JP4511666B2 - Cooling shaping method and cooling shaping apparatus for profile extrusion molding - Google Patents

Cooling shaping method and cooling shaping apparatus for profile extrusion molding Download PDF

Info

Publication number
JP4511666B2
JP4511666B2 JP2000026660A JP2000026660A JP4511666B2 JP 4511666 B2 JP4511666 B2 JP 4511666B2 JP 2000026660 A JP2000026660 A JP 2000026660A JP 2000026660 A JP2000026660 A JP 2000026660A JP 4511666 B2 JP4511666 B2 JP 4511666B2
Authority
JP
Japan
Prior art keywords
cooling
molded product
shaping
profile extrusion
cooling shaping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000026660A
Other languages
Japanese (ja)
Other versions
JP2001212872A (en
Inventor
勇貴 氏江
忠 新子
裕喜 撰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2000026660A priority Critical patent/JP4511666B2/en
Publication of JP2001212872A publication Critical patent/JP2001212872A/en
Application granted granted Critical
Publication of JP4511666B2 publication Critical patent/JP4511666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • B29C47/92

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱可塑性樹脂製の雨樋などの長手方向に沿って中空部等を有するオープンで複雑な形状の異形押出成形品の冷却賦形方法及び冷却賦形装置に関するものである。
【0002】
【従来の技術】
サッシや雨樋など異形押出成形品の場合、一般的に製品形状が対称ではなく、肉厚方向の両面から冷却可能な部位と、片面のみからしか冷却を行えない中空部の部位とが混在するため、全体を均一に冷却することが難しく、特に生産速度を上げた場合には、冷却バランスの不均一が顕著になり、熱ひずみにより成形品が変形してしまう問題点がある。
【0003】
高速に異形押出成形品を生産する際の冷却賦形方法としては、例えば、クンストシュトッフェ83(1993)8に記載されているように、長さ150mm程のドライキャリバを複数個用いる方法や、特開平7─285181号公報に記載されているように、数個の真空室で仕切られ、各室の真空圧の差で冷却水が乱流状態になっている冷却水槽中を通過させて強冷し、同時に真空室内に設けた数枚のプレートで賦形する真空噴流方法等がある。
【0004】
前者のドライキャリバを複数個用いる方法の場合には、成形品に対して部位毎に冷却がコントロールできるため、各部の冷却パランスを制御できる利点があるが、生産速度を上げるには、個々のドライバキュームキャリバを長くするか、又はドライバキュームキャリバの個数を増やす必要があり、どちらの場合も押出ライン全長が長くなのとともに、接触抵抗が大きくなり、詰まり等の成形不良が生じ易くなるために、大幅な速度向上は難しいという問題点がある。
【0005】
又、後者の真空噴流方法の場合には、冷却能力が非常に高く、かつ構造が単純で賦形時の抵抗も小さいため、サッシ等のクローズド形状で内圧によりプレートとの接触圧を確保できる中空製品には有効であるが、雨樋等のオープン形状や非対称で複雑な部位の多い製品の場合には適さないという問題点がある。
【0006】
【発明が解決しようとする課題】
本発明は、上記のような従来の問題点を解消し、長手方向に沿って中空部等を有するオープンで複雑な形状の異形押出成形品を、寸法精度よく、安定的に高速生産することができる異形押出成形品の冷却賦形方法及び冷却賦形装置を提供することを目的としてなされたものである。
【0007】
【課題を解決するための手段】
本願の請求項1に記載の発明(本発明1)は、押出成形用金型から押し出された直後の異形押出成形品を、第1冷却賦形部にて、表層部のみ全体的に冷却して、成形品形状を固定化する工程と、該異形押出成形品を、その肉厚方向の温度を均一化させる間欠部を通過させる工程と、該異形押出成形品を、第2冷却賦形部にて、成形品形状的に冷却の不足する部位を部分的に冷却するとともに賦形する工程からなる異形押出成形品の冷却賦形方法である。
【0008】
本願の請求項2に記載の発明(本発明2)は、前記間欠部において、前記異形押出成形品の冷却を行わないかもしくはその一部分を加熱し、該成形品の肉厚方向の温度分布を均一化させる本発明1の異形押出成形品の冷却賦形方法である。
【0009】
本願の請求項3に記載の発明(本発明3)は、前記間欠部において、前記異形押出成形品の冷却を行わないかもしくはその一部分を加熱し、該成形品の肉厚方向の温度分布を均一化させ、かつ前記第2冷却賦形部にて再賦形を行う部位の表面温度を熱変形温度以上となす本発明1の異形押出成形品の冷却賦形方法である。
【0010】
本願の請求項4に記載の発明(本発明4)は、押出成形用金型から押し出された直後の異形押出成形品を、表層部のみ全体的に冷却して、成形品形状を固定化する第1冷却賦形部と、該異形押出成形品を、その肉厚方向の温度を均一化させるように通過させる間欠部と、該異形押出成形品を、成形品形状的に冷却の不足する部位を部分的に冷却するとともに賦形する第2冷却賦形部とを備えている異形押出成形品の冷却賦形装置である。
【0011】
本願の請求項5に記載の発明(本発明5)は、前記第1冷却賦形部が、ドライバキュームキャリバと、その直後に連結された、前記異形押出成形品の表面に冷却用液体を直接接触させて冷却を行う冷却槽とから構成されている本発明4の異形押出成形品の冷却賦形装置である。
【0012】
本願の請求項6に記載の発明(本発明6)は、前記第1冷却賦形部が、ドライバキュームキャリバと、その直後に連結された、対流する冷却水で満たされた噴流式冷却水槽とから構成されている本発明4の異形押出成形品の冷却賦形装置である。
【0013】
本願の請求項7に記載の発明(本発明7)は、前記第2冷却賦形部が、少なくとも1つ以上のドライバキュームキャリバで構成されている本発明4乃至本発明6のいずれかの異形押出成形品の冷却賦形装置である。
【0014】
本発明により成形される異形押出成形品の材質としては、熱可塑性樹脂であれば特に限定されるものではないが、例えば、塩化ビニル樹脂、ポリエチレン、ポリプロピレン、ポリカーボネート等が挙げられる。
【0015】
【作用】
本発明の異形押出成形品の冷却賦形方法及び冷却賦形装置によれば、押出成形用金型によって予備的な形状を付与された成形品を、まず第1冷却賦形部にて、その表層部のみを全体的に急冷固化させて異形成形品の寸法及び形状を固定し、続く間欠部にて熱緩和を行い、更に続く第2冷却賦形部にて、形状的に冷却が不足する中空部等の冷却遅延部位を部分的に冷却することにより、成形品を均一に冷却することができるので、熱ひずみ等によるそりや、後変形を低減した寸法精度に優れた異形押出成形品を高速生産することができる。
特に、第1冷却賦形部にて、ドライバキュームキャリバと噴流式冷却水槽を併用すると、冷却効率が飛躍的に向上するため、高速成形時でも引き取り力による成形品の伸張を抑制することができる。更に、噴流式冷却水槽の冷却水がドライバキュームキャリバの内面と成形品の外面との隙間に逆流し、水膜を形成し、その水膜は、ドライバキュームキャリバの真空引きで吸引されるため、滞留することなる流動状態となるので、冷却効率の向上と同時に、ドライバキュームキャリバと成形品との摩擦を低減することができる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
図1は、本発明により押出成形される異形押出成形品の一例を示す断面図である。
【0017】
図1に示すように、この異形押出成形品Sは、熱可塑性樹脂製の押出成形品であって、長手方向に沿って、平板部S1の両側縁部に、正四角形状の中空部S2と、一旦下方に曲折された後、水平方向の中央側に鉤状に曲折された鉤部S3とを有する長尺体である。
【0018】
図2は、本発明の異形押出成形品の冷却賦形装置の一例を説明する模式図である。
図2に示すように、この冷却賦形装置1は、第1冷却賦形部11と、間欠部12と、第2冷却賦形部13とからなる。
【0019】
第1冷却賦形部11は、上流側から、ドライバキュームキャリバ111と、噴流式冷却水槽112と、水切りプレート113とからなる。
ドライバキュームキャリバ111は、その出口が成形品Sの最終外面形状とされている。ドライバキュームキャリバ111の中間部の内面には、スリットが設けられ、スリットの底面に吸引孔が設けられており、その吸引孔を通して水封式バキュームポンプ等によって吸引することにより、内部を通過する成形品Sの表面をその内周面に密着させることができるようになっている。
そして、押出成形用金型から押し出された直後の成形品Sの表層部のみを全体的に冷却できるようになっている。
【0020】
スリットは、内部を通過する成形品Sの進行方向に対して直交する方向に沿って設けられていてもよいし、平行する方向に沿って設けられていてもよいし、ある角度をもった斜め方向に沿って設けられていてもよい。スリットの幅は、2〜7mmが好ましい。スリットの本数は、成形品Sの進行方向に対して直交する方向に沿って設けられているか、ある角度をもった斜め方向に沿って設けられている場合には、1本以上、平行する方向に沿って設けられている場合には、2本以上設けられているのが好ましい。
【0021】
ドライバキュームキャリバ111の長さは、なるべく短い方が抵抗が少なくなるので好ましいが、引き続く噴流式冷却水槽112で強冷却する際に、熱ひずみによるそりや曲り等が生じない強度になるまで表層部のみを全体的に冷却できる長さが必要である。
【0022】
ドライバキュームキャリバ111内には、図3に示すように、成形品Sのほぼ全表面の近傍に冷媒配管111aが設けられている。冷却配管111a内を循環させる冷媒としては、特に限定されるものではなく、水、油等が使用できる。
ドライバキュームキャリバ111の材質としては、銅や真ちゅう等の高熱伝導のものが好ましい。
【0023】
噴流式冷却水槽112は、水槽の上下左右に設けられたいくつかの冷却水供給孔から水槽内に冷却水を供給し、水槽の下面又は左右面下部に設けたいくつかのドレン孔から冷却水を排出でき、供給する水量や使用する供給孔及びドレン孔の形状を選択することによって、噴流の状態を調整することができるようになっている。
尚、噴流式冷却水槽112であれば、高速成形時の冷却能力に優れ、コストや取扱いが容易であるので好ましいが、成形品Sに液体を直接接触させることによって冷却を行うことができるものであれば、噴霧式や浸水式等の種々の冷却槽が代替でき、又、冷媒となる液体は、水の他に油等の熱伝導率の高いものを用いることができる。
【0024】
この噴流式冷却水槽112では、ドライバキュームキャリバ111を通過した直後の成形品Sの表層部を急冷して、第1冷却賦形部以降の冷却賦形部において、引取力による伸張が生じない程度までの強度を付与する。
【0025】
噴流式冷却水槽112の冷却水の供給孔及びドレン孔の形状は、直径3〜20mm程度の円孔又は矩形孔が好ましく、供給孔の先端には、噴流の効果を高めるノズルを取り付けるのが好ましい。
【0026】
水切りプレート113は、噴流式冷却水槽112にて成形品Sの表面に付着した冷却水を、間欠部12に移行する際に残さないように除去するものであって、抵抗を少なくするためなるべく短い方が望ましい。
水切りプレート113は、ドライバキュームキャリバ111に設けられたのと同様のスリットと吸引孔が設けられ、その吸引孔を通して水封式バキュームポンプ等によって吸引することにより、短い長さで、内部を通過する成形品Sの表面に付着した冷却水を除去できるようになっている。
【0027】
間欠部12は、第1冷却賦形部11で冷却された成形品Sの表層部に対して、肉厚方向の温度の均一化を行う部分である。肉厚方向の温度の均一化は、主として全体的に冷却を行わないで、成形品Sの内側からの伝熱により行う。成形品Sの形状によっては、逆に遠赤外線ヒータの熱輻射により、又は、温風により部分的に加熱してもよい。
肉厚方向の温度を均一化の度合いは、成形品Sの中空部S2の周辺部(冷却遅延部位)の表面温度が熱変形温度以上になるようにするのが好ましい。
【0028】
第2冷却賦形部13は、1つ以上のドライバキュームキャリバ131によって構成されている。
第2冷却賦形部13には、成形品形状的に冷却の不足する中空部S2の冷却遅延部位を部分的に冷却すると同時に賦形するため、冷却遅延部位に対応する部分にのみ、第1冷却賦形部11のドライバキュームキャリバ111に設けられたのと同様のスリット及び吸引孔が設けられるともに、図4にも示すように、冷却遅延部位に対応する部分にのみ、冷却管131aが設けられている。
尚、冷却水量や利用する冷却管の選択により、冷却遅延部位のみを冷却するようにしてもよい。
そして、この第2冷却賦形部13を通過させることにより、通過後の成形品Sの冷却バランスが均一になるように調整する。
【0029】
図4に示すドライバキュームキャリバ131′のように、冷却遅延部位に対応する部分の周辺部のみをその内部を通過時に冷却でき、それ以外の部分は接触させることなく、接触抵抗を低減させるようにしたものであってもよい。
又、図5に示すドライバキュームキャリバ131′′のように、冷却遅延部位に対応する部分の周辺部のみをその内部を通過時に冷却でき、それ以外の部分は、空隙部分131b′′を通過させるようにして、接触抵抗を低減させるようにしたものであってもよい。
【0030】
又、上記の例では、ドライバキュームキャリバ1つの構成としたが、複雑な形状を有する成形品の場合には、2つ以上のドライバキュームキャリバの組み合せであってもよい。
【0031】
又、第2冷却賦形部の進行方向側に、更に浸水式冷却水槽、噴霧式冷却水槽、風流式冷却部を設け、切断機に至るまでに、成形品の深部まで冷却を行うようにしてもよい。
【0032】
次に、本発明の異形押出成形品の冷却賦形方法の一例を、図2を参照して説明する。
まず、最初の工程において、押出成形用金型から押し出された直後の成形品Sを、第1冷却賦形部11にて、表層部のみ全体的に冷却して、成形品形状を固定化する。
【0033】
この際、図3にも示すように、ドライバキュームキャリバ111の内部を吸引孔より吸引するようにして、内部を通過する成形品Sの表面をその内面に密着させつつ、成形品Sのほぼ全表面の近傍に設けられている冷媒配管111a中を循環する冷媒により冷却を行い、更に、続く噴流式冷却水槽112内にて、通過する成形品Sの表面を冷却水を噴流状態にて直接接触させる急冷を行った後、水切りプレート113にて成形品Sの表面に付着した冷却水を除去するようにして、成形品形状を固定化する。
【0034】
ここでいう成形品Sの表層部は、当然、成形品Sの材質、生産速度、厚み等の形状によって異なるが、第1冷却賦形部11以降の冷却賦形部において、引取力による伸張が生じない程度までの強度を発現する厚みを指す。
【0035】
第1冷却賦形部11では、その後の工程にて引取力による伸張が生じない程度まで強度を付与する。すなわち、成形品Sの骨格となる部位に関しては、肉厚方向の平均樹脂温度が熱変形温度未満となるまで冷却する。それと同時に、第2冷却賦形部13で再賦形を行うべき中空部S2の周辺の遅延冷却部位に関しては、肉厚方向の平均樹脂温度が熱変形温度以上となるように冷却する必要がある。
【0036】
尚、成形品Sの骨格となる部位に関しては、肉厚方向の平均樹脂温度を実測することは困難であるため、第1冷却賦形部11を出てから、内部からの伝熱による上昇がほぼ平衡状態になった成形品Sの表面温度が熱変形温度未満となるのが目安となる。
【0037】
中間の工程において、第1冷却賦形部11を通過した成形品Sを、間欠部12を通過させることによりその肉厚方向の温度を均一化させる。
この際、図3に示すように、遠赤外線ヒータ241の熱輻射により、又は、温風により部分的に加熱して、内側からの伝熱による温度の均一化を図るようにしてもよい。
この工程においては、第2冷却賦形部13にて再賦形を行う部位の表面温度が熱変形温度以上となるように内側からの伝熱による温度の均一化を図るのが好ましい。
【0038】
最後の工程において、間欠部12を通過した成形品Sを、第2冷却賦形部13を通過させることにより、成形品形状的に冷却の不足する冷却遅延部位を部分的に冷却すると同時に賦形する。
この際に、図5にも示すように、ドライバキュームキャリバ131の内部を吸引孔より吸引するようにして、内部を通過する成形品Sの表面をその内面に密着させつつ、中空部分S2(冷却遅延部)の表面を、その対応する部分にのみ設けられた冷媒配管131a中を循環する冷媒により冷却を行い、引取機にて引き取った後、切断機にて所定の寸法に切断して製品となす。
【0039】
(実施例)
実施例1
図2に示す冷却賦形装置1を用いて、図2を主に参照して説明した冷却賦形方法により、図1に示すような平板部S1の両端部に中空部S2と鉤部S3を有する成形品Sの押出成形を行った。
【0040】
材料としては、硬質塩化ビニル樹脂(徳山積水社製、商品名「TS1000R」)100重量部に対して、安定剤(三共有機合成社製、商品名「ONZ−142F」)2重量部と、滑剤1(三井化学社製、商品名「Hiwax220mp」)1重量部と、滑剤2(理研ビタミン社製、商品名「S−1000」)0.5重量部と、滑剤3(日本油脂社製、ステリン酸)0.5重量部と、充填剤(白石工業社製、商品名「白艶華CCR」)3重量部とを配合したものを用いた。
成形速度を7m/分とし、成形樹脂温度は190℃とした。更に詳細には、図8に示す制御部位に対応する押出条件は表1に示すとおりである。
【0041】
【表1】

Figure 0004511666
【0042】
第1冷却賦形11のドライバキュームキャリバ111の長さを200mm、噴流式冷却水槽112の長さを90mmとした。ドライバキュームキャリバ111は、出口側80mmは熱伝導率のより真ちゅうとし、それ以外の材質はSUS304とした。
ドライバキュームキャリバ111の冷媒は水温15℃の水を用い、その水量は10リットル/分とし、噴流式冷却水槽112の冷媒も15℃の水とした。
【0043】
間欠部12は、成形品Sの第1冷却賦形部11での急冷による肉厚方向の熱ひずみを緩和し、中空部S2の周辺の冷却遅延部の表面を第2冷却賦形部13で再賦形を行える熱変形温度まで熱戻りさせるだけの長さとするため、150mmとした。
【0044】
その結果、成形速度を7m/分の高速成形でも、問題なく成形品Sの成形を行うことができた。
冷却賦形中に、間欠部12において、図8及び図9に示すように、成形品Sの中空部S2及び幅方向の中央部上で進行方向に第1冷却賦形部の出口から10mm、30mm、50mm、80mm、100mm、150mmの表面温度を、非接触式赤外線温度センサー2にて測定した値を出した。その結果を表2に示す。
【0045】
又、第2冷却賦形部13以降の部分で、図8及び図9に示すように、成形品Sの中空部S2及び幅方向の中央部上で進行方向に第2冷却賦形部の出口から10mm、30mm、50mm、80mm、100mm、150mmの表面温度を、非接触式赤外線温度センサー3にて測定した値を出した。その結果を表2に示す。
【0046】
又、得られた成形品Sについて、図10に示す部位の寸法を測定し、設計寸法に対する割合を算出した。その結果を表3に示す。
【0047】
比較例
従来方式の冷却賦形方法の1つであるドライバキュームキャリバ(全長420mm、材質SUS304)のみを用いて冷却賦形を行ったこと、成形速度を叙上に上げていったこと以外は、実施例と同様にして、図1に示すのと同じ異形押出成形品の成形を行った。
その結果、成形速度が5m/分を超えた時点で、ドライバキュームキャリバ内で成形品に伸張が生じるため、ドライバキュームキャリバ内で成形品の切断が生じてしまってそれ以上成形を行うことができなかった。
成形速度が5m/分のときの、ドライバキュームキャリバを出た部分で、実施例と同様にして、成形品の表面温度の測定を行った。その結果を表2に示す。
【0048】
成形速度を5m/分にて成形して得られた成形品について、実施例と同様の寸法を測定し、設計寸法に対する割合を算出した。その結果を表3に示す。
【0049】
【表2】
Figure 0004511666
【0050】
【表3】
Figure 0004511666
【0051】
表2からも明らかなように、本発明の実施例の場合には、成形速度が7m/分の場合でも、成形品各部の冷却が、比較例の成形速度が5m/分で成形した場合比較しても、均一に行えており、冷却むらから生ず熱ひずみが小さくなることが容易に予想できる。
【0052】
表3からも明らかなように、本発明の実施例の場合には、成形速度が7m/分の場合でも、成形品各部の寸法は設計寸法の3%以内に納まっており、比較例の成形速度が5m/分で成形した成形品と比べても寸法精度が優れている。
【0053】
【発明の効果】
本発明の異形押出成形品の冷却賦形方法及び冷却賦形装置は、上記の構成とされていることにより、長手方向に沿って中空部等を有するオープンで複雑な形状の異形押出成形品を、寸法精度よく、安定的に高速生産することができる。
【図面の簡単な説明】
【図1】本発明により押出成形される異形押出成形品の一例を示す断面図である。
【図2】本発明の冷却賦形装置の一例を冷却賦形方法の一例とともに説明する模式図である。
【図3】図2に示す冷却賦形装置における、第1冷却賦形部のドライバキュームキャリバの一例を示す断面図である。
【図4】図2に示す冷却賦形装置における、第2冷却賦形部のドライバキュームキャリバの一例を示す断面図である。
【図5】図2に示す冷却賦形装置における、第2冷却賦形部のドライバキュームキャリバの別の例を示す断面図である。
【図6】図2に示す冷却賦形装置における、第2冷却賦形部のドライバキュームキャリバの更に別の例を示す断面図である。
【図7】本発明の実施例における、制御部位を示す模式図である。
【図8】本発明の実施例において、成形品の間欠部及び第2冷却賦形部を出た後における表面温度を測定した部位を説明する模式図である。
【図9】本発明の実施例において、成形品の間欠部及び第2冷却賦形部を出た後における表面温度を測定した部位を説明する模式図である。
【図10】(a)及び(b)は、それぞれ、本発明の実施例において得られた異形押出成形品について寸法を測定した部位を示す。
【符号の説明】
S 成形品
S1 平板部
S2 中空部
S3 鉤部
1,2 冷却賦形装置
11,21 第1冷却賦形部
12,22 間欠部
13,23 第2冷却賦形部
111,131,131′,131′′ ドライバキュームキャリバ
112 噴流式冷却水槽
113 水切りプレート[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling shaping method and a cooling shaping apparatus for an open and complex shaped profile extrusion-molded product having a hollow portion or the like along a longitudinal direction of a rain gutter made of a thermoplastic resin.
[0002]
[Prior art]
In the case of profile extrusions such as sashes and rain gutters, the product shape is generally not symmetrical, and there are a mixture of parts that can be cooled from both sides in the thickness direction and hollow parts that can be cooled only from one side. Therefore, it is difficult to uniformly cool the whole, and particularly when the production rate is increased, there is a problem that the non-uniform cooling balance becomes remarkable and the molded product is deformed by thermal strain.
[0003]
As a cooling shaping method when producing a profile extrusion molded product at high speed, for example, as described in Kunststock 83 (1993) 8, a method using a plurality of dry calibers having a length of about 150 mm, As described in Japanese Patent Application Laid-Open No. 7-285181, it is partitioned by several vacuum chambers and is passed through a cooling water tank in which the cooling water is in a turbulent state due to the difference in vacuum pressure of each chamber. There is a vacuum jet method in which strong cooling is performed and a plurality of plates provided at the same time in a vacuum chamber are formed.
[0004]
In the case of the former method using a plurality of dry calibers, the cooling can be controlled for each part of the molded product, so there is an advantage that the cooling balance of each part can be controlled. It is necessary to lengthen the vacuum caliber or increase the number of driver calibers. However, there is a problem that it is difficult to increase the speed.
[0005]
In the case of the latter vacuum jet method, the cooling capacity is very high, the structure is simple, and the resistance at the time of shaping is small. Therefore, a closed shape such as a sash can be used to secure the contact pressure with the plate by internal pressure. Although effective for products, there is a problem that it is not suitable for products with many open parts such as rain gutters and asymmetrical and complicated parts.
[0006]
[Problems to be solved by the invention]
The present invention eliminates the above-mentioned conventional problems, and can stably and rapidly produce a deformed extruded product having an open and complicated shape having a hollow portion or the like along the longitudinal direction with high dimensional accuracy. The object of the present invention is to provide a cooling shaping method and a cooling shaping apparatus for a deformed extruded product.
[0007]
[Means for Solving the Problems]
In the invention according to claim 1 of the present application (present invention 1), the profile extrusion molded product immediately after being extruded from the extrusion mold is cooled only at the surface layer portion entirely at the first cooling shaping portion. A step of fixing the shape of the molded product, a step of passing the modified extruded product through an intermittent portion for equalizing the temperature in the thickness direction, and a second cooling shaped portion of the modified extruded product. In the method of cooling shaping of the profile extrusion molding product comprising the step of partially cooling and shaping the portion of the molded product which is insufficiently cooled.
[0008]
In the invention according to claim 2 of the present application (invention 2), in the intermittent portion, the profile extrusion molded product is not cooled or a part thereof is heated, and the temperature distribution in the thickness direction of the molded product is determined. It is the cooling shaping method of the profile extrusion molded product of this invention 1 made uniform.
[0009]
In the invention according to claim 3 of the present application (invention 3), in the intermittent portion, the profile extruded product is not cooled or a part thereof is heated, and the temperature distribution in the thickness direction of the molded product is determined. It is the cooling shaping method of the profile extrusion molded product of this invention 1 which makes uniform the surface temperature of the site | part which rehomogenizes in the said 2nd cooling shaping part more than a heat-deformation temperature.
[0010]
The invention according to claim 4 of the present application (Invention 4) fixes the shape of the molded product by cooling the profile extruded product immediately after being extruded from the mold for extrusion molding only the surface layer portion. The first cooling shaped part, the intermittent part through which the profile-extruded product is passed so as to make the temperature in the thickness direction uniform, and the part where the profile-extruded product is insufficiently cooled in the shape of the molded product It is the cooling shaping apparatus of the profile extrusion molded product provided with the 2nd cooling shaping part which cools and shape | molds partially.
[0011]
In the invention according to claim 5 of the present application (invention 5), the first cooling shaping portion is directly connected to the driver cum caliber, and the cooling liquid is directly applied to the surface of the profile extrusion-molded product. It is the cooling shaping apparatus of the profile extrusion molded product of this invention 4 comprised from the cooling tank which is made to contact and cools.
[0012]
The invention according to claim 6 of the present application (invention 6) is characterized in that the first cooling shaping portion is a driver-cum-caliber, and a jet-type cooling water tank filled with convection cooling water connected immediately thereafter. It is the cooling shaping apparatus of the profile extrusion molding product of this invention 4 comprised from these.
[0013]
The invention according to claim 7 of the present application (the present invention 7) is the variant of any one of the present invention 4 to the present invention 6 in which the second cooling shaping portion is composed of at least one driver cum caliber. This is a cooling shaping apparatus for extruded products.
[0014]
The material of the profile extrusion-molded article molded according to the present invention is not particularly limited as long as it is a thermoplastic resin, and examples thereof include vinyl chloride resin, polyethylene, polypropylene, and polycarbonate.
[0015]
[Action]
According to the cooling shaping method and the cooling shaping apparatus of the profile extrusion molded product of the present invention, the molded product given the preliminary shape by the extrusion molding die is first, at the first cooling shaping portion, Only the surface layer is rapidly cooled and solidified as a whole to fix the dimensions and shape of the deformed product, heat is relaxed at the subsequent intermittent portion, and cooling is insufficient in shape at the subsequent second cooling shaping portion. By partially cooling the cooling delay part such as the hollow part, it is possible to cool the molded product uniformly, so it is possible to produce a profile extrusion molded product with excellent dimensional accuracy with reduced warpage and post deformation. High-speed production is possible.
In particular, when a driver cum caliber and a jet-type cooling water tank are used in combination in the first cooling shaping section, the cooling efficiency is dramatically improved, so that the extension of the molded product due to the take-off force can be suppressed even during high-speed molding. . Furthermore, since the cooling water in the jet-type cooling water tank flows back into the gap between the inner surface of the driver cum caliber and the outer surface of the molded product, a water film is formed, and the water film is sucked by evacuation of the driver cum caliber. Since it is in a fluid state that stays, it is possible to improve the cooling efficiency and simultaneously reduce the friction between the driver cum caliber and the molded product.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a sectional view showing an example of a profile extrusion-molded product extruded by the present invention.
[0017]
As shown in FIG. 1, this profile extrusion-molded product S is an extrusion-molded product made of a thermoplastic resin, and has a square-shaped hollow portion S2 on both side edges of the flat plate portion S1 along the longitudinal direction. The elongate body has a saddle portion S3 which is once bent downward and then bent in a hook shape on the center side in the horizontal direction.
[0018]
FIG. 2 is a schematic diagram for explaining an example of the cooling and shaping apparatus for the profile extrusion-molded product of the present invention.
As shown in FIG. 2, the cooling shaping apparatus 1 includes a first cooling shaping part 11, an intermittent part 12, and a second cooling shaping part 13.
[0019]
The first cooling shaping section 11 includes a driver cum caliber 111, a jet cooling water tank 112, and a draining plate 113 from the upstream side.
The exit of the driver cum caliber 111 is the final outer shape of the molded product S. A slit is provided in the inner surface of the middle part of the driver vacuum caliber 111, and a suction hole is provided in the bottom surface of the slit, and the molding is passed through the inside by being sucked by a water-sealed vacuum pump or the like through the suction hole. The surface of the product S can be brought into close contact with the inner peripheral surface thereof.
And only the surface layer part of the molded product S immediately after being extruded from the extrusion mold can be cooled as a whole.
[0020]
The slit may be provided along a direction orthogonal to the traveling direction of the molded product S passing through the inside, or may be provided along a parallel direction, or at an oblique angle. It may be provided along the direction. The width of the slit is preferably 2 to 7 mm. When the number of slits is provided along a direction orthogonal to the traveling direction of the molded product S or provided along an oblique direction having a certain angle, one or more slits are parallel to each other. It is preferable that two or more are provided.
[0021]
The length of the driver cum caliber 111 is preferably as short as possible because the resistance is reduced. However, when the strong cooling is performed in the subsequent jet-type cooling water tank 112, the surface layer portion is strong enough to prevent warping or bending due to thermal strain. Only a length capable of cooling only the whole is necessary.
[0022]
As shown in FIG. 3, a refrigerant pipe 111 a is provided in the driver vacuum caliber 111 in the vicinity of almost the entire surface of the molded product S. The refrigerant circulating in the cooling pipe 111a is not particularly limited, and water, oil, or the like can be used.
The material of the driver cum caliber 111 is preferably a material having high thermal conductivity such as copper or brass.
[0023]
The jet-type cooling water tank 112 supplies cooling water into the water tank from several cooling water supply holes provided on the upper, lower, left and right sides of the water tank, and the cooling water from several drain holes provided on the lower surface of the water tank or the lower left and right surfaces. By selecting the amount of water to be supplied and the shapes of the supply holes and drain holes to be used, the state of the jet can be adjusted.
The jet-type cooling water tank 112 is preferable because it has excellent cooling capacity at high speed molding and is easy to cost and handle, but can be cooled by bringing the liquid into direct contact with the molded product S. If it exists, various cooling tanks, such as a spray type and a submerged type, can be substituted, and the liquid used as a refrigerant can use what has high heat conductivity, such as oil other than water.
[0024]
In this jet-type cooling water tank 112, the surface layer portion of the molded product S immediately after passing through the driver cucumber caliber 111 is rapidly cooled, and in the cooling shaping portion after the first cooling shaping portion, the extension due to the take-off force does not occur. Gives up to strength.
[0025]
The shape of the cooling water supply hole and the drain hole of the jet cooling water tank 112 is preferably a circular hole or a rectangular hole having a diameter of about 3 to 20 mm, and a nozzle for enhancing the effect of the jet is preferably attached to the tip of the supply hole. .
[0026]
The draining plate 113 removes the cooling water adhering to the surface of the molded product S in the jet-type cooling water tank 112 so as not to remain when moving to the intermittent portion 12, and is as short as possible to reduce resistance. Is preferable.
The draining plate 113 is provided with a slit and a suction hole similar to those provided in the driver vacuum caliber 111, and passes through the inside with a short length by being sucked by a water-sealed vacuum pump or the like through the suction hole. The cooling water adhering to the surface of the molded product S can be removed.
[0027]
The intermittent portion 12 is a portion that equalizes the temperature in the thickness direction with respect to the surface layer portion of the molded product S cooled by the first cooling shaping portion 11. The uniforming of the temperature in the thickness direction is mainly performed by heat transfer from the inside of the molded product S without cooling the whole. Depending on the shape of the molded product S, it may be partially heated by thermal radiation of a far-infrared heater or by hot air.
The degree of uniformity of the temperature in the thickness direction is preferably such that the surface temperature of the peripheral part (cooling delay part) of the hollow part S2 of the molded product S is equal to or higher than the thermal deformation temperature.
[0028]
The second cooling shaping section 13 is constituted by one or more driver cum calibers 131.
In the second cooling shaping portion 13, the cooling delay portion of the hollow portion S2 that is insufficiently cooled in the shape of the molded product is partially cooled and shaped at the same time. Therefore, only the first portion corresponding to the cooling delay portion is formed. The slits and suction holes similar to those provided in the driver cum caliber 111 of the cooling shaping portion 11 are provided, and as shown in FIG. 4, the cooling pipe 131a is provided only in the portion corresponding to the cooling delay portion. It has been.
Note that only the cooling delay portion may be cooled depending on the amount of cooling water and the selection of the cooling pipe to be used.
And it passes through this 2nd cooling shaping part 13, and it adjusts so that the cooling balance of the molded article S after passage may become uniform.
[0029]
As shown in FIG. 4, only the periphery of the portion corresponding to the cooling delay portion can be cooled when passing through the inside, and the contact resistance is reduced without contacting the other portions. It may be what you did.
Further, only the peripheral portion of the portion corresponding to the cooling delay portion can be cooled when passing through the inside thereof, like the driver cum caliber 131 ″ shown in FIG. 5, and the other portion passes through the gap portion 131b ″. Thus, the contact resistance may be reduced.
[0030]
In the above example, one driver cum caliber is used. However, in the case of a molded product having a complicated shape, a combination of two or more driver cucumbers may be used.
[0031]
In addition, a submerged cooling water tank, a spray cooling water tank, and an airflow cooling part are further provided on the traveling direction side of the second cooling shaping part, and cooling is performed to the deep part of the molded product before reaching the cutting machine. Also good.
[0032]
Next, an example of the method for cooling and shaping a profile extrusion molded product of the present invention will be described with reference to FIG.
First, in the first step, the molded product S immediately after being extruded from the extrusion mold is cooled by the first cooling shaping unit 11 only on the surface layer portion, and the molded product shape is fixed. .
[0033]
At this time, as shown in FIG. 3, the interior of the driver caliber 111 is sucked from the suction hole, and the surface of the molded product S passing through the interior is brought into close contact with the inner surface thereof, while almost the entire molded product S. Cooling is performed by the refrigerant circulating in the refrigerant pipe 111a provided in the vicinity of the surface, and the surface of the passing molded product S is directly brought into contact with the cooling water in the jet state in the subsequent jet cooling water tank 112. After the rapid cooling to be performed, the shape of the molded product is fixed by removing the cooling water adhering to the surface of the molded product S by the draining plate 113.
[0034]
The surface layer portion of the molded product S here naturally depends on the shape of the molded product S, such as the material, production speed, thickness, etc., but in the cooling shaping portion after the first cooling shaping portion 11, the stretch due to the take-up force is extended. Thickness that expresses strength to the extent that it does not occur.
[0035]
In the 1st cooling shaping part 11, intensity | strength is provided to such an extent that the expansion | extension by a take-off force does not arise in a subsequent process. That is, the portion that becomes the skeleton of the molded product S is cooled until the average resin temperature in the thickness direction becomes lower than the thermal deformation temperature. At the same time, the delayed cooling portion around the hollow portion S2 to be reshaped by the second cooling shaped portion 13 needs to be cooled so that the average resin temperature in the thickness direction becomes equal to or higher than the thermal deformation temperature. .
[0036]
In addition, regarding the site | part used as the frame | skeleton of the molded article S, since it is difficult to actually measure the average resin temperature of a thickness direction, after leaving the 1st cooling shaping part 11, the raise by the heat transfer from an inside is carried out. A rough indication is that the surface temperature of the molded product S in an almost equilibrium state is less than the heat distortion temperature.
[0037]
In the intermediate process, the molded product S that has passed through the first cooling shaping portion 11 is caused to pass through the intermittent portion 12 so that the temperature in the thickness direction is made uniform.
At this time, as shown in FIG. 3, the temperature may be equalized by heat transfer from the inside by partially heating with thermal radiation of the far infrared heater 241 or with warm air.
In this step, it is preferable to make the temperature uniform by heat transfer from the inside so that the surface temperature of the portion that is reshaped by the second cooling shaping portion 13 is equal to or higher than the thermal deformation temperature.
[0038]
In the last step, the molded product S that has passed through the intermittent portion 12 is passed through the second cooling shaped portion 13 to partially cool the cooling delay portion that is insufficiently cooled in terms of the molded product shape and at the same time. To do.
At this time, as shown in FIG. 5, the inside of the driver cum caliber 131 is sucked from the suction hole, and the surface of the molded product S passing through the inside is brought into close contact with the inner surface, while the hollow portion S2 (cooling) The surface of the delay portion) is cooled by the refrigerant circulating in the refrigerant pipe 131a provided only in the corresponding portion, taken by the take-up machine, and then cut into a predetermined dimension by the cutting machine. Eggplant.
[0039]
(Example)
Example 1
Using the cooling shaping apparatus 1 shown in FIG. 2, the hollow portion S <b> 2 and the flange portion S <b> 3 are formed at both ends of the flat plate portion S <b> 1 as shown in FIG. 1 by the cooling shaping method described mainly with reference to FIG. 2. The formed product S was extruded.
[0040]
As a material, 2 parts by weight of a stabilizer (trade name “ONZ-142F”, manufactured by Sansha Co., Ltd.) with respect to 100 parts by weight of a hard vinyl chloride resin (trade name “TS1000R”, manufactured by Tokuyama Sekisui Co., Ltd.) 1 part by weight of lubricant 1 (Mitsui Chemicals, trade name “Hiwax220mp”), 0.5 part by weight of lubricant 2 (trade name “S-1000”, manufactured by Riken Vitamin Co., Ltd.) and 3 lubricants (manufactured by NOF Corporation, A mixture of 0.5 part by weight of steric acid and 3 parts by weight of a filler (product name “Shirashinka CCR” manufactured by Shiroishi Kogyo Co., Ltd.) was used.
The molding speed was 7 m / min, and the molding resin temperature was 190 ° C. More specifically, the extrusion conditions corresponding to the control site shown in FIG.
[0041]
[Table 1]
Figure 0004511666
[0042]
The length of the driver cum caliber 111 of the first cooling shaping 11 was 200 mm, and the length of the jet cooling water tank 112 was 90 mm. The driver cum caliber 111 has an outlet side of 80 mm that is more brass of thermal conductivity, and the other material is SUS304.
The coolant of the driver caliber 111 was water having a water temperature of 15 ° C., the amount of water was 10 liters / minute, and the coolant of the jet cooling water tank 112 was also 15 ° C. water.
[0043]
The intermittent part 12 relieves the thermal strain in the thickness direction due to the rapid cooling in the first cooling shaping part 11 of the molded product S, and the surface of the cooling delay part around the hollow part S2 is the second cooling shaping part 13. In order to make the length enough to return the heat to the heat deformation temperature at which re-shaping can be performed, the length was set to 150 mm.
[0044]
As a result, the molded product S could be molded without any problem even when the molding speed was 7 m / min.
During cooling shaping, in the intermittent part 12, as shown in FIGS. 8 and 9, 10 mm from the outlet of the first cooling shaping part in the traveling direction on the hollow part S2 of the molded product S and the central part in the width direction, Values obtained by measuring surface temperatures of 30 mm, 50 mm, 80 mm, 100 mm, and 150 mm with the non-contact infrared temperature sensor 2 were obtained. The results are shown in Table 2.
[0045]
Moreover, in the part after the 2nd cooling shaping part 13, as shown in FIG.8 and FIG.9, the exit of the 2nd cooling shaping part in the advancing direction on the hollow part S2 of the molded article S and the center part of the width direction. From 10 mm, 30 mm, 50 mm, 80 mm, 100 mm, and 150 mm, the values measured by the non-contact infrared temperature sensor 3 were obtained. The results are shown in Table 2.
[0046]
Moreover, about the obtained molded product S, the dimension of the site | part shown in FIG. 10 was measured, and the ratio with respect to a design dimension was computed. The results are shown in Table 3.
[0047]
Comparative example Cooling shaping was performed using only a driver caliber (total length 420 mm, material SUS304), which is one of the conventional cooling shaping methods, and the molding speed was increased. Except for this, the same profile extrusion molding as shown in FIG. 1 was molded in the same manner as in the example.
As a result, when the molding speed exceeds 5 m / min, the molded product is stretched in the driver cum caliber, so that the molded product is cut in the driver cum caliber and further molding can be performed. There wasn't.
The surface temperature of the molded product was measured in the same manner as in the example at the portion where the driver cum caliber exited when the molding speed was 5 m / min. The results are shown in Table 2.
[0048]
For the molded product obtained by molding at a molding speed of 5 m / min, the same dimensions as in the example were measured, and the ratio to the design dimension was calculated. The results are shown in Table 3.
[0049]
[Table 2]
Figure 0004511666
[0050]
[Table 3]
Figure 0004511666
[0051]
As is clear from Table 2, in the case of the example of the present invention, even when the molding speed is 7 m / min, the cooling of each part of the molded product is compared when the molding speed of the comparative example is molded at 5 m / min. However, it can be performed uniformly and it can be easily predicted that the thermal strain is reduced due to uneven cooling.
[0052]
As is clear from Table 3, in the case of the example of the present invention, even when the molding speed is 7 m / min, the dimensions of each part of the molded product are within 3% of the design dimension. Compared with a molded product molded at a speed of 5 m / min, the dimensional accuracy is excellent.
[0053]
【The invention's effect】
Since the cooling shaping method and the cooling shaping apparatus of the profile extrusion molded product of the present invention are configured as described above, the profile extrusion molded product having an open and complicated shape having a hollow portion or the like along the longitudinal direction can be obtained. High-speed production can be performed stably with high dimensional accuracy.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a profile extrusion-molded product extruded by the present invention.
FIG. 2 is a schematic diagram for explaining an example of the cooling shaping apparatus of the present invention together with an example of a cooling shaping method.
3 is a cross-sectional view showing an example of a driver cum caliber of a first cooling shaping portion in the cooling shaping apparatus shown in FIG. 2. FIG.
4 is a cross-sectional view showing an example of a driver cum caliber of a second cooling shaping portion in the cooling shaping apparatus shown in FIG. 2;
FIG. 5 is a cross-sectional view showing another example of the driver cum caliber of the second cooling shaping unit in the cooling shaping apparatus shown in FIG. 2;
6 is a cross-sectional view showing still another example of the driver cum caliber of the second cooling shaping portion in the cooling shaping apparatus shown in FIG. 2. FIG.
FIG. 7 is a schematic diagram showing a control site in an example of the present invention.
FIG. 8 is a schematic view for explaining a part where the surface temperature is measured after exiting the intermittent part and the second cooling shaped part of the molded product in the example of the present invention.
FIG. 9 is a schematic diagram for explaining a part where the surface temperature is measured after exiting the intermittent part and the second cooling shaped part of the molded product in the example of the present invention.
FIGS. 10 (a) and 10 (b) each show a part whose dimensions were measured for a profile extrusion molded product obtained in an example of the present invention.
[Explanation of symbols]
S molded product S1 flat plate part S2 hollow part S3 collar part 1, 2 cooling shaping apparatus 11, 21 first cooling shaping part 12, 22 intermittent part 13, 23 second cooling shaping part 111, 131, 131 ', 131 ′ ′ Driver cum caliber 112 Jet cooling water tank 113 Draining plate

Claims (7)

押出成形用金型から押し出された直後の異形押出成形品を、第1冷却賦形部にて、表層部のみ全体的に冷却して、成形品形状を固定化する工程と、該異形押出成形品を、その肉厚方向の温度を均一化させる間欠部を通過させる工程と、該異形押出成形品を、第2冷却賦形部にて、成形品形状的に冷却の不足する部位を部分的に冷却するとともに賦形する工程からなることを特徴とする異形押出成形品の冷却賦形方法。A process of fixing the shape of the molded product by cooling the profiled molded product immediately after being extruded from the mold for extrusion at the first cooling shaping part only in the surface layer part, and the modified extrusion molding A step of passing the product through an intermittent portion that equalizes the temperature in the thickness direction, and a portion of the profiled molded product that is insufficiently cooled by the second cooling shaping portion. A method for cooling and shaping a profile extrusion-molded product, characterized by comprising the steps of cooling and shaping. 前記間欠部において、前記異形押出成形品の冷却を行わないかもしくはその一部分を加熱し、該成形品の肉厚方向の温度分布を均一化させることを特徴とする請求項1に記載の異形押出成形品の冷却賦形方法。2. The profile extrusion according to claim 1, wherein in the intermittent portion, the profile extrusion-molded product is not cooled or a part thereof is heated to uniform the temperature distribution in the thickness direction of the molding. Cooling shaping method for molded products. 前記間欠部において、前記異形押出成形品の冷却を行わないかもしくはその一部分を加熱し、該成形品の肉厚方向の温度分布を均一化させ、かつ前記第2冷却賦形部にて再賦形を行う部位の表面温度を熱変形温度以上となすことを特徴とする請求項1に記載の異形押出成形品の冷却賦形方法。In the intermittent part, the profile extrusion molded product is not cooled or a part thereof is heated, the temperature distribution in the thickness direction of the molded product is made uniform, and the second cooling shaping part is reshaped. The method for cooling and shaping a profile extrusion-molded product according to claim 1, wherein the surface temperature of the part to be shaped is equal to or higher than the heat distortion temperature. 押出成形用金型から押し出された直後の異形押出成形品を、表層部のみ全体的に冷却して、成形品形状を固定化する第1冷却賦形部と、該異形押出成形品を、その肉厚方向の温度を均一化させるように通過させる間欠部と、該異形押出成形品を、成形品形状的に冷却の不足する部位を部分的に冷却するとともに賦形する第2冷却賦形部とを備えていることを特徴とする異形押出成形品の冷却賦形装置。A first-shaped shaping part for fixing the shape of the molded product by cooling only the surface layer portion of the modified extruded product immediately after being extruded from the extrusion mold, and the modified extruded product, An intermittent portion that allows the temperature in the thickness direction to pass through uniformly, and a second cooling shaped portion that partially cools and shapes the irregularly extruded product in a portion where cooling is insufficient in the shape of the molded product A device for cooling and shaping a profile extrusion-molded product. 前記第1冷却賦形部が、ドライバキュームキャリバと、その直後に連結された、前記異形押出成形品の表面に冷却用液体を直接接触させて冷却を行う冷却槽とから構成されていることを特徴とする請求項4に記載の異形押出成形品の冷却賦形装置。The first cooling shaping part is composed of a driver vacuum caliber and a cooling tank that is connected immediately after the cooling cooling tank to cool the liquid by directly contacting a cooling liquid to the surface of the profile extrusion molded product. The cooling and shaping apparatus for a profile extrusion-molded product according to claim 4, 前記第1冷却賦形部が、ドライバキュームキャリバと、その直後に連結された、対流する冷却水で満たされた噴流式冷却水槽とから構成されていることを特徴とする請求項4に記載の異形押出成形品の冷却賦形装置。The said 1st cooling shaping | molding part is comprised from the driver-cooling caliber and the jet-type cooling water tank with which it filled with the convection cooling water connected immediately after that. Cooling and shaping device for profile extrusion products. 前記第2冷却賦形部が、少なくとも1つ以上のドライバキュームキャリバで構成されていることを特徴とする請求項4乃至請求項6のいずれか1項に記載の異形押出成形品の冷却賦形装置。The said 2nd cooling shaping | molding part is comprised by the at least 1 or more driver | operator cum caliber, The cooling shaping of the profile extrusion molded product of any one of Claim 4 thru | or 6 characterized by the above-mentioned. apparatus.
JP2000026660A 2000-02-03 2000-02-03 Cooling shaping method and cooling shaping apparatus for profile extrusion molding Expired - Fee Related JP4511666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000026660A JP4511666B2 (en) 2000-02-03 2000-02-03 Cooling shaping method and cooling shaping apparatus for profile extrusion molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000026660A JP4511666B2 (en) 2000-02-03 2000-02-03 Cooling shaping method and cooling shaping apparatus for profile extrusion molding

Publications (2)

Publication Number Publication Date
JP2001212872A JP2001212872A (en) 2001-08-07
JP4511666B2 true JP4511666B2 (en) 2010-07-28

Family

ID=18552368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000026660A Expired - Fee Related JP4511666B2 (en) 2000-02-03 2000-02-03 Cooling shaping method and cooling shaping apparatus for profile extrusion molding

Country Status (1)

Country Link
JP (1) JP4511666B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT410299B (en) * 2001-08-10 2003-03-25 A & G Extrusion Technology Gmb DEVICE FOR COOLING AND CALIBRATING AN EXTRUDED PLASTIC PROFILE
JP2013244689A (en) * 2012-05-28 2013-12-09 Shin Etsu Polymer Co Ltd Method of manufacturing resin molded body and siding material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6292825A (en) * 1985-10-17 1987-04-28 Sekisui Chem Co Ltd Cooling of extruded part with hollow portion
JPS62193820A (en) * 1986-02-20 1987-08-26 Sekisui Chem Co Ltd Method for cooling extrusion molded product having hollow part
JPH071556A (en) * 1993-06-18 1995-01-06 Mitsui Petrochem Ind Ltd Method and apparatus for manufacturing thermoplastic resin molded product
JPH07285181A (en) * 1994-04-19 1995-10-31 Nissei Asb Mach Co Ltd Method and apparatus for crystallizing resin piece
JPH09123249A (en) * 1995-10-31 1997-05-13 Sekisui Chem Co Ltd Calibrator for extrusion molding
JPH10309747A (en) * 1997-05-09 1998-11-24 Toyo Chem Co Ltd Cooling method of shaped extruded article made of synthetic resin
JP2001088198A (en) * 1999-09-20 2001-04-03 Sekisui Chem Co Ltd Apparatus for extrusion molding of thermoplastic resin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6292825A (en) * 1985-10-17 1987-04-28 Sekisui Chem Co Ltd Cooling of extruded part with hollow portion
JPS62193820A (en) * 1986-02-20 1987-08-26 Sekisui Chem Co Ltd Method for cooling extrusion molded product having hollow part
JPH071556A (en) * 1993-06-18 1995-01-06 Mitsui Petrochem Ind Ltd Method and apparatus for manufacturing thermoplastic resin molded product
JPH07285181A (en) * 1994-04-19 1995-10-31 Nissei Asb Mach Co Ltd Method and apparatus for crystallizing resin piece
JPH09123249A (en) * 1995-10-31 1997-05-13 Sekisui Chem Co Ltd Calibrator for extrusion molding
JPH10309747A (en) * 1997-05-09 1998-11-24 Toyo Chem Co Ltd Cooling method of shaped extruded article made of synthetic resin
JP2001088198A (en) * 1999-09-20 2001-04-03 Sekisui Chem Co Ltd Apparatus for extrusion molding of thermoplastic resin

Also Published As

Publication number Publication date
JP2001212872A (en) 2001-08-07

Similar Documents

Publication Publication Date Title
JP7270553B2 (en) Method and Apparatus for Forming Curved Extruded Profiles/Parts in Metal Alloys
CA2737242A1 (en) Device and method for extruding plastic profiles in an energy-efficient manner
US7879283B2 (en) Sizer for forming shaped polymeric articles and method of sizing polymeric articles
JP2020519447A5 (en)
WO2017066897A1 (en) Water-cooling extruding machine and operating method therefor
CA2892313C (en) Reinforced louver blade
JP2009544485A5 (en)
US4235834A (en) Method for making biaxially stretched articles of thermoplastic resin
WO1990002644A1 (en) Method of pipe manufacture
US3635614A (en) Apparatus for producing embossed plastic articles
CA1096574A (en) Processing extruded elastomers
JP4511666B2 (en) Cooling shaping method and cooling shaping apparatus for profile extrusion molding
US3160918A (en) berggren etal
DE3912687A1 (en) EXTRUSION MOLDING PROCESS
CN204604943U (en) A kind of back of the body strip of paper used for sealing production system
FI87161B (en) FOERFARANDE OCH ANORDNING FOER AVKYLNING AV EN FRAON ETT SLITSMUNSTYCKE TILL ETT KYLSYSTEM STRAENGSPRUTAD SMAELTFILM.
Mikulenok Intensification of fabrication of extruded polymeric shapes
CN210411947U (en) Aluminum profile forming extruder equipment
JPH0512293B2 (en)
RU2319611C2 (en) Method of cooling and gauging of profile-molding articles made out of polymeric materials produced by extrusion
JP2001009896A (en) Molding method for chlorinated vinyl chloride resin pipe
US4128379A (en) Apparatus for processing extruded thermoplastic polymer
JPS59114027A (en) Extrusion molding die
CN208745161U (en) A kind of efficient casting films owner chilling roller
US3221370A (en) Apparatus for extruding thermoplastic film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4511666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees