JP4514230B2 - Component suction posture discrimination method and component suction posture discrimination system - Google Patents

Component suction posture discrimination method and component suction posture discrimination system Download PDF

Info

Publication number
JP4514230B2
JP4514230B2 JP2006315102A JP2006315102A JP4514230B2 JP 4514230 B2 JP4514230 B2 JP 4514230B2 JP 2006315102 A JP2006315102 A JP 2006315102A JP 2006315102 A JP2006315102 A JP 2006315102A JP 4514230 B2 JP4514230 B2 JP 4514230B2
Authority
JP
Japan
Prior art keywords
suction
adsorption
abnormal
component
normal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006315102A
Other languages
Japanese (ja)
Other versions
JP2008130865A (en
Inventor
弘健 江嵜
哲徳 川角
孝昌 河合
太造 梅崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Machine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Machine Manufacturing Co Ltd filed Critical Fuji Machine Manufacturing Co Ltd
Priority to JP2006315102A priority Critical patent/JP4514230B2/en
Publication of JP2008130865A publication Critical patent/JP2008130865A/en
Application granted granted Critical
Publication of JP4514230B2 publication Critical patent/JP4514230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Image Analysis (AREA)

Description

本発明は、電子部品実装機の吸着ノズルに吸着した部品をカメラで撮像し、画像処理技術によって部品の吸着姿勢が正常吸着か斜め吸着かを判別する部品吸着姿勢判別方法及び部品吸着姿勢判別システムに関する発明である。   The present invention relates to a component suction posture determination method and a component suction posture determination system for imaging a component sucked by a suction nozzle of an electronic component mounting machine with a camera and determining whether the suction posture of the component is normal suction or oblique suction by image processing technology. It is invention regarding.

一般に、電子部品実装機においては、吸着ノズルに部品を吸着し、この部品を回路基板上に移送して回路基板の所定位置に実装するようにしている。更に、吸着ノズルに吸着した部品をその下面側から撮像するカメラを設置して、このカメラで撮像した部品画像によって部品の種類を確認したり、吸着ノズルに対する部品の吸着位置のずれを補正するようにしている。   In general, in an electronic component mounting machine, a component is sucked by a suction nozzle, and the component is transferred onto a circuit board and mounted at a predetermined position on the circuit board. In addition, a camera that captures the part sucked by the suction nozzle from the lower surface side is installed, and the type of the part is confirmed by the part image picked up by the camera, or the deviation of the suction position of the part with respect to the suction nozzle is corrected. I have to.

ところで、通常は、図18の(a)に示すように、吸着ノズル1に部品2が水平に吸着された状態になるが、図18の(b)に示すように、何らかの原因で吸着ノズル1に部品2が斜めに吸着された状態になることがある。このような斜め吸着(異常吸着)は実装不良の原因となるため、特許文献1(特開平6−216584号公報)に示すように、斜め吸着を検出する手段として光センサを用い、吸着ノズル1に吸着した部品2の両側に、光センサの発光素子3と受光素子4とをその光軸5が正常な吸着姿勢の部品2の下面よりも僅かに低い位置を通過するように配置したものがある。このものは、図18の(a)に示すように、部品2の吸着姿勢が正常吸着であれば、光軸5が部品2で遮断されないが、図18の(b)に示すように、部品2の吸着姿勢が斜め吸着である場合は、その部品2の下部で光軸5が遮断されることで、斜め吸着が検出されるようになっている。   Normally, as shown in FIG. 18A, the component 2 is horizontally attracted to the suction nozzle 1, but as shown in FIG. 18B, the suction nozzle 1 for some reason. In some cases, the component 2 may be attracted diagonally. Since such oblique adsorption (abnormal adsorption) causes a mounting failure, as shown in Patent Document 1 (Japanese Patent Laid-Open No. 6-216484), an optical sensor is used as means for detecting oblique adsorption, and the adsorption nozzle 1 The light-emitting element 3 and the light-receiving element 4 of the optical sensor are arranged on both sides of the component 2 adsorbed on the surface so that the optical axis 5 passes through a position slightly lower than the lower surface of the component 2 in the normal adsorption posture. is there. As shown in FIG. 18 (a), if the suction posture of the component 2 is normal suction, the optical axis 5 is not blocked by the component 2, but as shown in FIG. 18 (b) When the suction posture 2 is oblique suction, the oblique suction is detected by blocking the optical axis 5 at the lower part of the component 2.

しかしながら、この構成では、斜め吸着を検出する手段として、光センサ(発光素子3と受光素子4)を設ける必要があり、その分、コストアップする欠点がある。   However, in this configuration, it is necessary to provide an optical sensor (the light emitting element 3 and the light receiving element 4) as means for detecting oblique adsorption, and there is a disadvantage that the cost increases accordingly.

そこで、特許文献2(特開2006−114821号公報)に示すように、予め、想定される正常な吸着姿勢の部品画像の外形線と交差する複数本のシークラインを当該部品画像の中心線に関して対称な位置に設定し、対称な位置関係にあるシークライン上の輝度の変化パターンを比較することで、部品の吸着姿勢が正常吸着か斜め吸着かを判別するようにしたものがある。
特開平6−216584号公報(第1頁等) 特開2006−114821号公報(第4頁等)
Therefore, as shown in Patent Document 2 (Japanese Patent Laid-Open No. 2006-114821), a plurality of seek lines that intersect with the outline of the component image in the normal suction posture assumed in advance are related to the center line of the component image. Some of them are set to symmetrical positions, and brightness change patterns on seek lines having a symmetrical positional relationship are compared to determine whether the suction posture of the component is normal suction or diagonal suction.
JP-A-6-216484 (first page, etc.) Japanese Unexamined Patent Publication No. 2006-114821 (page 4, etc.)

しかし、上記特許文献2の技術では、正常吸着と異常吸着(斜め吸着)とを判別する判別基準を設計開発者が設定するため、設計開発者の主観によって判別基準がばらついてしまい、その分、異常吸着の判別率が悪くなってしまう。   However, in the technique of the above-mentioned Patent Document 2, since the design developer sets a discrimination standard for discriminating between normal adsorption and abnormal adsorption (oblique adsorption), the discrimination standard varies depending on the design developer's subjectivity. The discrimination rate of abnormal adsorption will deteriorate.

この課題を解決するために、本出願人は、特願2006−149799号の明細書に示すように、予め、正常吸着の部品画像と異常吸着(斜め吸着)の部品画像をそれぞれ多数収集し、各部品画像から特徴量を抽出した後、それらの特徴量のデータの統計的な分布を判別分析法により評価して正常吸着と異常吸着とを判別するための判別基準を設定してメモリに記憶しておき、以後、電子部品実装機の稼働中に吸着ノズルに部品を吸着する毎に、前記カメラで撮像した部品画像から特徴量を抽出し、その特徴量から前記判別基準に従って当該部品の吸着姿勢が正常吸着か異常吸着かを判別する技術を開発した。   In order to solve this problem, as shown in the specification of Japanese Patent Application No. 2006-149799, the present applicant previously collects a large number of normal suction component images and abnormal suction (diagonal suction) component images, After extracting feature quantities from each part image, the statistical distribution of the feature quantity data is evaluated by a discriminant analysis method, and a discrimination criterion for discriminating between normal adsorption and abnormal adsorption is set and stored in the memory. After that, every time a component is sucked to the suction nozzle while the electronic component mounting machine is in operation, a feature amount is extracted from the component image picked up by the camera, and the component is sucked from the feature amount according to the determination criterion. A technology has been developed to determine whether the posture is normal or abnormal.

しかし、この判別分析法を用いた判別方法では、異常吸着の判別率が従来よりも向上するものの、まだ93.1[%]にとどまっており、まだまだ異常吸着の判別率を改善する必要がある。   However, in the discrimination method using this discriminant analysis method, although the discrimination rate of abnormal adsorption is improved as compared with the prior art, it is still 93.1 [%], and it is still necessary to improve the discrimination rate of abnormal adsorption. .

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、電子部品実装機の吸着ノズルに吸着した部品の異常吸着を精度良く検出するシステムをソフトウエアの変更・追加のみで安価に構成できる部品吸着姿勢判別方法及び部品吸着姿勢判別システムを提供することにある。   The present invention has been made in view of such circumstances. Therefore, the object of the present invention is to change or add software only to a system that accurately detects abnormal suction of components sucked by a suction nozzle of an electronic component mounting machine. Another object of the present invention is to provide a component suction posture determination method and a component suction posture determination system that can be configured inexpensively.

上記目的を達成するために、請求項1,に係る発明は、電子部品実装機の吸着ノズルに吸着した部品をカメラで撮像し、画像処理技術によって当該部品の吸着姿勢が正常吸着か異常吸着かを判別するものにおいて、予め収集した多数の正常吸着の部品画像データと異常吸着の部品画像データを教師データとしてニューラルネットワークで学習しておき、電子部品実装機の稼働中に前記カメラで撮像した部品の画像データを前記ニューラルネットワークに入力して、当該ニューラルネットワークの出力値に基づいて当該部品の吸着姿勢が正常吸着か異常吸着かを判別するものであって、前記ニューラルネットワークは、部品の吸着姿勢を、正常吸着、右斜め吸着による異常吸着、左斜め吸着による異常吸着、横吸着による異常吸着の4つのパターンに区分してそれぞれのパターンの教師データと入力データとの類似度に応じた数値を出力する4つの出力層を有するように構成し、各出力層の出力値を比較して正常吸着と異常吸着とを判別することを特徴とするものである。 In order to achieve the above object, according to the first and third aspects of the present invention, a part picked up by a pick-up nozzle of an electronic component mounting machine is picked up by a camera, and the pick-up posture of the part is normal pick-up or abnormal pick-up by image processing technology. In order to determine whether or not, a lot of normal suction part image data and abnormal part image data collected in advance are learned as neural network data as teacher data, and captured by the camera while the electronic component mounting machine is in operation. Image data of a part is input to the neural network, and based on an output value of the neural network, it is determined whether the suction posture of the part is normal suction or abnormal suction. There are four types of postures: normal adsorption, abnormal adsorption by right diagonal adsorption, abnormal adsorption by left diagonal adsorption, and abnormal adsorption by lateral adsorption. It is configured to have four output layers that output numerical values according to the degree of similarity between teacher data and input data of each pattern divided into turns , and compare the output values of each output layer with normal adsorption. It is characterized by distinguishing from abnormal adsorption.

このようにすれば、光センサ等の追加を必要とせず、現状の電子部品実装機に対してもソフトウエアの変更・追加のみで部品の異常吸着を検出するシステムを安価に構成できる。しかも、ニューラルネットワークによる学習効果によって部品の吸着姿勢が正常吸着か異常吸着かを精度良く判別することができ、異常吸着の判別率を判別分析法よりも高めることができる。   In this way, a system for detecting abnormal suction of components can be configured at low cost by only changing or adding software to an existing electronic component mounting machine without requiring addition of an optical sensor or the like. In addition, the learning effect by the neural network can accurately determine whether the suction posture of the component is normal suction or abnormal suction, and the discrimination rate of abnormal suction can be higher than that of the discriminant analysis method.

本発明を研究する過程で、様々な異常吸着の画像を観察した結果、異常吸着のパターンは、図4〜図6に示すように、大別して3つのパターン(右斜め吸着による異常吸着、左斜め吸着による異常吸着、横吸着による異常吸着)に分類できることが判明した As a result of observing various abnormal adsorption images in the course of studying the present invention, the abnormal adsorption patterns are roughly divided into three patterns (abnormal adsorption by right diagonal adsorption, diagonal left), as shown in FIGS. It was found that it can be classified into abnormal adsorption by adsorption and abnormal adsorption by lateral adsorption .

そこで、請求項1,3に係る発明では、部品の吸着姿勢を、正常吸着、右斜め吸着による異常吸着、左斜め吸着による異常吸着、横吸着による異常吸着の4つのパターンに区分して、それぞれのパターンの教師データと入力データとの類似度に応じた数値を出力する4つの出力層を設けるようにしたものである。このようにすれば、異常吸着をパターン毎に判別できるため、正常吸着のものを異常吸着と誤判定する頻度をほぼゼロとすることができて、異常吸着と誤判定することによる部品のロスや電子部品実装機の停止によるサイクルタイムロスをほぼ無くすことができる。 Therefore, in the inventions according to claims 1 and 3 , the component adsorption posture is divided into four patterns of normal adsorption, abnormal adsorption by right diagonal adsorption, abnormal adsorption by left diagonal adsorption, and abnormal adsorption by lateral adsorption. 4 output layers for outputting numerical values corresponding to the degree of similarity between the teacher data of the pattern and the input data are provided . In this way, since abnormal suction can be determined for each pattern, the frequency of misjudging normal suction as abnormal suction can be reduced to almost zero. The cycle time loss due to the stoppage of the electronic component mounting machine can be almost eliminated.

この場合、請求項2,4のように、複数の出力層の中から出力値が最大となる出力層を選択して正常吸着と異常吸着とを判別するようにすれば良い。例えば、出力値が最大となる出力層が正常吸着のグループに区分されるものであれば、正常吸着と判定し、出力値が最大となる出力層が異常吸着のグループに区分されるものであれば、異常吸着と判定すれば良い。 In this case, as in claims 2 and 4 , it is only necessary to select an output layer having the maximum output value from a plurality of output layers and discriminate between normal adsorption and abnormal adsorption. For example, if the output layer with the maximum output value is classified into a normal adsorption group, it is determined as normal adsorption, and the output layer with the maximum output value is classified into an abnormal adsorption group. For example, it may be determined as abnormal adsorption.

以下、本発明を実施するための最良の形態を具体化した2つの実施例1,2を説明する。   Hereinafter, two Examples 1 and 2, which embody the best mode for carrying out the present invention, will be described.

本発明に関連する参考例としての実施例1を図1乃至図13に基づいて説明する。
まず、図1に基づいて電子部品実装機全体の概略構成を説明する。
X軸スライド11は、X軸ボールねじ12によってX軸方向(図1の左右方向)にスライド移動可能に設けられ、このX軸スライド11に対して、Y軸スライド13がY軸ボールねじ14によってY軸方向(図1の紙面垂直方向)にスライド移動可能に設けられている。
A first embodiment as a reference example related to the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire electronic component mounting machine will be described with reference to FIG.
The X-axis slide 11 is provided so as to be slidable in the X-axis direction (left-right direction in FIG. 1) by the X-axis ball screw 12, and the Y-axis slide 13 is moved by the Y-axis ball screw 14 relative to the X-axis slide 11. It is provided so as to be slidable in the Y-axis direction (perpendicular to the plane of FIG. 1).

Y軸スライド13には、吸着ヘッド15が設けられ、この吸着ヘッド15に昇降可能に設けられた吸着ホルダ16に吸着ノズル17が下向きに取り付けられている。吸着ホルダ16の下面には、吸着ノズル17に吸着した部品18の背景を明るくするためのバックライト19が設けられている。   The Y-axis slide 13 is provided with a suction head 15, and a suction nozzle 17 is attached downward to a suction holder 16 provided on the suction head 15 so as to be movable up and down. On the lower surface of the suction holder 16, a backlight 19 is provided for brightening the background of the component 18 sucked by the suction nozzle 17.

X軸スライド11には、吸着ノズル17に吸着した部品18をその下面側から一対の反射鏡20,21を介して撮像するCCDカメラ等のカメラ22が下向きに設けられている。このカメラ22で撮像した部品画像によって、吸着ノズル17に対する部品18の吸着位置のずれを補正するようにしている。   The X-axis slide 11 is provided with a camera 22 such as a CCD camera facing downward from the lower surface side of the component 18 sucked by the suction nozzle 17 via a pair of reflecting mirrors 20 and 21. The deviation of the suction position of the component 18 with respect to the suction nozzle 17 is corrected based on the component image captured by the camera 22.

一方の反射鏡20は、吸着ノズル17に吸着した部品18の下方に位置するように設けられ、この反射鏡20の下方には、吸着ノズル17に吸着した部品18をその下面側から照明するためのフロントライト23が設けられている。この反射鏡20は、フロントライト23の光を上方に透過させるようにハーフミラー処理が施されている。   One reflecting mirror 20 is provided so as to be positioned below the component 18 sucked by the suction nozzle 17, and the component 18 sucked by the suction nozzle 17 is illuminated below the reflecting mirror 20 from its lower surface side. The front light 23 is provided. The reflecting mirror 20 is subjected to a half mirror process so that the light from the front light 23 is transmitted upward.

この電子部品実装機の制御装置(図示せず)は、吸着ノズル17に吸着した部品18をその下面側からカメラ22で撮像し、画像処理技術によって該部品18の吸着姿勢が“正常吸着”か“異常吸着”かを判別する。以下、この吸着姿勢の判別方法を詳しく説明する。   This electronic component mounting machine control device (not shown) images the component 18 adsorbed to the adsorption nozzle 17 with the camera 22 from the lower surface side, and whether the adsorption posture of the component 18 is “normal adsorption” by image processing technology. Determine whether it is “abnormal adsorption”. Hereinafter, the method for determining the suction posture will be described in detail.

本実施例1では、出力層の数を1とした3階層型ニューラルネットワークを用いて部品18の吸着姿勢を次のようにして判別する。
図2に示すように、カメラ22で撮像した画像中の部品の位置と角度を検出して、角度補正・位置補正を施し、部品部分のみを例えば32×24[画素]のサイズで切り出した8bitグレースケール画像を部品画像データとして用いる。以下に説明する判別試験で教師データとテストデータとして使用した部品画像の一部が図3〜図6に示されている。
In the first embodiment, the suction posture of the component 18 is determined as follows using a three-layer neural network in which the number of output layers is one.
As shown in FIG. 2, the position and angle of the component in the image captured by the camera 22 are detected, angle correction / position correction is performed, and only the component portion is cut out with a size of, for example, 32 × 24 [pixel]. A gray scale image is used as component image data. A part of part images used as teacher data and test data in the discrimination test described below is shown in FIGS.

図3は正常吸着の画像例を示している。
図4は左斜め吸着の画像例を示している。左斜め吸着は、部品の左電極側面が見えている吸着状態であり、これも異常吸着の一種である。
図5は右斜め吸着の画像例を示している。右斜め吸着は、部品の右電極側面が見えている吸着状態であり、異常吸着の一種である。
FIG. 3 shows an image example of normal adsorption.
FIG. 4 shows an example of an image of left diagonal suction. Left diagonal adsorption is an adsorption state in which the left electrode side surface of the component is visible, and this is also a kind of abnormal adsorption.
FIG. 5 shows an example of an image of right diagonal suction. The right diagonal adsorption is an adsorption state in which the right electrode side surface of the component is visible, and is a kind of abnormal adsorption.

図6は横吸着の画像例を示している。横吸着は、部品の本来の側面が下向きに見えている吸着状態であり、これも異常吸着の一種である。
本例で使用した異常吸着の画像は、従来の外形サイズによる検出方法では異常吸着を全く検出できなかったものばかりである。
FIG. 6 shows an example of lateral suction image. Lateral suction is a suction state in which the original side surface of a component is seen downward, and this is also a kind of abnormal suction.
The abnormal suction images used in this example are only those in which abnormal suction could not be detected by the conventional detection method based on the external size.

図7に示すように、本例で使用した部品画像の枚数は、正常吸着画像が3657枚、異常吸着画像が6644枚(内訳は、左斜め吸着画像が3268枚、右斜め吸着画像が3332枚、横吸着画像が44枚)、合計10301枚である。これらの画像の中から、正常吸着画像を377枚、異常吸着画像を753枚(内訳は、左斜め吸着画像が368枚、右斜め吸着画像が362枚、横吸着画像が23枚)だけ選択して、合計1130枚の画像を教師データとして用いる。残りの画像は、テストデータとしてニューラルネットワークの性能評価に用いる。   As shown in FIG. 7, the number of component images used in this example is 3657 normal suction images, 6644 abnormal suction images (breakdown includes 3268 left diagonal suction images and 3332 right diagonal suction images). , 44 horizontal suction images), a total of 10301 sheets. From these images, select only 377 normal suction images and 753 abnormal suction images (including 368 left diagonal suction images, 362 right diagonal suction images, and 23 horizontal suction images). Thus, a total of 1130 images are used as teacher data. The remaining images are used for performance evaluation of the neural network as test data.

本実施例1では、図8に示す3階層型ニューラルネットワークを使用する。
この3階層型ニューラルネットワークは、入力層のニューロン数を32×24、中間層のニューロン数を128、出力層の数を1つとしている。出力層の出力値が“1.0”に近いほど“正常吸着”を示し、“0.0”に近いほど“異常吸着”を示している。
In the first embodiment, a three-layer neural network shown in FIG. 8 is used.
In this three-layer neural network, the number of neurons in the input layer is 32 × 24, the number of neurons in the intermediate layer is 128, and the number of output layers is one. As the output value of the output layer is closer to “1.0”, “normal adsorption” is indicated, and as “0.0” is indicated, “abnormal adsorption” is indicated.

学習方法は、バックプロパゲーション法を用いた。学習に際して、ニューラルネットワークのパラメータを、学習係数α=0.9、バイアス更新係数β=0.7と設定した。シグモイド関数の傾きはU0=5.0を用いた。   As a learning method, a back propagation method was used. In learning, the parameters of the neural network were set as a learning coefficient α = 0.9 and a bias update coefficient β = 0.7. The slope of the sigmoid function was U0 = 5.0.

バックプロパゲーション法による学習は、図9の(a)に示すように、同じ教師データをN回繰り返して学習させた後、次の教師データを学習させる。また、学習を行う教師データの順序は、学習の度にランダムに入れ替える。本例では、繰り返し回数N=10とした。   In learning by the back propagation method, as shown in FIG. 9A, the same teacher data is repeatedly learned N times, and then the next teacher data is learned. In addition, the order of the teacher data for learning is changed randomly at each learning. In this example, the number of repetitions N = 10.

それぞれの教師データを学習させる際には、図9の(b)に示すように、画像を平行・回転移動させて誤差を加える。また、図9の(c)に示すように、1つの教師データに対して、水平方向に反転した画像と、垂直方向に反転した画像と、水平・垂直方向に反転した画像も同時に学習させる。   When learning each teacher data, as shown in FIG. 9B, an error is added by parallel / rotating the image. Further, as shown in FIG. 9C, for one teacher data, an image inverted in the horizontal direction, an image inverted in the vertical direction, and an image inverted in the horizontal and vertical directions are learned at the same time.

以上説明した3階層型ニューラルネットワークによる教師データの学習は、電子部品実装機の制御装置によって図10の学習プログラムに従って実行される。図10の学習プログラムは、電子部品実装作業を行う前に実行される。本プログラムが起動されると、まずステップ101で、図3に示すような正常吸着の部品画像と図4、図5、図6に示すような異常吸着(左斜め吸着、右斜め吸着、横吸着)の部品画像をそれぞれ多数収集する。   The teacher data learning by the three-layer neural network described above is executed according to the learning program of FIG. 10 by the control device of the electronic component mounting machine. The learning program in FIG. 10 is executed before performing the electronic component mounting work. When this program is started, first, in step 101, the normal suction component image as shown in FIG. 3 and the abnormal suction (left diagonal suction, right diagonal suction, lateral suction) as shown in FIGS. ) A large number of parts images.

この後、ステップ102に進み、画像中の部品の位置・角度を検出した後、ステップ103に進み、xy座標に合わせて、画像中の部品の位置・角度を修正して、x軸とy軸を部品の縦横の中心線に一致させて、画像中の部品部分のみを32×24[画素]のサイズで切り出す。この際、x軸を部品の長手方向に設定し、部品の両端部の電極がy軸に関して対称位置に位置するように角度補正・位置補正を施し、部品部分のみを切り出す。   Thereafter, the process proceeds to step 102, and after detecting the position / angle of the part in the image, the process proceeds to step 103, where the position / angle of the part in the image is corrected according to the xy coordinates, and the x-axis and y-axis Are matched with the vertical and horizontal center lines of the component, and only the component portion in the image is cut out with a size of 32 × 24 [pixel]. At this time, the x-axis is set in the longitudinal direction of the component, and angle correction and position correction are performed so that the electrodes at both ends of the component are located at symmetrical positions with respect to the y-axis, and only the component portion is cut out.

そして、次のステップ104で、正常吸着画像と異常吸着画像の中からそれぞれ所定数の画像を選択して教師データを作成する。この後、ステップ105に進み、教師データを図8のニューラルネットワークに入力して正常吸着画像と異常吸着画像を学習する。   In the next step 104, a predetermined number of images are selected from the normal suction image and the abnormal suction image, respectively, and teacher data is created. Thereafter, the process proceeds to step 105, where the teacher data is input to the neural network shown in FIG. 8, and the normal suction image and the abnormal suction image are learned.

この後、ステップ106に進み、学習回数が所定回数以上になったか否かを判定し、学習回数が所定回数未満であれば、上記ステップ105に戻り、ニューラルネットワークの学習を繰り返す。これにより、学習回数が所定回数以上になるまで、ニューラルネットワークの学習を繰り返す。学習回数の繰り返し回数(所定回数)は、平均誤り率(図12参照)を目標値以内に収めるのに必要な学習回数に設定すれば良い。
なお、この図10の学習プログラムは、電子部品実装機の制御装置とは別のコンピュータで実行しても良い。
Thereafter, the process proceeds to step 106, where it is determined whether or not the number of learning is equal to or greater than a predetermined number. If the number of learning is less than the predetermined number, the process returns to step 105 and the neural network learning is repeated. Thereby, the learning of the neural network is repeated until the number of times of learning becomes a predetermined number or more. The number of learning repetitions (predetermined number) may be set to the number of learnings necessary to keep the average error rate (see FIG. 12) within the target value.
The learning program in FIG. 10 may be executed by a computer different from the control device for the electronic component mounting machine.

一方、図11の部品吸着姿勢判別プログラムは、上記図10の学習プログラムと共に特許請求の範囲でいう吸着姿勢判別手段としての役割を果たす。本プログラムは、電子部品実装機の稼働中に吸着ノズル17に部品を吸着する毎に起動され、当該部品の吸着姿勢を次のようにして判別する。   On the other hand, the component suction posture determination program in FIG. 11 plays a role as the suction posture determination means in the claims together with the learning program in FIG. This program is started every time a component is sucked to the suction nozzle 17 during operation of the electronic component mounting machine, and the suction posture of the component is determined as follows.

本プログラムが起動されると、まずステップ201で、吸着ノズル17に吸着した部品の画像をカメラ22で撮像して取り込む。この後、ステップ202に進み、画像中の部品の位置・角度を検出した後、ステップ203に進み、xy座標に合わせて、画像中の部品の位置・角度を修正して、x軸とy軸を部品の縦横の中心線に一致させて、画像中の部品部分のみを32×24[画素]のサイズで切り出す。この際、x軸を部品の長手方向に設定し、部品の両端部の電極がy軸に関して対称位置に位置するように角度補正・位置補正を施し、部品部分のみを切り出す。   When this program is started, first, in step 201, an image of a component sucked by the suction nozzle 17 is captured by the camera 22 and captured. Thereafter, the process proceeds to step 202, and after detecting the position / angle of the part in the image, the process proceeds to step 203, where the position / angle of the part in the image is corrected according to the xy coordinates, and the x-axis and y-axis Are matched with the vertical and horizontal center lines of the component, and only the component portion in the image is cut out with a size of 32 × 24 [pixel]. At this time, the x-axis is set in the longitudinal direction of the component, and angle correction and position correction are performed so that the electrodes at both ends of the component are located at symmetrical positions with respect to the y-axis, and only the component portion is cut out.

そして、次のステップ204で、切り出した画像データを教師データを図8のニューラルネットワークに入力して、次のステップ205で、ニューラルネットワークの出力層の出力値が判定閾値以上であるか否かで、部品の吸着姿勢が正常吸着か異常吸着かを判別する。出力層の出力値は、1.0に近いほど正常吸着を示し、0.0に近いほど異常吸着を示している。   Then, in the next step 204, the extracted image data is input to the neural network of FIG. 8, and in the next step 205, it is determined whether or not the output value of the output layer of the neural network is greater than or equal to the determination threshold value. Then, it is determined whether the suction posture of the component is normal suction or abnormal suction. As the output value of the output layer is closer to 1.0, normal adsorption is indicated, and as the output value is closer to 0.0, abnormal adsorption is indicated.

本発明者は、上述した方法で、図7の教師データを用いてニューラルネットワークの学習を行い、図7のテストデ−タを用いて判別実験を行った。この判別実験で、各学習回数毎のニューラルネットワークを用いて平均誤り率の変化を測定した結果を図12に示す。   The inventor performed the neural network learning using the teacher data shown in FIG. 7 by the method described above, and performed a discrimination experiment using the test data shown in FIG. In this discrimination experiment, the result of measuring the change in average error rate using a neural network for each number of learning times is shown in FIG.

この判別実験結果を調べると、学習回数が約1500回を越えるあたりから安定して平均誤り率が0.5[%]程度に収まることが判明した。図13に示すように、実際には正常吸着であるにも拘らず、異常吸着であると誤判定したものが27例あり、逆に、異常吸着のものを正常吸着であると誤判定したものが17例あった。   Examining the results of this discrimination experiment, it was found that the average error rate was stable within about 0.5 [%] after the number of learnings exceeded about 1500 times. As shown in FIG. 13, there are 27 cases that were actually judged to be abnormal adsorption despite being normal adsorption, and conversely, those that were abnormal adsorption were judged to be normal adsorption. There were 17 cases.

この判別実験での判別率は、次式で算出され、99.5[%]という高い判別率が得られ、誤り率は0.5[%]であった。
判別率=(3253+5874)/(3280+5891)×100[%]
=99.5[%]
誤り率=100−99.5[%]
=0.5[%]
The discrimination rate in this discrimination experiment was calculated by the following equation, a high discrimination rate of 99.5 [%] was obtained, and the error rate was 0.5 [%].
Discrimination rate = (3253 + 5874) / (3280 + 5891) × 100 [%]
= 99.5 [%]
Error rate = 100-99.5 [%]
= 0.5 [%]

以上説明した本実施例1によれば、予め収集した多数の正常吸着の部品画像データと異常吸着の部品画像データを教師データとしてニューラルネットワークで学習しておき、電子部品実装機の稼働中にカメラ22で撮像した部品の画像データをニューラルネットワークに入力して、当該ニューラルネットワークの出力値に基づいて当該部品の吸着姿勢が正常吸着か異常吸着かを判別するようにしたので、部品の吸着姿勢が正常吸着か異常吸着かを精度良く判別することができ、異常吸着の判別率を判別分析法よりも高めることができる。しかも、光センサ等の追加を必要とせず、現状の電子部品実装機に対してもソフトウエアの変更・追加のみで部品の異常吸着を検出するシステムを安価に構成できる利点がある。   According to the first embodiment described above, a large number of normally picked-up component image data and abnormally picked-up component image data are learned by a neural network as teacher data, and the camera is operated while the electronic component mounting machine is in operation. Since the image data of the part imaged in 22 is input to the neural network and it is determined whether the suction posture of the part is normal suction or abnormal suction based on the output value of the neural network, the suction posture of the part is It can discriminate between normal adsorption and abnormal adsorption with high accuracy, and the abnormal adsorption discrimination rate can be increased as compared with the discriminant analysis method. In addition, there is an advantage that a system for detecting abnormal adsorption of components can be configured at low cost by only changing or adding software to the current electronic component mounting machine without adding an optical sensor or the like.

上記実施例1において、正常吸着のものを異常吸着と誤判別した画像を観察すると、それらの画像の中に、明らかに正常吸着であるものが含まれていることが判明した。逆に、異常吸着のものを正常吸着と誤判別した画像を観察すると、それらの画像の中に、明らかに異常吸着であるものが含まれていることが判明した。この原因は、異常吸着には何種類かのパターンがあるにも拘らず、それらをまとめて1つの“異常吸着”というパターンに分類しているため、ニューラルネットワーク内に少なからず混乱が生じてしまっているからではないかと推測される。   In Example 1 above, it was found that when images with normal adsorption were misidentified as abnormal adsorption, the images clearly contained normal adsorption. On the other hand, when observing images in which abnormally adsorbed ones were misidentified as normal adsorbed, it was found that those images were clearly abnormally adsorbed. The reason for this is that despite the fact that there are several types of abnormal adsorption, they are grouped together into one “abnormal adsorption” pattern, resulting in some confusion in the neural network. It is presumed that it is because.

本発明を研究する過程で、様々な異常吸着の画像を観察した結果、異常吸着のパターンは、図4、図5、図6に示すように、大別して3つのパターン(右斜め吸着による異常吸着、左斜め吸着による異常吸着、横吸着による異常吸着)に分類できることが判明した。   As a result of observing various abnormal adsorption images in the course of studying the present invention, the abnormal adsorption patterns are roughly divided into three patterns (abnormal adsorption by right diagonal adsorption) as shown in FIGS. It was found that it can be classified into an abnormal adsorption due to left diagonal adsorption and an abnormal adsorption due to lateral adsorption).

そこで、本発明の実施例2では、図14及び図15に示すように、異常吸着のパターンを、右斜め吸着による異常吸着、左斜め吸着による異常吸着、横吸着による異常吸着の3つのパターンに区分し、それによって、部品の吸着姿勢を、正常吸着、右斜め吸着による異常吸着、左斜め吸着による異常吸着、横吸着による異常吸着の4つのパターンに区分して、それぞれのパターンの教師データと入力データとの類似度に応じた数値を出力する4つの出力層を設けるようにしている。   Therefore, in the second embodiment of the present invention, as shown in FIGS. 14 and 15, the abnormal adsorption pattern is divided into three patterns: abnormal adsorption by right diagonal adsorption, abnormal adsorption by left diagonal adsorption, and abnormal adsorption by lateral adsorption. In this way, the component adsorption posture is divided into four patterns: normal adsorption, abnormal adsorption by right diagonal adsorption, abnormal adsorption by left diagonal adsorption, and abnormal adsorption by lateral adsorption. Four output layers for outputting numerical values corresponding to the degree of similarity with input data are provided.

本実施例2では、図14に示す3階層型ニューラルネットワークを使用し、入力層のニューロン数を32×24、中間層のニューロン数を128、出力層の数を4とすると共に、4つの出力層1〜4の中から出力値が最大となる出力層を選択して正常吸着と異常吸着とを判別する。   In the second embodiment, the three-layer neural network shown in FIG. 14 is used, the number of neurons in the input layer is 32 × 24, the number of neurons in the intermediate layer is 128, the number of output layers is 4, and four outputs are output. The output layer having the maximum output value is selected from the layers 1 to 4 to discriminate between normal adsorption and abnormal adsorption.

この場合、図15に示すように、出力層1が正常吸着の教師データと入力データとの類似度に応じた数値を出力し、出力層2が左斜め吸着の教師データと入力データとの類似度に応じた数値を出力し、出力層3が右斜め吸着の教師データと入力データとの類似度に応じた数値を出力し、出力層4が横吸着の教師データと入力データとの類似度に応じた数値を出力する。学習方法はバックプロパゲーション法を用い、前記実施例1と同様の方法で学習した。   In this case, as shown in FIG. 15, the output layer 1 outputs a numerical value corresponding to the degree of similarity between the normal suction teacher data and the input data, and the output layer 2 is similar to the left diagonal suction teacher data and the input data. The output layer 3 outputs a numerical value according to the degree of similarity between the right diagonal suction teacher data and the input data, and the output layer 4 outputs the similarity between the side suction teacher data and the input data. The numerical value corresponding to is output. As a learning method, a back propagation method was used, and learning was performed in the same manner as in Example 1.

例えば、出力層1の出力値が他の出力層2〜4の出力値よりも大きければ、“正常吸着”と判定し、出力層2〜4のいずれかの出力値が出力層1の出力値よりも大きければ、“異常吸着”と判定する。これを具体例で説明すると、
出力層1(正常吸着)の出力値 =0.3
出力層2(左斜め吸着)の出力値=0.8
出力層3(右斜め吸着)の出力値=0.1
出力層4(横吸着)の出力値 =0.2
という出力が得られた場合、出力層2(左斜め吸着)の出力値(0.8)が最大であり、出力層2(左斜め吸着)の出力値(0.8)が出力層1(正常吸着)の出力値(0.3)よりも大きいため、“異常吸着”と判定される。
For example, if the output value of the output layer 1 is larger than the output values of the other output layers 2 to 4, it is determined as “normal adsorption”, and the output value of any of the output layers 2 to 4 is the output value of the output layer 1. If it is larger than that, it is determined as “abnormal adsorption”. This will be explained with a specific example.
Output value of output layer 1 (normal adsorption) = 0.3
Output value of output layer 2 (left diagonal adsorption) = 0.8
Output value of output layer 3 (right oblique adsorption) = 0.1
Output value of output layer 4 (lateral adsorption) = 0.2
The output value (0.8) of the output layer 2 (left oblique adsorption) is the maximum, and the output value (0.8) of the output layer 2 (left oblique adsorption) is the output layer 1 ( Since it is larger than the output value (0.3) of “normal adsorption”, it is determined as “abnormal adsorption”.

本実施例2においても、図7の教師データを用いてニューラルネットワークの学習を行い、図7のテストデ−タを用いて判別実験を行った。この判別実験で、各学習回数毎のニューラルネットワークを用いて平均誤り率の変化を測定した結果を図16に示す。   Also in the second embodiment, the neural network was learned using the teacher data shown in FIG. 7, and a discrimination experiment was conducted using the test data shown in FIG. In this discrimination experiment, the result of measuring the change in average error rate using a neural network for each number of learning times is shown in FIG.

この判別実験結果から、学習回数が約1200回を越えるあたりから安定して平均誤り率が1.5[%]程度に収まることが判明した。図17に示すように、実際には正常吸着であるにも拘らず、異常吸着であると誤判定したものは全くなかったが、異常吸着のものを正常吸着であると誤判定したものが134例あった。   From the result of this discrimination experiment, it was found that the average error rate was stable within about 1.5 [%] from the time when the number of learning exceeded about 1200 times. As shown in FIG. 17, although there was actually normal adsorption, none of them was erroneously determined to be abnormal adsorption, but what was abnormally determined to be abnormal adsorption was 134. There was an example.

この判別実験での判別率と誤り率は次式で算出される。
判別率=(3280+5757)/(3280+5891)×100[%]
=98.5[%]
誤り率=100−98.5[%]
=1.5[%]
The discrimination rate and error rate in this discrimination experiment are calculated by the following equations.
Discrimination rate = (3280 + 5757) / (3280 + 5891) × 100 [%]
= 98.5 [%]
Error rate = 100-98.5 [%]
= 1.5 [%]

出力層の数が1つのニューラルネットワークを用いた前記実施例1の場合、誤り率は、0.5[%]程度であったが、本実施例2では、ニューラルネットワークの出力層の数を4つに増やすことで、誤り率が1.5[%]程度に上昇した。しかしながら、正常吸着の画像を異常吸着であると誤判別する例が全く無くなった。   In the first embodiment in which the number of output layers is one neural network, the error rate is about 0.5 [%]. In the second embodiment, the number of output layers of the neural network is four. As a result, the error rate increased to about 1.5%. However, there has been no example of misclassifying a normal suction image as abnormal suction.

このように、本実施例2では、誤判別した画像は、全て異常吸着のものを正常吸着と誤判別したものばかりである。これらの誤判別画像を観察すると、誤判別画像の中には、その部品を回路基板に実装しても、実装精度上、実質的に問題のない吸着状態のものが多く含まれていることが判明した。従って、実質的な誤判別率はもっと低くなると思われる。よって、本実施例2のように、ニューラルネットワークの出力層の数を“正常吸着”、“左斜め吸着”、“右斜め吸着”、“横吸着”の4つに増やすことによって、性能のよい部品異常吸着判別器を構成できる。   As described above, in the second embodiment, the images that are erroneously determined are all images that are erroneously determined to be abnormally attracted from those that are abnormally attracted. When these misclassification images are observed, the misclassification images may contain a large number of adsorption states that have no problem in terms of mounting accuracy even if the component is mounted on the circuit board. found. Therefore, the substantial misclassification rate seems to be lower. Therefore, as in the second embodiment, the number of output layers of the neural network is increased to four of “normal adsorption”, “left diagonal adsorption”, “right diagonal adsorption”, and “lateral adsorption”, thereby improving the performance. A component abnormal suction discriminator can be configured.

ところで、正常吸着のものを異常吸着と誤判定すると、部品のロス及び電子部品実装機の停止によりサイクルタイムロスにつながるので、正常吸着のものを異常吸着と誤判定する頻度をできる限り低下させることが望ましい。これに対し、異常吸着のものを正常吸着と誤判別する例は、先述したように、実装上、実質的に問題にならない場合が多く含まれるため、明らかな誤判定でなければ許容できる。   By the way, misjudging normal adsorption as abnormal adsorption leads to cycle time loss due to component loss and electronic component mounting machine stoppage, so the frequency of misidentifying normal adsorption as abnormal adsorption can be reduced as much as possible. desirable. On the other hand, as described above, examples of misidentifying an abnormally adsorbed item as normal adsorbed include many cases that do not cause a substantial problem in mounting.

本実施例2のように、異常吸着のパターンが大別して3つのパターンに区分されることを考慮して、ニューラルネットワークの出力層の数を4つに増やすことで、ニューラルネットワーク内部の矛盾が解消され、結果として、正常吸着のものを異常吸着と誤判別する例が無くなり、異常吸着と誤判定することによる部品のロスや電子部品実装機の停止によるサイクルタイムロスを無くすことができる。   In consideration of the fact that abnormal adsorption patterns are roughly divided into three patterns as in the second embodiment, the number of output layers of the neural network is increased to four, thereby eliminating inconsistencies in the neural network. As a result, there is no example of misidentifying normal adsorption as abnormal adsorption, and it is possible to eliminate the loss of components due to the erroneous determination of abnormal adsorption and the cycle time loss due to the stop of the electronic component mounting machine.

人間が斜め吸着の画像を見た場合、画像中でどこか「異常である」と判定するに至る特徴的な部分があると考えられる。前記実施例1のように、出力層が1つのニューラルネットワークで構成した場合、異常吸着と判定する画像領域が非常に広範囲にわたるのではないかと推測される。   When a human sees an obliquely picked up image, it is considered that there is a characteristic part that leads to determination of “abnormal” somewhere in the image. As in the first embodiment, when the output layer is constituted by one neural network, it is presumed that the image area determined to be abnormal adsorption covers a very wide range.

一方、本実施例2のように、出力層を4つにして異常吸着の判別パターンを増やした場合、左斜め吸着の場合は左側の電極部分の画像領域に対して反応し、逆に、右斜め吸着の場合は右側の電極部分の画像領域に対して反応し、横吸着の場合は、部品上下の画像領域に反応するといった具合に、問題をより簡単な問題の集合と考えることによって、より安定した判別器を構成することが可能となる。   On the other hand, when the abnormal adsorption determination pattern is increased by using four output layers as in the second embodiment, in the case of the left diagonal adsorption, the reaction is performed on the image area of the left electrode portion, and conversely, In the case of diagonal adsorption, it reacts to the image area of the right electrode part, in the case of lateral adsorption, it reacts to the image area above and below the part, etc. A stable classifier can be configured.

前記実施例1のように、出力層が1つの場合は、右側電極部分、左側電極部分、部品上下領域を総合的に見て判定するので、正常吸着の場合でも、部品が少しずつ異なっていると、累積的に異常吸着と誤判別されることがあるのではないかと推測される。   As in the first embodiment, when there is one output layer, the right electrode portion, the left electrode portion, and the upper and lower regions of the component are comprehensively determined, so even in the case of normal adsorption, the components are slightly different. Therefore, it is presumed that there is a possibility of being erroneously determined as abnormal adsorption cumulatively.

の他、本発明は、図1に示すような構成の電子部品実装機に限定されず、様々な構成の電子部品実装機に適用して実施できる。
As a further, the present invention is not limited to the electronic component mounting apparatus configured as shown in FIG. 1, it can be carried out by applying to the electronic component mounting apparatus of various configurations.

本発明の実施例1,2で使用する電子部品実装機の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the electronic component mounting machine used in Example 1, 2 of this invention. カメラで撮像した画像から32×24[画素]の部品画像を切り出す処理を説明する図である。It is a figure explaining the process which extracts the component image of 32x24 [pixel] from the image imaged with the camera. 正常吸着の画像例を示す図である。It is a figure which shows the example of an image of normal adsorption | suction. 左斜め吸着の画像例を示す図である。It is a figure which shows the example of an image of left diagonal adsorption | suction. 右斜め吸着の画像例を示す図である。It is a figure which shows the example of an image of right diagonal adsorption. 横吸着の画像例を示す図である。It is a figure which shows the example of an image of side adsorption. 正常吸着と正常吸着(左斜め吸着、右斜め吸着、横吸着)のそれぞれについて教師データの数とテストデータの数を示す図である。It is a figure which shows the number of teacher data and the number of test data about each of normal adsorption | suction and normal adsorption | suction (left diagonal adsorption, right diagonal adsorption, side adsorption). 実施例1の3階層型ニューラルネットワークの構造を概略的に示す図である。1 is a diagram schematically illustrating a structure of a three-layer neural network according to Embodiment 1. FIG. ニューラルネットワークの学習方法を説明する図である。It is a figure explaining the learning method of a neural network. 学習プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of a learning program. 部品吸着姿勢判別プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of a components adsorption | suction attitude | position discrimination | determination program. 実施例1において、各学習回数毎のニューラルネットワークを用いて平均誤り率の変化を測定した結果を示す図である。In Example 1, it is a figure which shows the result of having measured the change of the average error rate using the neural network for every learning frequency. 実施例1のニューラルネットワークによる判別実験結果を示す図である。It is a figure which shows the discrimination experiment result by the neural network of Example 1. FIG. 実施例2の3階層型ニューラルネットワークの構造を概略的に示す図である。It is a figure which shows roughly the structure of the 3 layer type | mold neural network of Example 2. FIG. 実施例2の3階層型ニューラルネットワークの出力層1〜4の理想的な出力値を示す図である。It is a figure which shows the ideal output value of the output layers 1-4 of the three-layer neural network of Example 2. FIG. 実施例2において、各学習回数毎のニューラルネットワークを用いて平均誤り率の変化を測定した結果を示す図である。In Example 2, it is a figure which shows the result of having measured the change of the average error rate using the neural network for every learning frequency. 実施例2のニューラルネットワークによる判別実験結果を示す図である。It is a figure which shows the discrimination experiment result by the neural network of Example 2. 従来の部品吸着姿勢識別システムの構成を説明する図であり、(a)は正常吸着を説明する図、(b)は斜め吸着を説明する図である。It is a figure explaining the structure of the conventional components adsorption | suction attitude | position identification system, (a) is a figure explaining normal adsorption | suction, (b) is a figure explaining diagonal adsorption | suction.

符号の説明Explanation of symbols

11…X軸スライド、13…Y軸スライド、17…吸着ノズル、18…部品、19…バックライト、20,21…反射鏡、22…カメラ、23フロントライト   DESCRIPTION OF SYMBOLS 11 ... X-axis slide, 13 ... Y-axis slide, 17 ... Adsorption nozzle, 18 ... Parts, 19 ... Back light, 20, 21 ... Reflector, 22 ... Camera, 23 Front light

Claims (4)

電子部品実装機の吸着ノズルに吸着した部品をカメラで撮像し、画像処理技術によって当該部品の吸着姿勢が正常吸着か異常吸着かを判別する部品吸着姿勢判別方法において、 予め収集した多数の正常吸着の部品画像データと異常吸着の部品画像データを教師データとしてニューラルネットワークで学習しておき、電子部品実装機の稼働中に前記カメラで撮像した部品の画像データを前記ニューラルネットワークに入力して、当該ニューラルネットワークの出力値に基づいて当該部品の吸着姿勢が正常吸着か異常吸着かを判別する部品吸着姿勢判別方法であって、
前記ニューラルネットワークは、部品の吸着姿勢を、正常吸着、右斜め吸着による異常吸着、左斜め吸着による異常吸着、横吸着による異常吸着の4つのパターンに区分してそれぞれのパターンの教師データと入力データとの類似度に応じた数値を出力する4つの出力層を有するように構成し、各出力層の出力値を比較して正常吸着と異常吸着とを判別することを特徴とする部品吸着姿勢判別方法。
In the component suction orientation determination method, which picks up the part sucked by the suction nozzle of the electronic component mounting machine with a camera and determines whether the suction posture of the component is normal suction or abnormal suction by image processing technology, a large number of normal suction collected in advance The part image data and the abnormal part image data are learned by the neural network as teacher data, and the image data of the part imaged by the camera during operation of the electronic component mounting machine is input to the neural network, A component suction posture determination method for determining whether a suction posture of the component is normal suction or abnormal suction based on an output value of a neural network,
The neural network divides the component adsorption posture into four patterns: normal adsorption, abnormal adsorption by right diagonal adsorption, abnormal adsorption by left diagonal adsorption, and abnormal adsorption by lateral adsorption. Teacher data and input data for each pattern The component suction posture is characterized in that it has four output layers that output a numerical value corresponding to the degree of similarity with each other, and compares the output values of each output layer to discriminate between normal suction and abnormal suction How to determine.
前記複数の出力層の中から出力値が最大となる出力層を選択して正常吸着と異常吸着とを判別することを特徴とする請求項1に記載の部品吸着姿勢判別方法。 2. The component suction posture determination method according to claim 1, wherein an output layer having a maximum output value is selected from the plurality of output layers to determine normal suction and abnormal suction. 電子部品実装機の吸着ノズルに吸着した部品を撮像するカメラと、このカメラで撮像した部品の画像データを画像処理して当該部品の吸着姿勢が正常吸着か異常吸着かを判別する吸着姿勢判別手段とを備えた部品吸着姿勢判別システムにおいて、
前記吸着姿勢判別手段は、予め収集した多数の正常吸着の部品画像データと異常吸着の部品画像データを教師データとしてニューラルネットワークで学習しておき、電子部品実装機の稼働中に前記カメラで撮像した部品の画像データを前記ニューラルネットワークに入力して、当該ニューラルネットワークの出力値に基づいて当該部品の吸着姿勢が正常吸着か異常吸着かを判別する部品吸着姿勢判別システムであって、
前記ニューラルネットワークは、部品の吸着姿勢を、正常吸着、右斜め吸着による異常吸着、左斜め吸着による異常吸着、横吸着による異常吸着の4つのパターンに区分してそれぞれのパターンの教師データと入力データとの類似度に応じた数値を出力する4つの出力層を有するように構成し、各出力層の出力値を比較して正常吸着と異常吸着とを判別することを特徴とする部品吸着姿勢判別システム。
A camera that picks up an image of a component picked up by a pick-up nozzle of an electronic component mounting machine, and a pick-up posture determination unit that performs image processing on image data of the component picked up by the camera and determines whether the pick-up posture of the component is normal suction or abnormal suction In the component adsorption posture discrimination system with
The suction posture discriminating means learns a number of normal suction part image data and abnormal suction part image data collected in advance as neural data using a neural network, and picks up an image with the camera while the electronic component mounting machine is in operation. A component suction posture determination system that inputs image data of a component to the neural network and determines whether the suction posture of the component is normal suction or abnormal suction based on an output value of the neural network,
The neural network divides the component adsorption posture into four patterns: normal adsorption, abnormal adsorption by right diagonal adsorption, abnormal adsorption by left diagonal adsorption, and abnormal adsorption by lateral adsorption. Teacher data and input data for each pattern The component suction posture is characterized in that it has four output layers that output a numerical value corresponding to the degree of similarity with each other, and compares the output values of each output layer to discriminate between normal suction and abnormal suction Discriminating system.
前記複数の出力層の中から出力値が最大となる出力層を選択して正常吸着と異常吸着とを判別することを特徴とする請求項に記載の部品吸着姿勢判別システム。 4. The component suction posture determination system according to claim 3 , wherein an output layer having a maximum output value is selected from the plurality of output layers to determine normal suction and abnormal suction.
JP2006315102A 2006-11-22 2006-11-22 Component suction posture discrimination method and component suction posture discrimination system Active JP4514230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006315102A JP4514230B2 (en) 2006-11-22 2006-11-22 Component suction posture discrimination method and component suction posture discrimination system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006315102A JP4514230B2 (en) 2006-11-22 2006-11-22 Component suction posture discrimination method and component suction posture discrimination system

Publications (2)

Publication Number Publication Date
JP2008130865A JP2008130865A (en) 2008-06-05
JP4514230B2 true JP4514230B2 (en) 2010-07-28

Family

ID=39556388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006315102A Active JP4514230B2 (en) 2006-11-22 2006-11-22 Component suction posture discrimination method and component suction posture discrimination system

Country Status (1)

Country Link
JP (1) JP4514230B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084588A1 (en) * 2022-10-18 2024-04-25 ヤマハ発動機株式会社 Component mounting system and component mounting method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014363033B2 (en) * 2013-12-12 2016-11-17 Mes Medical Electronic Systems Ltd. Home testing device
JP6642474B2 (en) * 2017-02-13 2020-02-05 オムロン株式会社 State determination device, learning device, state determination method, and program
JP6824398B2 (en) * 2017-05-22 2021-02-03 株式会社Fuji Image processing equipment, multiplex communication system and image processing method
JP6899762B2 (en) * 2017-12-20 2021-07-07 ヤマハ発動機株式会社 Component mounting system
EP3751976A4 (en) * 2018-02-09 2021-02-24 Fuji Corporation System for creating learned model for component image recognition, and method for creating learned model for component image recognition
JP6884398B2 (en) * 2018-03-24 2021-06-09 株式会社ダイシン Judgment device for transported objects and transport system using this
JP7070308B2 (en) * 2018-10-05 2022-05-18 オムロン株式会社 Estimator generator, inspection device, estimator generator method, and estimator generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772094A (en) * 1993-09-02 1995-03-17 Sanyo Electric Co Ltd Inspecting apparatus for soldering
JPH117536A (en) * 1997-04-25 1999-01-12 Fuji Electric Co Ltd Device and method for recognizing picture by using neural network, and converter
JP2000307298A (en) * 1999-04-22 2000-11-02 Sony Corp Method of mounting part

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772094A (en) * 1993-09-02 1995-03-17 Sanyo Electric Co Ltd Inspecting apparatus for soldering
JPH117536A (en) * 1997-04-25 1999-01-12 Fuji Electric Co Ltd Device and method for recognizing picture by using neural network, and converter
JP2000307298A (en) * 1999-04-22 2000-11-02 Sony Corp Method of mounting part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084588A1 (en) * 2022-10-18 2024-04-25 ヤマハ発動機株式会社 Component mounting system and component mounting method

Also Published As

Publication number Publication date
JP2008130865A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP4514230B2 (en) Component suction posture discrimination method and component suction posture discrimination system
US10776911B2 (en) Information processing apparatus, identification system, setting method, and program
JP6922168B2 (en) Surface mount line quality control system and its control method
JP6630545B2 (en) Positioning method, positioning device, program, and computer-readable recording medium
CN111656883B (en) Learning completion model generation system and method for component image recognition
KR102577448B1 (en) Hand eye calibration method and system
JP2001357382A (en) Method for positioning picture in comparing inspection, comparing inspection method and comparing inspection, device
JP6727228B2 (en) Lead tip position image recognition method and lead tip position image recognition system
CN105180836A (en) Control apparatus, robot, and control method
CN102612705B (en) Fake-finger determination device, fake-finger determination method and fake-finger determination program
Ozturk et al. Detection of PCB soldering defects using template based image processing method
Lin Development of an intelligent transformer insertion system using a robot arm
US20020051570A1 (en) Apparatus and method of determining image processing parameter, and recording medium recording a program for the same
JP2009130034A (en) Front/back discriminating apparatus for suction component and front/back discriminating method for suction component
JPH08254501A (en) Method and apparatus for visual inspection
JP3890800B2 (en) Soldering state inspection method
JP4683429B2 (en) Component suction posture discrimination method and component suction posture discrimination system
KR20220118140A (en) Deep learning based injection quality inspection system
JP2021056004A (en) Image determination device and image determination method
JP4744234B2 (en) Component positioning method and apparatus
JP4565465B2 (en) Component suction posture identification method and component suction posture identification system
JP5778685B2 (en) System and method for alignment and inspection of ball grid array devices
JP2004363988A (en) Method and apparatus for detecting vehicle
WO2023095505A1 (en) Automatic defect classifier
JP3753500B2 (en) Electronic component mounting method and electronic component mounting machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100510

R150 Certificate of patent or registration of utility model

Ref document number: 4514230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250