電流Id =4Aであり、第1放電電流I1=5Aより低い。また、第2放電時間td に比較すると、第1放電時間t1〜t4(T11、T12)は短い。たとえば、td =30分、T11=1分、T12=30秒である。
このように、第1放電電流Ij より低い第2放電電流Id で第1放電時間より長い第2放電時間td で残存容量またはSOCを調整する。
Step S26: performing constant second discharge current (constant current discharge discharge current) I d at a second discharge time (constant current discharging discharge period) t d by constant current discharge.
This constant current discharge treatment is for adjusting the remaining capacity or SOC for the next discharge characteristic test.
For example, the second discharge current I d = 4A, which is lower than the first discharge current I1 = 5A. Also, when compared to the second discharge time t d, the first discharge time t1 to t4 (T11, T12) is short. For example, t d = 30 minutes, T11 = 1 minute, and T12 = 30 seconds.
As described above, the remaining capacity or the SOC is adjusted at the second discharge time t d longer than the first discharge time at the second discharge current I d lower than the first discharge current I j .

ステップS27:放電の結果、実測した端子電圧Vが規定最低電圧V0 、たとえば、10.5Vまで低下したか否かを判定する。規定最低電圧V0 とはその蓄電池をこの電圧以下、換言すれば、そのときの残存容量またはSOC以下では使用しない限界を示す電圧である。 Step S27: As a result of the discharge, it is determined whether or not the actually measured terminal voltage V has dropped to a specified minimum voltage V 0 , for example, 10.5V. The specified minimum voltage V 0 is a voltage indicating a limit not to use the storage battery below this voltage, in other words, below the remaining capacity or SOC at that time.

満充電状態の蓄電池についてのステップS23、S26による第1回放電では、通常、実測した端子電圧Vが規定最低電圧V0 までは低下しない。その場合は、放電特性試験反復回数指標nを更新して(n=n+1)、再び、ステップS22からの動作を反復する。 In step S23, S26 according to 1st discharge of the storage battery in a fully charged state, usually, the actually measured terminal voltage V is not decreased to a specified minimum voltage V 0. In that case, the discharge characteristic test repetition index n is updated (n = n + 1), and the operation from step S22 is repeated again.

複数回上記放電特性試験を行い、すなわち、残存容量またはSOCが満充電状態から、たとえば、70%程度、40%程度、10%程度と低下してくると、たとえば、ステップS27の判定時に実測端子電圧Vが規定最低電圧V0 以下に低下する。その場合は上述した放電試験を終了する。 When the discharge characteristic test is performed a plurality of times, that is, when the remaining capacity or the SOC decreases from, for example, about 70%, about 40%, or about 10% from the fully charged state, for example, when the determination is made in step S27, the measured terminal The voltage V drops below the specified minimum voltage V 0 . In that case, the above-described discharge test is terminated.

また放電特性試験反復回数指標nが最大回数nmax 以上に到達しても、ステップS27の判定時の実測端子電圧Vが、規定最低電圧V0 以下に低下しない場合も、異常状態として上述した放電試験を終了する。 Even if the discharge characteristic test repetition number index n reaches the maximum number n max or more, the discharge described above as an abnormal state also occurs when the measured terminal voltage V at the time of determination in step S27 does not drop below the specified minimum voltage V 0. End the test.

たとえば、放電電流I1=5AでT11秒間、放電電流I2=10A、I3=20A、I4=30AでそれぞれT12秒間連続して放電させた時の放電容量D11は下記式で表される。コンピュータは下記の演算を行う。   For example, the discharge capacity D11 when the discharge current I1 = 5A is continuously discharged for T11 seconds, the discharge currents I2 = 10A, I3 = 20A, and I4 = 30A are each continuously discharged for T12 seconds is expressed by the following equation. The computer performs the following operations.

D11(Ah)={5(A)×T11+(10(A)+20(A)+30(A))×T12}/3600     D11 (Ah) = {5 (A) × T11 + (10 (A) +20 (A) +30 (A)) × T12} / 3600

放電容量D11の単位はAhであり、秒単位で時間を測定して求めた放電容量D11を1時間当たりの単位に変換するため、(1時間=60秒×60分=)3600で割っている。
上述したように、たとえば、第1放電電流I1=5Aで第1放電時間T11秒間、第1放電電流I2=10A、I3=20A、I4=30Aをそれぞれ第1放電時間T12秒間連続して放電させて、その際の供試蓄電池の端子間電圧を測定する回数(放電特性試験反復回数指標)はnである。したがって、これらの測定において放電した合計の放電容量D12は下記式で表される。コンピュータは下記の演算を行う。
The unit of the discharge capacity D11 is Ah, and in order to convert the discharge capacity D11 obtained by measuring time in seconds to a unit per hour, (1 hour = 60 seconds × 60 minutes =) is divided by 3600. .
As described above, for example, the first discharge current I1 = 5A and the first discharge time T11 seconds, and the first discharge currents I2 = 10A, I3 = 20A, and I4 = 30A are continuously discharged for the first discharge time T12 seconds. In this case, the number of times of measuring the voltage between terminals of the test storage battery (discharge characteristic test repetition number index) is n. Therefore, the total discharge capacity D12 discharged in these measurements is expressed by the following equation. The computer performs the following operations.

D12(Ah)=D11×n     D12 (Ah) = D11 × n

たとえば、第2放電電流Id =4Aの定電流放電で第2放電時間td =T21時間行った時の放電容量D2は下記式で表される。コンピュータは下記の演算を行う。 For example, the discharge capacity D2 when the second discharge time t d = T21 hours with constant current discharge of the second discharge current I d = 4A is expressed by the following equation. The computer performs the following operations.

D21(Ah)=4(A)×T21   D21 (Ah) = 4 (A) × T21

端子電圧が規定最低電圧V0 に低下した時の定電流放電を実施した時間をT22時間とすると、第2放電電流Id =4Aで定電流放電させたときの合計の放電容量D22は、放電回数をm回とすると、下記式で表される。コンピュータは下記の演算を行う。 When the constant current discharge is performed when the terminal voltage drops to the specified minimum voltage V 0 , T22 hours, the total discharge capacity D22 when the constant current discharge is performed at the second discharge current I d = 4A is When the number of times is m, it is expressed by the following formula. The computer performs the following operations.

D22(Ah)=D21×m+4(A)×T22   D22 (Ah) = D21 × m + 4 (A) × T22

以上から、放電容量D12と放電容量D22を合計した放電容量つまり供試蓄電池の全放電容量D3は下記式で表される。コンピュータは下記の演算を行う。   From the above, the discharge capacity obtained by adding the discharge capacity D12 and the discharge capacity D22, that is, the total discharge capacity D3 of the test storage battery is expressed by the following equation. The computer performs the following operations.

D3(Ah)=D12+D22   D3 (Ah) = D12 + D22

たとえば、第1放電電流I1=5Aを第1放電時間T11秒間、第1放電電流I2=10A、I3=20A、I4=30Aをそれぞれ第2放電時間T12秒間連続して放電させて、その際の供試蓄電池の端子間電圧を実測する過程の前までに実施された前回の5AをT11秒間、10A、20A、30AをそれぞれT12秒間連続して放電させて、その際の供試蓄電池の端子間電圧を実測する過程の放電容量と、供試蓄電池から第2放電電流Id =4Aの定電流放電で放電された放電容量の総和をD4とすると、第1放電電流I1=5AをT11秒間、第1放電電流I2=10A、I3=20A、I4=30AをそれぞれT12秒間連続して放電させて、その際の供試蓄電池の端子間電圧を実測する各過程における電池容量は、複数の値となる残存容量D5として表され、下記式で表される。コンピュータは下記の演算を行う。 For example, the first discharge current I1 = 5A is continuously discharged for the first discharge time T11 seconds, the first discharge currents I2 = 10A, I3 = 20A, and I4 = 30A are continuously discharged for the second discharge time T12 seconds, respectively. Prior to the process of actually measuring the inter-terminal voltage of the test storage battery, the previous 5A was continuously discharged for T11 seconds, 10A, 20A, and 30A each for T12 seconds, and between the terminals of the test storage battery at that time Assuming that the total of the discharge capacity in the process of actually measuring the voltage and the discharge capacity discharged from the test storage battery by the constant current discharge of the second discharge current I d = 4A is D4, the first discharge current I1 = 5A is T11 seconds, The first discharge currents I2 = 10A, I3 = 20A, and I4 = 30A are each continuously discharged for T12 seconds, and the battery capacity in each process of measuring the voltage between the terminals of the test storage battery at that time is a plurality of values. Na It expressed as residual capacity D5, represented by the following formula. The computer performs the following operations.

D5(Ah)=D3−D4   D5 (Ah) = D3-D4

複数の残存容量D5のそれぞれの残存容量において測定された、たとえば、第1放電電流I1=5A、第1放電電流I2=10A、I3=20A、I4=30Aに対応する端子間電圧の関係を図5(A)〜(D)に示す。
図5(A)〜(D)に図解したグラフは、コンピュータが演算処理して、プロットした放電電流値(横軸)と端子間電圧(縦軸)との関係を最小二乗法により近似した結果であり、特性曲線Ll〜L4のそれぞれがほぼ直線として表すことが出来る。そして、放電電流をパラメータとしたときの特性曲線Ll〜L4までの近似直線の傾きを第1係数aSOC
とする。
このときの全放電容量D3に対する複数の残存容量D5の百分率を計算すると(D5/D3)×100%となる。この演算もコンピュータが行う。
この場合、複数の残存容量D5の百分率は、表2に示すように、たとえば、100%、70%、40%、10%であり、特性直線Ll〜L4に対応する。
図5(A)〜(D)に図解したグラフから、放電電流をパラメータとする一次式における傾き、すなわち、第1係数a SOC を求めることができる。
表2において、Iは第1放電電流であり、VSOC は各残存容量またはSOCについての端子電圧V100 、V70、V40、V10である。
表2は蓄電池の各残存容量における端子電圧と放電電流との関係を示す。
The relationship between the inter-terminal voltages corresponding to, for example, the first discharge current I1 = 5A, the first discharge current I2 = 10A, I3 = 20A, and I4 = 30A measured in the respective remaining capacities of the plurality of remaining capacities D5 is shown. 5 (A) to (D).
The graphs illustrated in FIGS. 5A to 5D are results obtained by computing the computer and approximating the relationship between the plotted discharge current value (horizontal axis) and the voltage between terminals (vertical axis) by the least square method. Each of the characteristic curves Ll to L4 can be expressed as a substantially straight line. Then, the slope of the approximate straight line from the characteristic curves Ll to L4 when the discharge current is used as a parameter is the first coefficient a SOC.
And
When the percentage of the plurality of remaining capacities D5 with respect to the total discharge capacity D3 at this time is calculated, it is (D5 / D3) × 100%. This calculation is also performed by the computer.
In this case, as shown in Table 2, the percentages of the plurality of remaining capacities D5 are, for example, 100%, 70%, 40%, and 10%, and correspond to the characteristic lines L1 to L4.
From the graphs illustrated in FIGS. 5A to 5D, the slope in the linear expression using the discharge current as a parameter, that is, the first coefficient a SOC can be obtained.
In Table 2, I is the first discharge current, and V SOC is the terminal voltage V 100 , V 70 , V 40 , V 10 for each remaining capacity or each SOC.
Table 2 shows the relationship between the discharge current and the terminal voltage that put on each remaining capacity of the battery.

(表2)
全放電容量に対する 端子電圧VSOC 第1係数aSOC 第2係数bSOC
残存容量またはSOC
100% V100 = a1 (=0.02) ×I + b1
70% V70 = a2 (=0.03) ×I + b2
40% V40 = a3 (=0.04) ×I + b3
10% V10 = a4 (=0.05) ×I + b4
(Table 2)
Terminal voltage V SOC 1st coefficient a SOC 2nd coefficient b SOC for total discharge capacity
Remaining capacity or SOC
100% V 100 = a1 (= 0.02) x I + b1
70% V 70 = a2 (= 0.03) x I + b2
40% V 40 = a3 (= 0.04) x I + b3
10% V 10 = a4 (= 0.05) x I + b4

以上から、関係式1、VSOC =aSOC ×I+bSOC における第1係数aSOC が求められたことが分かる。
ただし、関係式1における第2係数bSOC (切片)に該当するb1、b2、b3、b4は未知数であり、その求め方を下記に述べる。
From the above, it can be seen that the first coefficient a SOC in relation 1, V SOC = a SOC × I + b SOC was determined.
However, b1, b2, b3, and b4 corresponding to the second coefficient b SOC (intercept) in the relational expression 1 are unknown numbers, and how to find them will be described below.

第2係数の求め方
第1係数aSOC を求める際に使用した蓄電池と同じかまたは同様の蓄電池を試料(サンプル)とし、その蓄電池を満充電状態とする。
図6に図解したように、たとえば、第2放電電流Id =4Aで定電流放電を蓄電池の端子間電圧が規定最低電圧V0 、たとえば、10.5Vに低下するまで、放電を行う。その放電時間をT31とする。
この放電試験において、経過時間(放電時間)とそのときの蓄電池の端子電圧Vを測定する。その結果をプロットした例を図7に示す。図7において横軸は放電時間を示し、縦軸は端子電圧を示す。
How to determine the second coefficient A storage battery that is the same as or similar to the storage battery used when determining the first coefficient a SOC is used as a sample, and the storage battery is fully charged.
As illustrated in FIG. 6, for example, the constant discharge is performed at the second discharge current I d = 4 A until the voltage between the terminals of the storage battery is reduced to a specified minimum voltage V 0 , for example, 10.5 V. The discharge time is T31.
In this discharge test, the elapsed time (discharge time) and the terminal voltage V of the storage battery at that time are measured. An example in which the results are plotted is shown in FIG. In FIG. 7, the horizontal axis represents the discharge time, and the vertical axis represents the terminal voltage.

このときの全放電容量D6は、たとえば、下記式で表される。コンピュータは下記の演算を行う。   The total discharge capacity D6 at this time is represented by the following formula, for example. The computer performs the following operations.

D6(Ah)=4(A)×T31   D6 (Ah) = 4 (A) × T31

このときの全放電容量D6に対する上記蓄電池の任意の残存容量D7の百分率(D7/D6)×100%は容易に計算することが可能であり、図8に例示するように各百分率における電流値と端子間電圧の関係を得ることができる。この放電電流と、端子間電圧、および、上記求めた第1の係数を、式1に基づく表2の各一次式に適用することにより、各百分率(各残存容量または各SOC)における第2係数bSOC を決定する。
図8は図6に図解した定電流放電により取得した図7に図解した、蓄電池の残存容量と端子電圧との関係を示しており、横軸に蓄電池の各残存容量を示し、縦軸に蓄電池の端子電圧を示す。
Any percentage of the remaining capacity D7 (D7 / D6) × 100 % of the storage battery relative to the total discharge capacity D6 at this time it is possible to easily calculate a current value at each percent as illustrated in FIG. 8 Ru can be obtained a relationship of terminal voltage. By applying this discharge current, inter-terminal voltage, and the obtained first coefficient to the respective linear expressions in Table 2 based on Expression 1, the second coefficient in each percentage (each remaining capacity or each SOC). b Determine the SOC .
FIG. 8 shows the relationship between the remaining capacity of the storage battery and the terminal voltage illustrated in FIG. 7 obtained by the constant current discharge illustrated in FIG. 6. The horizontal axis indicates each remaining capacity of the storage battery, and the vertical axis indicates the storage battery. The terminal voltage is shown.

第1係数aSOC を求めたときの全放電容量に対する複数の残存容量の百分率(100%、70%、40%、10%)と一致する残存容量の時の電流と端子間電圧の関係を図8に例示した第2係数から求めることが可能であり、求めた結果の例を表3に示す。
表3は蓄電池の各残存容量における蓄電池の端子間電圧と電流の関係を示す、第2係数の例示である。第2係数bSOC は関係式1の切片を意味している。
The relationship between the current and the terminal voltage when the remaining capacity matches the percentage (100%, 70%, 40%, 10%) of the plurality of remaining capacity with respect to the total discharge capacity when the first coefficient a SOC is obtained 8 can be obtained from the second coefficient exemplified in Table 8, and an example of the obtained result is shown in Table 3.
Table 3 is an example of the second coefficient showing the relationship between the voltage and current between the terminals of the storage battery in each remaining capacity of the storage battery. The second coefficient b SOC means the intercept of relational expression 1.

(表3)
第2係数b AOC
b1=12.42
b2=12.18
b3=11.74
b4=11.3
(Table 3)
Second coefficient b AOC
b1 = 12.42
b2 = 12.18
b3 = 11.74
b4 = 11.3

実際の関係式の例
以上から、例示的な関係式1は下記で規定される。
From the above examples of actual relational expressions , exemplary relational expression 1 is defined below.

(表4)
全放電容量に対する 端子電圧VSOCSOCSOC
残存容量またはSOC
100% V100 = 0.02 × I + 12.42
70% V70 = 0.03 × I + 12.18
40% V40 = 0.04 × I + 11.74
10% V10 = 0.05 × I + 11.3
(Table 4)
Terminal voltage vs. total discharge capacity V SOC a SOC b SOC
Remaining capacity or SOC
100% V 100 = 0.02 × I + 12.42
70% V 70 = 0.03 × I + 12.18
40% V 40 = 0.04 × I + 11.74
10% V 10 = 0.05 × I + 11.3

表4に例示した関係式は、代表的な蓄電池蓄電質の残存容量またはSOCである100%(満充電状態)、70%、40%、10%についての関係式である。
この関係式は図9(A)に例示した曲線として表すことができる。
The relational expression illustrated in Table 4 is a relational expression for 100% (full charge state), 70%, 40%, and 10%, which are the remaining capacity or SOC of a typical storage battery.
This relational expression can be expressed as a curve illustrated in FIG.

以下、図1のステップS2、図9(B)、および、図10に図解したコンピュータおよびメモリを内蔵した演算手段10、電流計8および電圧計7を参照して述べる。
図1のステップS2a:上記関係式をデータテーブル化して、たとえば、図10に図解したコンピュータを内蔵した演算手段10におけるメモリ部に記憶する。
Hereinafter, description will be made with reference to step S2 of FIG. 1, FIG. 9B, and the calculation means 10, the ammeter 8 and the voltmeter 7 incorporating the computer and the memory illustrated in FIG.
Step S2a in FIG. 1: The above relational expression is converted into a data table and stored in, for example, the memory unit in the arithmetic means 10 incorporating the computer illustrated in FIG.

図1、ステップS2b:あるタイミングにおいて、電流計8でバッテリ3に流れる電流I、および、電圧計7でバッテリ3の端子電圧Vを測定する。
測定した電流Iを各残存容量または各SOCについての関係式に代入して、測定した電流Iの時の各残存容量または各SOCにおける電圧VSOC=10% 、VSOC=40% ,VSOC=70%
、VSOC=100%を求める。このようにして求めた電圧を各残存容量における演算端子電圧VSOC という。
FIG. 1, step S2b: At a certain timing, the ammeter 8 measures the current I flowing through the battery 3, and the voltmeter 7 measures the terminal voltage V of the battery 3.
The measured current I is substituted into the relational expression for each remaining capacity or each SOC, and the voltage V SOC = 10% , V SOC = 40% , V SOC = at each remaining capacity or each SOC at the time of the measured current I 70%
V SOC = 100% is obtained. The voltage thus obtained is referred to as a calculation terminal voltage V SOC in each remaining capacity.

図1、ステップS2c:電圧計7で測定した端子電圧Vと、上記演算で求めた演算端子電圧VSOC=10% 、VSOC=40% ,VSOC=70% 、VSOC=100%とを比較対照し、端子電圧Vが演算端子電圧とのどの範囲に位置するか判定する。
図9(B)に図解した例示においては、比較対照の結果、測定した端子電圧Vは、演算で求めた端子電圧VSOC=40% とVSOC=70% との間に位置することが分かる(VSOC=40% <V<VSOC=70% )。このことから、あるタイミングにおける二次蓄電池の残存容量またはSOCは満充電時の残存容量またはSOCの40%より多く(高く)、70%より少ない(低い)ことが分かる。
さらに、あるタイミングにおける二次蓄電池の残存容量またはSOCは、下記式に基づいて直線補間することによって求めることができる。
FIG. 1, Step S2c: The terminal voltage V measured by the voltmeter 7 and the calculated terminal voltages V SOC = 10% , V SOC = 40% , V SOC = 70% , V SOC = 100% obtained by the above calculation. In comparison, it is determined in which range the terminal voltage V is located with respect to the calculation terminal voltage.
In the example illustrated in FIG. 9B, as a result of comparison, it is understood that the measured terminal voltage V is located between the terminal voltage V SOC = 40% and V SOC = 70% obtained by calculation. (V SOC = 40% <V <V SOC = 70% ). From this, it can be seen that the remaining capacity or SOC of the secondary storage battery at a certain timing is more (higher) than 40% and lower (lower) than the remaining capacity or SOC at full charge.
Furthermore, the remaining capacity or SOC of the secondary storage battery at a certain timing can be obtained by linear interpolation based on the following equation.

SOCV =0.4
+(0.7 −0.4 )×((VSOC=70% −V)/( VSOC=70% −VSOC=40% )
SOC V = 0.4
+ (0.7 −0.4) × ((V SOC = 70% −V) / (V SOC = 70% −V SOC = 40% )

上述したステップS2cの処理を、好ましくは、図10に図解したコンピュータのCPUを内蔵した演算手段10において行う。
このように、演算手段10を用いれば図9(A)に例示したデータについて、図9(B)に図解したように、10〜100%の範囲で残存容量またはSOCについて端子電圧VSOC と放電電流との関係を容易に求めることができる。
換言すれば、鉛蓄電池3の残存容量またはSOC=1〜100%について、測定した放電電流と端子電圧、および、演算端子電圧VSOC から、残存容量またはSOCを求めることができる。
The processing in step S2c described above is preferably performed in the arithmetic means 10 incorporating the CPU of the computer illustrated in FIG.
As described above, when the calculation means 10 is used, the data illustrated in FIG. 9A is discharged to the terminal voltage V SOC and the discharge with respect to the remaining capacity or SOC within the range of 10 to 100% as illustrated in FIG. 9B. The relationship with the current can be easily obtained.
In other words, with respect to the remaining capacity or SOC = 1 to 100% of the lead storage battery 3, the remaining capacity or SOC can be obtained from the measured discharge current, terminal voltage, and operation terminal voltage V SOC .

なお本実施の形態の実施に際しては、特別複雑な構成要素を必要とせず、演算手段10における信号処理も特に複雑ではないので、容易かつ低価格で実用化できる。   In implementing this embodiment, no specially complicated components are required, and the signal processing in the computing means 10 is not particularly complicated, so that it can be put into practical use easily and at low cost.

第2実施の形態
本発明の第2の実施の形態として、車両の走行中に、渋滞または交差点などで一時停車中に内燃機関(エンジン)を停止する、いわゆるアイドリングストップ機能を有する車両に搭載された二次蓄電池の残存容量および劣化状態を判定する方法とその装置、および、二次蓄電池の残存容量および劣化状態の判定結果に基づいてアイドリングストップの処理を行う方法と装置について述べる。
Second Embodiment As a second embodiment of the present invention, the second embodiment of the present invention is mounted on a vehicle having a so-called idling stop function that stops an internal combustion engine (engine) during a temporary stop at a traffic jam or an intersection while the vehicle is running. A method and apparatus for determining the remaining capacity and deterioration state of the secondary storage battery, and a method and apparatus for performing idling stop processing based on the determination result of the remaining capacity and deterioration state of the secondary storage battery will be described.

図10は本発明の第2実施の形態の二次蓄電池の残存容量および/または劣化状態を判定する装置(以下、残存容量・劣化状態判定装置)の構成図である。
車両、たとえば、普通の乗用車には、バス(ブス)9を介して接続されているスタータ1、発電機(オルタネータ)2、二次蓄電池3、電気装備4、および、エンジン5、エンジン制御ユニット6が搭載されている。
二次蓄電池3としては、鉛蓄電池を用いた場合について述べる。
電気装備4は、たとえば、照明灯、方向指示灯、ハザードランプなどの各種ライト(ランプ)、ミラー駆動モータ、操作パネル、空調機など電気で動作する車両に搭載されたものを総称している。
FIG. 10 is a configuration diagram of an apparatus for determining the remaining capacity and / or deterioration state of the secondary storage battery according to the second embodiment of the present invention (hereinafter, remaining capacity / deterioration state determination apparatus).
In a vehicle, for example, an ordinary passenger car, a starter 1, a generator (alternator) 2, a secondary storage battery 3, an electric equipment 4, an engine 5, and an engine control unit 6 are connected via a bus 9. Is installed.
As the secondary storage battery 3, a case where a lead storage battery is used will be described.
The electric equipment 4 is a general term for things mounted on a vehicle that operates by electricity such as various lights (lamps) such as an illumination lamp, a direction indicator lamp, a hazard lamp, a mirror drive motor, an operation panel, and an air conditioner.

図10に図解した残存容量・劣化状態判定装置は、鉛蓄電池3の端子電圧を測定する電圧計7と、二次蓄電池3に流れる放電電流を測定する電流計8と、鉛蓄電池3の残存容量・劣化状態を算出する演算手段10と、演算手段10の結果を表示する表示手段16を有する。
図10に図解した残存容量・劣化状態判定装置には、演算手段10の結果に応じた車両の駆動制御処理を行う図示しない制御手段を含めることができる。なおエンジン制御ユニット6も制御手段の一部を構成しているが、ここでは、演算手段10の結果に基づいてエンジン5の各種制御を行う専用制御手段として図解している。
さらに、演算手段10の結果に応じてアイドリングストップ(IS)処理を行うアイドリングストップ(IS)処理手段14を含めることができ、この場合、残存容量・劣化状態判定装置はアイドリングストップ処理機能を有する、二次蓄電池の残存容量および/または劣化状態を判定する装置となる。
The remaining capacity / degradation state determination device illustrated in FIG. 10 includes a voltmeter 7 that measures the terminal voltage of the lead storage battery 3, an ammeter 8 that measures the discharge current flowing through the secondary storage battery 3, and the remaining capacity of the lead storage battery 3. -It has the calculating means 10 which calculates a degradation state, and the display means 16 which displays the result of the calculating means 10.
The remaining capacity / degradation state determination apparatus illustrated in FIG. 10 can include a control unit (not shown) that performs a vehicle drive control process according to the result of the calculation unit 10. The engine control unit 6 also constitutes a part of the control means, but is illustrated here as a dedicated control means for performing various controls of the engine 5 based on the result of the calculation means 10.
Furthermore, an idling stop (IS) processing unit 14 that performs an idling stop (IS) process according to the result of the calculation unit 10 can be included. In this case, the remaining capacity / deterioration state determination device has an idling stop processing function. This is a device for determining the remaining capacity and / or deterioration state of the secondary storage battery.

スタータ1は車両の始動時に鉛蓄電池3からの給電によりエンジン5を動作させる電力を提供する。
オルタネータ2は車両が始動してエンジン5が回転動作すると起動して発電を行う。オルタネータ2の発電により電気装備4への給電が行われる他、鉛蓄電池3が充電される。
The starter 1 provides electric power for operating the engine 5 by power supply from the lead storage battery 3 when the vehicle is started.
The alternator 2 is activated to generate electric power when the vehicle is started and the engine 5 is rotated. In addition to supplying power to the electric equipment 4 by the power generation of the alternator 2, the lead storage battery 3 is charged.

演算手段10は、マイクロコンピュータなどの演算部とメモリ部を有しており、メモリ部に表4および図9(A)に例示した、100%、70%、40%、10% の各残存容量またはSOCについての放電電流と端子電圧VSOC との関係式に用いる第1係数と第2係数と端子電圧VSOC とがデータテーブルとして記憶されている。 The calculation means 10 has a calculation unit such as a microcomputer and a memory unit, and the remaining capacity of 100%, 70%, 40%, 10% exemplified in Table 4 and FIG. Alternatively, the first coefficient, the second coefficient, and the terminal voltage V SOC used in the relational expression between the discharge current and the terminal voltage V SOC for the SOC are stored as a data table.

電流計8は鉛蓄電池3に流れる充放電電流を計測する。なお、電流計8の読みが負の場合鉛蓄電池3から電気装備4などに放電電流が流れていることを示し、正の場合発電機(オルタネータ)2から鉛蓄電池3に充電電流が流れていることを示す。
電流計8で検出した放電電流を演算手段10の演算部、通常、マイクロコンピュータのCPU10に入力し、メモリ部に記憶させた第1係数と第2係数とを用いて関係式1を演算すると、演算端子電圧VSOC を計算することができる。
The ammeter 8 measures the charge / discharge current flowing through the lead storage battery 3. In addition, when the reading of the ammeter 8 is negative, it indicates that the discharge current flows from the lead storage battery 3 to the electrical equipment 4 and the like. When the reading is positive, the charging current flows from the generator (alternator) 2 to the lead storage battery 3. It shows that.
When the discharge current detected by the ammeter 8 is input to the calculation unit of the calculation unit 10, usually the CPU 10 of the microcomputer, and the relational expression 1 is calculated using the first coefficient and the second coefficient stored in the memory unit, The calculation terminal voltage V SOC can be calculated.

そして、演算手段10のCPUは、実測した電流と端子電圧、および、演算端子電圧VSOC から、第1実施の形態として上述した方法で鉛蓄電池3の残存容量またはSOCを判定する。 Then, the CPU of the calculation means 10 determines the remaining capacity or SOC of the lead storage battery 3 by the method described above as the first embodiment from the actually measured current, the terminal voltage, and the calculation terminal voltage V SOC .

演算手段10のCPUは、判定した残存容量またはSOCを表示手段16を介して出力することができる。
表示手段16は、演算手段10の結果を車両のドライバなどに表示して示す装置であり、たとえば、車両のダッシュボード部分に設けた液晶表示器であり、普通乗用車の操作パネル部分の表示器と兼用することもできる。
たとえば、ドライバまたは整備士が現在の鉛蓄電池3の残存容量またはSOCを知りたいときは、図示しない操作部を介して演算手段10にアクセスして演算手段10のメモリ部に保存されている残存容量またはSOCを、たとえば、表示手段16または車両の操作パネルの表示部に表示して残存容量またはSOCを確認することができる。その結果、適切なタイミングで鉛蓄電池3を交換することができる。あるいは、車両に何らかの故障が発生した場合、演算手段10で算出した残存容量またはSOCをチェックして、その不具合の原因が鉛蓄電池3のSOHが低いために起きたか否かを診断できる。
The CPU of the calculation means 10 can output the determined remaining capacity or SOC via the display means 16.
The display means 16 is a device that displays the result of the calculation means 10 on a vehicle driver or the like, and is, for example, a liquid crystal display provided on the dashboard portion of the vehicle, It can also be used.
For example, when the driver or mechanic wants to know the current remaining capacity or SOC of the lead storage battery 3, the remaining capacity stored in the memory unit of the computing unit 10 by accessing the computing unit 10 via the operation unit (not shown). Alternatively, the remaining capacity or the SOC can be confirmed by displaying the SOC on, for example, the display unit 16 or the display unit of the operation panel of the vehicle. As a result, the lead storage battery 3 can be replaced at an appropriate timing. Alternatively, when some failure occurs in the vehicle, the remaining capacity or SOC calculated by the calculation means 10 can be checked to diagnose whether or not the cause of the failure occurred because the SOH of the lead storage battery 3 is low.

また好ましくは、演算手段10のCPUは判定した残存容量またはSOCをアイドリングストップ(IS)処理手段14に出力する。
IS処理手段14は演算手段10のCPUが判定した鉛蓄電池3の残存容量またはSOCが、アイドアイドリングストップ中、電気装備4の最低限の給電部分に給電でき、所定時間アイドリングストップした後、スタータ1を再起動して再び車両を正常に動作させるだけの電力が鉛蓄電池3に残存している否かを判定し、その余裕があるとき、アイドリングストップ処理を行う。
Also preferably, the CPU of the computing means 10 outputs the determined remaining capacity or SOC to the idling stop (IS) processing means 14.
The IS processing means 14 can supply the remaining capacity or SOC of the lead storage battery 3 determined by the CPU of the arithmetic means 10 to the minimum power supply portion of the electrical equipment 4 during idling stop, and after idling stop for a predetermined time, the starter 1 Is restarted, and it is determined whether or not the electric power sufficient for normal operation of the vehicle remains in the lead storage battery 3, and when there is a margin, idling stop processing is performed.

以上のように、本発明の第2実施の形態によれば、第1実施の形態により求めた精度の高い関係式を適用することにより、正確に車載の鉛蓄電池の残存容量またはSOCを判定することができる。
その結果、鉛蓄電池3の残存寿命が予測でき、適切なタイミングで鉛蓄電池3を交換することも可能となる。
また、適切にアイドリングストップ処理を行うこともできる。
As described above, according to the second embodiment of the present invention, the remaining capacity or the SOC of the in-vehicle lead storage battery is accurately determined by applying the highly accurate relational expression obtained by the first embodiment. be able to.
As a result, the remaining life of the lead storage battery 3 can be predicted, and the lead storage battery 3 can be replaced at an appropriate timing.
Further, it is possible to appropriately perform idling stop processing.

なお本実施の形態の実施に際しては、特別複雑な構成要素を必要とせず、信号処理も複雑ではないので、容易かつ低価格で実用化できる。   It should be noted that when implementing this embodiment, no specially complicated components are required, and signal processing is not complicated, so that it can be put into practical use easily and at low cost.

上述した実施の形態は例示であり、本発明の適用に際しては、図面を参照して述べた実施の形態および上記記述に限定されず、明細書および図面に記載された内容に基づいて当業者が想起しうるものは本発明に属すると考えるべきである。
たとえば、以上の実施の形態においては、二次蓄電池として鉛蓄電池を用いた場合について述べたが、本発明は鉛蓄電池に適用が限定されるわけではなく、充電可能な種々の二次蓄電池に適用できる。
The embodiment described above is an exemplification, and the application of the present invention is not limited to the embodiment described with reference to the drawings and the above description, and those skilled in the art based on the contents described in the specification and the drawings. Anything that can be recalled should be considered as belonging to the present invention.
For example, in the above embodiment, the case where a lead storage battery is used as the secondary storage battery has been described. However, the present invention is not limited to the lead storage battery, and can be applied to various rechargeable secondary storage batteries. it can.

図1は本発明の基本形態としての処理工程を図解した図である。FIG. 1 is a diagram illustrating processing steps as a basic form of the present invention. 図2は式1における第1係数aSOC および第2係数bSOC の求め方を図解した工程図である。FIG. 2 is a process diagram illustrating how to obtain the first coefficient a SOC and the second coefficient b SOC in Equation 1. 図3は第1係数aSOC の求め方を図解した工程図である。FIG. 3 is a process diagram illustrating how to obtain the first coefficient a SOC . 図4は本発明の第1放電特性試験を方法を図解したグラフである。FIG. 4 is a graph illustrating the method of the first discharge characteristic test of the present invention. 図5(A)〜(D)は、既知の鉛蓄電池の残存容量またはSOCについての放電電流と端子電圧との関係を示すグラフである。5 (A) to 5 (D) are graphs showing the relationship between the discharge current and the terminal voltage for the remaining capacity or SOC of a known lead storage battery. 図6は定電流放電用放電を行う工程を図解したグラフである。FIG. 6 is a graph illustrating a process of performing a constant current discharge. 図7は放電試験における経過時間(放電時間)とそのときの蓄電池の端子電圧Vをプロットした例を示すグラフである。FIG. 7 is a graph showing an example in which the elapsed time (discharge time) in the discharge test and the terminal voltage V of the storage battery at that time are plotted. 図8は図7に図解した定電流放電により取得した蓄電池の残存容量と端子電圧との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the remaining capacity of the storage battery and the terminal voltage obtained by the constant current discharge illustrated in FIG. 図9(A)は本発明の第1実施の形態で求めた関係式の内容の例示、および、図9(B)はその関係式から残存容量またはSOCを求める方法を示すグラフである。FIG. 9A is an example of the contents of the relational expression obtained in the first embodiment of the present invention, and FIG. 9B is a graph showing a method for obtaining the remaining capacity or SOC from the relational expression. 図10は本発明の第2実施の形態の二次蓄電池の残存容量またはSOCを判定する装置(以下、残存容量・SOC判定装置)の構成図である。FIG. 10 is a configuration diagram of an apparatus for determining the remaining capacity or SOC (hereinafter, remaining capacity / SOC determination apparatus) of the secondary storage battery according to the second embodiment of the present invention.

符号の説明Explanation of symbols

1・・スタータ、2・・オルタネータ、
3・・二次蓄電池(鉛蓄電池)、4・・電気装備、5・・エンジン、
6・・エンジン制御ユニット、7・・電圧計、8・・電流計、
10・・演算手段
14・・アイドリングストップ(IS)処理手段
16・・表示手段
1. Starter, 2. Alternator,
3 .... Secondary battery (lead battery) 4 .... Electric equipment 5 .... Engine,
6 .... Engine control unit, 7 .... Voltmeter, 8 .... Ammeter,
10 .... Calculating means 14 .... Idling stop (IS) processing means 16 .... Display means

Claims (13)

二次蓄電池の残存容量またはSOCを判定するために用いる、V SOC =a SOC ×I j +b SOC (V SOC は二次蓄電池の各残存容量または各SOCにおける演算により求める演算端子間電圧、I j は放電電流、a SOC は傾きを意味する第1係数、b SOC は切片を意味する第2係数である)の一次式で規定される演算端子間電圧の演算に用いる、第1係数および第2係数を求める方法であって、
第1放電特性試験として、前記二次蓄電池の各残存容量またはSOCにおいて、値を順次低下させた複数の第1放電電流(Ij )で前記二次蓄電池の端子電圧が安定する第1放電時間の間放電し、当該第1放電特性試験における前記二次蓄電池の端子電圧を測定する第1の工程と、
前記各残存容量または前記各SOCにおいて前記測定して得られた複数組の端子電圧と前記各第1放電電流とから、前記各残存容量または前記各SOCにおける、前記第1係数(aSOC )を求める第2の工程と、
第2放電特性試験として、前記二次蓄電池を満充電状態から第2放電電流で定電流放電し当該第2放電特性試験における前記二次蓄電池の端子電圧を測定する第3の工程と、
前記第2放電特性試験で得られた時間経過の間測定した各残存容量または各SOCにおける端子電圧と、前記求めた第1係数と放電電流とを前記一次式に導入して、各残存容量または各SOCにおける前記第2係数(bSOC)を求める第4の工程と、
を有する、
二次蓄電池の残存容量またはSOCを判定するために用いる演算端子間電圧の演算に用いる、第1係数および第2係数を求める方法。
V SOC = a SOC × I j + b SOC used to determine the remaining capacity or SOC of the secondary storage battery (V SOC is a voltage between calculation terminals, I j obtained by calculation in each remaining capacity or each SOC of the secondary storage battery. Is a discharge current, a SOC is a first coefficient that means a slope, and b SOC is a second coefficient that means an intercept). A method for obtaining a coefficient,
As a first discharge characteristic test, in each remaining capacity or each SOC of the secondary storage battery, a first discharge in which the terminal voltage of the secondary storage battery is stabilized by a plurality of first discharge currents (I j ) whose values are sequentially decreased. discharge during the time, a first step of measuring the inter-terminal voltage of the secondary battery in the first discharge characteristic test,
Wherein from each remaining capacity or the plurality of sets of inter-terminal voltage obtained by the measurement at each SOC and the each first discharge current, in each of the remaining capacity or the respective SOC, the first coefficient (a SOC) a calculated Mel second step of,
A second discharge characteristic test, a third step of the secondary battery from the fully charged state and a constant current discharge at a second discharge current, measures the terminal voltage of the secondary battery in the second discharge characteristic test,
Introducing a terminal voltage of each remaining capacity or the SOC measured during the elapsed time obtained by the second discharge characteristic test, the first coefficient determined the a discharge current to the linear expression, the remaining capacity Or a fourth step of obtaining the second coefficient (b SOC ) in each SOC ;
Having
A method of obtaining a first coefficient and a second coefficient used for calculating a voltage between calculation terminals used for determining a remaining capacity or SOC of a secondary storage battery .
前記第1の工程における前記第1放電特性試験において、次の残存容量または次のSOCにおける第1放電特性試験を行うため、今回の第1放電特性試験の後、所定の放電電流で放電して前記次の残存容量または前記次のSOCの値に調整する調整用放電を行う、
請求項1記載の方法。
In the first discharge characteristic test in the first step, in order to perform the first discharge characteristic test in the next remaining capacity or the next SOC, after the current first discharge characteristic test, a discharge is performed at a predetermined discharge current. Performing discharge for adjustment to adjust to the value of the next remaining capacity or the next SOC;
Method person of claim 1.
前記第3の工程における前記二次蓄電池の満充電時において、それぞれ一定の複数の第1放電電流(I1〜I4)を第1放電時間(T11、T12)の間だけ放電し、この時の端子間電圧を測定する第1測定工程と、
前記第3の工程における一定の第2放電電流での定電流放電を任意の時間継続して放電容量を調整する第1調整工程と、
前記第1測定工程と前記第1調整工程とを、前記第1調整工程中に前記二次蓄電池の端子電圧が規定最低電圧(V0 )以下になるまで反復させる反復工程と、
前記二次蓄電池の端子電圧が前記規定最低電圧(V0 )以下になったとき、前記一定の複数の第1電流と前記第1放電時間の積の総和である前記第1測定工程にて放電される放電容量と、前記反復工程において前記第1測定工程を実施した回数(n)の積で規定される第1の放電容量と、前記第1調整工程において前記二次蓄電池の端子電圧が前記規定最低電圧(V0 )まで降下するまで繰り返して実施され、前記一定の第2放電電流で定電流放電した時間の合計時間と前記一定の第2放電電流との積で規定される第2放電容量と、前記第1放電容量と前記第2放電容量とを合計した第3放電容量を前記二次蓄電池の全放電容量(Q1)と規定する工程と、
前記各第1測定工程を実施する前までに、前記第2放電電流による放電容量および前記第1測定工程によって放電される放電容量の合計容量を、前記二次蓄電池の全放電容量(Q1)から差し引いた各残存容量について、前記測定して得られた複数組の端子間電圧と前記各第1放電電流とから前記第1係数(aSOC )を求める第1係数算出工程と、
前記第1係数(aSOC )を求める際の前記二次蓄電池の各残存容量の百分率(An)を前記第1係数(aSOC )を求める際の前記二次蓄電池の各残存容量と前記二次蓄電池の全放電容量(Q1)とから求める工程と、
前記二次蓄電池、または、前記二次蓄電池と容量及び充放電特性が同じ他の二次蓄電池の満充電時において、一定の第3電流(Id3)で任意の放電時間継続して所定の端子間電圧まで降下するまで放電し、このときの端子間電圧を測定する第2測定工程と、
前記第3電流(Id3)と前記放電時間(T3)との積で規定される第4放電容量を全放電容量(Q2)と規定し、全放電容量(Q2)の百分率(Bn)と前記端子間電圧との関係を求めて、その結果と、前記求めた第1係数と放電電流と、前記各第1放電電流を前記一次式に導入して、各残存容量または各SOCにおける前記第2係数(bSOC )を求める第2係数算出工程と
を有する、
請求項1または2記載の方法。
At the time of full charge of the secondary storage battery in the third step , each of the fixed first discharge currents (I1 to I4) is discharged only during the first discharge time (T11, T12), and the terminals at this time A first measuring step for measuring an inter-voltage;
A first adjustment step of adjusting discharge capacity by continuing constant current discharge at a constant second discharge current in the third step for an arbitrary time;
A repetition step of repeating the first measuring step and the first adjusting step, until the terminal voltage of the secondary battery in the first adjustment step is defined minimum voltage (V 0) or less,
When the terminal voltage of the secondary battery is below the prescribed minimum voltage (V 0), at the said constant multiple of the first current is the product of the sum of the first discharge period of time the first measuring step The discharge capacity to be discharged, the first discharge capacity defined by the product of the number (n) of performing the first measurement process in the repetition process, and the terminal voltage of the secondary storage battery in the first adjustment process . the prescribed minimum voltage (V 0) until be performed repeatedly until the drop, the second defined by the product of the total time and the constant second discharge current of time constant current discharging at the constant second discharge current and discharge capacity, a step to define the total discharge capacity (Q1) of the first discharge capacity and the second discharge capacity and the secondary battery of the third discharge capacity which is the sum of,
And before carrying out the said respective first measuring step, the total amount of discharge capacity is discharged by the discharge capacity by the second discharging current and the first measurement step, the total discharge capacity of the secondary storage battery (Q1) for each remaining capacity obtained by subtracting the determined Mel first coefficient calculating step said first coefficient (a SOC) and a plurality of sets of inter-terminal voltage the each first discharge current obtained by the measurement,
Percentage (An) of each remaining capacity of the secondary storage battery when determining the first coefficient (a SOC ) and each remaining capacity of the secondary storage battery and the secondary when determining the first coefficient (a SOC ) and I asked Mel process from the total discharge capacity of the storage battery (Q1),
During full charge of the secondary storage battery or another secondary storage battery having the same capacity and charge / discharge characteristics as the secondary storage battery , a predetermined third current (Id3) continues for an arbitrary discharge time between predetermined terminals. A second measurement step of discharging until the voltage drops, and measuring the voltage between the terminals at this time;
A fourth discharge capacity is defined by the product of said third current (Id3) and the discharge time (T3) defined as the total discharge capacity (Q2), the terminal and the percentage (Bn) of the total discharge capacity (Q2) The relationship between the inter-voltage and the result, the obtained first coefficient and discharge current, and the first discharge current are introduced into the primary equation to obtain the second coefficient for each remaining capacity or each SOC. A second coefficient calculating step for obtaining (b SOC ),
Method person according to claim 1 or 2.
前記全放電容量(Q2)の百分率(Bn)と端子間電圧との関係を示す結果から、前記請求項1記載の百分率(An)と一致する百分率(Bn)のときの端子間電圧(Vn)及び前記放電電流(Id3)を求める工程を有する、
請求項3に記載の方法。
The results indicating the relationship between the terminal voltage and the percentage (Bn) of the total discharge capacity (Q2), the inter-terminal voltage when the percentage of claim 1 (An) matching percentage and (Bn) (Vn And determining the discharge current (Id3),
Method who claim 3.
前記一次式の傾きを示す前記第1の係数と、前記百分率(Bn)のときの端子間電圧(Vn)および前記放電電流(Id3)とから、各残存容量または各SOCにおける、前記一次式の切片を意味する前記第2係数(bSOC )を求める工程を有する、
請求項4記載の方法。
From the first coefficient indicating the slope of the primary expression, the voltage (Vn) between the terminals at the time of the percentage (Bn), and the discharge current (Id3), each residual capacity or each SOC of the primary expression Determining the second coefficient (b SOC ) meaning an intercept ;
Method who claim 4.
請求項1〜5いずれかに記載の方法で求めた、各残存容量または各SOCにおける、前記第1係数(aSOCおよび前記第2係数(bSOCを前記各残存容量または前記各SOCに対応づけてテーブル化しておき、
前記第1係数(a SOC )および前記第2係数(b SOC )を求めた二次蓄電池と同じ容量と同じ充放電特性を持つ、残存容量またはSOC判定すべき二次蓄電池の放電電流と端子電圧とを測定し、
該測定した放電電流と、前記テーブル化された前記第1係数(a SOC )と前記第2係数(b SOC )とを前記関係式に導入して演算端子電圧(VSOC )を算出し、
前記測定した端子電圧と前記算出した演算端子電圧(VSOC )とを比較照合して前記残存容量またはSOCを判定すべき二次蓄電池の残存容量またはSOCを判定する、
次蓄電池の残存容量を判定する方法。
The first coefficient (a SOC ) and the second coefficient (b SOC ) in each remaining capacity or each SOC obtained by the method according to claim 1 are assigned to each remaining capacity or each SOC. Corresponding to a table ,
Discharge current and the terminal of the first coefficient (a SOC) and the second coefficient (b SOC) was determined with the same charge and discharge characteristics and the same capacity as the secondary battery, the secondary battery to be determined residual capacity or SOC Measure the voltage between
Introducing the measured discharge current, the tabulated first coefficient (a SOC ), and the second coefficient (b SOC ) into the relational expression to calculate the inter- operation terminal voltage (V SOC ),
Comparing the measured inter- terminal voltage and the calculated inter- operating terminal voltage (V SOC ) to determine the remaining capacity or SOC of the secondary storage battery to determine the remaining capacity or SOC;
A method for determining the remaining capacity of a secondary storage battery.
前記測定した端子電圧が、前記演算端子電圧の隣接する2つの間に位置するとき、補間して対応する端子電圧を算出し、
該算出した端子電圧に基づいて前記残存容量またはSOCを判定すべき二次蓄電池の残存容量またはSOCを判定する、
請求項6に記載の二次蓄電池の残存容量を判定する方法。
When the measured inter- terminal voltage is located between two adjacent ones of the arithmetic inter- terminal voltages, the corresponding inter- terminal voltage is calculated by interpolation,
Determining the remaining capacity or SOC of the secondary storage battery to determine the remaining capacity or SOC based on the calculated inter- terminal voltage;
A method for determining the remaining capacity of the secondary storage battery according to claim 6 .
請求項1〜5いずれかに記載の方法により、二次蓄電池の各残存容量またはSOCにおける放電電流(Ij )とそのときの演算端子間電圧(VSOC )とを関連付ける一次式、VSOC=aSOC ×Ij +bSOC (ただし、VSOC演算端子間電圧、Ij は放電電流、aSOC傾きを意味する第1係数、bSOC切片を意味する第2係数である)における第1係数および第2係数を求める工程と、
前記二次蓄電池と同じ容量および同じ充放電特性を持つ、残存容量またはSOCを判定すべき二次蓄電池が車両に搭載されているとき、前記残存容量またはSOCを判定すべき二次蓄電池の端子電圧と放電電流とを測定する工程と、
前記測定した放電電流と前記第1係数および第2係数を前記一次式に導入して前記演算端子電圧(VSOC )を求める工程と、
前記測定した端子電圧と前記求めた演算端子電圧とを比較照合して前記車両に搭載された残存容量またはSOCを判定すべき二次蓄電池の残存容量またはSOCを判定する工程と
を有する、
二次蓄電池の残存容量を判定する方法。
The method according to any of claims 1 to 5, a linear expression that associates the discharge current in each remaining capacity or the SOC of the secondary battery (I j) and calculating the inter-terminal voltage at that time (V SOC), V SOC = a SOC × I j + b SOC ( However, V SOC arithmetic terminal voltage, I j is the discharge current, a SOC the first coefficient, b SOC to mean slope is second coefficient means intercept) in Obtaining a first coefficient and a second coefficient ;
When a secondary storage battery having the same capacity and the same charge / discharge characteristics as the secondary storage battery and whose remaining capacity or SOC is to be determined is mounted on a vehicle, between the terminals of the secondary storage battery whose remaining capacity or SOC should be determined Measuring voltage and discharge current;
Introducing the measured discharge current and the first coefficient and the second coefficient into the linear equation to determine the inter- operation terminal voltage (V SOC );
Comparing the measured inter- terminal voltage and the calculated inter- operation terminal voltage to determine the remaining capacity or SOC of the secondary storage battery to be determined the remaining capacity or SOC mounted on the vehicle,
A method for determining the remaining capacity of a secondary storage battery.
前記一次式における第1係数および第2係数を求める工程において前記第1係数(aSOC )および第2係数(bSOCと、端子電圧とを残存容量またはSOCに対応づけてテーブル化し、
前記残存容量またはSOCを判定すべき前記二次蓄電池の放電電流と端子電圧とを測定し、該測定した放電電流と、前記テーブル化された前記第1係数(a SOC )および第2係数(b SOC )とを前記一次式に導入して演算端子電圧(VSOC )を算出し、
前記測定した端子電圧と前記算出した演算端子電圧(VSOC )とを比較照合して、前記残存容量またはSOCを判定すべき二次蓄電池の残存容量またはSOCを判定する、
請求項8記載の二次蓄電池の残存容量を判定する方法。
In the step of obtaining the first coefficient and the second coefficient in the linear expression , the first coefficient (a SOC ) and the second coefficient (b SOC ) and the terminal voltage are tabulated in association with each remaining capacity or each SOC. ,
The secondary storage battery discharge current and the inter- terminal voltage for determining the remaining capacity or SOC are measured, and the measured discharge current, the first coefficient (a SOC ) and the second coefficient ( b SOC ) into the primary equation to calculate the voltage between the calculation terminals (V SOC ),
Comparing and comparing the measured inter- terminal voltage and the calculated inter- terminal voltage (V SOC ) to determine the remaining capacity or SOC of the secondary storage battery to determine the remaining capacity or SOC;
A method for determining the remaining capacity of the secondary storage battery according to claim 8.
前記測定した端子電圧が、前記演算端子電圧の隣接する2つの間に位置するとき、補間して対応する端子電圧を算出し、
該算出した端子電圧に基づいて前記二次蓄電池の残存容量またはSOCを判定する、
請求項9記載の二次蓄電池の残存容量を判定する方法。
When the measured inter- terminal voltage is located between two adjacent ones of the arithmetic inter- terminal voltages, the corresponding inter- terminal voltage is calculated by interpolation,
Determining a remaining capacity or SOC of the secondary storage battery based on the calculated inter- terminal voltage;
A method for determining the remaining capacity of the secondary storage battery according to claim 9.
前記請求項8〜10のいずれかに記載の二次蓄電池の残存容量を判定する方法で判定した前記残存容量またはSOCを判定すべき二次蓄電池の残存容量またはSOCが、車両をアイドリングストップさせた後、当該車両を再始動させることが可能な残存容量またはSOCであるか否かを判断する、
次蓄電池の残存容量を判定する方法。
The remaining capacity or SOC of the secondary storage battery for which the remaining capacity or SOC determined by the method for determining the remaining capacity of the secondary storage battery according to any one of claims 8 to 10 has stopped the vehicle from idling. After that, it is determined whether or not the remaining capacity or SOC can restart the vehicle.
A method for determining the remaining capacity of a secondary storage battery.
請求項1〜5のいずれかの方法で求めた、二次蓄電池の各残存容量またはSOCにおける放電電流(Ij )とそのときの端子電圧(VSOC )とを関連付ける一次式、VSOC=aSOC ×Ij +bSOC (ただし、VSOC演算端子間電圧、Ij は放電電流、aSOC は第1係数、bSOC は第2係数である)に用いる第1係数および第2係数を各残存容量または各SOCに対応づけて保存するメモリ手段と、
記二次蓄電池、または、前記二次蓄電池と同じ容量と同じ充放電特性を持つ残存容量またはSOCを判定すべきの二次蓄電池が車両に搭載されているとき、前記車両に搭載されている二次蓄電池の端子電圧と放電電流とを測定する手段と、
前記測定した放電電流と、前記メモリ手段に各残存容量または各SOCに対応づけて保存されている前記第1係数および前記第2係数を前記一次式に導入して前記演算端子電圧(VSOC )を求める第1演算手段と、
前記測定した端子電圧と前記演算端子電圧とを比較照合して前記車両に搭載された残存容量またはSOCを判定すべきの二次蓄電池の残存容量またはSOCを判定する判定手段と
を有する、二次蓄電池の残存容量を判定する装置。
Determined by the method of any of claims 1 to 5, the discharge current in each remaining capacity or the SOC of the secondary battery (I j) and a linear equation relating the terminal voltage at that time (V SOC), V SOC = a SOC × I j + b SOC ( However, V SOC arithmetic terminal voltage, I j is the discharge current, a SOC the first coefficient, b SOC is a is a second coefficient) first coefficient and the second coefficient used for Memory means for storing each of the remaining capacity or each SOC in association with each other ,
When the front Symbol secondary storage battery or the remaining capacity or a secondary battery to be judged SOC having the same charge-discharge characteristics and the same capacity as the secondary蓄 battery is mounted on the vehicle, is mounted on the vehicle It means for measuring the inter-terminal voltage of the secondary battery and the discharge current are,
A discharge current in said measurement, said the memory means are stored in association with each remaining capacity or the SOC first coefficient and the introduction to the operation terminal voltage of the second coefficient to the linear expression (V SOC First calculating means for obtaining
A determination means for comparing the measured inter- terminal voltage and the calculated inter- terminal voltage to determine the remaining capacity or SOC of the secondary storage battery that should determine the remaining capacity or SOC mounted on the vehicle; A device that determines the remaining capacity of the secondary storage battery.
請求項12に記載の二次蓄電池の残存容量を判定する装置で判定した二次蓄電池の残存容量またはSOCが、車両をアイドリングストップさせた後、車両を再始動させることが可能な残存容量またはSOCであるか否かを判断する手段を有する、
アイドリングストップ機能を有する車両。
The remaining capacity or SOC of the secondary storage battery determined by the device for determining the remaining capacity of the secondary storage battery according to claim 12 can restart the vehicle after idling stop of the vehicle. Having means for determining whether or not
A vehicle having an idling stop function.
JP2003427411A 2003-12-24 2003-12-24 Method for determining remaining capacity of secondary storage battery, method and apparatus for detecting remaining capacity of secondary battery mounted on vehicle using determination result, and terminal for determining remaining capacity of secondary storage battery Method and apparatus for determining slope and intercept used to calculate voltage Expired - Fee Related JP4514449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003427411A JP4514449B2 (en) 2003-12-24 2003-12-24 Method for determining remaining capacity of secondary storage battery, method and apparatus for detecting remaining capacity of secondary battery mounted on vehicle using determination result, and terminal for determining remaining capacity of secondary storage battery Method and apparatus for determining slope and intercept used to calculate voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003427411A JP4514449B2 (en) 2003-12-24 2003-12-24 Method for determining remaining capacity of secondary storage battery, method and apparatus for detecting remaining capacity of secondary battery mounted on vehicle using determination result, and terminal for determining remaining capacity of secondary storage battery Method and apparatus for determining slope and intercept used to calculate voltage

Publications (2)

Publication Number Publication Date
JP2005188965A JP2005188965A (en) 2005-07-14
JP4514449B2 true JP4514449B2 (en) 2010-07-28

Family

ID=34786695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003427411A Expired - Fee Related JP4514449B2 (en) 2003-12-24 2003-12-24 Method for determining remaining capacity of secondary storage battery, method and apparatus for detecting remaining capacity of secondary battery mounted on vehicle using determination result, and terminal for determining remaining capacity of secondary storage battery Method and apparatus for determining slope and intercept used to calculate voltage

Country Status (1)

Country Link
JP (1) JP4514449B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4577151B2 (en) * 2005-08-19 2010-11-10 トヨタ自動車株式会社 Vehicle battery state estimation device
JP4831824B2 (en) * 2006-09-11 2011-12-07 三菱重工業株式会社 Battery control device and hybrid forklift equipped with the same
JP5397679B2 (en) * 2009-05-21 2014-01-22 株式会社Gsユアサ Secondary battery deterioration diagnosis method and secondary battery deterioration diagnosis device
KR101105142B1 (en) 2009-11-13 2012-01-16 주식회사 포스코 Method for measuring state of battery health
JP5447282B2 (en) * 2010-08-11 2014-03-19 新神戸電機株式会社 Lead-acid battery and lead-acid battery system for natural energy utilization system
CN103403565B (en) * 2011-04-01 2015-07-01 丰田自动车株式会社 Method for determining remaining lifetime
WO2013128727A1 (en) 2012-02-28 2013-09-06 日本電気株式会社 Regulating device control system, regulating device control method, and recording medium
CN105264396B (en) 2013-06-18 2019-06-07 古河电气工业株式会社 Secondary cell condition checkout gear and secondary cell condition detection method
JP6314543B2 (en) * 2014-03-03 2018-04-25 日立化成株式会社 Method and apparatus for estimating state of charge of storage battery
KR102468238B1 (en) * 2019-06-05 2022-11-16 사일렉트릭, 인크. How to test an electrochemical cell
CN112952225B (en) * 2019-12-11 2023-05-23 中车时代电动汽车股份有限公司 SOC correction method and device for battery system
WO2022250076A1 (en) * 2021-05-28 2022-12-01 エナジーウィズ株式会社 Battery management system, battery management method, and battery management program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012102A (en) * 1998-06-17 2000-01-14 Nissan Motor Co Ltd Controller of battery capacity meter
JP2003217684A (en) * 2002-01-25 2003-07-31 Furukawa Electric Co Ltd:The Residual capacity measuring method and device for onboard storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012102A (en) * 1998-06-17 2000-01-14 Nissan Motor Co Ltd Controller of battery capacity meter
JP2003217684A (en) * 2002-01-25 2003-07-31 Furukawa Electric Co Ltd:The Residual capacity measuring method and device for onboard storage battery

Also Published As

Publication number Publication date
JP2005188965A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
JP4057276B2 (en) Method and apparatus for determining the state of a secondary storage battery mounted on a vehicle
JP4702859B2 (en) Battery status detection method
JP4042475B2 (en) Battery deterioration degree calculating device and deterioration degree calculating method
JP4823974B2 (en) Storage battery remaining capacity detection method and remaining capacity detection apparatus
JP4514449B2 (en) Method for determining remaining capacity of secondary storage battery, method and apparatus for detecting remaining capacity of secondary battery mounted on vehicle using determination result, and terminal for determining remaining capacity of secondary storage battery Method and apparatus for determining slope and intercept used to calculate voltage
JPH08505950A (en) How to check the state of charge of a battery, for example a vehicle starter battery
JP4670778B2 (en) Battery status notification method
KR20200101390A (en) Parking air conditioner, vehicle battery life warning method and system
WO2016129260A1 (en) Battery class determination device and battery class determination method
JP2012189373A (en) Secondary battery condition detection device and secondary battery condition detection method
JP2008074257A (en) Battery deterioration determination device
JP4702115B2 (en) Battery status judgment device
JP3423484B2 (en) Battery condition monitoring device
JP2007261433A (en) Battery control device and battery control method
JP4190766B2 (en) Method and apparatus for estimating remaining capacity of storage battery mounted on vehicle
JP2003127807A (en) Method and device for determining residual capacity of secondary battery mounted on vehicle having idling stop function
JP4652627B2 (en) Vehicle equipped with storage battery, vehicle having idling stop function, state determination device for storage battery mounted on vehicle having idling stop function, and method thereof
JP5566926B2 (en) Secondary battery state detection device and secondary battery state detection method
JP2005292035A (en) Method of detecting battery condition
JP4652891B2 (en) Method and apparatus for measuring remaining capacity of storage battery mounted on vehicle
JP2002097974A (en) Vehicle with idling stopping function, and method and device for calculating remaining capacity of storage battery mounted on vehicle
JP4369688B2 (en) Method and apparatus for determining remaining capacity of storage battery mounted on vehicle
JP2002310044A (en) Residual capacity inspection method of storage battery and residual capacity inspection device of storage battery
JP2002031671A (en) Method of idling stop process for vehicle, method for measuring residual capacity of storage battery loaded to vehicle, and, apparatus for these
JP4760276B2 (en) Engine starting storage battery deterioration determining method and apparatus, and engine starting storage battery provided with the deterioration determining apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061002

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

R151 Written notification of patent or utility model registration

Ref document number: 4514449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees