JP4513977B2 - Rare earth sintered magnet coating method, painting tray - Google Patents

Rare earth sintered magnet coating method, painting tray Download PDF

Info

Publication number
JP4513977B2
JP4513977B2 JP2005281478A JP2005281478A JP4513977B2 JP 4513977 B2 JP4513977 B2 JP 4513977B2 JP 2005281478 A JP2005281478 A JP 2005281478A JP 2005281478 A JP2005281478 A JP 2005281478A JP 4513977 B2 JP4513977 B2 JP 4513977B2
Authority
JP
Japan
Prior art keywords
rare earth
sintered magnet
earth sintered
paint
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005281478A
Other languages
Japanese (ja)
Other versions
JP2007090195A (en
Inventor
賢 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005281478A priority Critical patent/JP4513977B2/en
Publication of JP2007090195A publication Critical patent/JP2007090195A/en
Application granted granted Critical
Publication of JP4513977B2 publication Critical patent/JP4513977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、希土類焼結磁石のコーティング方法等に関する。   The present invention relates to a method for coating a rare earth sintered magnet.

R−T−B(Rは希土類元素の1種又は2種以上、TはFe又はFe及びCo)で示されるネオジム系焼結磁石をはじめとする希土類焼結磁石は、使用雰囲気中で酸化あるいは水酸化しやすく、これによって表面に腐食が発生すると磁気特性の劣化やバラつきを招くことになる。
そこで、従来より、メッキや塗装等の各種表面処理法により、磁石表面を塗装することが行われている。塗装による被膜は、耐油性、耐薬品性、耐塩水噴霧性に優れ、しかもコストが安価であることから、特殊な用途を除いて多用されている。
塗装を行う技術としては、例えば特許文献1に、永久磁石表面に耐酸化性樹脂皮膜を形成する構成が示され、特許文献2には、熱硬化性アクリル樹脂またはエポキシ樹脂を用いた塗料液で被膜する構成が示されている。
Rare earth sintered magnets such as neodymium-based sintered magnets represented by R-T-B (R is one or more rare earth elements, T is Fe or Fe and Co) are oxidized or used in the atmosphere used. It is easy to be hydroxylated, and if this causes corrosion on the surface, the magnetic properties will be deteriorated and uneven.
Therefore, conventionally, the magnet surface has been painted by various surface treatment methods such as plating and painting. Coatings by painting are frequently used except for special applications because they are excellent in oil resistance, chemical resistance and salt spray resistance and are inexpensive.
As a technique for coating, for example, Patent Document 1 discloses a configuration in which an oxidation-resistant resin film is formed on the surface of a permanent magnet, and Patent Document 2 describes a coating liquid using a thermosetting acrylic resin or epoxy resin. The coating configuration is shown.

特開昭60−63901号公報JP-A-60-63901 特開2000−331811号公報JP 2000-331811 A

塗装を行う場合、その膜厚の管理は非常に重要である。膜厚が小さすぎると、十分な耐食性等、要求条件を満足することができず、逆に、膜厚が大きすぎると、磁気特性の低下を招くことになるからである。
塗装によるコートを行うには、特許文献2に記載されたようなディップ法のほか、スプレー法がある。特許文献2にも記載されているように、ディップ法の場合、各磁石における膜厚分布が不均一になりやすいため、遠心法等を用い、磁石表面に形成される被膜の膜厚の均一化を図りつつ塗料余剰分を吹き飛ばす必要がある。このために、この遠心法により磁石一固体中の被膜の均一性が保てない。また、一工程分、余計な手間がかかるうえ、多数の磁石を一度に遠心法で処理した場合、内周側に位置する磁石と外周側に位置する磁石とでは、作用する遠心力が異なるため、同一ロット内で膜厚に差が出てしまうことになる。
また、希土類焼結磁石の場合、磁石同士が直接接触すると火花が発生することがあるため、篭に多数の磁石を収容して塗料に浸漬するディップ法は、この点においても好ましくない。
When painting, the control of the film thickness is very important. This is because if the film thickness is too small, the required conditions such as sufficient corrosion resistance cannot be satisfied, and conversely if the film thickness is too large, the magnetic properties are deteriorated.
In order to perform coating by painting, there is a spray method in addition to the dipping method described in Patent Document 2. As described in Patent Document 2, in the case of the dip method, since the film thickness distribution in each magnet is likely to be non-uniform, the film thickness formed on the magnet surface is made uniform by using a centrifugal method or the like. It is necessary to blow off the excess paint while trying. For this reason, the uniformity of the film in one magnet solid cannot be maintained by this centrifugation method. In addition, it takes extra work for one step, and when a large number of magnets are processed at once by a centrifugal method, the acting centrifugal force differs between the magnet located on the inner circumference side and the magnet located on the outer circumference side. Thus, there will be a difference in film thickness within the same lot.
Further, in the case of rare earth sintered magnets, sparks may be generated when the magnets are in direct contact with each other. Therefore, the dipping method in which a large number of magnets are accommodated in a basket and immersed in a paint is not preferable in this respect.

一方、スプレー法では、網状のトレー上に多数の磁石を並べ、塗料をノズルにより斜め上方から吹き付けて表面のコートを行うため、上記したようなディップ法の問題を回避することができる。このとき、トレー上の最外周部に位置する磁石においては、外周側に臨む側面において、被膜の膜厚が上面よりも小さくなってしまうという問題がある。
本発明は、このような技術的課題に基づいてなされたもので、スプレー法においてトレーの最外周部に位置する磁石においても膜厚の均一化を図ることのできる希土類焼結磁石のコーティング方法等を提供することを目的とする。
On the other hand, in the spray method, a large number of magnets are arranged on a net-like tray and the surface is coated by spraying paint from an oblique upper side with a nozzle, so that the problem of the dip method as described above can be avoided. At this time, in the magnet located in the outermost peripheral part on a tray, there exists a problem that the film thickness of a film will become smaller than the upper surface in the side surface which faces an outer peripheral side.
The present invention has been made on the basis of such a technical problem, such as a coating method of a rare earth sintered magnet capable of achieving a uniform film thickness even in a magnet located on the outermost peripheral portion of a tray in a spray method. The purpose is to provide.

本発明者らは、トレー上の最外周部に位置する磁石において、外周側に臨む側面の被膜厚が上面よりも小さくなってしまう原因について追求した。
当初、トレー上の磁石に対するスプレーの動作の関係から、最外周部に位置する磁石の側面に塗料が吹き付けられる時間が他の部分の磁石よりも短いのではないかと考え、スプレーによる塗料の吹き付け時間を倍増してみた。その結果、確かにこれにより磁石の側面の被膜厚は確保できたものの、その分、磁石の上面の被膜の膜厚が、他の位置の磁石よりも大きくなってしまった。
トレー上に磁石を並べる場合、磁石の磁極面が上面となることが多いため、上面の膜厚が過大になるのは好ましくない。磁気特性上、磁石の磁極面の被膜厚は、必要最小限とするのが好ましいのである。
The inventors have sought the cause of the film thickness of the side surface facing the outer peripheral side being smaller than the upper surface in the magnet located at the outermost peripheral part on the tray.
Initially, the spraying time of the paint by the spray is considered that the time that the paint is sprayed on the side of the magnet located on the outermost peripheral part is shorter than the magnets of other parts, because of the relationship of the spray operation to the magnet on the tray I tried to double. As a result, although the film thickness on the side surface of the magnet could be secured by this, the film thickness of the film on the upper surface of the magnet was correspondingly larger than the magnets at other positions.
When magnets are arranged on a tray, the magnetic pole surface of the magnet often becomes the upper surface, so it is not preferable that the film thickness of the upper surface be excessive. From the viewpoint of magnetic characteristics, it is preferable that the film thickness of the magnetic pole face of the magnet be minimized.

そこで、更なる検討を行った結果、最外周部以外の磁石においては、隣接する磁石の上面に吹き付けられた塗料が跳ね返り、これが磁石の側面に付着していることを見出した。
このような知見からなされた本発明の希土類焼結磁石のコーティング方法は、希土類焼結磁石の表面に塗料をスプレーすることで希土類焼結磁石の表面に被膜を形成する方法であって、複数の希土類焼結磁石をトレー上に並べて配置する工程と、複数の希土類焼結磁石のうち最外周に位置する希土類焼結磁石の外周側に、上方に突出する段部または凸部を形成した状態で、塗料をスプレーする工程と、を含むことを特徴とする。
塗料をスプレーする工程で、最外周に位置する希土類焼結磁石の外周側に段部または凸部を形成した状態とするには、トレー上の、最外周に位置する希土類焼結磁石の外周側にダミー部材をセットするのが好ましい。これ以外に、最外周に位置する希土類焼結磁石の外周側において、トレーに段部または凸部を形成しておくようにしてもよい。
塗料をスプレーする工程では、トレー上の希土類焼結磁石に対し、塗料を斜め上方からスプレーする。
このようにして、最外周に位置する希土類焼結磁石の外周側に、上方に突出する段部または凸部を形成した状態で、塗料をスプレーすると、最外周に位置する希土類焼結磁石において、外周側に面した側面に塗料が良好に付着する。これは、主に、段部また凸部の上面で塗料が跳ね返り、最外周に位置する希土類焼結磁石の外周側に面した側面に塗料が付着するためである。
また、塗料をスプレーする工程では、希土類焼結磁石の上面における塗料の被膜の膜厚よりも、希土類焼結磁石の側面における被膜の膜厚を大きくすることができる。
ここで、希土類焼結磁石は65×14×6mmの直方体であり、段部または凸部を希土類焼結磁石と同寸法とし、希土類焼結磁石および段部または凸部を、互いの間隔が10mm以上70mm未満となるように並べて配置し、段部または凸部の高さは5mm〜8mmの領域とし、且つ、段部または凸部の幅を10mm以上とすることができる。
As a result of further studies, it was found that in the magnets other than the outermost peripheral portion, the paint sprayed on the upper surface of the adjacent magnet rebounds and adheres to the side surface of the magnet.
The rare earth sintered magnet coating method of the present invention made from such knowledge is a method of forming a film on the surface of the rare earth sintered magnet by spraying a paint on the surface of the rare earth sintered magnet, With the step of arranging the rare earth sintered magnets side by side on the tray and the stepped or protruding part protruding upward on the outer peripheral side of the rare earth sintered magnet located at the outermost periphery among the plurality of rare earth sintered magnets And a step of spraying the paint.
In the process of spraying paint, the outer peripheral side of the rare earth sintered magnet located on the outermost circumference on the tray is used to form a stepped portion or a convex portion on the outer peripheral side of the rare earth sintered magnet located on the outermost circumference. It is preferable to set a dummy member on the surface. In addition to this, a stepped portion or a convex portion may be formed on the tray on the outer peripheral side of the rare earth sintered magnet located on the outermost periphery.
In the step of spraying the paint, the paint is sprayed obliquely from above on the rare earth sintered magnet on the tray .
In this way, when the paint is sprayed on the outer peripheral side of the rare earth sintered magnet located on the outermost periphery, with the stepped or protruding portion protruding upward, the rare earth sintered magnet located on the outermost periphery, The paint adheres well to the side facing the outer periphery. This is mainly because the paint rebounds on the upper surface of the stepped part or the convex part, and the paint adheres to the side surface facing the outer peripheral side of the rare earth sintered magnet located on the outermost periphery.
Further, in the step of spraying the paint, the film thickness on the side surface of the rare earth sintered magnet can be made larger than the film thickness of the paint film on the upper surface of the rare earth sintered magnet.
Here, the rare earth sintered magnet is a rectangular parallelepiped of 65 × 14 × 6 mm, the stepped portion or convex portion has the same size as the rare earth sintered magnet, and the rare earth sintered magnet and the stepped portion or convex portion are spaced from each other by 10 mm. It can be arranged side by side so as to be less than 70 mm, the height of the stepped portion or convex portion can be an area of 5 mm to 8 mm, and the width of the stepped portion or convex portion can be 10 mm or more.

本発明は、希土類焼結磁石に限らず、他の様々な塗装対象物に適用することも可能である。すなわち、本発明は、塗装対象物の表面に塗料をスプレーする方法であって、複数の塗装対象物をトレー上に並べて配置する工程と、複数の塗装対象物のうち、最外周に位置する塗装対象物の外周側に、上方に突出する段部または凸部を形成した状態で、塗料をスプレーする工程と、を含むことを特徴とする塗装方法とすることもできる。
このとき、塗料をスプレーする工程では、最外周に位置する塗装対象物の外周側に段部または凸部を形成した状態とすることで、段部また凸部の上面で塗料を跳ね返らせて、最外周に位置する塗装対象物の外周側に面した側面に塗料を付着させることで、側面の塗装膜厚を確保できる。
The present invention is not limited to rare earth sintered magnets, and can be applied to various other objects to be painted. That is, the present invention is a method of spraying paint on the surface of an object to be coated, the step of arranging a plurality of objects to be arranged on a tray, and a coating located on the outermost periphery among the plurality of objects to be coated And a step of spraying a paint in a state where a stepped portion or a protruding portion protruding upward is formed on the outer peripheral side of the object.
At this time, in the step of spraying the paint, the paint is rebounded on the upper surface of the stepped portion or the convex portion by forming a stepped portion or a convex portion on the outer peripheral side of the object to be coated located on the outermost periphery. The coating film thickness on the side surface can be ensured by adhering the paint to the side surface facing the outer peripheral side of the coating object located at the outermost periphery.

本発明は、希土類焼結磁石の表面に塗料をスプレーすることで希土類焼結磁石の表面に被膜を形成するに際して用いられるトレーであって、複数の希土類焼結磁石を上面に並べたときに、最外周に位置する希土類焼結磁石の外周側に所定の間隔を隔てるよう、上方に突出する段部または凸部が形成され、段部または凸部は、塗料を斜め上方からスプレーするときに、段部また凸部の上面で塗料を跳ね返らせて、最外周に位置する希土類焼結磁石の外周側に面した側面に塗料を付着させるものであることを特徴とする塗装用トレーとすることもできる。 The present invention is a tray used for forming a film on the surface of a rare earth sintered magnet by spraying paint on the surface of the rare earth sintered magnet, and when a plurality of rare earth sintered magnets are arranged on the upper surface, A stepped portion or convex portion that protrudes upward is formed on the outer peripheral side of the rare earth sintered magnet located at the outermost periphery, and the stepped portion or convex portion is formed when spraying paint from obliquely above, A coating tray characterized in that the coating material is rebounded on the upper surface of the stepped portion or the convex portion, and the coating material adheres to the side surface facing the outer peripheral side of the rare earth sintered magnet located on the outermost periphery. You can also.

本発明によれば、最外周に位置する希土類焼結磁石や塗装対象物の外周側に、上方に突出する段部または凸部を形成した状態で、塗料をスプレーすることで、スプレー法においてトレーの最外周部に位置する磁石や塗装対象物においても側面の膜厚を確保することが可能となる。   According to the present invention, the spray is sprayed in the spray method by spraying the paint in a state in which the stepped portion or the protruding portion protruding upward is formed on the outer peripheral side of the rare earth sintered magnet or the coating object on the outermost periphery. It is possible to ensure the film thickness of the side surface even in the magnet and the coating object located at the outermost peripheral part of the film.

以下に示す実施の形態に基づいてこの発明を詳細に説明する。
まず、希土類焼結磁石の製造方法について説明する。ここでまず、本発明の適用対象の磁石について説明する。
本発明はR−T−B(Rは希土類元素の1種又は2種以上、TはFe又はFe及びCo)で示されるネオジム系焼結磁石について適用することが望ましい。もちろん、これに限らず、他の希土類焼結磁石に本発明を適用することも有効である。
The present invention will be described in detail based on the following embodiments.
First, a method for manufacturing a rare earth sintered magnet will be described. First, the magnet to which the present invention is applied will be described.
The present invention is preferably applied to a neodymium-based sintered magnet represented by R-T-B (R is one or more rare earth elements and T is Fe or Fe and Co). Of course, the present invention is not limited to this, and it is also effective to apply the present invention to other rare earth sintered magnets.

R−T−B系焼結磁石は、希土類元素(R)を25〜37wt%含有する。ここで、RはYを含む概念を有しており、したがってY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuの1種又は2種以上から選択される。Rの量が25wt%未満であると、R−T−B系焼結磁石の主相となるR14B相の生成が十分ではなく軟磁性を持つα−Feなどが析出し、保磁力が著しく低下する。一方、Rが37wt%を超えると主相であるR14B相の体積比率が低下し、残留磁束密度が低下する。またRが酸素と反応し、含有する酸素量が増え、これに伴い保磁力発生に有効なRリッチ相が減少し、保磁力の低下を招く。したがって、Rの量は25〜37wt%とする。望ましいRの量は28〜35wt%である。 The RTB-based sintered magnet contains 25 to 37 wt% of rare earth element (R). Here, R has a concept including Y. Therefore, one or two of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Selected from more than species. If the amount of R is less than 25 wt%, the R 2 T 14 B phase, which is the main phase of the RTB-based sintered magnet, is not sufficiently generated, and α-Fe having soft magnetism is precipitated and retained. The magnetic force is significantly reduced. On the other hand, when R exceeds 37 wt%, the volume ratio of the R 2 T 14 B phase, which is the main phase, decreases, and the residual magnetic flux density decreases. Further, R reacts with oxygen, the amount of oxygen contained increases, and accordingly, the R-rich phase effective for the generation of coercive force decreases, leading to a decrease in coercive force. Therefore, the amount of R is set to 25 to 37 wt%. A desirable amount of R is 28 to 35 wt%.

また、本発明が適用されるR−T−B系焼結磁石は、ホウ素(B)を0.5〜4.5wt%含有する。Bが0.5wt%未満の場合には高い保磁力を得ることができない。一方で、Bが4.5wt%を超えると残留磁束密度が低下する傾向がある。したがって、Bの上限を4.5wt%とする。望ましいBの量は0.5〜1.5wt%、さらに望ましいBの量は0.8〜1.2wt%である。
本発明が適用されるR−T−B系焼結磁石は、Coを5.0wt%以下(0を含まず)、望ましくは0.1〜3.0wt%含有することができる。CoはFeと同様の相を形成するが、キュリー温度の向上、粒界相の耐食性向上などに効果がある。
Further, the RTB-based sintered magnet to which the present invention is applied contains 0.5 to 4.5 wt% of boron (B). When B is less than 0.5 wt%, a high coercive force cannot be obtained. On the other hand, when B exceeds 4.5 wt%, the residual magnetic flux density tends to decrease. Therefore, the upper limit of B is set to 4.5 wt%. A desirable amount of B is 0.5 to 1.5 wt%, and a more desirable amount of B is 0.8 to 1.2 wt%.
The RTB-based sintered magnet to which the present invention is applied can contain Co in an amount of 5.0 wt% or less (excluding 0), preferably 0.1 to 3.0 wt%. Co forms the same phase as Fe, but is effective in improving the Curie temperature and the corrosion resistance of the grain boundary phase.

本発明が適用されるR−T−B系焼結磁石は、他の元素の含有を許容する。例えば、Al、Cu、Zr、Ti、Bi、Sn、Ga、Nb、Ta、Si、V、Ag、Ge等の元素を適宜含有させることができる。一方で、酸素、窒素、炭素等の不純物元素を極力低減することが望ましい。特に磁気特性を害する酸素は、その量を7000ppm以下、さらには5000ppm以下とすることが望ましい。酸素量が多いと非磁性成分である希土類酸化物相が増大して、磁気特性を低下させるからである。   The RTB-based sintered magnet to which the present invention is applied allows the inclusion of other elements. For example, elements such as Al, Cu, Zr, Ti, Bi, Sn, Ga, Nb, Ta, Si, V, Ag, and Ge can be appropriately contained. On the other hand, it is desirable to reduce impurity elements such as oxygen, nitrogen, and carbon as much as possible. In particular, the amount of oxygen that impairs magnetic properties is preferably 7000 ppm or less, more preferably 5000 ppm or less. This is because when the amount of oxygen is large, the rare-earth oxide phase, which is a nonmagnetic component, increases and the magnetic properties are deteriorated.

このようなR−T−B系焼結磁石は、以下のような工程を経ることで製造される。
以下、各工程の内容を説明する。なお、以下では希土類焼結磁石としてネオジム系焼結磁石であるR−T−B系焼結磁石を例にして説明するが、本発明はこれ以外のSmCo系の希土類焼結磁石に適用できることは言うまでもない。
<原料合金調整>
R−T−B系焼結磁石の原料合金は、真空又は不活性ガス、望ましくはAr雰囲気中でストリップキャスト法、その他公知の溶解法により作製することができる。ストリップキャスト法は、原料金属をArガス雰囲気などの非酸化性雰囲気中で溶解して得た溶湯を回転するロールの表面に噴出させる。ロールで急冷された溶湯は、薄板または薄片(鱗片)状に急冷凝固される。この急冷凝固された合金は、結晶粒径が1〜50μmの均質な組織を有している。原料合金は、ストリップキャスト法に限らず、高周波誘導溶解等の溶解法によって得ることができる。なお、溶解後の偏析を防止するため、例えば水冷銅板に傾注して凝固させることができる。また、還元拡散法によって得られた合金を原料合金として用いることもできる。
Such an R-T-B system sintered magnet is manufactured through the following processes.
Hereinafter, the content of each process is demonstrated. In the following description, an R-T-B system sintered magnet, which is a neodymium-based sintered magnet, will be described as an example of the rare earth sintered magnet. However, the present invention can be applied to other SmCo-based rare earth sintered magnets. Needless to say.
<Raw material alloy adjustment>
The raw material alloy of the RTB-based sintered magnet can be produced by a strip casting method or other known melting methods in a vacuum or an inert gas, preferably in an Ar atmosphere. In the strip casting method, a molten metal obtained by melting a raw metal in a non-oxidizing atmosphere such as an Ar gas atmosphere is ejected onto the surface of a rotating roll. The melt rapidly cooled by the roll is rapidly solidified in the form of a thin plate or flakes (scales). This rapidly solidified alloy has a homogeneous structure with a crystal grain size of 1 to 50 μm. The raw material alloy can be obtained not only by the strip casting method but also by a melting method such as high frequency induction melting. In order to prevent segregation after dissolution, for example, it can be solidified by pouring into a water-cooled copper plate. An alloy obtained by the reduction diffusion method can also be used as a raw material alloy.

<粉砕>
原料合金は粉砕工程に供される。粉砕工程には、粗粉砕工程と微粉砕工程とがある。まず、原料合金を、粒径数百μm程度になるまで粗粉砕する。粗粉砕は、スタンプミル、ジョークラッシャー、ブラウンミル等を用い、不活性ガス雰囲気中にて行うことが望ましい。粗粉砕に先立って、原料合金に水素を吸蔵させた後に放出させることにより粉砕を行うことが効果的である。水素放出処理は、希土類焼結磁石として不純物となる水素を減少させることを目的として行われる。水素放出のための加熱保持の温度は、200℃以上、望ましくは350℃以上とする。保持時間は、保持温度との関係、原料合金の厚さ等によって変わるが、少なくとも30分以上、望ましくは1時間以上とする。水素放出処理は、真空中又はArガスフローにて行う。なお、水素吸蔵処理、水素放出処理は必須の処理ではない。この水素粉砕を粗粉砕と位置付けて、機械的な粗粉砕を省略することもできる。
<Crushing>
The raw material alloy is subjected to a grinding process. The pulverization process includes a coarse pulverization process and a fine pulverization process. First, the raw material alloy is coarsely pulverized until the particle size becomes about several hundred μm. The coarse pulverization is desirably performed in an inert gas atmosphere using a stamp mill, a jaw crusher, a brown mill or the like. Prior to coarse pulverization, it is effective to perform pulverization by allowing hydrogen to be stored in the raw material alloy and then releasing it. The hydrogen releasing treatment is performed for the purpose of reducing hydrogen as an impurity as a rare earth sintered magnet. The temperature of heating and holding for releasing hydrogen is 200 ° C. or higher, desirably 350 ° C. or higher. The holding time varies depending on the relationship with the holding temperature, the thickness of the raw material alloy, etc., but is at least 30 minutes or longer, preferably 1 hour or longer. The hydrogen release treatment is performed in a vacuum or Ar gas flow. The hydrogen storage process and the hydrogen release process are not essential processes. This hydrogen pulverization can be regarded as coarse pulverization, and mechanical coarse pulverization can be omitted.

粗粉砕工程後、微粉砕工程に移る。微粉砕には主にジェットミルが用いられ、粒径数百μm程度の粗粉砕粉末を、平均粒径1〜10μm、望ましくは2〜6μmとする。ジェットミルは、高圧の不活性ガスを狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粗粉砕粉末を加速し、粗粉砕粉末同士の衝突やターゲットあるいは容器壁との衝突を発生させて粉砕する方法である。微粉砕前の粗紛末に潤滑剤を添加混合しても良く、微粉砕後あるいはその両方で潤滑剤を添加混合しても良い。   After the coarse pulverization process, the process proceeds to the fine pulverization process. A jet mill is mainly used for fine pulverization, and a coarsely pulverized powder having a particle size of about several hundreds of μm has an average particle size of 1 to 10 μm, preferably 2 to 6 μm. The jet mill releases a high-pressure inert gas from a narrow nozzle to generate a high-speed gas flow, accelerates the coarsely pulverized powder with this high-speed gas flow, collides with the coarsely pulverized powder, and collides with the target or the container wall. This is a method of generating a collision and crushing. A lubricant may be added to and mixed with the coarse powder before pulverization, or a lubricant may be added and mixed after pulverization or both.

<磁場中成形>
以上のようにして得られた微粉砕粉(磁性材料)を、磁場中成形し、成形体を得る。本実施の形態では、加圧方向と印加する磁界の方向が平行な成形法である平行磁界成形法を用いる。加圧方向と印加する磁界の方向が直交する直交磁界成形法を用いることもできる。
磁場中成形における成形圧力は30〜300MPa(0.3〜3ton/cm)の範囲とすればよい。成形圧力が低いほど配向性は良好となるが、成形圧力が低すぎると成形体の強度が不足して成形体の加工時に問題が生じるので、この点を考慮して上記範囲から成形圧力を選択する。磁場中成形で得られる成形体の最終的な相対密度は、50〜65%が好ましい。
本発明において印加する磁場は、800〜1600kA/m(10〜20kOe)程度とすればよい。印加する磁場は静磁界に限定されず、パルス状の磁界とすることもできる。また、静磁界とパルス状磁界を併用することもできる。パルス状の磁界を用いる場合は、2400kA/m(30kOe)程度の高い磁界を使用することが可能である。
<Molding in magnetic field>
The finely pulverized powder (magnetic material) obtained as described above is molded in a magnetic field to obtain a molded body. In the present embodiment, a parallel magnetic field forming method, which is a forming method in which the pressing direction and the direction of the applied magnetic field are parallel, is used. An orthogonal magnetic field forming method in which the pressing direction and the direction of the applied magnetic field are orthogonal can also be used.
The molding pressure in the magnetic field molding may be in the range of 30 to 300 MPa (0.3 to 3 ton / cm 2 ). The orientation becomes better as the molding pressure is lower, but if the molding pressure is too low, the strength of the molded body will be insufficient and problems will occur when processing the molded body. To do. The final relative density of the molded body obtained by molding in a magnetic field is preferably 50 to 65%.
The magnetic field applied in the present invention may be about 800 to 1600 kA / m (10 to 20 kOe). The applied magnetic field is not limited to a static magnetic field, and may be a pulsed magnetic field. A static magnetic field and a pulsed magnetic field can be used in combination. When a pulsed magnetic field is used, a magnetic field as high as about 2400 kA / m (30 kOe) can be used.

<焼結>
磁場中成形によって得られた成形体を真空又は不活性ガス雰囲気中で焼結し、R−T−B系焼結磁石を得る。焼結温度は、組成、粉砕方法、平均粒径と粒度分布の違い等、諸条件により調整する必要があるが、1000〜1200℃で1〜10時間程度焼結すればよい。
焼結後、得られた焼結体に時効処理を施すことができる。この工程は、保磁力を制御する重要な工程である。時効処理を2段に分けて行う場合には、800℃近傍、600℃近傍での所定時間の保持が有効である。800℃近傍での熱処理を焼結後に行うと、保磁力が増大するため特に有効である。また、600℃近傍の熱処理で保磁力が大きく増加するため、時効処理を1段で行う場合には、600℃近傍の時効処理を施すとよい。
<Sintering>
The molded body obtained by molding in a magnetic field is sintered in a vacuum or an inert gas atmosphere to obtain an R-T-B system sintered magnet. Although it is necessary to adjust sintering temperature by various conditions, such as a composition, a grinding | pulverization method, the difference of an average particle diameter, and a particle size distribution, what is necessary is just to sinter at 1000-1200 degreeC for about 1 to 10 hours.
After sintering, the obtained sintered body can be subjected to an aging treatment. This process is an important process for controlling the coercive force. In the case where the aging treatment is performed in two stages, it is effective to hold for a predetermined time in the vicinity of 800 ° C. and 600 ° C. When the heat treatment at around 800 ° C. is performed after sintering, it is particularly effective because the coercive force increases. In addition, since the coercive force is greatly increased by heat treatment at around 600 ° C., when the aging treatment is performed in one stage, the aging treatment at around 600 ° C. is preferably performed.

<被膜形成>
以上のようにして得られた希土類焼結磁石、特にR−T−B系焼結磁石は、その表面に塗装による被膜を形成する。塗装に用いる塗料には、アクリル樹脂系塗料、エポキシ樹脂系塗料、フェノール樹脂系塗料のいずれかを用いることができるし、さらに他の塗料を用いることもできる。
被膜の厚さは、磁石素体のサイズ、要求される耐食性のレベル等によって変動させる必要があるが、3〜30μmの範囲で適宜設定すればよい。望ましい被膜の厚さは5〜20μmである。
<Film formation>
The rare earth sintered magnet obtained as described above, particularly the RTB-based sintered magnet, forms a coating film on its surface. As the paint used for coating, any of acrylic resin-based paint, epoxy resin-based paint, and phenol resin-based paint can be used, and other paints can be used.
The thickness of the coating needs to be varied depending on the size of the magnet body, the required level of corrosion resistance, etc., but may be set as appropriate within a range of 3 to 30 μm. A desirable film thickness is 5 to 20 μm.

さて、上記したように被膜を形成するには、塗料をノズルから吹き付けるスプレー法を用いる。
このとき、図1に示すように、磁石素体(希土類焼結磁石、塗装対象物)10は、所定数を、網状あるいは板状のトレー11上に並べて配置する。図2に示すように、トレー11上に所定数の磁石素体10を並べた状態で、磁石素体10どうしの間隔S1は、図1におけるX方向、Y方向ともに、8〜10mm、好ましくは10〜70mmである。
また、図2に示したように、塗料を吹き付けるノズル20は、例えば略直方体状の磁石素体10に対し、その少なくとも2面に塗料を吹き付けることのできる所定の角度で保持されている。具体的には、トレー11の表面に対するノズル20の中心線の角度は30〜60°が好ましい。このノズル20は、図示しないアームや駆動機構によって、前記の所定の角度を維持したまま、トレー11の上面に平行に移動させることで、トレー11上の磁石素体10に塗料を吹き付ける。
Now, in order to form a film as described above, a spray method in which paint is sprayed from a nozzle is used.
At this time, as shown in FIG. 1, a predetermined number of magnet bodies (rare earth sintered magnets, objects to be coated) 10 are arranged side by side on a net-like or plate-like tray 11. As shown in FIG. 2, in a state where a predetermined number of magnet bodies 10 are arranged on the tray 11, the interval S1 between the magnet bodies 10 is 8 to 10 mm in both the X direction and the Y direction in FIG. 10-70 mm.
As shown in FIG. 2, the nozzle 20 that sprays the paint is held at a predetermined angle at which the paint can be sprayed on at least two surfaces of the magnet body 10 having a substantially rectangular parallelepiped shape, for example. Specifically, the angle of the center line of the nozzle 20 with respect to the surface of the tray 11 is preferably 30 to 60 °. The nozzle 20 is moved in parallel with the upper surface of the tray 11 while maintaining the predetermined angle by an arm or a driving mechanism (not shown), thereby spraying the paint onto the magnet body 10 on the tray 11.

ここで、図1に示したように、トレー11の外周部には、ダミーワーク(ダミー部材)30が配置されている。
このダミーワーク30は、トレー11上に並べられた複数の磁石素体10のうち、最外周に位置する磁石素体10に対し、所定の間隔S2を隔てて配置される。間隔S2は、X方向、Y方向ともに、8〜70mm、好ましくは10〜60mmである。また、ダミーワーク30の高さhは、トレー11の表面に対し、磁石素体10の高さの0.8〜1.3倍とするのが好ましい。
さらに、ダミーワーク30の幅wは、磁石素体10の幅(ダミーワーク30の幅wと同方向の寸法)の0.7〜3倍、好ましくは0.85〜1.5倍である。このとき、磁石素体10が直方体、立方体であれば、その一辺の寸法、円柱状であればその直径を磁石素体10の幅とすることができる。
Here, as shown in FIG. 1, a dummy work (dummy member) 30 is disposed on the outer periphery of the tray 11.
The dummy work 30 is arranged at a predetermined interval S2 with respect to the magnet body 10 located on the outermost periphery among the plurality of magnet bodies 10 arranged on the tray 11. The interval S2 is 8 to 70 mm, preferably 10 to 60 mm in both the X direction and the Y direction. The height h of the dummy work 30 is preferably 0.8 to 1.3 times the height of the magnet body 10 with respect to the surface of the tray 11.
Furthermore, the width w of the dummy work 30 is 0.7 to 3 times, preferably 0.85 to 1.5 times the width of the magnet body 10 (the dimension in the same direction as the width w of the dummy work 30). At this time, if the magnet body 10 is a rectangular parallelepiped or a cube, the width of the magnet body 10 can be set to the dimension of one side thereof, and if the magnet body 10 is cylindrical, the diameter thereof can be set.

このように、ダミーワーク30をセットした状態で、ノズル20から塗料を吹き付けた場合、霧状となった塗料は、ダミーワーク30の上面で跳ね返って磁石素体10の側面に付着するとともに、ダミーワーク30と最外周部の磁石素体10とで囲まれた凹部状の空間Aに滞留し、これによって磁石素体10の側面に塗料が付着しやすくなる。
その結果、トレー11の最外周部に配置された磁石素体10において、側面に形成される被膜の膜厚を十分に確保することが可能となる。
In this way, when the paint is sprayed from the nozzle 20 with the dummy work 30 set, the mist-like paint rebounds on the upper surface of the dummy work 30 and adheres to the side surface of the magnet body 10, and the dummy work 30. It stays in a concave space A surrounded by the work 30 and the magnet body 10 at the outermost periphery, and this makes it easier for paint to adhere to the side surfaces of the magnet body 10.
As a result, in the magnet body 10 arranged on the outermost peripheral portion of the tray 11, it is possible to sufficiently secure the film thickness of the coating formed on the side surface.

さらに、互いに隣接する磁石素体10どうしの間隔S1、およびダミーワーク30と最外周部に位置する磁石素体10との間隔S2を調整することで、磁石素体10の側面における被膜の厚さをコントロールすることができ、間隔S1、S2を、8〜70mm、好ましくは10〜60mmとすれば、図3に示すように、磁石素体10の上面10aの被膜の膜厚よりも、側面10bの被膜の膜厚を大きくすることが可能となる。
磁石素体10の上面10aは、磁極面とされることが多く、この部分の被膜の膜厚は、必要最小限とするのが好ましい。これに対し、磁石素体10の側面10bは、耐食性を確実なものとするため、被膜の膜厚はなるべく大きくするのが好ましい。上記条件とすることで、このような膜厚分布を有した被膜を備えた希土類焼結磁石を実現することが可能となるのである。
Furthermore, the thickness of the coating on the side surface of the magnet body 10 is adjusted by adjusting the distance S1 between the magnet bodies 10 adjacent to each other and the distance S2 between the dummy workpiece 30 and the magnet body 10 located at the outermost periphery. If the distances S1 and S2 are 8 to 70 mm, preferably 10 to 60 mm, as shown in FIG. 3, the side surface 10b is larger than the film thickness of the coating on the upper surface 10a of the magnet body 10. It is possible to increase the film thickness of the film.
The upper surface 10a of the magnet body 10 is often a magnetic pole surface, and it is preferable that the thickness of the coating on this portion be the minimum necessary. On the other hand, the side surface 10b of the magnet body 10 is preferably made as thick as possible in order to ensure corrosion resistance. By setting it as the above conditions, it becomes possible to realize a rare earth sintered magnet provided with a film having such a film thickness distribution.

なお、上記ダミーワーク30に代えて、図4に示すように、トレー11の外周部に、ダミーワーク30をセットした状態と同様の状態となるよう、凸部40や段部を形成しても良い。   Instead of the dummy work 30, as shown in FIG. 4, a convex portion 40 or a stepped portion may be formed on the outer peripheral portion of the tray 11 so as to be in the same state as the dummy work 30 is set. good.

ここで、上記構成を用いることによる効果を確認したので、その結果を以下に示す。
29.5wt%Nd−3.0wt%Dy−1.0wt%B−0.5wt%Co−残部Feの組成の合金をストリップキャスト法で作製し、水素吸排出により粗粉化させた後、ジェットミルで窒素ガスを用いて粉砕して平均粒径4μmの原料合金粉を得た。
この原料合金粉を磁場中成形し、成形体を作製した。作製した成形体を、1100℃×2時間の条件で焼結を行った後、800℃および600℃の時効処理を各1時間行い、R−T−B系焼結磁石を得た。
得られたR−T−B系焼結磁石を、65mm×14mm×6mmの直方体状に加工した。
Here, since the effect by using the said structure was confirmed, the result is shown below.
An alloy having a composition of 29.5 wt% Nd-3.0 wt% Dy-1.0 wt% B-0.5 wt% Co-remainder Fe is prepared by strip casting, coarsened by hydrogen absorption and discharge, A raw material alloy powder having an average particle size of 4 μm was obtained by pulverizing with nitrogen gas in a mill.
This raw material alloy powder was molded in a magnetic field to produce a compact. After sintering the produced molded object on the conditions of 1100 degreeC x 2 hours, 800 degreeC and 600 degreeC aging treatment were performed for 1 hour each, and the RTB type sintered magnet was obtained.
The obtained RTB-based sintered magnet was processed into a 65 mm × 14 mm × 6 mm rectangular parallelepiped shape.

加工後のR−T−B系焼結磁石の表面に、以下のようにして被膜を形成した。
(実施例1)
トレー上に、R−T−B系焼結磁石を、図1に示すように、X方向、Y方向とも12mmの間隔S1で配置し、さらにその外周側に、R−T−B系焼結磁石と同寸法に加工したステンレスブロックを、ダミーワークとして、最外周側のR−T−B系焼結磁石に対し12mmの間隔S2で配置した。
そして、スプレー法により、ノズルから塗料をR−T−B系焼結磁石に吹き付けた。塗料にはフェノール樹脂系塗料を用いた。このときのトレー表面に対するノズルの中心軸線の角度は45°、ノズルからの塗料の噴霧角度(噴霧の広がり角度)は60°とし、図1におけるY方向に斜め上方から、30cc/minの流量で塗料を吹き付けるようにした。
ノズルは、図1に示すような移動パターンMで、800mm/secの速度で移動させた。ノズルが、塗料の吹き付けを行いつつ、位置P1から位置P2まで移動した時点で、トレーを90°回転させた。そして、同様の移動パターン(ただし今回は位置P2から位置P1に向けて移動させた)でノズルを移動させつつ、塗料の吹き付けを行った。この後、同様に、トレーの90°回転と、ノズルを移動させながらの塗料の吹き付けを2回繰り返した。
塗料の吹き付けの完了後、表面に塗料が吹き付けられたR−T−B系焼結磁石を恒温槽にいれ、150℃で20分間加熱処理し、塗料の樹脂を完全に硬化させた。
A film was formed on the surface of the processed RTB-based sintered magnet as follows.
Example 1
As shown in FIG. 1, R-T-B system sintered magnets are arranged on the tray with an interval S1 of 12 mm in both the X direction and the Y direction. A stainless steel block machined to the same dimensions as the magnet was disposed as a dummy workpiece at an interval S2 of 12 mm with respect to the outermost peripheral RTB-based sintered magnet.
And the coating material was sprayed on the RTB system sintered magnet from the nozzle by the spray method. A phenol resin paint was used as the paint. At this time, the angle of the central axis of the nozzle with respect to the tray surface is 45 °, the spray angle of the paint from the nozzle (spray spread angle) is 60 °, and the flow rate is 30 cc / min from diagonally upward in the Y direction in FIG. The paint was sprayed.
The nozzle was moved at a speed of 800 mm / sec in a movement pattern M as shown in FIG. When the nozzle moved from position P1 to position P2 while spraying the paint, the tray was rotated 90 °. Then, the paint was sprayed while moving the nozzle in the same movement pattern (however, this time the nozzle was moved from the position P2 toward the position P1). Thereafter, similarly, the 90 ° rotation of the tray and the spraying of the paint while moving the nozzle were repeated twice.
After the spraying of the paint was completed, the RTB-based sintered magnet with the paint sprayed on the surface was placed in a thermostatic bath and heat-treated at 150 ° C. for 20 minutes to completely cure the paint resin.

次いで、R−T−B系焼結磁石の上下を反転させ、同様に、塗料の吹き付けとトレーの90°回転とを4回繰り返した。そして、塗料の吹き付けの完了後、表面に塗料が吹き付けられたR−T−B系焼結磁石を恒温槽にいれ、150℃で20分間加熱処理し、塗料の樹脂を完全に硬化させた。
このようにして、R−T−B系焼結磁石の表面に被膜を形成した。
Subsequently, the R-T-B system sintered magnet was turned upside down, and the spraying of the paint and the 90 ° rotation of the tray were similarly repeated four times. Then, after the spraying of the paint was completed, the RTB-based sintered magnet having the paint sprayed on the surface was placed in a thermostatic bath and heat-treated at 150 ° C. for 20 minutes to completely cure the paint resin.
In this way, a film was formed on the surface of the RTB-based sintered magnet.

(比較例1)
トレー上に、R−T−B系焼結磁石を、図1に示したように、X方向、Y方向とも12mmの間隔で配置した。このとき、実施例1で用いたダミーワークのトレー上へのセットは行わなかった。
そして、実施例1と同条件で、スプレー法により、R−T−B系焼結磁石の両面に、ノズルから塗料を吹き付け、R−T−B系焼結磁石の表面に被膜を形成した。
(Comparative Example 1)
On the tray, RTB-based sintered magnets were arranged at intervals of 12 mm in both the X direction and the Y direction, as shown in FIG. At this time, the dummy work used in Example 1 was not set on the tray.
And the coating material was sprayed from the nozzle on both surfaces of the RTB system sintered magnet by the spray method on the same conditions as Example 1, and the film was formed on the surface of the RTB system sintered magnet.

(比較例2)
比較例2としては、スプレー法ではなく、ディップ法を用いてR−T−B系焼結磁石の表面に被膜を形成した。これには、加工後のR−T−B系焼結磁石を篭状の冶具に並べて配置し、これを冶具ごとフェノール樹脂の塗料液に浸漬させ、R−T−B系焼結磁石の全面に塗料を塗布した。ついで、遠心分離機を用い、塗料を遠心乾燥させた。このときの遠心分離機の回転数は400rpm、乾燥時間は30秒とした。
塗料の塗布の完了後、R−T−B系焼結磁石を恒温槽にいれ、150℃で20分間加熱処理し、塗料の樹脂を完全に硬化させた。
このようにして、ディップ法により、R−T−B系焼結磁石の表面に被膜を形成した。
(Comparative Example 2)
As Comparative Example 2, a film was formed on the surface of the RTB-based sintered magnet by using the dipping method instead of the spray method. For this purpose, the processed R-T-B system sintered magnets are arranged side by side in a bowl-shaped jig, which is immersed in a phenol resin coating solution together with the jig, and the entire surface of the R-T-B system sintered magnet. The paint was applied to. Subsequently, the paint was centrifuged and dried using a centrifuge. The rotation speed of the centrifuge at this time was 400 rpm, and the drying time was 30 seconds.
After the application of the paint was completed, the RTB-based sintered magnet was placed in a thermostatic bath and heat-treated at 150 ° C. for 20 minutes to completely cure the paint resin.
In this way, a film was formed on the surface of the RTB-based sintered magnet by the dip method.

上記のようにして得た実施例1、比較例1、比較例2のR−T−B系焼結磁石について、それぞれ9個をサンプルとして抽出し、各サンプルの上面と側面のそれぞれ中央位置において、SEM観察により被膜の膜厚を測定した。なお、実施例1、比較例1において抽出したサンプルは、図1中に示した位置(1)〜(9)から抽出した。
その結果、比較例2のディップ法によって形成された被膜は、上面で3.81〜8.84μm、側面では3.26〜6.69μmと、バラつきが非常に大きく、量産時に十分な品質管理を行うのが困難なレベルであることが確認された。
About the R-T-B system sintered magnets of Example 1, Comparative Example 1, and Comparative Example 2 obtained as described above, 9 samples were extracted as samples, and at the center positions of the upper surface and side surfaces of each sample, respectively. The film thickness was measured by SEM observation. The samples extracted in Example 1 and Comparative Example 1 were extracted from the positions (1) to (9) shown in FIG.
As a result, the film formed by the dip method of Comparative Example 2 has a very large variation of 3.81 to 8.84 μm on the top surface and 3.26 to 6.69 μm on the side surface, and sufficient quality control at the time of mass production. It was confirmed that it was a difficult level to do.

図5は、実施例1、比較例1の、R−T−B系焼結磁石の上面における被膜の厚さ、図6は、外周側に臨む側面における被膜の厚さを示す図である。
図5、図6に示すように、ダミーワークを用いなかった比較例1のサンプルにおいては、トレー中央列に位置していたサンプル位置(4)、(5)、(6)では、上面と側面の被膜の厚さがバラつきも小さく、しかも全て5μm以上であった。しかし、トレー最外周列に位置していたサンプル位置(1)、(2)、(3)、(7)、(8)、(9)では、上面の被膜は5.62〜6.45μmとバラつきも小さく、全て5μm以上の厚さが確保できていたのに対し、外周側に面していた部分の側面の被膜については4.26〜5.17μmとバラつきが小さく、しかもほとんどの箇所で5μm未満となっており、十分な膜厚が確保できていないことが確認された。
一方、ダミーワークを用いた実施例1のサンプルにおいては、トレー上の位置にかかわらず、6.04〜7.56μmであり、バラつきが小さく、しかも全て箇所において上面と側面の被膜の厚さがともに5μm以上であることが確認された。
これにより、最外周側のR−T−B系焼結磁石のさらに外側にダミーワークを配することで、上面の被膜の膜厚が増大することなく、側面の被膜の膜厚を確保することができることが確認された。
FIG. 5 is a diagram showing the thickness of the coating on the top surface of the RTB-based sintered magnet of Example 1 and Comparative Example 1, and FIG. 6 is a diagram showing the thickness of the coating on the side facing the outer peripheral side.
As shown in FIGS. 5 and 6, in the sample of Comparative Example 1 in which no dummy workpiece was used, the upper surface and the side surface at the sample positions (4), (5), and (6) that were located in the tray central row. The thickness of the coating was small, and all were 5 μm or more. However, at the sample positions (1), (2), (3), (7), (8), and (9) that were located in the outermost row of the trays, the coating on the upper surface was 5.62 to 6.45 μm. The variation was small, and the thickness of all 5μm or more was secured. On the other hand, the coating on the side of the portion facing the outer periphery was 4.26-5.17μm, and the variation was small. It was less than 5 μm, and it was confirmed that a sufficient film thickness could not be secured.
On the other hand, in the sample of Example 1 using a dummy workpiece, it is 6.04 to 7.56 μm regardless of the position on the tray, the variation is small, and the thickness of the coating on the upper surface and the side surface is all in all locations. Both were confirmed to be 5 μm or more.
Thereby, by arranging a dummy work on the outer side of the R-T-B system sintered magnet on the outermost peripheral side, the film thickness of the side surface film is ensured without increasing the film thickness of the upper surface film. It was confirmed that

次いで、ダミーワークによる効果の度合いを確認するため、上記と同様の条件において、ダミーワークと最外周のR−T−B系焼結磁石との間隔を0〜200mmに変化させた。
その結果、図7に示すように、ダミーワークと最外周のR−T−B系焼結磁石との間隔に関わらず、最外周のR−T−B系焼結磁石の上面の被膜の厚さはほぼ一定であった。これに対し、側面の被膜の厚さは、ダミーワークと最外周のR−T−B系焼結磁石との間隔に応じて変動しており、ダミーワークと最外周のR−T−B系焼結磁石との間隔が5mm未満では、R−T−B系焼結磁石の上面に対し側面の被膜の厚さが明らかに小さい。また、ダミーワークと最外周のR−T−B系焼結磁石との間隔が10μm以上70μm未満では、R−T−B系焼結磁石の上面に対し側面の被膜の厚さが大きくなることが確認された。
このように、ダミーワークと最外周のR−T−B系焼結磁石との間隔により、最外周のR−T−B系焼結磁石の側面の被膜の厚さを確保することができ、またダミーワークと最外周のR−T−B系焼結磁石との間隔により、最外周のR−T−B系焼結磁石の側面の被膜の厚さを上面よりも厚くすることが可能であると言える。
なお、この、ダミーワークと最外周のR−T−B系焼結磁石との間隔と、被膜の厚さの関係は、最外周のR−T−B系焼結磁石に限らず、トレー上に並べて配置されるR−T−B系焼結磁石どうしの間隔についても同様のことが言えるのは明らかである。すなわち、トレー上で互いに隣り合うR−T−B系焼結磁石どうしの間隔により、R−T−B系焼結磁石の側面の被膜の厚さを変動させることが可能であり、R−T−B系焼結磁石どうしの間隔によっては、R−T−B系焼結磁石の側面の被膜の厚さを上面よりも厚くすることが可能であると言える。
Next, in order to confirm the degree of the effect of the dummy workpiece, the distance between the dummy workpiece and the outermost R-T-B system sintered magnet was changed to 0 to 200 mm under the same conditions as described above.
As a result, as shown in FIG. 7, the thickness of the coating on the upper surface of the outermost R-T-B type sintered magnet regardless of the distance between the dummy workpiece and the outermost R-T-B type sintered magnet. It was almost constant. On the other hand, the thickness of the coating on the side surface varies depending on the distance between the dummy workpiece and the outermost peripheral RTB-based sintered magnet, and the dummy workpiece and the outermost peripheral RTB system. When the distance from the sintered magnet is less than 5 mm, the thickness of the coating on the side surface is clearly smaller than the upper surface of the RTB-based sintered magnet. In addition, when the distance between the dummy workpiece and the outermost RTB-based sintered magnet is 10 μm or more and less than 70 μm, the thickness of the coating on the side surface with respect to the upper surface of the RTB-based sintered magnet is increased. Was confirmed.
Thus, the thickness of the coating on the side surface of the outermost RTB-based sintered magnet can be ensured by the distance between the dummy workpiece and the outermost RTB-based sintered magnet. Moreover, the thickness of the coating on the side surface of the outermost R-T-B type sintered magnet can be made thicker than the upper surface by the distance between the dummy work and the outermost R-T-B type sintered magnet. It can be said that there is.
The relationship between the distance between the dummy workpiece and the outermost peripheral RTB-based sintered magnet and the thickness of the coating is not limited to the outermost peripheral RTB-based sintered magnet. It is clear that the same can be said for the interval between the R-T-B system sintered magnets arranged side by side. That is, the thickness of the coating on the side surface of the RTB-based sintered magnet can be varied depending on the interval between the RTB-based sintered magnets adjacent to each other on the tray. It can be said that the thickness of the coating on the side surface of the RTB-based sintered magnet can be made larger than that of the upper surface depending on the interval between the -B-based sintered magnets.

続いて、上記実施例1と同様の条件において、ダミーワークの高さを5〜12mmに変化させた。ここでは、トレー上の最外周部(図1の(2)の位置)に配置したR−T−B系焼結磁石について、被膜の上面および側面の厚さを測定した。
その結果、図8に示すように、R−T−B系焼結磁石の高さ6mmに対し、ダミーワークの高さが、5mmを超え、8mm以下までの領域においては、R−T−B系焼結磁石の上面の被膜の厚さに比較し側面の厚さが大きくなることが確認された。さらに、ダミーワークの高さが10mm以上となると、R−T−B系焼結磁石の側面の被膜の厚さが5μm未満となり、十分な膜厚が確保できなくなることが確認された。
このように、ダミーワークの高さを適切なものとすることで、R−T−B系焼結磁石の側面の被膜の膜厚を確保することでき、さらには上面の膜厚よりも側面の厚さを大きくできることが確認された。
Subsequently, under the same conditions as in Example 1, the height of the dummy workpiece was changed to 5 to 12 mm. Here, the thickness of the upper surface and the side surface of the coating was measured for the RTB-based sintered magnet disposed on the outermost peripheral portion (position (2) in FIG. 1) on the tray.
As a result, as shown in FIG. 8, in the region where the height of the dummy work exceeds 5 mm and is 8 mm or less, the RTB-based sintered magnet has a height of 6 mm. It was confirmed that the thickness of the side surface becomes larger than the thickness of the coating on the upper surface of the sintered magnet. Furthermore, when the height of the dummy workpiece was 10 mm or more, it was confirmed that the thickness of the coating on the side surface of the RTB-based sintered magnet was less than 5 μm, and a sufficient film thickness could not be secured.
Thus, by making the height of the dummy work appropriate, the film thickness of the side film of the R-T-B system sintered magnet can be secured, and moreover, the side film thickness is higher than the film thickness of the upper surface. It was confirmed that the thickness could be increased.

さらに、実施例1と同様の条件において、最外周のR−T−B系焼結磁石とダミーワークの幅を3〜20mmに変化させた。
その結果、図9に示すように、R−T−B系焼結磁石の幅が14mmであるのに対し、ダミーワークの幅が4mm以下であると、R−T−B系焼結磁石の上面の被膜の厚さが5μm未満となり、十分な膜厚が確保できなくなることが確認された。したがって、ダミーワークの幅が狭く(薄く)、単なる壁状である場合には、R−T−B系焼結磁石の側面の被膜の膜厚維持効果が低いと言える。これはつまり、ダミーワークと最外周のR−T−B系焼結磁石との間に霧状の塗料が滞留することよりも、ダミーワークの上面で塗料が跳ね返ることのほうが、R−T−B系焼結磁石の側面の被膜の膜厚確保の面で寄与度が高い、と推察できる。
また、ダミーワークの幅が10mm以上となると、R−T−B系焼結磁石の側面の被膜の厚さに比較し側面の厚さが大きくなることが確認された。
Further, under the same conditions as in Example 1, the width of the outermost RTB-based sintered magnet and the dummy workpiece was changed to 3 to 20 mm.
As a result, as shown in FIG. 9, the width of the RTB-based sintered magnet is 14 mm, whereas the width of the dummy work is 4 mm or less, It was confirmed that the thickness of the coating on the upper surface was less than 5 μm and a sufficient film thickness could not be secured. Therefore, when the width of the dummy workpiece is narrow (thin) and has a simple wall shape, it can be said that the effect of maintaining the film thickness of the coating on the side surface of the RTB-based sintered magnet is low. In other words, it is more likely that the paint rebounds on the upper surface of the dummy work than the mist paint stays between the dummy work and the outermost RTB-based sintered magnet. It can be inferred that the contribution is high in terms of securing the film thickness of the coating on the side surface of the B-based sintered magnet.
Moreover, when the width of the dummy workpiece was 10 mm or more, it was confirmed that the thickness of the side surface was larger than the thickness of the coating on the side surface of the RTB-based sintered magnet.

このようにして、スプレー法でR−T−B系焼結磁石の表面に被膜を形成するに際し、外周側にダミーワーク、あるいはこれに類する段部や凸部を形成することで、最外周側のR−T−B系焼結磁石において、外周側に面した側面の被膜の厚さを確保することが可能となる。また、ダミーワークの幅、高さ、ダミーワークと最外周のR−T−B系焼結磁石の間隔を適切に設定することで、最外周側のR−T−B系焼結磁石における被膜の厚さを、上面よりも側面が厚いもの、あるいは十分な膜厚を確保しつつ、側面よりも上面が厚いものとすることもできる。特に、R−T−B系焼結磁石においては、被膜を形成するスプレー工程にて、上下面となる面が磁極面とされることが多い。このようなケースにおいて、磁極面(上面)は被膜の厚さが必要最小限であることが好ましい。一方、側面は耐久性確保の面で十分に厚い膜厚であることが好ましい。このような観点からして、上面よりも側面の膜厚が大きい被膜を形成できる本手法は非常に有効であると言える。   In this way, when forming a film on the surface of the RTB-based sintered magnet by the spray method, the outermost peripheral side is formed by forming a dummy workpiece on the outer peripheral side or a stepped portion or a convex portion similar thereto. In the RTB-based sintered magnet, it is possible to ensure the thickness of the coating on the side surface facing the outer peripheral side. In addition, by appropriately setting the width and height of the dummy workpiece and the distance between the dummy workpiece and the outermost RTB-based sintered magnet, the coating on the outermost RTB-based sintered magnet The thickness can be made thicker on the side surface than the upper surface, or thicker on the upper surface than the side surface while ensuring a sufficient film thickness. In particular, in an RTB-based sintered magnet, the upper and lower surfaces are often used as magnetic pole surfaces in the spraying process for forming a film. In such a case, it is preferable that the magnetic pole surface (upper surface) has a minimum coating thickness. On the other hand, it is preferable that the side surface has a sufficiently thick film for ensuring durability. From this point of view, it can be said that the present method capable of forming a film having a film thickness larger on the side surface than on the upper surface is very effective.

本実施の形態におけるR−T−B系焼結磁石のコーティング方法において、トレー上にダミーワークを配した状態を示す平面図である。In the coating method of the RTB system sintered magnet in this Embodiment, it is a top view which shows the state which has arranged the dummy workpiece | work on the tray. トレー上におけるR−T−B系焼結磁石、ダミーワークの位置関係を示す図である。It is a figure which shows the positional relationship of the RTB type | system | group sintered magnet and dummy workpiece | work on a tray. R−T−B系焼結磁石を示す斜視図である。It is a perspective view which shows a RTB type sintered magnet. 外周部に凸部を設けたトレーの一例を示す図である。It is a figure which shows an example of the tray which provided the convex part in the outer peripheral part. 実施例1、比較例1の、R−T−B系焼結磁石の上面における被膜の厚さを示す図である。It is a figure which shows the thickness of the film in the upper surface of the RTB type sintered magnet of Example 1 and Comparative Example 1. 実施例1、比較例1の、R−T−B系焼結磁石の側面における被膜の厚さを示す図である。It is a figure which shows the thickness of the film in the side surface of the RTB type sintered magnet of Example 1 and Comparative Example 1. 最外周のR−T−B系焼結磁石とダミーワークの間隔、あるいは隣り合うR−T−B系焼結磁石どうしの間隔と被膜の厚さの関係を示す図である。It is a figure which shows the relationship between the space | interval of the outermost RTB system sintered magnet and a dummy workpiece, or the space | interval between adjacent RTB system sintered magnets, and the thickness of a film. ダミーワークの高さと被膜の厚さの関係を示す図である。It is a figure which shows the relationship between the height of a dummy workpiece | work, and the thickness of a film. ダミーワークの幅と被膜の厚さの関係を示す図である。It is a figure which shows the relationship between the width | variety of a dummy workpiece | work, and the thickness of a film.

符号の説明Explanation of symbols

10…磁石素体(希土類焼結磁石、塗装対象物)、10a…上面、10b…側面、11…トレー、20…ノズル、30…ダミーワーク(ダミー部材)、40…凸部   DESCRIPTION OF SYMBOLS 10 ... Magnet body (rare earth sintered magnet, coating object), 10a ... Upper surface, 10b ... Side surface, 11 ... Tray, 20 ... Nozzle, 30 ... Dummy work (dummy member), 40 ... Projection

Claims (6)

希土類焼結磁石の表面に塗料をスプレーすることで前記希土類焼結磁石の表面に被膜を形成する方法であって、
複数の前記希土類焼結磁石をトレー上に並べて配置する工程と、
複数の前記希土類焼結磁石のうち最外周に位置する前記希土類焼結磁石の外周側に、上方に突出する段部または凸部を形成した状態で、前記トレー上の前記希土類焼結磁石に対し、前記塗料を斜め上方からスプレーする工程と、
を含み、
前記塗料をスプレーする工程では、最外周に位置する前記希土類焼結磁石の外周側に前記段部または前記凸部を形成した状態とすることで、前記段部また前記凸部の上面で前記塗料を跳ね返らせて、最外周に位置する前記希土類焼結磁石の外周側に面した側面に前記塗料を付着させることを特徴とする希土類焼結磁石のコーティング方法。
A method of forming a coating on the surface of the rare earth sintered magnet by spraying paint on the surface of the rare earth sintered magnet,
Arranging the plurality of rare earth sintered magnets side by side on a tray;
With respect to the rare earth sintered magnet on the tray , a stepped portion or a convex portion protruding upward is formed on the outer circumferential side of the rare earth sintered magnet located on the outermost circumference among the plurality of rare earth sintered magnets. Spraying the paint from obliquely above ;
Including
In the step of spraying the coating material, the stepped portion or the protruding portion is formed on the outer peripheral side of the rare earth sintered magnet located on the outermost periphery, so that the coating material is formed on the upper surface of the stepped portion or the protruding portion. The coating method of the rare earth sintered magnet is characterized in that the paint is adhered to a side surface facing the outer circumferential side of the rare earth sintered magnet located on the outermost circumference .
前記塗料をスプレーする工程で、最外周に位置する前記希土類焼結磁石の外周側に前記段部または前記凸部を形成した状態とするため、前記トレー上の、最外周に位置する前記希土類焼結磁石の外周側にダミー部材をセットすることを特徴とする請求項1に記載の希土類焼結磁石のコーティング方法。   In the step of spraying the paint, in order to make the stepped portion or the convex portion formed on the outer peripheral side of the rare earth sintered magnet located on the outermost periphery, the rare earth firing located on the outermost periphery on the tray is performed. The method for coating a rare earth sintered magnet according to claim 1, wherein a dummy member is set on the outer peripheral side of the magnetized magnet. 前記塗料をスプレーする工程で、最外周に位置する前記希土類焼結磁石の外周側に前記段部または前記凸部を形成した状態とするため、最外周に位置する前記希土類焼結磁石の外周側において、前記トレーに前記段部または前記凸部を形成しておくことを特徴とする請求項1に記載の希土類焼結磁石のコーティング方法。   In the step of spraying the paint, the outer peripheral side of the rare earth sintered magnet located on the outermost periphery in order to make the stepped portion or the convex portion formed on the outer peripheral side of the rare earth sintered magnet located on the outermost periphery. The method for coating a rare earth sintered magnet according to claim 1, wherein the stepped portion or the convex portion is formed on the tray. 前記塗料をスプレーする工程では、前記希土類焼結磁石の上面における前記塗料の被膜の膜厚よりも、前記希土類焼結磁石の側面における前記被膜の膜厚を大きくすることを特徴とする請求項1から3のいずれか1項に記載の希土類焼結磁石のコーティング方法。  2. The step of spraying the coating material is characterized in that the film thickness of the coating film on the side surface of the rare earth sintered magnet is made larger than the film thickness of the coating film of the coating material on the upper surface of the rare earth sintered magnet. 4. The method for coating a rare earth sintered magnet according to any one of items 1 to 3. 前記希土類焼結磁石は65×14×6mmの直方体であり、前記段部または前記凸部を前記希土類焼結磁石と同寸法とし、  The rare earth sintered magnet is a rectangular parallelepiped of 65 × 14 × 6 mm, and the stepped portion or the convex portion has the same dimensions as the rare earth sintered magnet,
前記希土類焼結磁石および前記段部または前記凸部を、互いの間隔が10mm以上70mm未満となるように並べて配置し、前記段部または前記凸部の高さは5mm〜8mmの領域とし、且つ、前記段部または前記凸部の幅を10mm以上とすることを特徴とする請求項1から4のいずれか1項に記載の希土類焼結磁石のコーティング方法。  The rare earth sintered magnet and the stepped portion or the convex portion are arranged side by side so that the distance between them is 10 mm or more and less than 70 mm, and the height of the stepped portion or the convex portion is an area of 5 mm to 8 mm, and The method for coating a rare earth sintered magnet according to any one of claims 1 to 4, wherein a width of the stepped portion or the convex portion is 10 mm or more.
希土類焼結磁石の表面に塗料をスプレーすることで前記希土類焼結磁石の表面に被膜を形成するに際して用いられるトレーであって、
複数の前記希土類焼結磁石を上面に並べたときに、最外周に位置する前記希土類焼結磁石の外周側に所定の間隔を隔てるよう、上方に突出する段部または凸部が形成され、
前記段部または前記凸部は、前記塗料を斜め上方からスプレーするときに、前記段部また前記凸部の上面で前記塗料を跳ね返らせて、最外周に位置する前記希土類焼結磁石の外周側に面した側面に前記塗料を付着させるものであることを特徴とする塗装用トレー。
A tray used for forming a film on the surface of the rare earth sintered magnet by spraying paint on the surface of the rare earth sintered magnet,
When the plurality of rare earth sintered magnets are arranged on the upper surface, a stepped portion or a convex portion protruding upward is formed so as to have a predetermined interval on the outer peripheral side of the rare earth sintered magnet located on the outermost periphery ,
When the paint is sprayed obliquely from above, the stepped portion or the convex portion rebounds the paint on the upper surface of the stepped portion or the convex portion, and the outer periphery of the rare earth sintered magnet located at the outermost periphery. A coating tray , wherein the paint is adhered to a side surface facing the side .
JP2005281478A 2005-09-28 2005-09-28 Rare earth sintered magnet coating method, painting tray Active JP4513977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005281478A JP4513977B2 (en) 2005-09-28 2005-09-28 Rare earth sintered magnet coating method, painting tray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005281478A JP4513977B2 (en) 2005-09-28 2005-09-28 Rare earth sintered magnet coating method, painting tray

Publications (2)

Publication Number Publication Date
JP2007090195A JP2007090195A (en) 2007-04-12
JP4513977B2 true JP4513977B2 (en) 2010-07-28

Family

ID=37976493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281478A Active JP4513977B2 (en) 2005-09-28 2005-09-28 Rare earth sintered magnet coating method, painting tray

Country Status (1)

Country Link
JP (1) JP4513977B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI709281B (en) 2016-05-13 2020-11-01 德商厄尼產品有限兩合公司 Plug contact set and method for checking a latching of the plug contact set

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6597389B2 (en) * 2015-03-18 2019-10-30 日立金属株式会社 Method for producing RTB-based sintered magnet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245873A (en) * 1988-03-28 1989-10-02 Nichiei Sangyo Kk Small article painting method and automatic painting apparatus therefor
JPH11276981A (en) * 1998-03-31 1999-10-12 Kenzai Techno Kenkyusho:Kk Coating of inorganic compact and inorganic compact
JP2000210602A (en) * 1999-01-21 2000-08-02 Mitsugi Okubo Wire mesh for spray coating
JP2001286811A (en) * 2000-04-05 2001-10-16 Hoden Seimitsu Kako Kenkyusho Ltd Spray coating method of small-sized plate like member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245873A (en) * 1988-03-28 1989-10-02 Nichiei Sangyo Kk Small article painting method and automatic painting apparatus therefor
JPH11276981A (en) * 1998-03-31 1999-10-12 Kenzai Techno Kenkyusho:Kk Coating of inorganic compact and inorganic compact
JP2000210602A (en) * 1999-01-21 2000-08-02 Mitsugi Okubo Wire mesh for spray coating
JP2001286811A (en) * 2000-04-05 2001-10-16 Hoden Seimitsu Kako Kenkyusho Ltd Spray coating method of small-sized plate like member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI709281B (en) 2016-05-13 2020-11-01 德商厄尼產品有限兩合公司 Plug contact set and method for checking a latching of the plug contact set

Also Published As

Publication number Publication date
JP2007090195A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
US11482377B2 (en) Rare earth permanent magnets and their preparation
KR101534717B1 (en) Process for preparing rare earth magnets
US9774220B2 (en) Permanent magnet and motor
US10160037B2 (en) Rare earth magnet and its preparation
US9154004B2 (en) Rare earth sintered magnet and motor
KR101447301B1 (en) Process for producing sintered NdFeB MAGNET
JP4241890B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP5744269B2 (en) Production of ND-Fe-B magnets using hot pressing with reduced dysprosium or terbium
KR20060057540A (en) Rare earth-iron-boron based magnet and method for production thereof
US7014718B2 (en) Rare earth magnet alloy ingot, manufacturing method for the same, R-T-B type magnet alloy ingot, R-T-B type magnet, R-T-B type bonded magnet, R-T-B type exchange spring magnet alloy ingot, R-T-B type exchange spring magnet, and R-T-B type exchange spring bonded magnet
JP2017139259A (en) Alloy for r-t-b-based sintered magnet and r-t-b-based sintered magnet
EP3667685A1 (en) Heat-resistant neodymium iron boron magnet and preparation method therefor
PH12015500446B1 (en) Production method for rare earth permanent magnet
JP4513977B2 (en) Rare earth sintered magnet coating method, painting tray
JP4702536B2 (en) Painting method
US9850559B2 (en) Permanent magnet and variable magnetic flux motor
JP2006187775A (en) Apparatus and method for molding powder
JP3914557B2 (en) Rare earth sintered magnet
JP4539288B2 (en) Rare earth sintered magnet
JP2006097092A (en) Method for sintering rare-earth magnet
JP2006156789A (en) Process for producing small ring magnet
US20240212896A1 (en) R-t-b based permanent magnet
JPH07201623A (en) Sintered magnet and its production
CN115938772A (en) Method for producing rare earth sintered magnet
CN115148436A (en) Alloy for R-T-B-based permanent magnet and method for producing R-T-B-based permanent magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4513977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100504

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4